
UC Irvine
Recent Work

Title
Diversity Results for DSTC-ICRec and DSTC Joint-user ML decoding

Permalink
https://escholarship.org/uc/item/475040fd

Authors
Li, Liangbin
Jing, Yindi
Jafarkhani, Hamid

Publication Date
2010

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/475040fd
https://escholarship.org
http://www.cdlib.org/


Diversity Results for DSTC-ICRec and DSTC Joint-user ML
decoding

Liangbin Li1, Yindi Jing2, and Hamid Jafarkhani1

1Center for Pervasive Communications & Computing, University of California, Irvine
2University of Alberta

Abstract

In this technical report, we provide diversity analysis for two transmission schemes in (J, Ja, Ra, N)
multi-access relay networks (MARNs), where J users, each equipped with Ja antennas, communicate to one
N -antenna receiver through Ra single-antenna relays. Both transmission schemes allow all users’ symbols
to be transmitted concurrently through the source-relay and relay-receiver links. Therefore, both schemes
have the potential of high transmission rate in multi-user relay networks. In the first scheme, called DSTC
joint-user ML decoding, the relays perform distributed space-time coding (DSTC) to improve the reliability
of the system, and the receiver jointly decodes all users’ symbols using the ML decoding. Through rigorous
analysis, this scheme achieves a symbol rate of 1

2 symbols/user/channel use, in conjunction to a diversity
gain of Ra min{Ja, N}, which is the maximum diversity achievable in this network. But the decoding
complexity of this scheme is exponential in the number of users. To reduce the decoding complexity, we
consider a second scheme, DSTC-ICRec, in which the relay operations are the same, but the receiver first
conducts interference cancellation (IC) to decouple multi-user signals, then decodes each user’s symbols
independently. We show analytically that in (2, 1, 2, N) and (2, 2, 2, N) MARNs, DSTC-ICRec achieves
a diversity of 1 and min{2, N − 1}, respectively, at a symbol rate of 1

2 symbols/user/channel use. Since
the maximum achievable diversity gains in these two networks are 2 and 2min{2, N}, respectively, DSTC-
ICRec has a lower diversity gain, compared to DSTC joint-user ML decoding, but its decoding complexity
is much lower due to the IC.

1 Motivation and Network Model

A popular approach to address multi-user transmission in a relay network is through orthogonal channel al-
location. Each user is assigned a distinct time slot or frequency bandwidth. Then, the receiver observes no
multi-user interference and can use single-user decoding techniques. However, this approach has low spectrum
efficiency because the per user transmission rate of the network decreases with the number of users. In this
report, we discuss two transmission schemes where the information streams of all users are concurrently trans-
mitted through both the source-relay and the relay-receiver links. With concurrent transmission, the per user
transmission rate of the network is fixed when the number of users in the network grows. Thus, the proposed
schemes have of the potential of high spectrum efficiency. Further, we provide diversity gain analysis for the
proposed transmission schemes.

The network model used in this report is explained as follows. Consider a relay network with J users, each
equipped with Ja antennas, Ra relay nodes, each equipped with one antenna, and one receive node with N
antennas. There is no direct connection from users to the receiver. This network is denoted as the multi-access
relay network (MARN). Denote the fading coefficient from Antenna k (k = 1, . . . , Ja) of User j (j = 1, . . . , J)
to Relay i (i = 1, . . . , Ra) as f

(j)
ki . Also denote the fading coefficient from Relay i to Antenna n of the receiver

(n = 1, . . . , N ) as gin. The Ja× 1 channel vector from User j to Relay i is denoted as f (j)
i , [f (j)

1i , · · · , f
(j)
Jai]

t,
1



where the superscript t stands for matrix transpose. When each user has one antenna, f (j)
i is automatically

turned into the scalar expression f
(j)
i . The 1 × N channel vector from Relay i to the receiver is denoted as

gi , [gi1, · · · giN ]. The Ra×N channel matrix from the relay to the receiver is denoted as G , [gt
1, · · · ,gt

Ra
]t.

All fading coefficients, f
(j)
ki and gin, are assumed to be i.i.d. with CN (0, 1) distribution, i.e., channels are

normalized Rayleigh flat-fading. We assume a block-fading model with coherent interval T , i.e., all fading
coefficients keep unchanged for T channel uses and then transit synchronously to independent values.

Users communicate to the receiver through two hops of transmissions supported by the set of common half-
duplex relays. During the first step, all users send information using the same channel and the relays listen. We
use E and tr to denote expectation and trace, respectively. The overheard signal on Relay i can be written as

ri =
∑

j=1:J

√
P

Ja
S(j)f (j)

i + vi, (1)

where S(j) denotes the T1×Ja (T1 ≤ T ) space-time code matrix sent by User j, which is normalized such that
E trS(j)∗S(j) = JaT1; vi denotes the T1 × 1 additive white Gaussian noise vector at Relay i and all entries in
vi are i.i.d. CN (0, 1) distributed. During the second step, a T2× 1 (T2 ≤ T ) signal vector ti is forwarded from
the Relay i to the receiver, with the normalization E

∑
i=1:Ra

t∗i ti = PT2. The sampled T2 ×N signal matrix
X at the receiver is given by

X =
∑

i=1:Ra

tigi + W, (2)

where W denotes the T2×N white Gaussian noise matrix at the receiver and all entries in W are i.i.d. CN (0, 1)
distributed. Throughout the paper, we assume full channel state information (CSI) at the receiver but no CSI at
either the transmitter or the relays. To focus on the diversity performance of the protocol, all sources and relays
are assumed to have the same average power constraint P . The extension to nonuniform power constraint is
straightforward. In addition, perfect synchronization at the symbol level is assumed for all nodes so there is no
transmission delay from nodes to nodes.

The rest of this report is organized as follows. Section 2 is on the description of joint-user ML decoding
and its diversity gain analysis. In Section 3, we discuss DSTC-ICRec, and analyze its diversity gain. Section 4
contains the conclusions and some technical proofs are included in the appendices.

2 DSTC Joint-user ML Decoding

Distributed space-time coding (DSTC) was shown to achieve the maximum diversity in single-user relay net-
works without any channel information at the relays and the transmitter [1,2]. In a multi-user setup, we propose
to use DSTC to encode the superposition of multi-user signals at the relay for diversity gain. The receiver per-
forms the ML decoding to jointly decode all users’ symbols. In Subsection 2.1, we present the scheme of DSTC
joint-user ML decoding. The diversity analysis is provided in Subsection 2.2.

2.1 The scheme of DSTC Joint-user ML Decoding
The transmission scheme of DSTC joint-user ML decoding follows the single user DSTC scheme [2]. Let
T1 = T2 = T . During the first step, all users transmit concurrently as in (1). The relay linearly transforms the
received T × 1 signal vector ri to generate T × 1 vector ti as

ti =

√
P

(JP + 1)Ra
(Airi + Biri),

where
√

P
(JP+1)Ra

is to normalize the average power at the relay; Ai and Bi are pre-determined T × T

matrices [3]. We assume that either Ai is unitary, Bi = 0T or Bi is unitary, Ai = 0T . During the second step,
2



Relay i sends T × 1 vector ti concurrently as in (2). The overall system equation at the receiver can be written
as

X =

√
P 2

Ra(JP + 1)Ja

∑

j=1:J

[
Â1S

(j)
1 · · · ÂRa

S(j)
Ra

]

︸ ︷︷ ︸
Ŝ(j)




f̂ (j)
1 g1

...
f̂ (j)
Ra

gRa




︸ ︷︷ ︸
H(j)

+

√
P

Ra(JP + 1)

∑

i=1:Ra

Âiv̂igi + W

︸ ︷︷ ︸
U

, (3)

where {
Âi = Ai, f̂i = fi, v̂i = vi,S

(j)
i = S(j) if Bi = 0

Âi = Bi, f̂i = fi, v̂i = vi,S
(j)
i = S(j) if Ai = 0.

Ŝ(j) is the equivalent distributed space-time codeword containing the information of User j at the receiver. The
design of Ŝ(j) depends on the STBC of source nodes and the transmission matrices at the relays. H(j) is the
equivalent channel matrix from User j to the receiver. U is the equivalent noise matrix. Eq. (3) differs from
the equivalent system equation of the single-user DSTC network in [2] in the superposition of the multi-user
signals. The optimal decoder is to jointly decode all users’ symbols by the ML decoding, which can be written
as

arg min
Ŝ(1),...,Ŝ(J)

tr


X−

√
P 2

Ra(JP + 1)Ja

∑

j=1:J

Ŝ(j)H(j)



∗

Σ−1
u


X−

√
P 2

Ra(JP + 1)Ja

∑

j=1:J

Ŝ(j)H(j)


 (4)

where Σu is the noise covariance matrix, i.e., Σu = E UU∗ = IM + P
(1+JP )Ra

G∗G.

From (1), if each user applies quasi-orthogonal STBC for S(j), T symbols are carried in S(j). Then,
each user sends T symbols to the receiver using 2T time slots. Thus, the symbol rate of the network is 1

2
symbols/channel use/user.

2.2 Diversity Analysis

In this part, we provide the diversity gain analysis of the joint-user ML decoding in (4). The diversity analysis
for multi-user joint decoding differs from that of single-user DSTC relay networks [2] in several ways: 1)The
definition of diversity gain needs to be generalized; 2)Proof is more involved and need to use new bounding
techniques. Consider the pairwise error probability (PEP) of mistaking User j’s STBC Ŝ(j) by Ŝ(j)′ ,

P (∆S(j)) =
∑

∆S(1),...,∆S(j−1),∆S(j+1),...,∆S(J)

P (∆S(1), . . . ,∆S(J)), (5)

where ∆S(j) , Ŝ(j) − Ŝ(j)′ and P
(
∆S(1), . . . , ∆S(J)

)
is the pairwise error probability of jointly output Ŝ(j)′

given Ŝ(j) is sent for j = 1, . . . , J . It can be shown that

P
(
∆S(1), . . . , ∆S(J)

)
= E

H(j)
Q




√√√√√ P 2

2RaJa(1 + JP )
tr





 ∑

j=1:J

∆S(j)H(j)





 ∑

j=1:J

∆S(j)H(j)



∗

Σ−1
u





 .(6)

We define the diversity gain of User j in this multiuser relay network as d = − log P (∆S(j))
log P . For simplicity,

we assume that all users apply the same constellation and STBC, i.e, Ŝ(j) ∈ S for j = 1, . . . , J . A space-time
code S is called fully diverse if for any two codewords S1,S2 ∈ S, (S1 − S2)∗(S1 − S2) is full rank.

