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Disorder-Induced Revival of the Bose-Einstein Condensation
in NiðCl1−xBrxÞ2-4SCðNH2Þ2 at High Magnetic Fields

Maxime Dupont, Sylvain Capponi, and Nicolas Laflorencie
Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, 31062 Toulouse, France

(Received 19 October 2016; published 9 February 2017)

Building on recent NMR experiments [A. Orlova et al., Phys. Rev. Lett. 118, 067203 (2017).], we
theoretically investigate the high magnetic field regime of the disordered quasi-one-dimensional S ¼ 1

antiferromagnetic material NiðCl1−xBrxÞ2-4SCðNH2Þ2. The interplay between disorder, chemically
controlled by Br-doping, interactions, and the external magnetic field, leads to a very rich phase diagram.
Beyond the well-known antiferromagnetically ordered regime, an analog of a Bose condensate of magnons,
which disappears when H ≥ 12.3 T, we unveil a resurgence of phase coherence at a higher field
H ∼ 13.6 T, induced by the doping. Interchain couplings stabilize the finite temperature long-range order
whose extension in the field—temperature space is governed by the concentration of impurities x. Such a
“minicondensation” contrasts with previously reported Bose-glass physics in the same regime and should
be accessible to experiments.

DOI: 10.1103/PhysRevLett.118.067204

Introduction.—Interacting quantum systems in the pres-
ence of disorder have been intensively studied for several
decades, leading to fascinating physics, e.g., the Kondo
effect [1], the many-body localization transition [2], or the
superfluid to Bose-glass (BG) [3,4] transition at a finite
disorder for lattice bosons [5–7]. While counterintuitive, in
some situations, disorder may enhance long-range order, as
discussed for inhomogeneous superconductors [8–10].
Perhaps even more surprising, doping gapped antiferro-
magnets with a finite concentration of magnetic or non-
magnetic impurities can fill up the bare spin gap with
localized levels [11–13], which may eventually order, in the
strict sense of macroscopic long-range order (LRO) at a low
temperature. Such an impurity-induced ordering mecha-
nism of the type “order from disorder” [14,15] has been
experimentally observed for a large number of spin-gapped
compounds [16]: weakly coupled d ¼ 1 systems such as
spin-Peierls chains CuGeO3 [17,18], spin ladders SrCu2O3

[19] and BiCu2PO6 [16], Haldane chains PbNi2V2O8 [20],
as well as weakly coupled dimers in TlCuCl3 [21].
Nevertheless, only a few studies have focused on the effect
of an external field [22–27].
In this Letter, building on recent nuclear magnetic

resonance (NMR) experiments [28], we achieve a realistic
theoretical study of the high magnetic field regime of
NiðCl1−xBrxÞ2-4SCðNH2Þ2 (DTNX): a three-dimensional
antiferromagnetic (AF) system made of weakly coupled
chains of S ¼ 1 spins subject to single-ion anisotropy
[panels (b)–(c) of Fig. 1]. Note that the S ¼ 1 chains
are not of Haldane type, due to the large anisotropy
D [29]. In the absence of chemical disorder (x ¼ 0),
NiCl2-4SCðNH2Þ2 (DTN) provides a very good realization
of magnetic field-induced Bose-Einstein condensation
(BEC) in a quantum spin system [30–33] between two

critical field Hclean
c1 ¼ 2.1 T and Hclean

c2 ¼ 12.32 T [34–36],
see Fig. 1(a). Disorder induced by Br doping locally
changes the amplitude of the AF interaction between
nearest neighbors Ni (S ¼ 1) atoms, at random positions
along the chains. This is expected to bring new physics
above Hc2, where a Bose-glass (BG) regime [3,4] with a
disordered many-body ground state was recently reported
[37,38]. However, the Br-doped bonds introduce a new
energy scale in DTNX, as shown by an enhanced NMR
relaxation around a crossover field H� ≃ 13.6 T [28]. In
close analogy with impurity-induced LRO at zero field
[16], we show using large scale quantum Monte Carlo
(QMC) simulations that in the vicinity of H� localized
states hosted by doped bonds can interact and display
macroscopic coherence, as sketched in Fig. 1.
Theoretical modeling of DTNX.—Recent neutron [39]

