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Introduction

The clock system controls many physiological and metabolic func-
tions in different organisms.1 In mammals, a clock-driven tran-
scriptional machinery is responsible for regulating the circadian 
gene expression of 10–20% of the genes within most tissues.2-5 
Aberrant regulation by the circadian machinery may lead to various 
pathological conditions, including neurodegeneration, insomnia, 
inflammation, obesity, diabetes and cancer.6-12 The transcription 
factors CLOCK and BMAL1 are central to the positive transcrip-
tional loop: after heterodimerization they bind to E-box promoter 
elements in the regulatory regions of many clock-controlled genes 
(CCGs). Among the CCGs, there are the Per and Cry genes, which 
encode negative regulators of CLOCK:BMAL1. These interplays 
are responsible for the oscillation of circadian gene expression.13

Accumulating evidence shows the presence of bidirec-
tional links between circadian regulation and inflammatory 
response.14-21 Previous studies have demonstrated that stimula-
tion of fibroblasts with tumor necrosis factor-α (TNFα) represses 
circadian transcription.22,23 Moreover, we have recently observed 
that circadian disruption is associated with acute bacterial infec-
tion in mice (unpublished data), whereas other reports indicate 
that circadian disruption is involved in the development of symp-
toms associated to the inflammatory state.24-26

The NFκB transcription factor plays a central role in the 
inflammatory response. It is composed by five different subunits 
that can homo- or hetero-dimerize to form a variety of transcrip-
tionally active isoforms with widely different roles in the tran-
scriptional activation or repression of inflammatory genes.27-30

the circadian system controls a large array of physiological and metabolic functions. the molecular organization of the 
circadian clock is complex, involving various elements organized in feedback regulatory loops. Here we demonstrate that 
the RelB subunit of NFκB acts as a repressor of circadian transcription. RelB physically interacts with the circadian activator 
BMAL1 in the presence of CLoCK to repress circadian gene expression at the promoter of the clock-controlled gene 
Dbp. the repression is independent of the circadian negative regulator CRY. Notably, RelB-/- fibroblasts have profound 
alterations of circadian genes expression. these findings reveal a previously unforeseen function for RelB as an important 
regulator of the mammalian circadian system in fibroblasts.
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Here we report on the interplay between the circadian clock 
and the NFκB transcriptional pathway. Cells with a disrupted 
clock system display an altered response to lipopolysaccha-
ride (LPS) and aberrant levels of some specific components of 
the NFκB complex. We show physical and functional interac-
tion between RelB and BMAL1. This results in the repression 
of CLOCK:BMAL1-driven transcription and in alteration of 
the circadian expression profile in mouse embryo fibroblasts 
lacking RelB. Our findings reveal a molecular link between two 
transcription pathways previously thought to be independent, 
providing a molecular framework to interpret the physiological 
relationship between the inflammatory response and circadian 
rhythms.

Results

Reduced inflammatory response in cells with a disrupted circa-
dian clock. To explore whether the circadian clock could modu-
late the inflammatory response, we studied cultured cells with 
a disrupted clock system compared with their wild-type coun-
terpart. We followed the timing of expression of various cyto-
kines 1 h and 4 h after LPS stimulation of mouse embryonic 
fibroblasts (MEFs) derived from wild-type and Clock mutant 
mice (c/c), where a single point mutation determines a deletion of 
exon 19 within the CLOCK coding sequence,31-34 thus generat-
ing a dominant negative mutant CLOCK protein that renders 
the CLOCK:BMAL1 heterodimers functionally defective.35,36 
The expression of the proinflammatory genes Il-6, Cxcl1 and 
Il-1β (Fig. 1) was drastically reduced in c/c MEFs compared with 
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Since RelB overexpression has been associated to repression of 
the inflammatory response in fibroblasts and induction of endo-
toxine tolerance,37-42 we concluded from these experiments that 
RelB expression is upregulated in c/c MEFs, and that this is likely 
to contribute to the altered response of these cells to an inflam-
matory stimulus (Fig. 1).

Physical interaction between RelB and BMAL1. We sought 
to unravel the molecular mechanism by which the clock system 
may interplay with the NFκB pathway. Thus, we explored the 
possibility that one or several NFκB subunits could play a role in 
the regulation of circadian transcription by interacting with the 
components of the circadian machinery CLOCK and BMAL1. 
We ectopically overexpressed CLOCK and BMAL1, together 
with RelB, RelA, p50 or p52 in cultured cells. We found that 
RelB, but not RelA (Fig. 3A) or the other regolatory subunits 
(Fig. 3B), is able to efficiently interact with BMAL1, and weakly 
with CLOCK, thus suggesting a specific role of RelB in the cir-
cadian system.