Theorem 1. For a MARN with Ja antennas at each user, Ra single-antenna relays, and N antennas at the
receiver, DSTC joint-user ML decoding achieves diversity Ra min{Ja, N} for each user if the equivalent STBC
S is fully diverse and T ≥ JaRa.
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Proof. First we show that the diversity is upperbounded by the single-user diversity. Note that all terms in the
right-hand side (RHS) of (5) are non-negative and there exists one term with ∆S(1) = · · · = ∆S(J) = ∆.
Thus, using (6), we have

P
(
∆S(j)

)
≥ P (∆S(1) = · · · = ∆S(J) = ∆) = E

H(j)
Q




√√√√√c tr


 ∑

j=1:J

H(j)∗∆∗


Σ−1

u


∆

∑

j=1:J

H(j)





 , (7)

where c = P 2

2RaJa(1+JP ) . From the equivalent channel expression in (3), the term
∑

j=1:J H(j) in (7) can be
written as

∑

j=1:J

H(j) =




(∑
j=1:J f̂ (j)

1

)
g1

...(∑
j=1:J f̂ (j)

Ra

)
gRa


 ,

which has the same distribution as
√

JH(j). Thus, the RHS of (7) has the diversity of single-user DSTC relay
networks. Therefore, the diversity of single-user DSTC relay networks upperbounds that of multi-user DSTC
networks.

Then, we show the achievability by upperbounding (6). Denote ∆S ,
[
∆S(1) · · · ∆S(J)

]
. We shorthand

P
(
∆S(1), · · · , ∆S(J)

)
as P (∆S). The Chernoff upperbound on (6) can be written as

P (∆S) ≤ E
f ,Gn

e−
c
2 f [Pn=1:N G∗n(∆S)∗Σ−1

u (∆S)Gn]f∗ ≤ E
f ,Gn

e−
c

2 tr {Σu} f [Pn=1:N G∗n∆S∗∆SGn]f∗ , (8)

where f ,
[
f̃1, · · · , f̃Ra

]
,f̃j , [f (j)t

1 , · · · , f (j)t
Ra

],Gn , IJ ⊗ G̃n, and G̃n , diag{g1nIJa , · · · , gRanIJa}. The second
inequality comes from the fact that Σu ≤ tr {Σu}IN . Define

X ,




∆S(1)G̃1 ∆S(2)G̃1, · · · ∆S(J)G̃1

∆S(1)G̃2 ∆S(2)G̃2, · · · ∆S(J)G̃2

...
...

...
∆S(1)G̃N ∆S(2)G̃N , · · · ∆S(J)G̃N




(TN)×(JaRaJ)

, X ′ ,




∆S(1)G̃1

∆S(1)G̃2

...
∆S(1)G̃N




(TN)×(JaRa)

,

where X ′ is the first JaRa columns of X . Since f is white Gaussian, by integrating f in (8), we have

P (∆S) = E
Gn

∫
e−

c
2 tr {Σu} f [Pn=1:N G∗n∆S∗∆SGn]f∗eff∗df ≤ E

gin

det −1

[
IJJaRa +

c2

2tr{Σu}X
∗X

]
. (9)

Assume that X has k nonnegative singular values, which are ordered as λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0, and the
ordered nonnegative singular values of X ′ are λ′1 ≥ λ′2 ≥ · · · ≥ λ′k′ ≥ 0. From the interlacing property of
matrices [4], when ∆S(1) 6= 0, the singular values of X sequentially upperbound those of X ′, i.e., λκ > λ′κ for
κ = 1, 2, . . . , k′. Thus, the singular values of X ∗X sequentially upperbound those of X ′∗X ′. Equation (9) is
thus further upperbounded by

P
(
∆S,∆S(1) 6= 0

)
≤ E

gin

det −1

[
IJaRa +

c2

tr{Σu}X
′∗X ′

]
= E

gin

∏

i=1:Ra

(
1 +

c2σ2
min

tr{Σu}
∑

n=1:N

|gin|2
)−Ja

, (10)

where σmin is the minimum singular value of ∆S(1) and is greater than zero due to the fully-diverse property of
S. Thus, (10) has the same expression as (22) in [2], which was shown having a diversity of Ra min{Ja, N}.
Therefore, the diversity of P

(
∆S, ∆S(1) 6= 0

)
is lowerbounded by Ra min{Ja, N} if ∆S(1) is full rank and

T ≥ JaRa (the second condition is inherited from the single-user DSTC relay network). Let j = 1 in (5). Then,
inside each term in the RHS of (5), ∆S(1) 6= 0. The above arguments imply that the diversity of each term is
lowerbounded by Ra min{Ja, N}. Therefore, the diversity of error probability of User 1, i.e., P

(
∆S(1)

)
, is

also lowerbounded by Ra min{Ja, N}. Similar results apply to P
(
∆S(j)

)
for j = 2, . . . , J . This concludes

the proof.
4



For a (J, Ja, Ra, N) MARN, a full-TDMA scheme with DSTC at the relay achieves a diversity gain of
Ra min{Ja, N} [1, 2] with a symbol rate of 1

2J symbols/user/channel use. This diversity gain is called the int-
free diversity, since users are assigned to orthogonal channels in both links. It provides a natural upperbound
on the diversity gain for any other concurrent transmission schemes. Compared to the full-TDMA scheme,
the proposed DSTC joint-user ML decoding scheme achieves the upperbound at a higher symbol rate of 1

2
symbols/user/channel use.

3 DSTC-ICRec

For the DSTC joint-user ML decoding scheme, the receiver jointly decodes all users’ symbols, resulting in
an exponential complexity in the number of users. In this section, we discuss another transmission scheme
whose decoding complexity is linear in the number of users. The scheme of DSTC-ICRec was proposed
in [5] for the (2, 1, 2, N) MARN. It uses DSTC at the relay and interference cancellation (IC) at the receiver to
decouple multi-user signals. In this section, we extend the scheme to the (2, 2, 2, N) and (J, 1, 4, N) MARNs in
Subsection 3.1. Then, we provide diversity analysis for the (2, 1, 2, N) and (2, 2, 2, N) MARNs in Subsection
3.2.

3.1 Extension of DSTC-ICRec

In this subsection, we extend the DSTC-ICRec scheme to the (2, 2, 2, N) and (J, 1, 4, N) MARNs.

3.1.1 DSTC-ICRec for the (2, 2, 2, N) MARN

Here, we present the scheme of DSTC-ICRec in a MARN with two double-antenna users, two single-antenna
relays, and one N -antenna receiver. In this network, the pair of collocated antennas at each user makes it
possible to enhance transmit diversity. In the first step, each user sends two symbols s

(j)
1 and s

(j)
2 in two time

slots using Alamouti scheme. Denote the Alamouti signal matrix for User j as

Sj =

[
s
(j)
1 −s

(j)
2

s
(j)
2 s

(j)
1

]
.

The receive signal vector in the two time slots at Relay i can be expressed as

ri =

√
P

2
S1

[
f

(1)
1i

f
(1)
2i

]
+

√
P

2
S2

[
f

(2)
1i

f
(2)
2i

]
+

[
v1i

v2i

]
.

The relays encode using Alamouti distributed space-time code (DSTC)

t1 =

√
P

2P + 1
A1r1, t2 =

√
P

2P + 1
B1r2 (11)

where
√

P
2P+1 is to constrain the average power at the relay to P and A1 and B1 are Alamouti DSTCs as

A1 =
[

1 0
0 1

]
, B1 =

[
0 −1
1 0

]
.

5



In the second step, Relay i sends ti. The receive signal vector in two time slots at Antenna n can be written
as

xn=t1g1n + t2g2n +
[
w1n

w2n

]

=

√
P

2P + 1
(A1r1g1n + B1r2g2n) +

[
w1n

w2n

]

=

√
P 2

2(2P + 1)

∑

j=1:2

Sj

[
f

(j)
11 g1n − f

(j)
22 g2n

f
(j)
21 g1n + f

(j)
12 g2n

]
+

√
P

2P + 1

(
g1n

[
v11

v21

]
+ g2n

[−v22

v12

])
+

[
w1n

w2n

]
.

The receiver conjugates the signal received in the time slot 2 at each antenna and an equivalent system can
be obtained by

[
x1n

x2n

]

︸ ︷︷ ︸
x̃n

=

√
P 2

2(2P + 1)

∑

j=1:2

[
f

(j)
11 g1n − f

(j)
22 g2n −f

(j)
21 g1n − f

(j)
12 g2n

f
(j)
21 g1n + f

(j)
12 g2n f

(j)
11 g1n − f

(j)
22 g2n

]

︸ ︷︷ ︸
H

(j)
n

[
s
(j)
1

s
(j)
2

]
+ un, (12)

where un is the equivalent noise vector, written as

un =

√
P

2P + 1

([
g1nv11

g1nv21

]
+

[−g2nv22

g2nv12

])
+

[
w1n

w2n

]
, (13)

and H(j)
n is the equivalent Alamouti channel matrix for User j at receiver’s Antenna n.

Comparing the equivalent system equations between the single-antenna user case (Eq. (7) in [5]) and the
double-antenna case, the equivalent noise vector un has the same expression. The difference lies in the equiva-
lent channel matrix. For the double-antenna case, both g1n and g2n are intertwined in every entry of H(j)

n and
channels are mixed more tightly in the equivalent system equation.

However, interference cancellation (IC) can still be conducted at the receiver due to the Alamouti structure
of H(j)

n provided that there are more than one antenna at the receiver. To cancel interference of User 2 and
decode User 1’s symbols independently, x̃n is stacked by x = [x̃∗1, x̃

∗
2, . . . , x̃

∗
N ]∗, where the superscript ∗

denotes Hermitian. An IC matrix with structure

B =




H
(2)∗
1

‖H(2)
1 ‖2 0 · · · 0 − H

(2)∗
N

‖H(2)
N ‖2

0 H
(2)∗
2

‖H(2)
2 ‖2 · · · 0 − H

(2)∗
N

‖H(2)
N ‖2

...
...

. . .
...

...

0 · · · · · · H
(2)∗
N−1

‖H(2)
N−1‖2

− H
(2)∗
N

‖H(2)
N ‖2




(14)

is multiplied to x from left. The dimension of B is 2(N − 1)× 2N . The resulting equivalent system equation
for User 1 can be given as

Bx̃︸︷︷︸
x′

=

√
P 2

2P + 1
B




H(1)
1

H(1)
2
...

H(1)
N




︸ ︷︷ ︸
H1

[
s
(1)
1

s
(1)
2

]
+ B




u1

u2
...

uN


 . (15)

Eq. (15) is utilized to decode User 1’s symbols.
6



3.1.2 DSTC-ICRec for the (J, 1, 4, N) MARN

In this part, we describe DSTC-ICRec for a network with four single-antenna relays. All users transmit con-
currently and the receive signal at the relay is given in (1) with K = T = 4. The relay performs DSTC with
quasi-orthogonal designs [3] using

A1 = I4, A4 =




0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0


 , B2 =




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


 , B3 =




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


 , A2 = A3 = B1 = B4 = 04.