and NMR [28] experiments on DTNX at various Br
concentration 0.04 ≤ x ≤ 0.13 have both shown the exist-
ence of a localized level above Hc2. Building on NMR data
[28], the microscopic parameters for Br-doped bonds [there
are two nonequivalent Cl sites in each J bond, but only one
of these can be doped by a Br, see panel (b) of Fig. 1] can be
precisely determined in order to match the observed spin
relaxation peak at H� ≃ 13.6 T, attributed to the crossing
between Sz ¼ 2 and Sz ¼ 1 levels of impurity states [panel
(d) of Fig. 1], combined with the local magnetizations from
NMR shifts. DTNX is therefore described by the following
S ¼ 1 model [28,40]:

H ¼
X

i

�X

n

Ji;nSi;n · Siþ1;n þ J⊥
X

hnmi
Si;n · Si;m

þ
X

n

Di;nðSzi;nÞ2 − gμBHSzi;n

�
; ð1Þ
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where the various parameters are shown in Figs. 1(b)–1(c).
Along the chain direction, undoped bonds display an AF
exchange Ji;n ¼ J ¼ 2.2 K while for Br-doped bonds (in
concentration 2x) Ji;n ¼ J0 ¼ 5.32 K. Single-ion anisotro-
pies are Di;n ¼ D ¼ 8.9 K for clean sites and Di;n ¼ D0 ¼
3.2 K for the sites adjacent to a doped Br atom, here on the
left side of the doped bond, see Fig. 1(b). Since the
transverse bonds which couple the chains in a three-
dimensional (3D) array are not directly affected by Br-
doping, interchain coupling between nearest-neighbor sites
hnmi is assumed to take its clean value J⊥ ¼ 0.18 K. In the
following, we use g ¼ 2.31 for the gyromagnetic factor,
such that the clean upper critical field Hclean

c2 ¼ ðDþ 4J þ
8J⊥Þ=ðgμBÞ ¼ 12.32 T [36].
The coupling energy of a doped S ¼ 1 dimer being

larger than for the undoped case ðJ0=J ¼ 2.42Þ, we
first analyze an isolated “impurity dimer” [right-hand
side of panel (b) in Fig. 1] embedded in a clean
system. Starting at high field, upon decreasing H, the
polarized state (Sz ¼ 2) j↑↑i crosses the Sz ¼ 1 state at
H� [panel (d) in Fig. 1]. Contrary to a clean system
where the Sz ¼ 1 state would disperse, here its
dynamics is described by a tight-binding model with a
boundary impurity potential well [40] of a depth

Δimp¼ J0−JþD0−D
2

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ½ð2J0Þ=ðD−D0Þ�2

p
−1Þ≃6.3K,

which localizes the Sz ¼ 1 state. The energy of such a
bound state can be computed analytically in the limit of a
small interchain coupling J⊥ ≪ J and large impurity
potential Δimp ≫ J⊥, thus yielding

H�≈DþΔimpþ 2Jþ 4J⊥þ J2

Δimp
þ 4J2⊥
Δimp

≃ 13.6 T; ð2Þ

perfectly matching the experiments [28].
For a small but finite concentration x of Br ions, around

the crossover field H� we are left with a collection of
localized states which are randomly placed in the 3D
system of coupled chains. Using the above parameters,
the localization length was determined to be very short
[28], in units of lattice spacings ξ∥ ≃ 0.48 along the chain
and ξ⊥ ≃ 0.17 in the transverse directions. Despite its
random distribution in real space, this set of localized two-
level systems is expected to experience an effective
unfrustrated pairwise coupling, exponentially suppressed
with the distance [41–46], and their density is controlled by
a chemical potential, proportional to the external field
μ ¼ gμBðH −H�Þ. From such considerations, a minimal
toy model with hard-core bosons (HCB) would read