Next, we determined whether native RelB interacts with 
BMAL1 and/or CLOCK expressed endogenously in cultured 
cells. A specific interaction was found with BMAL1 in wild-type 
MEFs (Fig. 3C), while we were not able to detect unequivocal 
interaction with CLOCK under the same conditions. To test 
whether CLOCK is dispensable for the interaction of RelB with 
BMAL1, we transfected CLOCK and BMAL1 alone or in com-
bination, together with RelB. We found that RelB interacts with 
BMAL1 alone, and that the interaction is reinforced in the pres-
ence of CLOCK (Fig. S4A). No interaction with CLOCK alone 
was found (not shown).

We then explored whether mutations of the CLOCK protein 
may affect the RelB-BMAL1 interaction. We transfected full-
length CLOCK or various deletion mutants, known to reduce 
or abolish CLOCK functions. RelB interaction with BMAL1 
was more robust in the presence of a full-length CLOCK pro-
tein than in the presence of truncated forms of CLOCK, either 

the wild-type cells. We also observed that these cells were only 
slightly responsive to stimulation with recombinant TNFα (Fig. 
S1), thus confirming that the low responsivity was independent 
of the stimulus applied to the cells to induce the inflammatory 
response. We also monitored the expression of circadian genes 
after TNFα stimulation (Fig. S1). As previously reported,22,23 
TNFα leads to a repressed expression of circadian genes in wild-
type cells, while a constantly low level of Per2 and Dbp mRNAs 
was detected in c/c MEFs. Thus, a normally functioning cir-
cadian clock is necessary to obtain an efficient inflammatory 
response.

Specific elelements of the NFκB pathway are overexpressed 
in Clock-mutant fibroblasts. Based on the differential to LPS 
and TNFα in cells with a disrupted clock (Fig. 1), we sought 
to explore the integrity of the NFκB signaling pathway. To do 
so, we monitored the protein levels of different NFκB subunits 
in wild-type and c/c MEFs, untreated or after LPS treatment. 
We observed a robust upregulation of the components of the 
non-canonical pathway RelB and p100/p52 in c/c fibroblasts 
as compared with isogenic wild-type cells. The upregulation 
appears independent from LPS stimulation (Fig. 2A). No dif-
ferences in total levels of RelA and p50 were observed. The 
overexpression of RelB and p100/p52 is specific to c/c MEFs 
and not observed in cells carrying mutations in other clock 
components (Fig. S2).

These findings prompted us to investigate whether the expres-
sion of the transcriptionally active subunit RelB is regulated in a 
circadian manner. While the protein levels of RelB do not display 
a circadian oscillation in MEFs synchronized by serum shock, we 
observed a robust upregulation at all circadian time points in c/c 
MEFs compared with wild-type MEFs (Fig. 2B). Similarly, RelB 
mRNA showed only a marginal oscillation in both wild-type and 
c/c MEFs after serum-shock synchronization. Paralleling the pro-
tein levels (Fig. 2B), a significant upregulation of RelB transcript 
was present in c/c MEFs (Fig. S3).

Figure 1. Clock mutant MeFs are less resposive to LpS stimulation. time course of mRNA expression of different cytokines after LpS stimulation 
(1 μg/ ml) of wt and Clock mutant (c/c) MeFs, measured by quantitative real time pCR. Shown are fold changes in gene expression compared with 
unstimulated cells. All the values are the mean +/- s.e.m. (n = 6); (*) p < 0.05, (**) p < 0.01, (***) p < 0.001.
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(Fig. 4C), whereas co-expression of CRY1 and RelB leads to an 
additive repression (Fig. 4C). Importantly, RelB-mediated inhi-
bition of CLOCK:BMAL1 is maintained in Cry1/Cry2-deficient 
cells (Fig. 4D), thus indicating that RelB repression is inde-
pendent on the negative circadian regulators CRYs. Since RelB 
requires heterodimerization to be transcriptionally active,27-30 
we asked whether the association with the regolatory subunit 
p52 could increase the repression. Interestingly, we observed 
increased repression in presence of p52 (Fig. 4E).