The power constrain factor is
√

P
4(JP+1) . During the second step, Relay i transmits ti concurrently to the

receiver as in (2). Denote xτn as sampled signal at time slot τ and receiver’s Antenna n. Two Alamouti systems
can be obtained by

[
x1n + x4n

x2n − x3n

]

︸ ︷︷ ︸
x+

n

=
√

Pc
∑

j=1:J

[
fj1g1n + fj4g4n fj2g2n − fj3g3n

fj2g2n − fj3g3n −fj1g1n − fj4g4n

]

︸ ︷︷ ︸
H

(j)+
n

[
s
(j)
1 + s

(j)
4

s
(j)
3 − s

(j)
2

]

︸ ︷︷ ︸
s(j)+

+ u+
n (16)

[
x1n − x4n

x2n + x3n

]

︸ ︷︷ ︸
x−n

=
√

Pc
∑

j=1:J

[
fj1g1n − fj4g4n fj2g2n + fj3g3n

fj2g2n + fj3g3n −fj1g1n + fj4g4n

]

︸ ︷︷ ︸
H

(j)−
n

[
s
(j)
1 − s

(j)
4

−s
(j)
3 − s

(j)
2

]

︸ ︷︷ ︸
s(j)−

+ u−n , (17)

where u+
n and u−n denote the equivalent noise vector for each system as

u+
n =c

([
(v11 + v41)g1n

(v21 − v31)g1n

]
+

[
(−v22 + v32)g2n

(v12 + v42)g2n

]
+

[
(−v33 + v23)g3n

(−v43 − v13)g3n

]
+

[
(v44 + v14)g4n

(−v34 + v24)g4n

])
+

[
w1n + w4n

w2n − w3n

]

u−n =c

([
(v11 − v41)g1n

(v21 + v31)g1n

]
+

[
(−v22 − v32)g2n

(v12 − v42)g2n

]
+

[
(−v33 − v23)g3n

(−v43 + v13)g3n

]
+

[
(v44 − v14)g4n

(−v34 − v24)g4n

])
+

[
w1n − w4n

w2n + w3n

]
(18)

where c ,
√

P
4(JP+1) . For notational brevity, we use the superscript † to denote both the superscript + and −.

Using IC techniques originally designed for MAC with quasi-orthogonal STBCs [6], the receiver sequentially
cancels interference from User J to User 2 in J − 1 iterations for each of the system equations in (16) and (17).
To cancel the information of User J, IC matrices B† are formed by replacing H(j)

n in (27) with H(j)†
n . Stack x̃†∗n

as x̃† = [x̃†t1 , . . . , x̃†tN ]t. Similar to (28), the receiver cancels interference of User J by B†x̃†. The equivalent
system equations for User 1 to J-1 can be written as

B†x̃†︸ ︷︷ ︸
X†

=
√

PcB† ∑

j=1:J−1

H†
js

(j)† + B†u†, † = +,−, (19)

where H†
j =

[
H(j)†t

1 . . . H(j)†t
N

]t

and u† =
[

u†t1 . . . u†tN

]t
. The resulting (2N − 2)× 2 channel matrix

for User j (j = 1, J − 1) is BH†
j . Due to the closure of operations on Alamouti matrices, the 2× 2 submatrices

of B†H†
j still have Alamouti structures. Thus, information of User J-1 can be cancelled. This IC process can

be continued to cancel all J − 1 interfering users if N ≥ J [6].
To obtain the ML decoding, we assume J = 2 and (19) contains only signals of User 1. The cases for more

than 2 users are similar. The two system equations in (19) can be jointly written as

[ X+

X−
]

︸ ︷︷ ︸
X

=
√

Pc

[
B+ 0
0 B−

]

︸ ︷︷ ︸
B

[
H+

1 0
0 H−

1

]

︸ ︷︷ ︸
H1




s
(1)
1 + s

(1)
4

s
(1)
3 − s

(1)
2

s
(1)
1 − s

(1)
4

−s
(1)
3 − s

(1)
2




︸ ︷︷ ︸
s̃(1)

+
[

B+ 0
0 B−

] [
u+

u−

]
. (20)
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The joint ML decoding of four symbols s
(1)
i can be conducted as

arg min
s
(1)
1 ,...,s

(1)
4

(
X −

√
PcBH1s̃(1)

)∗
R−1

N

(
X −

√
PcBH1s̃(1)

)
(21)

= arg max
s
(1)
1 ,...,s

(1)
4

2ReX ∗R−1
N BH1s̃(1) −

√
Pcs̃(1)∗H∗

1B
∗R−1

N BH1s̃(1) (22)

where the noise covariance matrix RN can be calculated as RN = diag {B+Ru+B+∗,B−Ru−B−∗}, with
Ru+ = Ru− = 2c2G̃G̃∗ + 2IN−1. The matrix G̃ is G̃ ,

[
G̃∗

1 . . . G̃∗
N

]∗, where

G̃n ,
[
g1n g2n g3n g4n 0 0 0 0
0 0 0 0 g1n g2n g3n g4n

]
.

Next, we show that the joint ML decoding is equivalent to two pairwise ML decodings. The first term in
(22) is linear of s̃(1). From (20), the second quadratic term can be calculated as

H∗
1B

∗R−1
N BH1 = diag {H+∗

1 B+∗ (
B+Ru+B+∗)−1 B+H+

1︸ ︷︷ ︸
Γ+

,H−∗
1 B−∗ (

B−Ru−B−∗)−1 B−H−
1︸ ︷︷ ︸

Γ−

}.

Both Γ+ and Γ− are Hermitian Alamouti matrices. Thus, they are diagonal with equal entries. Therefore, (22)
can be decomposed as

arg max
ŝ
(1)
1i ,ŝ

(1)
2i

2Re
(
X+∗H+

1i

(
ŝ
(1)
1i + ŝ

(1)
2i

))
−
√

Pc
∣∣∣ŝ(1)

1i + ŝ
(1)
2i

∣∣∣
2

h+∗
1i B+∗H+

1i

+2Re
(
X−∗H−1i

(
ŝ
(1)
1i − ŝ

(1)
2i

))
−
√

Pc
∣∣∣ŝ(1)

1i − ŝ
(1)
2i

∣∣∣
2

h−∗1i B−∗H−1i, i = 1, 2, (23)

where H†1i =
(
B†Ru†B

†∗)−1 B†h†1i, († = +,−) where h†1i is the i-th column of H†
1; ŝ

(1)
11 = s

(1)
1 , ŝ

(1)
21 = s

(1)
4 ,

ŝ
(1)
12 = −s

(1)
2 , and ŝ

(1)
22 = s

(1)
3 . Therefore, the joint ML decoding of four symbols is equivalent to two pairwise

ML decodings: s
(1)
1 and s

(1)
4 are jointly decoded; s

(1)
2 and s

(1)
3 are jointly decoded. To decode symbols from

the other users, the IC process and the user-independent ML decoding can be performed similarly. Thus, 2J
pairwise ML decodings are needed in total to recover all user symbols and the decoding complexity is linear in
the number of users.

3.2 Diversity Analysis

In this subsection, we analyze the diversity gain of DSTC-ICRec for the (2, 1, 2, N) and (2, 2, 2, N) MARNs.
Diversity is defined as the slope of the logarithm of the bit error rate with respect to SNR at high SNRs.
Different from previous approaches, we use the outage probability of the instantaneous normalized receive SNR
for diversity analysis. In [7], for a communication system with the equivalent system equation y =

√
Phs+w,

where y, Ph, s,w denote the received signal vector, the transmitted power, channel vector, transmitted symbol,
and noise vector, respectively, it is shown that the diversity based on the error rate can be calculated based on
the outage probability as

d = lim
ε→0+

log P (γ < ε)
log ε

, (24)

where the instantaneous normalized receive SNR is defined as γ = h∗Σ−1h with Σ the noise covariance
matrix.

Since the receiver decodes each user’s symbols independently and the network is statistically homogeneous,
different users have the same diversity. Thus, we focus on analyzing the diversity gain of User 1. In the fol-
lowing, we first show the achievable diversity for DSTC-ICRec in the (2, 1, 2, N) MARN, then, the (2, 2, 2, N)
MARN.
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3.2.1 Diversity analysis for (2, 1, 2, N) MARN

In this part, we analyze the diversity of DSTC-ICRec for a (2, 1, 2, N) MARN, i.e., a network with two single-
antenna users, two single-antenna relays, and one N -antenna receiver. Due to the concatenation of the source-
relay link and the relay-destination link, the diversity analysis is very challenging. First, we formulate the
expression for the instantaneous normalized receive SNR. Then, we analyze the diversity upperbound, followed
by the diversity lowerbound.

Denote yτn as the receive signal at receive Antenna n and time slot τ . From Eq. (7) in [5], the equivalent
channel equation at the receiver can be written as

[
y1n

y2n

]

︸ ︷︷ ︸
yn

=

√
P 2

2P + 1

∑

j=1:2

[
fj1g1n −fj2g2n

fj2g2n fj1g1n

]

︸ ︷︷ ︸
Hjn

[
s
(j)
1

s
(j)
2

]
+ un, (25)

where un is the equivalent noise at receive Antenna n,

un =

√
P

2P + 1

([
v11g1n

v21g1n

]
+

[ −g2nv22

g2nv12

])
+

[
w1n

w2n

]
, (26)

where vτi and wτn are the noise at time slot τ at Relay i and receiver Antenna n, respectively. Let us stack yn

as y = [yt
1,y

t
2, . . . ,y

t
N ]t. To cancel interference of User 1, an IC matrix with structure

B =




H∗
11

‖H11‖2 0 · · · 0 − H∗
1N

‖H1N‖2
0 H∗

12
‖H12‖2 · · · 0 − H∗

1N
‖H1N‖2

...
...

. . .
...

...

0 · · · · · · H∗
1(N−1)

‖H1(N−1)‖2 − H∗
1N

‖H1N‖2




(27)

is multiplied to y from the left. The resulting equivalent system equation for User 2 can be given as

ỹ = By

=

√
P 2

2P + 1
B




H21

H22
...

H2N




︸ ︷︷ ︸
H2

[
s
(2)
1

s
(2)
2

]
+ B




u1

u2
...

uN


 . (28)

For each entry in Hjn, it is different from that in H(j)
n , although Eq. (28) is similar to Eq. (15). Since the 2× 2

submatrices of B and H2 have Alamouti structure, the resulting equivalent channel vectors for User 2, BH2,
has Alamouti structure too. Thus, the two symbols of User 2 are spanned in orthogonal channel vectors and can

be further separated. When analyzing the instantaneous normalized receive SNR, we ignore the s
(2)
2 due to the

orthogonality of symbols. The noise covariance matrix of the equivalent noise can be calculated as

RN = B
(

P

2P + 1
G + I2N

)
B∗, (29)

where G denotes a 2N × 2N matrix whose (p, q)-th 2× 2 submatrix is
[

g1pg1q + g2pg2q 0
0 g1pg1q + g2pg2q

]
, p, q = 1, 2, . . . , N. (30)
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Let us denote the first column of H2 as h21. Therefore, the receive SNR of User 2 can be obtained as

γ =
P 2

2P + 1
(Bh21)∗R−1

N Bh21.