Htoy ¼
X

hiji
tijðb†i bj þ H:c:Þ − μ

X

i

b†i bi; ð3Þ

where nonfrustrated hopping terms tij between neighbors
are built from the effective pairwise mechanism derived in
Ref. [28], and for which one might expect a global phase
coherence at low enough temperature [16,47].
In the following, we investigate in details such an “order

from disorder” mechanism using large scale QMC simu-
lations first for the realistic microscopic S ¼ 1 model, see
Eq. (1), and then compare it with the above toy-model
description Eq. (3).
Impurity-induced LRO at H� ¼ 13.6 T.—Using QMC

stochastic series expansions (SSE) techniques [48,49], the
DTNX S ¼ 1 Hamiltonian Eq. (1) is simulated for 3D
systems of N ¼ L × L=r × L=r sites. For such a weakly
coupled chains problem (J⊥=J ≃ 0.08), it is numerically
very favorable [50] to use anisotropic aspect ratios r,
depending on the impurity concentration [51]. This allows
us to perform an accurate finite-size scaling analysis using
increasing system sizes, with chain lengths varying from
L ¼ 24 up to L ¼ 120. Disorder averaging is carried out
over a large number ≥ 300 of independent samples.
As exemplified in Fig. 2 for H ¼ H� and x ¼ 10%

of impurities, a finite temperature transition is clearly
observed at Tc ¼ 138ð4Þ mK using two different estimates:
the spin stiffness ρs [52,53] and the transverse AF order
parameter mx ¼

P
i;je

iq·rijhSþi S−j i=N2 at q ¼ ðπ; π; πÞ. A
standard finite size scaling analysis [54]

FIG. 1. (a) Schematic temperature T—magnetic field H phase
diagram of the clean DTN compound, showing the BEC dome
surrounded by a quantum paramagnet (QPM) and a polarized
ferromagnet (FM). (b)–(c) The two types (clean and Br-doped) of
S ¼ 1 dimers and their arrangement in a three-dimensional array
of coupled chains modeling DTNX, see Eq. (1). (d) Field-induced
energy level crossing of a Br-doped S ¼ 1 dimer. (e) Schematic
T—H phase diagram for DTNX at low doping, with an impurity-
induced BEC� dome revival in the vicinity of the crossover field
H�. Yellow baselines show the regions where a BG is expected.

PRL 118, 067204 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

10 FEBRUARY 2017

067204-2



ρsðLÞ ¼ L2−dGρs ½L1=νðT − TcÞ�
mxðLÞ ¼ L−β=νGm½L1=νðT − TcÞ�; ð4Þ

with d ¼ 3, and the 3D-XY critical exponents [55–57]
ν ¼ 0.6717 and β ¼ 0.3486, is used to extract Tc, after a
Bayesian scaling analysis [58,59]. Both estimates from the
stiffness and the order parameter agree very well within
error bars [60].
Similar simulations and analyses are then repeated for

different concentrations x of impurities, still at the cross-
over field H�, in order to extract the doping dependence
Tcðx;H�Þ. Results are plotted in Fig. 3 for 5% ≤ x ≤
16.67%, where we observe LRO at finite temperature for all
doping levels. The ordering temperature grows linearly
with x. This is qualitatively expected from a naive mean-
field reasoning, as the average coupling between the chains
(setting the 3D energy scale for the finite temperature LRO)
is hJ3Di ∼ J⊥x. More precisely, exact diagonalization
calculations of the effective pairwise coupling between
impurities in DTNX, discussed in Ref. [28,40], yield an
average energy coupling in the transverse direction hJ3Di≃
1.5x (K), which compares well with QMC estimates, at
least for large enough dopings x ≥ 8% (Fig. 3). For small x,
accurate estimates for Tc are very hard to obtain because
simulations get slower with inverse temperature, and finite
size effects become more serious when the number of
impurities decreases. Nevertheless, we can observe at low

doping that the ordering temperature starts to deviate form a
simple linear scaling and displays a faster decay. While it is
impossible to exclude the existence of a critical concen-
tration xc < 5% where Tc vanishes, it is reasonable to
expect that Tcðx;H�Þ will vanish only when x → 0,
presumably with a convex form different from the mean-
field-like shape observed for x > 8%.
Hard-core bosonic toy model.—At this stage, it is

instructive to compare the results obtained for the realistic
microscopic DTNX Hamiltonian (1) with the simple toy-
model HCB Hamiltonian (3) for which QMC simulations
have been performed at half filling (μ ¼ 0). Instead of
working on a diluted impurity lattice with the exponentially
suppressed hoppings derived in Ref. [28], it is easier to
investigate the toy model on a regular cubic lattice made of
coupled chains with disordered nearest-neighbor hoppings.
In order to mimic the exponentially suppressed effective
couplings combined with the random distribution of the
distances between impurities in the original S ¼ 1 problem,
we follow Refs. [41,46] and generate random hoppings
from the broad distribution PðtÞ ∼ t−1þ1=δ, with t ≤ 2.2 K
along the chains, and t ≤ 0.2 K in the transverse directions,
δ being a phenomenological disorder parameter.
Simulations are carried out for L × L=5 × L=5 lattices

with L ¼ 20, 30, 40, 50, and averaged over a large number
≥ 500 of samples for 2 ≤ δ ≤ 8. When performing a similar
finite-size scaling analysis as explained above, LRO is also
detected at low temperature TcðδÞ which vanishes in the
large δ limit. More precisely, the disorder parameter δ of
this toy model can be related to the impurity concentration
x, such that 1=δ ¼ 5x yields a remarkably good agreement
between the two models [61]. For this HCB toy model, less

FIG. 3. Critical ordering temperature for the impurity-induced
LRO atH� ¼ 13.6 T plotted against the impurity concentration x
for the S ¼ 1 model Eq. (1) (hexagon) and for the effective HCB
toy-model Eq. (3) at half filling (circle) plotted against ð5δÞ−1,
suggesting LRO for all finite x values. The average effective
pairwise coupling between impurities in the transverse direction
is also shown (square) for comparison. Lines are guides
to the eyes.

FIG. 2. Finite size scaling analysis for the disorder average spin
stiffness ρsðLÞ (top panels) and transverse AF order parameter
mxðLÞ (bottom panels) following the scaling forms given by
Eq. (4). QMC results obtained for the DTNX Hamiltonian Eq. (1)
on L × L=10 × L=10 lattices of various sizes at H ¼ H� ¼
13.6 T with x ¼ 10% of impurities.
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numerically demanding, one can reach smaller critical
temperatures, thus supporting that Tcðx;H�Þ → 0 for
x → 0. This comparison justifies the fact that impurity-
induced LRO at H� in DTNX is driven by an effective
residual interaction, albeit small and random in magnitude,
between localized states living on Br-doped bonds. Such a
mechanism is analogous to what is generically observed for
a wide class of doped spin-gapped compounds [16].
Field-temperature phase diagram.—The next significant

question concerns the possible extension of the ordered
regime away from the crossover field H�. Indeed, as
schematized in Figs. 1(d)–1(e), we expect the level crossing
of a single doped dimer to spread and acquire a bandwidth
due to the effective couplings, in analogy with clean weakly
coupled dimers [31,62], yielding an extended finite temper-
ature ordered regime around the crossover fieldH�, dubbed
BEC�. In order to address this issue, we have performed
QMC simulations of the DTNX model Eq. (1) at various
values of the external magnetic field H between 12 T and
14 T, for different impurity levels. Results are reported in
Fig. 4 where the field—temperature phase diagram is
shown. Clearly, an extended impurity-induced LRO regime
BEC� is observed, with a maximum slightly shifted below
H� [63]. While for x ¼ 10% this ordered dome seems to
reach its left quantum critical boundary at a field value
above Hc2 [also quantitatively supported by the toy-model
Eq. (3) at δ ¼ 2], leaving room for an intermediate
disordered (Bose glass) state [37], this is no longer true
at higher doping. Indeed, at x ¼ 12.5% the BEC� regime
overlaps with the low-field BEC dome (H ≤ 12.3 T),
excluding the possibility to stabilize an intermediate
Bose-glass, and the situation is even more dramatic
at x ¼ 16.67%.