Then, the instantaneous normalized receive SNR in the high SNR regime can be evaluated as

γ̃ = lim
P→∞

2γ

P
= (Bh21)∗R−1

N Bh21. (31)

The following two lemmas are needed to show the diversity upperbound.

Lemma 1. Let Φ = B∗(BB∗)−1B. Then, Φ is the projection matrix onto the null space spanned by the
conjugate of columns of H1, i.e., Φ = I2N − H1H∗

1
‖H1‖2 .

Proof. See Appendix A.

Lemma 2. In relay networks, diversity d is upperbounded by d ≤ min{d1, d2}, where di denotes the diversity
gain conditioned on the channel realizations of the i-th link.

Proof. See Appendix B.

Lemma 1 is used to simplify the expression for the instantaneous normalized receive SNR, while Lemma 2
helps to separate the two steps of the transmission to make the analysis tractable.

Next, we present the theorem on the upperbound of the diversity gain of DSTC-ICRec.

Theorem 2. In a (2, 1, 2, N) MARN, the diversity gain of DSTC-ICRec is at most 1.

Proof. From (29), the noise covariance matrix RN is lowerbounded by RN Â BB∗. It follows that (31) is
upperbounded by γ̃ < h∗21B

∗(BB∗)−1Bh21. By Lemma 1, the instantaneous normalized receive SNR can be
further upperbounded by

γ̃ < h∗21

(
I2N − H1H∗

1

‖H1‖2

)
h21

=
1

h∗11h11
(h∗21h21h∗11h11 − h∗21h11h∗11h21 − h∗21h12h∗12h21) (32)

It can be calculated that

h∗21h21 = |f21|2g∗1g1 + |f22|2g∗2g2, h∗11h11 = |f11|2g∗1g1 + |f12|2g∗2g2

h∗21h11 = f21f11g∗1g1 + f12f22g∗2g2, h∗11h21 = f11f21g∗1g1 + f22f12g∗2g2

h∗21h12 = f11f22 − f12f21g∗1g2, h∗12h21 = (f11f22 − f12f21)g∗2g1

where g1 and g2 denote the vector whose n-th entry is gn1 and gn2, n = 1, 2, . . . , N , respectively. Inserting
these terms into (32) results in

γ̃ <
|f11f22 − f12f21|2

|f11|2‖g1‖2 + |f12|2‖g2‖2
(‖g1‖2‖g2‖2 − g∗1g2g∗2g1), (33)

which can be further upperbounded by

γ̃ <
|f11f22 − f12f21|2(‖g1‖2‖g2‖2)

(|f11|2 + |f12|2)min{‖g1‖2, ‖g2‖2}
=

|f11f22 − f12f21|2
|f11|2 + |f12|2 max{‖g1‖2, ‖g2‖2}
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Condition on f11 and f12, the distribution of |f11f22−f12f21|2
|f11|2+|f12|2 is exponential with variance 1. Let a = max{‖g1‖2, ‖g2‖2}.

The outage probability of γ̃ when gi is deterministic is lowerbounded by

P (γ̃ < ε|gi) = E
f1i

P (γ̃ < ε|f1i,gi)

> E
f1i

P (x <
ε

a
)

= E
f1i

∫ ε
a

0
exp(−x)dx =

ε

a
+ o(ε2).

where x denotes an exponential distributed random variable with variance 1. Thus, the diversity gain is at most
one when we condition the channels in the second transmission step.

When we condition the channels in the first transmission step, assume |f11|2 < |f12|2, Eq. (33) can be
further upperbounded by

γ̃ <
|f11|2|f22|2 + |f12|2|f21|2

|f12|2‖g2‖2
(‖g1‖2‖g2‖2 − g∗1g2g∗2g1)

<
(|f22|2 + |f21|2

)
g∗1

(
IN − g2g∗2

‖g2‖2

)
g1.

Condition on g2, IN − g2g∗2
‖g2‖2 is a projection matrix to the null space spanned by g2. Then, IN − g2g∗2

‖g2‖2 has

rank N − 1 and all nonzero eigenvalues are 1. Thus, g∗1
(
IN − g2g∗2

‖g2‖2
)
g1 is Gamma distributed with parameter

dimension N − 1 given g2. Let b = |f22|2 + |f21|2, the outage probability of γ̃ when fji is deterministic is
lowerbounded by

P (γ̃ < ε|fji) = E
g2

P (γ̃ < ε|fji,g2)

> E
g2

P
(
y <

ε

b

)

= E
g2

∫ ε
b

0
yN−2 exp (−y)

Γ(N − 1)
dy =

(ε

b

)N−1
+ o(εN )

where y denotes a gamma distributed random variable with dimension N − 1. Similarly, we can show the same
result when |f11|2 > |f12|2. Thus, the diversity upperbound is N−1 when the channels in the first transmission
step are conditioned. By Lemma 2, the diversity upperbound is d = min{1, N − 1} = 1.

In what follows, we present the theorem on the lowerbound of the diversity gain of DSTC-ICRec.

Theorem 3. In a (2, 1, 2, N) MARN, the diversity of DSTC-ICRec is at least 1.

Proof. It is sufficient to show the theorem if the outage probability is upperbounded by P (γ̃ < ε) < cε + o(ε2)
where c is a constant independent of ε.

From (29), the noise covariance matrix is upperbounded in the high SNR regime by RN ≺ (g∗1g1 + g∗2g2 + 1) I2N .
Therefore, (31) is lowerbounded by

γ̃ >
h∗21B

∗(BB∗)−1Bh21

g∗1g1 + g∗2g2 + 1

=
|f11f22 − f12f21|2

(‖g1‖2‖g2‖2 − g∗1g2g∗2g1

)

(|f21|2‖g1‖2 + |f22|2‖g2‖2) (‖g1‖2 + ‖g2‖2 + 1)

>
|f11f22 − f12f21|2
|f21|2 + |f22|2

‖g1‖2‖g2‖2 − g∗1g2g∗2g1

(‖g1‖2 + ‖g2‖2) (‖g1‖2 + ‖g2‖2 + 1)
(34)
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Condition on f21 and f22, the distribution of |f11f22−f12f21|2
|f21|2+|f22|2 is exponential with variance 1. Let a =

‖g1‖2‖g2‖2−g∗1g2g∗2g1

(‖g1‖2+‖g2‖2)(‖g1‖2+‖g2‖2+1)
. Further conditioning on gi, the outage probability is lowerbounded by

P (γ̃ < ε) = E
gi,f2i

P (γ̃ < ε|gi, f2i) > E
gi,f2i

P
(
x <

ε

a

)

= E
gi,f2i

( ε

a
+ o(ε2)

)
= E

gi

1
a
ε + o(ε2)

where x denotes an exponentially distributed random variable with variance 1. To show P (γ̃ < ε) < cε+o(ε2),
which is sufficient to prove the theorem, it suffices to show E

gi

1
a has a finite value higher than 0. The proof is as

follows

E
gi

1
a

= E
gi

(‖g1‖2 + ‖g2‖2
) (‖g1‖2 + ‖g2‖2 + 1

)

‖g1‖2‖g2‖2 − g∗1g2g∗2g1
(35)

> E
gi

(‖g1‖2 + ‖g2‖2
)2

‖g1‖2‖g2‖2

= 2 + E
gi

(‖g1‖2

‖g2‖2
+
‖g2‖2

‖g1‖2

)
= 4 +

2
N − 1

In addition, we need to show E
gi

1
a has a finite value. From (35), by Cauchy Schwartz inequality, E

gi

1
a is upper-

bounded by

∣∣∣∣Egi

1
a

∣∣∣∣
2

< E
gi





∑

i,n

|gin|2



2 
∑

i,n

|gin|2 + 1




2


︸ ︷︷ ︸
f1(gi)

E
gi

(
1

(‖g1‖2‖g2‖2 − g∗1g2g∗2g1)2

)

︸ ︷︷ ︸
f2(gi)

. (36)

Denote x =
∑
i,n
|gin|2. Since x is gamma distributed with dimension 2N , f1(gi) can be calculated as

f1(gi) = E
x

(
x2(x + 1)2

)
= E

x
x4 + 2E

x
x3 + E

x
x2

= (2N + 3)(2N + 2)(2N + 1)2N + 2(2N + 2)(2N + 1)2N + (2N + 1)2N

= 2N(2N + 1)
(
4N2 + 14N + 11

)
.

f2(gi) can be calculated as

f2(gi) = E
g1

E
g2|g1

1(
‖g1‖2g∗2

(
IN − g1g∗1

‖g1‖2
)
g2

)2

= E
g1

1
‖g1‖4

E
g2|g1

1(
g∗2

(
IN − g1g∗1

‖g1‖2
)
g2

)2

=
Γ(N − 3)
Γ(N − 1)

Γ(N − 2)
Γ(N)

=
1

(N − 1)(N − 2)2(N − 3)

Thus, E
gi

1
a is upperbounded by

√
2N(2N+1)(4N2+14N+11)

(N−1)(N−2)2(N−3)
, which has finite value for N ≥ 4. This concludes

the proof.

Corollary 1. In the (2, 1, 2, N) MARN, DSTC-ICRec achieves a diversity gain of 1.

Proof. The corollary follows directly from Theorems 2 and 3.
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3.2.2 Diversity analysis for (2, 2, 2, N) MARNs

In this section, we show that the diversity of DSTC-ICRec is exactly min{2, N − 1} in a (2, 2, 2, N) MARN,
i.e., a network with two double-antenna users, two single-antenna relays, and one N -antenna receiver. First, we
prove for the case of N = 2 in Theorems 4 and 5. Then, the case of N > 2 is considered in Theorems 6 and 7.

The equivalent Alamouti channel matrix H(j)
n in (12) can be rewritten to separate channels in two steps of

transmissions by

H(j)
n =

[
g1n g2n 0 0
0 0 g1n g2n

]

︸ ︷︷ ︸
G̃n




f
(j)
11 −f

(j)
21

−f
(j)
22 −f

(j)
12

f
(j)
21 f

(j)
11

f
(j)
12 −f

(j)
22




︸ ︷︷ ︸
F(j)

.

Then, H1 in (28) can be rewritten as

H1 =




G̃1

G̃2
...

G̃N




︸ ︷︷ ︸
G̃

F(1).

Similarly, the equivalent noise in (13) can be rewritten as

un =

√
P

2P + 1
G̃




v11

v21

v22

−v12




︸ ︷︷ ︸
ṽ

+




w11

w21
...

w1N

w2N




︸ ︷︷ ︸
w̃

.

Thus, we obtain an equivalent system equation of (28) as

x′ =

√
P 2

2P + 1
BG̃F(1)

[
s
(1)
1

s
(1)
2

]
+

√
P

2P + 1
BG̃ṽ + Bw̃. (37)

Since all entries in ṽ and w̃ are independent, the noise covariance matrix Ru can be calculated as

Ru =
P

2P + 1
BG̃G̃∗B∗ + BB∗.

Therefore, the instantaneous normalized receive SNR based on (37) is given by

γ = (BG̃f (1)
1 )∗R−1

u (BG̃f (1)
1 ), (38)

where f (1)
1 denotes the first column of F(1).

The following lemma is needed to decouple channels of the user-relay link and the relay-receiver link. Let

Ĝ =
[

GG∗ 0
0 GGt

]
.

Lemma 3. The equality holds

f (1)∗
1 G̃∗B∗(BB∗)−1BG̃f (1)

1 =
(‖f (1)

1 ‖2‖f (2)
1 ‖2 − f (1)∗

1 F(2)F(2)∗f (1)
1 )(‖g1‖2‖g2‖2 − g1g∗2g2g∗1)

f (2)∗
1 Ĝf (2)

1

.
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Proof. See Appendix C.

Next, we focus on the diversity analysis for N = 2, i.e., the receiver has only two antennas. We show the
upperbound and the lowerbound on the diversity in the following two theorems.

Theorem 4. The diversity of DSTC-ICRec in a (2, 2, 2, 2) MARN is upperbounded by 1.

Proof. Since the noise covariance matrix Ru is lowerbounded by BB∗, the instantaneous normalized receive
SNR is upperbounded by

γ < f (1)∗
1 G̃∗B∗(BB∗)−1BG̃f (1)

1 , (39)

which can be expanded by Lemma 3. Recall f (2)
1 = [f (2)

11 − f
(2)
22 f

(2)
21 f

(2)
12 ]t. From Lemma 3, the denominator

can be rewritten as

f (2)∗
1 Ĝf (2)

1 =
[

f
(2)
11 −f

(2)
22

] [ ‖g1‖2 g1g∗2
g2g∗1 ‖g2‖2

] [
f

(2)
11

−f
(2)
22

]
+

[
f

(2)
21 f

(2)
12

] [ ‖g1‖2 g1g
t
2

g2g
t
1 ‖g2‖2

] [
f

(2)
21

f
(2)
12

]

=
[
g1 g2

]



∣∣∣f (2)
11

∣∣∣
2

−f
(2)
11 f

(2)
22

−f
(2)
22 f

(2)
11

∣∣∣f (2)
22

∣∣∣
2


⊗ IN

[
g∗1
g∗2

]
+

[
g1 g2

]



∣∣∣f (2)
21

∣∣∣
2

f
(2)
21 f

(2)
12

f
(2)
21 f

(2)
12

∣∣∣f (2)
12

∣∣∣
2


⊗ IN

[
g∗1
g∗2

]

=
[
g1 g2

]



∣∣∣f (2)
11

∣∣∣
2

+
∣∣∣f (2)

21

∣∣∣
2

f
(2)
21 f

(2)
12 − f

(2)
11 f

(2)
22

f
(2)
21 f

(2)
12 − f

(2)
22 f

(2)
11

∣∣∣f (2)
22

∣∣∣
2

+
∣∣∣f (2)

12

∣∣∣
2




︸ ︷︷ ︸
F̂

⊗ IN

[
g∗1
g∗2

]

> λ(‖g1‖2 + ‖g2‖2), (40)

where λ denotes the minimum eigenvalue of F̂. To explicitly calculate λ, let a = [f (2)
11 f

(2)
21 ] and b =

[−f
(2)
22 f

(2)
12 ]. Then, F̂ can be simplified as

F̂ =
[ ‖a‖2 ab∗

ba∗ ‖b‖2

]
.

Therefore, λ can be calculated and further lowerbounded by

λ =
‖a‖2 + ‖b‖2 −

√
(‖a‖2 + ‖b‖2)2 − 4‖a‖2‖b‖2 + 4ab∗ba∗

2

=
2(‖a‖2‖b‖2 − ab∗ba∗)

‖a‖2 + ‖b‖2 +
√

(‖a‖2 + ‖b‖2)2 − 4‖a‖2‖b‖2 + 4ab∗ba∗
>
‖a‖2‖b‖2 − ab∗ba∗

‖a‖2 + ‖b‖2
.

The third line is valid since ‖a‖2‖b‖2 − ab∗ba∗ > 0. Therefore, (40) can be further lowerbounded by
f (2)∗
1 Ĝf (2)

1 > ‖a‖2‖b‖2−ab∗ba∗
‖a‖2+‖b‖2 (‖g1‖2+‖g2‖2). This results in an upperbound on the instantaneous normalized

SNR in Lemma 1,

γ <
(‖f (1)

1 ‖2‖f (2)
1 ‖2 − f (1)∗

1 F(2)F(2)∗f (1)
1 )(‖g1‖2‖g2‖2 − g1g∗2g2g∗1)

‖a‖2‖b‖2−ab∗ba∗
‖a‖2+‖b‖2 (‖g1‖2 + ‖g2‖2)

<
‖f (2)

1 ‖2(‖f (1)
1 ‖2‖f (2)

1 ‖2 − f (1)∗
1 F(2)F(2)∗f (1)

1 )(‖g1‖2‖g2‖2 − g1g∗2g2g∗1)
(‖a‖2‖b‖2 − ab∗ba∗)‖g2‖2

. (41)

Next, we analyze the diversity. The RHS of (41) is a product of two terms. The first term is

‖f (2)
1 ‖2(‖f (1)

1 ‖2‖f (2)
1 ‖2 − f (1)∗

1 F(2)F(2)∗f (1)
1 )

‖a‖2‖b‖2 − ab∗ba∗
,

14



which depends on vectors f (2)
1 , f (2)

2 and f (1)
1 . The second term is ‖g1‖2‖g2‖2−g1g∗2g2g∗1

‖g2‖2 , which depends on g1

and g2. It can be further written as g1

(
IN − g∗2g2

‖g2‖2
)
g∗1, where the term

(
IN − g∗2g2

‖g2‖2
)
g∗1 expresses projecting

g1 to the null space of g2. The null space has N − 1 = 1 dimension and hence the diversity provided by
g1 and g2 is upperbounded by 1. The following is a rigorous proof of the above intuitive argument. Denote
‖f (2)

1 ‖2(‖f (1)1 ‖2‖f (2)
1 ‖2−f

(1)∗
1 F(2)F(2)∗f (1)1 )

‖a‖2‖b‖2−ab∗ba∗ = η. The outage probability of instantaneous normalized receive SNR is
lowerbounded by

P (γ < ε) > P

(
η
‖g1‖2‖g2‖2 − g1g∗2g2g∗1

‖g2‖2
< ε

)

= E
η,g2

P

(
η
‖g1‖2‖g2‖2 − g1g∗2g2g∗1

‖g2‖2
< ε|η,g2

)

= E
η,g2

P

(
g1

(
IN − g∗2g2

‖g2‖2

)
g∗1 <

ε

η
|η,g2

)
(42)

Condition on g2, I2 − g∗2g2

‖g2‖2 has an eigenvalue decomposition with one eigenvalue equal to 1 and one zero

eigenvalue. Thus, the product of eigenvector matrix and g1 is a Gaussian vector and g1

(
I2 − g∗2g2

‖g2‖2
)
g∗1 is a

Gamma distribution with dimension 1 given g2. The RHS of (42) can be calculated by the outage probability
of Gamma distributed random variable,

P (γ < ε) > c E
η,g2

(
ε

η

)
+ o(ε2) = cE

η

(
ε

η

)
+ o(ε2),

where c is a constant independent of ε and η. To prove the normalized receive SNR has diversity upperbound 1
by (24), it suffices to show E

η

1
η has limited nonzero value. It follows

E
f
(1)
1 ,f

(2)
1

‖a‖2‖b‖2 − ab∗ba∗

‖f (2)
1 ‖2(‖f (1)

1 ‖2‖f (2)
1 ‖2 − f (1)∗

1 F(2)F(2)∗f (1)
1 )

= E
f
(2)
1


 E

f
(1)
1 |f (2)1

‖a‖2‖b‖2 − ab∗ba∗

‖f (2)
1 ‖4(‖f (1)

1 ‖2 − f (1)∗
1

F(2)F(2)∗

‖f (2)
1 ‖2 f (1)

1 )


 . (43)

Following a similar argument of vector projection, ‖f (1)
1 ‖2 − f (1)∗

1
F(2)F(2)∗

‖f (2)
1 ‖2 f (1)

1 is Gamma distributied with

dimension 2 given f (2)
1 . Thus,

E
f
(1)
1 |f (2)

1

1

‖f (1)
1 ‖2 − f (1)∗

1
F(2)F(2)∗

‖f (2)1 ‖2 f (1)
1

= 1,

and (43) is followed by

E
f
(2)
1


 E

f
(1)
1 |f (2)

1

‖a‖2‖b‖2 − ab∗ba∗

‖f (2)
1 ‖4(‖f (1)

1 ‖2 − f (1)∗
1

F(2)F(2)∗

‖f (2)1 ‖2 f (1)
1 )




= E
f
(2)
1

‖a‖2‖b‖2 − ab∗ba∗

‖f (2)
1 ‖4

= E
f
(2)
1

‖a‖2‖b‖2 − ab∗ba∗

(‖a‖2 + ‖b‖2)2
. (44)

Note that ‖a‖
2‖b‖2−ab∗ba∗

(‖a‖2+‖b‖2)2
< ‖a‖2‖b‖2

(‖a‖2+‖b‖2)2
< 1

4 . Therefore, E
f
(2)
1

‖a‖2‖b‖2−ab∗ba∗
(‖a‖2+‖b‖2)2

< 1
4 and the RHS of (44)

is upperbounded by a limited value and E
η

1
ηN−1 has a limited value.
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It needs to show the RHS of (44) has nonzero value to complete the proof. The RHS of (44) is lowerbounded
by

E
f
(2)
1

‖a‖2‖b‖2 − ab∗ba∗

(‖a‖2 + ‖b‖2)2
> E

‖ab∗‖<δ‖a‖‖b‖
‖a‖2‖b‖2 − ab∗ba∗

(‖a‖2 + ‖b‖2)2

> E
‖ab∗‖<δ‖a‖‖b‖

‖a‖2‖b‖2(1− δ2)
(‖b‖2 + ‖a‖2)2

> E
‖ab∗‖<δ‖a‖‖b‖,λ1<‖a‖,‖b‖<λ2

‖a‖2‖b‖2(1− δ2)
(‖b‖2 + ‖a‖2)2

> E
‖ab∗‖<δ‖a‖‖b‖,λ1<‖a‖,‖b‖<λ2

λ4
1(1− δ2)

4λ4
2

> 0

where the first line is to lowerbound by integrating f (2)
1 in part of the probability space; the second line is

by upperbounding ‖ab∗‖ with δ‖a‖‖b‖; the third line is to bound ‖a‖ and ‖b‖ and integrating over part of
the probability space; The forth line is to lowerbound ‖a‖2‖b‖2

(‖b‖2+‖a‖2)2
by λ4

1

4λ4
2
. Obviously, the joint probability

density function of a and b is nonzero and the integral region is bounded and has nonzero value. Therefore, the
expectation is positive and the RHS of (44) takes positive value. This completes the proof.