It is crucial to notice that this effect goes beyond a simple
percolation picture. Indeed, the site percolation threshold
on a cubic lattice being p� ≃ 0.312 [64], one expects an
infinite-size Br-doped cluster hosting LRO above a con-
centration of Br impurity 2x ¼ p�. Therefore, if x > 15.6%
LRO occurs for the entire gapless regime, from a low field
up to H0

c2 ¼ ðD0 þ 4J0 þ 8J⊥Þ=ðgμBÞ≃ 16.7 T. Below
this threshold, as, for instance, seen for x ¼ 12.5% in
Fig. 4, the ordering mechanism is controlled by effective
couplings beyond nearest-neighbor Br-doped dimers.
Summary and discussions.—An impurity-induced BEC-

type AF ordering is expected for DTNX in the vicinity of
H� ¼ 13.6 T, as unveiled by our large-scale QMC simu-
lations performed for the microscopic realistic S ¼ 1model
Eq. (1). The critical temperature at this crossover field
grows with the doping x (Fig. 3), a result nicely supported
by an effective hard-core bosons toy-model description
based on localized two-level systems coupled through a
random hopping, thus confirming the relevance of the
analogy between this disorder-induced BEC� order and the
impurity-induced LRO mechanism observed at zero field
for several spin-gapped compounds [16]. The temperature
and field ranges where this new ordered phase is expected
to occur are clearly experimentally accessible for realistic
doping levels x, either using NMR, neutron scattering, or
thermodynamic probes such as a specific heat measure-
ment. The experimental observation of this rather exotic
disorder-induced BEC� phase clearly opens new routes to
address the interplay between disorder and interactions in
such quantum systems.
Numerically, accessing very low Tcðx;HÞ using QMC

simulations, typically below10mK, is very challenging. It is
therefore difficult to draw firm conclusions regarding the
precise field extension of the BEC� regime aroundH� in the
T → 0 limit. For x ¼ 8%, Yu et al. reported a quantumphase
transition into aBose-glass state above 12.3 T [37]. This is in
agreement with our estimate for the onset of the overlap
between BEC and BEC� domes, expected to be experimen-
tally detectable for x > 10%. However, we stress here that
this reported Bose-glass state at x ¼ 0.08may only exist in a
very narrow field regime between the BEC and BEC�
ordered states. At lower impurity concentration levels, we
further expect a more extended and experimentally acces-
sible BG regime intervening between two ordered phases.
Upon increasing further the field H > H�, we then

expect the BEC� dome to eventually vanish, presumably
before H0

c2 ≃ 16.7 T for x < 15.6% (where the Br-doped
cluster reaches its percolation threshold), thus offering the
possibility to stabilize another Bose-glass state at a high
magnetic field, before the complete saturation of the spins.
It is therefore quite promising to contemplate this BEC—
Bose glass criticality at such a high-field transition where
no surrounding order would spoil its genuine properties,
allowing us to determine its critical exponents which are
still controversial [38,65,66]. For other experimental

FIG. 4. Field H—temperature T phase diagram for DTNX
obtained by QMC simulations for both the S ¼ 1 model Eq. (1)
with x ¼ 0 (square), x ¼ 10% (hexagon), x ¼ 12.5% (diamond),
x ¼ 16.67% (triangle), and the HCB effective Hamiltonian
Eq. (3) with δ ¼ 2 (circle). The HCB BEC� dome has been
centered around 13.5 T. Dashed lines are guides to the eyes.
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systems with a magnetic Bose glass regime (for a
recent review, see Ref. [67]), one could expect a similar
disorder-induced BEC revival [23] provided the separation
of energy scale between clean and doped sites is large
enough, as, for instance, in the metal-organic spin ladder
ðHpipÞ2CuBr4ð1−xÞCl4x [68].
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inputs, as well as T. Roscilde for discussions. This work
was performed using HPC resources from GENCI (Grants
No. x2015050225 and No. x2016050225) and is supported
by the French ANR program BOLODISS and Région
Midi-Pyrénées.
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