In what follows, we show that DSTC-ICRec achieves a diversity of 1 for a (2, 2, 2, 2) MARN.

Theorem 5. The diversity gain of DSTC-ICRec in a (2, 2, 2, 2) MARN is at least 1.

Proof. Since G̃G̃∗ < tr (G̃G̃∗)I2N , the noise covariance matrix Ru is upperbounded by

Ru =
P

2P + 1
BG̃G̃∗B∗ + BB∗ ≺ 2P

2P + 1
BB∗(‖g1‖2 + ‖g2‖2) + BB∗.

where gi denotes the 1×N channel vector from Relay i to the receiver. Then, (38) can be rewritten as

γ =
(BG̃Φf (1)

1 )∗(BB∗)−1(BG̃Φf (1)
1 )

2P
2P+1 (‖g1‖2 + ‖g2‖2) + 1

(45)

By Lemma 3, when P À 1, a lowerbound on the instantaneous normalized receive SNR can be formed as

γ >
(‖f (1)

1 ‖2‖f (2)
1 ‖2 − f (1)∗

1 F(2)F(2)∗f (1)
1 )(‖g1‖2‖g2‖2 − g1g∗2g2g∗1)

f (2)∗
1 Ĝf (2)

1

(
2P

2P+1(‖g1‖2 + ‖g2‖2) + 1
)

>
(‖f (1)

1 ‖2‖f (2)
1 ‖2 − f (1)∗

1 F(2)F(2)∗f (1)
1 )(‖g1‖2‖g2‖2 − g1g∗2g2g∗1)

2‖f (2)
1 ‖2(‖g1‖2 + ‖g2‖2)

(
2P

2P+1(‖g1‖2 + ‖g2‖2) + 1
)

≈ (‖f (1)
1 ‖2‖f (2)

1 ‖2 − f (1)∗
1 F(2)F(2)∗f (1)

1 )(‖g1‖2‖g2‖2 − g1g∗2g2g∗1)

2‖f (2)
1 ‖2(‖g1‖2 + ‖g2‖2)(‖g1‖2 + ‖g2‖2 + 1)

(46)

where the second line is to upperbound Ĝ by 2(‖g1‖2 + ‖g2‖2)I4; the third line is achieved by approximating
2P

2P+1 ≈ 1 in high SNR regime. Next, we evaluate the lowerbound on diversity based on (46). Eq. (46) is

a product of two terms. The first term is (‖f (1)1 ‖2‖f (2)
1 ‖2−f

(1)∗
1 F(2)F(2)∗f (1)1 )

‖f (2)
1 ‖2 , denoted by A. The second term is
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‖g1‖2‖g2‖2−g1g∗2g2g∗1
(‖g1‖2+‖g2‖2)(‖g1‖2+‖g2‖2+1)

, denoted by B. The outage probability of γ can be break as

P (γ < ε) = P (γ < ε| ‖g1‖ < ‖g2‖)P (‖g1‖ < ‖g2‖) + P (γ < ε| ‖g1‖ > ‖g2‖)P (‖g1‖ > ‖g2‖)
= 2P (γ < ε, ‖g1‖ < ‖g2‖)

< 2P

(
A

‖g1‖2‖g2‖2 − g1g∗2g2g∗1
(‖g1‖2 + ‖g2‖2)(‖g1‖2 + ‖g2‖2 + 1)

< ε, ‖g1‖ < ‖g2‖
)

< 2P

(
A
‖g1‖2‖g2‖2 − g1g∗2g2g∗1

2‖g2‖2(2‖g2‖2 + 1)
< ε, ‖g1‖ < ‖g2‖

)

< 2P

(
A
‖g1‖2‖g2‖2 − g1g∗2g2g∗1

2‖g2‖2(2‖g2‖2 + 1)
< ε

)

= 2 E
A,g2

P

(
A
‖g1‖2‖g2‖2 − g1g∗2g2g∗1

2‖g2‖2(2‖g2‖2 + 1)
< ε|A,g2

)

= 2 E
A,g2

P

(
g1

(
I2 − g∗2g2

‖g2‖2
)

g∗1 <
2(2‖g2‖2 + 1)

A
ε|A,g2

)

= 2 E
A,g2

2(2‖g2‖2 + 1)
A

ε + o(ε2) = 20E
A

1
A

ε + o(ε2).

The second line is achieved because g1 and g2 are symmetric in B and the two conditional probability are
equal. The third line is to lowerbound γ by (46). The forth line is to upperbound the denominator of B. The
fifth line is to upperbound the probability by removing the condition ‖g1‖ < ‖g2‖. The eighth line is due to the
fact that g1

(
I2 − g∗2g2

‖g2‖2
)
g∗1 is an exponential distribution when g2 is given and N = 2. To prove the theorem,

it suffices to show that E
A

1
A has a limited nonzero value. Conditioned on f (2)

1 , A is Gamma distributed with

dimension 2. It is straightforward to have E
A

1
A = 1. Therefore, P (γ < ε) = cε + o(ε2) where c is independent

of ε. This shows that the instantaneous normalized receive SNR at least has a diversity of 1 when N = 2.

From Theorems 4 and 5, DSTC-ICRec achieves a diversity of 1 for a (2, 2, 2, 2) MARN. Next, we focus
on the case for N > 2. The relay-receiver link has more independent paths than the user-relay link. We
introduce a zero-forcing operation at the relay, which captures the influence of IC to the first transmission step
and simplifies diversity analysis. From Eq. (37), the IC matrix B nulls out the channels of User 2,

BG̃F(2) = 0, (47)

which is equivalent to the fact that BG̃ nulls out F(2). Then, the rows of BG̃ are in the null spaces of columns
of F(2). Therefore, the equivalent channel matrix in (37) is invariant if F(1) is first projected to the null spaces
of F(2), i.e.,

BG̃F(1) = BG̃ΦF(1),

where Φ is the projection matrix, written as

Φ = I4 − 2F(2)F(2)∗

tr (F(2)F(2)∗)
. (48)

Then, (37) is rewritten as

x′ =

√
P 2

2P + 1
BG̃ΦF(1)

[
s
(1)
1

s
(1)
2

]
+

√
P

2P + 1
BG̃ṽ + Bw̃. (49)

The instantaneous normalized receive SNR in (38) can also be rewritten as

γ = (BG̃Φf (1)
1 )∗R−1

u (BG̃Φf (1)
1 ), (50)

The following theorems show the upperbound and lowerbound of DSTC-ICRec in a (2, 2, 2, N) MARN.
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Theorem 6. The diversity of DSTC-ICRec in a (2, 2, 2, N) MARN is upperbounded by 2.

Proof. Because the noise covariance matrix Ru is lowerbounded by BB∗, γ in (50) can be upperbounded by

γ < f (1)∗
1 Φ∗G̃∗B∗(BB∗)−1BG̃Φf (1)

1 . (51)

It can be shown that B∗(BB∗)−1B = I2N − 2H2H∗
2

tr (H2H∗
2) ≺ I2N . Eq. (51) is further upperbounded by

γ < f (1)∗
1 Φ∗G̃∗G̃Φf (1)

1 < tr (G̃∗G̃)f (1)∗
1 Φ∗Φf (1)

1

= 2
∑

n=1:N

(|g1n|2 + |g2n|2)f (1)∗
1 Φf (1)

1 .

Obviously, the channels in the first transmission step influence the RHS of (51) by f (1)∗
1 Φf (1)

1 . Next, we
show this term has a diversity of 2. From (48), the projection matrix Φ has rank 2. Assume the eigenvalue
decomposition of Φ as Φ = U∗ΛU, where Λ is a diagonal matrix including eigenvalues. Since Φ is to project
a vector in 4-dimension to a 2-dimension subspace, two eigenvalues in Λ are 1 and the other two are zero.
Thus, f (1)∗

1 Φf (1)
1 is upperbounded by

f (1)∗
1 Φf (1)

1 = f (1)∗
1 U∗ΛUf (1)

1 = f (1)∗
1 U∗

1U1f
(1)
1

where U1 denotes the eigenvector matrix corresponding to nonzero eigenvalues. Since there are only two
nonzero eigenvalues, U1 has two columns. Condition on F(2), the two entries in U1f

(1)
1 are i.i.d. CN (0, 1)

distributed and f (1)∗
1 U∗

1U1f
(1)
1 is a Gamma distribution with dimension 2. Denote

∑
n=1:N

(|g1n|2 + |g2n|2) as g.

The outage upperbound can be evaluated by

P (γ < ε) = E
F(2),G̃

P (γ < ε|F(2), G̃)

> E
F(2),G̃

P (2gf (1)∗
1 U∗

1U1f
(1)
1 < ε|F(2), G̃)

= E
F(2),G̃

P

(
f (1)∗
1 U∗

1U1f
(1)
1 <

ε

2g
|F(2), G̃

)

= E
F(2),G̃

c

(
ε

2g

)2

+ o(ε2) = Ẽ
G

c

(
ε

2g

)2

+ o(ε2),

where c is a constant independent of F(j) and G̃. Because g is Gamma distributed with dimension 2N , Ẽ
G

1
g2 =

1
2N−2 . Thus,

P (γ < ε) >
c

8(N − 1)
ε2 + o(ε2).

By (24), the diversity is upperbounded by two.

Theorem 7. When N > 2, the diversity of DSTC-ICRec in a (2, 2, 2, N) MARN is at least 2.

Proof. Following Eq. (46), the lowerbound on γ can be expressed as a product of two terms, A and B. A can
be equivalently viewed as projecting f (2)

1 to the null space of columns of F(2). It can be shown that A provides
a diversity of 2. It suffices to show that the RHS of (46) achieves a diversity of 2 provided that EB2 has limited
nonzero value. This expectation can be lowerbounded by

E
(

(‖g1‖2 + ‖g2‖2)(‖g1‖2 + ‖g2‖2 + 1)
‖g1‖2‖g2‖2 − g1g∗2g2g∗1

)2

> E
(

(‖g1‖2 + ‖g2‖2)2

‖g1‖2‖g2‖2

)2

> 16.
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The second inequality is because of ‖g1‖2 + ‖g2‖2 > 2‖g1‖‖g2‖. Thus, EB2 takes a positive value.
Next, we show EB2 has a limited value. The expectation is equivalent to the sum of two conditional

expectations when ‖g1‖ > ‖g2‖ and when ‖g1‖ < ‖g2‖,

EB2 = E
‖g1‖>‖g2‖

B2 + E
‖g1‖<‖g2‖

B2

Since g1 and g2 are symmetrical, the two conditional expectations are equal. Therefore, we have

EB2 = 2 E
‖g2‖>‖g1‖

(
(‖g1‖2 + ‖g2‖2)(‖g1‖2 + ‖g2‖2 + 1)

‖g1‖2‖g2‖2 − g1g∗2g2g∗1

)2

< 2 E
‖g2‖>‖g1‖

(
(2‖g2‖2)(2‖g2‖2 + 1)
‖g1‖2‖g2‖2 − g1g∗2g2g∗1

)2

= 2E
g2


 E
‖g2‖>‖g1‖


 2(2‖g2‖2 + 1)

g1

(
IN − g∗2g2

‖g2‖2
)
g∗1




2

 . (52)

The inner expectation is conditioned on g2. The RHS of (52) can be further upperbounded by removing the
condition ‖g2‖ > ‖g1‖. Given g2, the term g1

(
IN − g∗2g2

‖g2‖2
)
g∗1 is Gamma distributed with dimension N − 1.

Thus, given g2, E
(
1/g1

(
IN − g∗2g2

‖g2‖2
)
g∗1

)2
= Γ(N−2)

Γ(N) . It follows

EB2 < 2E
g2


E


 2(2‖g2‖2 + 1)

g1

(
IN − g∗2g2

‖g2‖2
)
g∗1




2



=
8Γ(N − 2)

Γ(N)
E
g2

(2‖g2‖2 + 1)2

=
8Γ(N − 2)

Γ(N)
(4E

g2
‖g2‖4 + 4E

g2
‖g2‖2 + 1) =

8Γ(N − 2)
Γ(N)

(
4Γ(N + 4)

Γ(N)
+

4Γ(N + 2)
Γ(N)

+ 1
)

.

Since N ≥ 3 is required for Γ(N − 2), N ≥ 3 is necessary for the theorem. Therefore, we have shown EB2

has a limited value and this completes the proof of the theorem.

Corollary 2. In the (2, 2, 2, N) MARN, DSTC-ICRec achieves a diversity gain of min{2, N − 1}.

Proof. From Theorems 4 and 5, the diversity gain of DSTC-ICRec is 1 for a (2, 2, 2, 2) MARN. From Theorems
6 and 7, the diversity gain of DSTC-ICRec is 2 when N > 2. As a result, DSTC-ICRec achieves a diversity of
min{2, N − 1} for a (2, 2, 2, N) MARN.

4 Conclusion

In this technical report, two concurrent transmission schemes in multi-access relay networks (MARNs) are
discussed. DSTC joint-user ML decoding uses DSTC at relays and joint-user ML decoding at the receiver.
For DSTC-ICRec, relays uses DSTC and the receiver conducts interference cancellation before decoding each
user’s symbols to reduce complexity. In a MARN with J Ja-antenna users, R single-antenna relays, and N -
antenna receiver, DSTC joint-user ML decoding achieves a diversity of R min{Ja, N}. DSTC-ICRec achieves
a diversity of 1 and min{2, N − 1} in (2, 1, 2, N) and (2, 2, 2, N) MARNs, respectively.

A Proof of Lemma 1

From (27), the dimension and rank of B are (2N − 2)× 2N and 2N − 2, respectively. Then, it’s singular value
decomposition (SVD) can be calculated by B = V∆U where V and U are unitary matrices with dimensions
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(2N − 2) × (2N − 2) and 2N × 2N , respectively. Further, let ∆ = [∆′ 0], where ∆′ is denoted as a
(2N − 2)× (2N − 2) diagonal matrix. It turns out

B∗(BB∗)−1B = U∗∆∗V∗(V∆∆∗V∗)−1V∆U

= U∗∆∗(∆∆∗)−1∆U

= u∗∆
′∗(∆′∆

′∗)−1∆′u = u∗u,

where u denotes the first 2N − 2 rows of U. Because B nulls out H1, B∗(BB∗)−1BH1 = 0. Then, the rows
of B∗(BB∗)−1B are orthogonal to the conjugate of columns of H1. Denote the two columns of H1 as h11 and
h12, respectively. Let the i-th row of u as ui, i = 1, 2, . . . , 2N − 2. Then, the set of columns of ut

i,
h11

‖h11‖2 , and
h12

‖h12‖2 forms an orthonormal basis for a complex signal space with dimension 2N . For any vector f , assume its

basis expansion as f =
∑

i=1:2N−2 aiut
i + a2N−1

h11
‖h11‖2 + a2N

h12
‖h12‖2 . It follows,

B∗(BB∗)−1Bf =
∑

i=1:2N−2

aiut
i.

Therefore, multiplying B∗(BB∗)−1B from left to any vector f is equivalent to projecting f to the null space
spanned by h11 and h12.

B Proof of Lemma 2

Let the normalized receive SNR be γ(fji, gin), which is a function of fji and gin for j = 1, . . . , J ; i =
1, . . . , R;n = 1, . . . , N . Diversity d can be obtained based on the outage probability of γ as

d = lim
ε→0+

log P (γ(fji, gin) < ε)
log ε

= lim
ε→0+

log E
gin

P (γ(fji, gin) < ε|gin)

log ε

≤ lim
ε→0+

E
gin

log P (γ(fji, gin) < ε|gin)
log ε

= E
gin

lim
ε→0+

log P (γ(fji, gin) < ε|gin)
log ε︸ ︷︷ ︸

d2

≤ d2

The inequality on the third line is valid because log f(gin) is a concave function of f(gin), where f(gin) =
P (γ(fji, gin) < ε|gin). Then, by Jensen’s inequality, E

gin

log f(gin) < log E
gin

f(gin). Similarly, by conditioning

on fji on the second line, we have d ≤ d1. Therefore, diversity is upperbounded by the minimum of d1 and d2.

C Proof of Lemma 3

Some notations are needed for conciseness.

f̂ (j)
1 ,

[
f

(j)
11 −f

(j)
22

]
, f̂ (j)

2 ,
[

f
(j)
21 f

(j)
12

]
, j = 1, 2, F̂(j) ,

[
f̂ (j)
1

f̂ (j)
2

]

F̂1 ,
[

f̂ (2)
1

f̂ (1)
2

]
, F̂2 ,

[
f̂ (1)
1

f̂ (2)
2

]
, F̂3 ,

[
f̂ (1)
1

f̂ (2)
1

]
, F̂4 ,

[
−f̂ (2)

2

f̂ (1)
2

]
.
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Denote the i-th column of Hj as hji. Since B∗(BB∗)−1B = I2N − h21h∗21
h∗21h21

− h22h∗22
h∗22h22

, (51) can be equiva-
lently written as

γ < h∗11

(
I2N − h21h∗21

h∗21h21
− h22h∗22

h∗22h22

)
h11

=
h∗11h11h∗21h21 − h∗11h21h∗21h11 − h∗11h22h∗22h11

h∗21h21
. (53)

It can be calculated that

h∗22h11 =




−f
(2)
21 g11 − f

(2)
12 g21

f
(2)
11 g11 − f

(2)
22 g21

...

−f
(2)
21 g1N − f

(2)
12 g2N

f
(2)
11 g1N − f

(2)
22 g2N




t 


f
(1)
11 g11 − f

(1)
22 g21

f
(1)
21 g11 + f

(1)
12 g21

...

f
(1)
11 g1N − f

(1)
22 g2N

f
(1)
21 g1N + f

(1)
12 g2N




=




−f
(2)
21 g11 − f

(2)
12 g21

f
(1)
21 g11 + f

(1)
12 g21

...

−f
(2)
21 g1N − f

(2)
12 g2N

f
(1)
21 g1N + f

(1)
12 g2N




t 


f
(1)
11 g11 − f

(1)
22 g21

f
(2)
11 g11 − f

(2)
22 g21

...

f
(1)
11 g1N − f

(1)
22 g2N

f
(2)
11 g1N − f

(2)
22 g2N




= tr




[
−f

(2)
21 g11 − f

(2)
12 g21 · · · −f

(2)
21 g1N − f

(2)
12 g2N

f
(1)
21 g11 + f

(1)
12 g21 · · · f

(1)
21 g1N + f

(1)
12 g2N

]∗ [
f

(1)
11 g11 − f

(1)
22 g21 · · · f

(1)
11 g1N − f

(1)
22 g2N

f
(2)
11 g11 − f

(2)
22 g21 · · · f

(2)
11 g1N − f

(2)
22 g2N

]


= tr




[
g11 g12 · · · g1N

g21 g22 · · · g2N

]∗ [
−f

(2)
21 −f

(2)
12

f
(1)
21 f

(1)
12

]∗ [
f

(1)
11 −f

(1)
22

f
(2)
11 −f

(2)
22

] [
g11 g12 · · · g1N

g21 g22 · · · g2N

]


= tr
(
F̂∗4F̂3GG∗

)
.

Similarly, we have

h∗11h11 = tr (F̂(1)∗F̂(1)GG∗), h∗21h21 = tr (F̂(2)∗F̂(2)GG∗), h∗21h11 = tr (F̂∗1F̂2GG∗).

The denominator of the RHS of (53) is h∗21h21 and can be further compactly written as

h∗21h21 = f (2)∗
1 Ĝf (2)

1 ,

where Ĝ =
[
GG∗ 0

0 GGt

]
.

The numerator of the RHS of (53) can be evaluated as

h∗11h11h∗21h21 − h∗11h21h∗21h11 − h∗11h22h∗22h11

= tr
(
F̂(1)∗F̂(1)GG∗

)
tr

(
F̂(2)∗F̂(2)GG∗

)
− tr

(
F̂∗2F̂1GG∗

)
tr

(
F̂∗1F̂2GG∗

)
− tr

(
F̂∗3F̂4GG∗

)
tr

(
F̂∗4F̂3GG∗

)

= tr
(
(F̂(1)∗F̂(1)GG∗)⊗ (F̂(2)∗F̂(2)GG∗)− (F̂∗2F̂1GG∗)⊗ (F̂∗1F̂2GG∗)− (F̂∗3F̂4GG∗)⊗ (F̂∗4F̂3GG∗)

)

= tr




[
(F̂(1)∗F̂ (1))⊗ (F̂(2)∗F̂(2))− (F̂∗2F̂1)⊗ (F̂∗1F̂2)− (F̂∗3F̂4)⊗ (F̂∗4F̂3)

]

︸ ︷︷ ︸
F̃

(GG∗)⊗ (GG∗)


 . (54)

This is to separate channels from users to relays with channels from relays to the receiver. The term F̃ can

21



be expanded as

F̃ = (f̂ (1)∗
1 f̂ (1)

1 + f̂ (1)∗
2 f̂ (1)

2 )⊗ (f̂ (2)∗
1 f̂ (2)

1 + f̂ (2)∗
2 f̂ (2)

2 )

−(f̂ (1)∗
1 f̂ (2)

1 + f̂ (2)∗
2 f̂ (1)

2 )⊗ (f̂ (2)∗
1 f̂ (1)

1 + f̂ (1)
2 ∗ f̂ (2)

2 )− (−f̂ (1)∗
1 f̂ (2)

2 + f̂ (2)∗
1 f̂ (1)

2 )⊗ (−f̂ (2)∗
2 f̂ (1)

1 + f̂ (1)∗
2 f̂ (2)

1 )

= (f̂ (1)∗
1 f̂ (1)

1 )⊗ (f̂ (2)∗
1 f̂ (2)

1 )︸ ︷︷ ︸
A

+ (f̂ (1)∗
1 f̂ (1)

1 )⊗ (f̂ (2)∗
2 f̂ (2)

2 )︸ ︷︷ ︸
B

+ (f̂ (1)∗
2 f̂ (1)

2 )⊗ (f̂ (2)∗
1 f̂ (2)

1 )︸ ︷︷ ︸
C

+ (f̂ (1)∗
2 f̂ (1)

2 )⊗ (f̂ (2)∗
2 f̂ (2)

2 )︸ ︷︷ ︸
D

−(f̂ (1)∗
1 f̂ (2)

1 )⊗ (f̂ (2)∗
1 f̂ (1)

1 )︸ ︷︷ ︸
E

− (f̂ (1)∗
1 f̂ (2)

1 )⊗ (f̂ (1)∗
2 f̂ (2)

2 )︸ ︷︷ ︸
F

− (f̂ (2)∗
2 f̂ (1)

2 )⊗ (f̂ (2)∗
1 f̂ (1)

1 )︸ ︷︷ ︸
G

− (f̂ (2)∗
2 f̂ (1)

2 )⊗ (f̂ (1)∗
2 f̂ (2)

2 )︸ ︷︷ ︸
H

−(f̂ (1)∗
1 f̂ (2)

2 )⊗ (f̂ (2)∗
2 f̂ (1)

1 )︸ ︷︷ ︸
I

+ (f̂ (1)∗
1 f̂ (2)

2 )⊗ (f̂ (1)∗
2 f̂ (2)

1 )︸ ︷︷ ︸
J

+ (f̂ (2)∗
1 f̂ (1)

2 )⊗ (f̂ (2)∗
2 f̂ (1)

1 )︸ ︷︷ ︸
K

− (f̂ (2)∗
1 f̂ (1)

2 )⊗ (f̂ (1)∗
2 f̂ (2)

1 )︸ ︷︷ ︸
L

.

We group the above twelve terms into six pairs by

A− E =
(
f̂ (1)
1 ⊗ f̂ (2)

1

)∗ (
f̂ (1)
1 ⊗ f̂ (2)

1 − f̂ (2)
1 ⊗ f̂ (1)

1

)
=

(
f̂ (1)
1 ⊗ f̂ (2)

1

)∗ [
0 1−1 0

] (
f

(2)
11 f

(1)
22 − f

(1)
11 f

(2)
22

)

B − I =
(
f̂ (2)
1 ⊗ f̂ (2)

2

)∗ (
f̂ (1)
1 ⊗ f̂ (2)

2 − f̂ (2)
2 ⊗ f̂ (1)

1

)
=

(
f̂ (1)
1 ⊗ f̂ (2)

2

)∗ [
0 1−1 0

] (
−f

(1)
11 f

(2)
12 − f

(2)
21 f

(1)
22

)

J − F =
(
f̂ (1)
1 ⊗ f̂ (1)

2

)∗ (
f̂ (2)
2 ⊗ f̂ (2)

1 − f̂ (2)
1 ⊗ f̂ (2)

2

)
=

(
f̂ (1)
1 ⊗ f̂ (1)

2

)∗ [
0 1−1 0

] (
−f

(2)
21 f

(2)
22 − f

(2)
11 f

(2)
12

)

C − L=
(
f̂ (1)
2 ⊗ f̂ (2)

1 − f̂ (2)
1 ⊗ f̂ (1)

2

)∗ (
f̂ (1)
2 ⊗ f̂ (2)

1

)
=

[
0 1−1 0

]∗ (
−f

(1)
21 f

(2)
22 − f

(2)
11 f

(1)
12

)∗ (
f̂ (1)
2 ⊗ f̂ (2)

1

)

D −H=
(
f̂ (1)
2 ⊗ f̂ (2)

2 − f̂ (2)
2 ⊗ f̂ (1)

2

)∗ (
f̂ (1)
2 ⊗ f̂ (2)

2

)
=

[
0 1−1 0

]∗ (
f

(1)
21 f

(2)
12 − f

(2)
21 f

(1)
12

)∗ (
f̂ (1)
2 ⊗ f̂ (2)

1

)

K − G =
(
f̂ (2)
2 ⊗ f̂ (2)

1 − f̂ (2)
1 ⊗ f̂ (2)

2

)∗ (
f̂ (1)
2 ⊗ f̂ (1)

1

)
=

[
0 1−1 0

]∗ (
−f

(2)
21 f

(2)
22 − f

(2)
11 f

(2)
12

)∗ (
f̂ (1)
2 ⊗ f̂ (1)

1

)

where
[
0 1−1 0

]
exists among all pairs. This vector is essential to decouple channels of two steps. Inserting

these six terms into (54), we have

h∗11h11h∗21h21 − h∗11h21h∗21h11 − h∗11h22h∗22h11

= tr ((A− E + B − I + J − F + C − L+D −H+K − G)(GG∗)⊗ (GG∗)) .

The term tr ((A− E)(GG∗)⊗ (GG∗)) can be evaluated as

tr ((A− E)(GG∗)⊗ (GG∗)) = tr
((

f̂ (1)
1 ⊗ f̂ (2)

1

)∗ (
f

(2)
11 f

(1)
22 − f

(1)
11 f

(2)
22

) [
0 1−1 0

]
(GG∗)⊗ (GG∗)

)

= (‖g1‖2‖g2‖2 − g1g∗2g2g∗1)︸ ︷︷ ︸
g̃

tr
((

f̂ (1)
1 ⊗ f̂ (2)

1

)∗ (
f

(2)
11 f

(1)
22 − f

(1)
11 f

(2)
22

) [
0 1−1 0

])
= g̃tr (A− E) .

Thus, channels of the second transmission step is decoupled from the trace operation and are expressed in a

22



scalar form. We have similar expressions for the other five pairs. Therefore, the numerator can be shown as

h∗11h11h∗21h21 − h∗11h21h∗21h11 − h∗11h22h∗22h11

= g̃ tr (A− E + B − I + J − F + C − L+D −H+K − G)

= g̃ tr
(
(F̂(1)∗F̂(1))⊗ (F̂(2)∗F̂(2))− (F̂∗2F̂1)⊗ (F̂∗1F̂2)− (F̂∗3F̂4)⊗ (F̂∗4F̂3)

)

= g̃
[
tr

(
F̂(1)∗F̂(1)

)
tr

(
F̂(2)∗F̂(2)

)
− tr

(
F̂∗2F̂1

)
tr

(
F̂∗1F̂2

)
− tr

(
F̂∗3F̂4

)
tr

(
F̂∗4F̂3

)]

= g̃

([
f̂ (1)
1 f̂ (1)

2

] [
f̂ (1)∗
1

f̂ (1)∗
2

] [
f̂ (2)
1 f̂ (2)

2

] [
f̂ (2)∗
1

f̂ (2)∗
2

]

−
[
f̂ (2)
1 f̂ (1)

2

] [
f̂ (1)∗
1

f̂ (2)∗
2

] [
f̂ (1)
1 f̂ (2)

2

] [
f̂ (2)∗
1

f̂ (1)∗
2

]
−

[
f̂ (1)
1 f̂ (2)

1

] [
−f̂ (2)∗

2

f̂ (1)∗
2

] [
f̂ (2)
2 f̂ (1)

2

] [
f̂ (1)∗
1

f̂ (2)∗
1

])

= g̃

([
f̂ (1)
1 f̂ (1)

2

] [
f̂ (1)t
1

f̂ (1)∗
2

] [
f̂ (2)
1 f̂ (2)

2

] [
f̂ (2)t
1

f̂ (2)∗
2

]

−
[
f̂ (1)
1 f̂ (1)

2

] [
f̂ (2)t
1

f̂ (2)∗
2

] [
f̂ (1)
1 f̂ (1)

2

] [
f̂ (2)∗
1

f̂ (2)t
2

]
−

[
f̂ (1)
1 f̂ (1)

2

] [
−f̂ (2)t

2

f̂ (2)∗
1

] [
−f̂ (2)

2 f̂ (2)
1

] [
f̂ (1)∗
1

f̂ (2)t
2

])

= g̃
(
f (1)∗
1 f (1)

1 f (2)∗
1 f (2)

1 − f (1)∗
1 f (2)

1 f (2)∗
1 f (1)

1 − f (1)∗
1 f (2)

2 f (2)∗
2 f (2)

1

)

where f (j)
i for i, j = 1, 2 denotes the i-th column of F(j). Combining the expression of the numerator and

denominator results in the statement of the lemma.

References

[1] Y. Jing and B. Hassibi, “Distributed space-time coding in wireless relay networks,” IEEE Trans. on Wireless
Comm., vol. 5, pp. 3524–3536, Dec. 2006.

[2] ——, “Diversity analysis of distributed space-time codes in relay networks with multiple transmit/receive
antennas,” EURASIP Jour. on Advances in Signal Proc., vol. 2008, 2008, article ID 254573, 17 pages,
doi:10.1155/2008/254573.

[3] Y. Jing and H. Jafarkhani, “Using orthogonal and quasi-orthogonal designs in wireless relay networks,”
IEEE Trans. on Info. Theory, pp. 4106–4118, Nov. 2007.

[4] R. Horn and C. Johnson, Topics in matrix analysis. Cambridge University Press, 1991.

[5] Y. Jing and H. Jafarkhani, “Interference cancellation in distributed space-time coded wireless relay net-
works,” in Proc. of IEEE ICC, 2009.

[6] J. Kazemitabar and H. Jafarkhani, “Multiuser interference cancellation and detection for users with more
than two transmit antennas,” IEEE Trans. on Comm., pp. 574–583, Apr. 2008.

[7] L. Li, Y. Jing, and H. Jafarkhani, “Using instantaneous normalized receive SNR for diversity gain calcula-
tion,” CPCC Technical Report, available at http://escholarship.org/uc/item/9511q6pf, Sep. 2010.

23