To better understand how the repression could take place, 
we performed a chromatin IP experiment at the promoter of the  
circadian gene Dbp in synchronized MEFs. Interestingly, RelB 
was immunoprecipitated together with CLOCK and BMAL1 
on Dbp promoter transcriptionally active region (Fig. 5A) or on 
Per2 TSS promoter region (Fig. S5), while no enrichment was 
observed at the 3' region of Dbp gene (Fig. 5A) or on Bmal1  
promoter (Fig. S5). We then asked if the presence of RelB at 
the promoter of circadian genes was dependent on CLOCK 
and BMAL1. We performed the same experiment in BMAL1  
KO MEFs, where the circadian transcription is abolished, and  
the CLOCK:BMAL1 complex is not present at the chroma-
tin level, and we could not either detect any presence of RelB 
(Fig. S6). These results indicate that RelB is within a chromatin 
complex with CLOCK and BMAL1 at the promoter of circadian 
genes.

with a deletion in the N terminal region or with deletion of exon 
19, domains affecting protein-protein interaction and transcrip-
tional activation, respectively (Fig. S4B). Based on these results, 
we then tested the RelB-BMAL1 interaction in wild-type and c/c 
MEFs. The interaction of RelB with BMAL1 was significantly 
reduced in c/c MEFs as compared with wild-type cells (Fig. 3C). 
Stable ectopic expression of CLOCK in c/c MEFs rescued the 
efficacy of RelB-BMAL1 interaction at levels similar than wild-
type MEFs (Fig. 3C). From these experiments we conclude that 
RelB readily interacts with BMAL1, and that this interaction is 
reinforced and dependent on the presence of a functional full-
length CLOCK protein.

RelB represses CLOCK:BMAL1-driven trancriptional acti-
vation. The specific BMAL1 interaction with RelB prompted us 
to explore whether it could be functionally relevant in modu-
lating CLOCK:BMAL1-driven transcriptional activation. To 
address this question we performed luciferase assays on tran-
siently transfected cultured cells. First, we observed a significant 
repression of CLOCK:BMAL1-driven transactivation on the 
Per1 promoter by RelB (Fig. 4A). Using a synthetic reporter vec-
tor carring only E-box promoter elements fused to the luciferase 
gene, we demonstrated that the repression was E-box-mediated 
(Fig. 4B). CLOCK:BMAL1-driven expression is known to be 
severely repressed by the circadian proteins CRYs.43 As compari-
son, RelB induces a repression of comparable extent than CRY1 

Figure 2. expression of NFκB subunits in c/c MeFs. (A) endogenous expression of RelA, RelB, p50 and p100/p52 in wild type (Wt) and Clock mutant 
(c/c) MeFs, treated for 1 h with LpS (1 μg/ml) or left untreated (ctr), was determined by western blot analysis. the α-tubulin and GApDH were used 
as loading controls. (B) Wild-type and c/c MeFs were synchronized by 2 h serum-shock treatment. total lysates were prepared at the indicated times 
(hrs, hours) post-synchronization and resolved by SDS-pAGe. Levels of RelB, RelA, BMAL1 and α-tubulin were detected by western blot analysis using 
specific antibodies.
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the absence of RelB (Fig. 5B), consistent with a 
repressive role. Similar results were obtained for 
the circadian-regulated genes Rev-erbα and Cry1 
(Fig. S7). Interestingly, the transcription of the 
period genes was downregulated (Fig. S7), sug-
gesting that RelB could play a more complex role 
in the maintainance of the functionality of the 
clock machinery.

Discussion

Previous reports showed as RelB expression 
is involved in the repression of the inflamma-
tory response in fibroblasts.39-42,44,45 Different 
mechanisms have been considered, including the 
recruitment of chromatin modifier enzymes,37,46,47 
thereby creating a repressive chromatin state, 
or stabilization of negative regulators, such as 
IkBα.38,40 Importantly, RelB was also considered 
as the major mediator of the endotoxin tolerance 
status in fibroblasts.42 This observation is of par-
ticular interest, since we observed increased levels 
of RelB in Clock-mutant MEFs compared with 
isogenic wild-type cells, and we also observed 
reduced induction of inflammatory genes expres-
sion in Clock-mutant macrophages (unpublished 
data) and MEFs (Fig. 1). We believe that these 
notions are important for future investigations.

Recent findings from another laboratory con-
firm that elements of the circadian clock may 
interplay with the NFκB pathway (M. Antoch, 
personal communication). Here we have shown 
that the NFκB subunit RelB directly partecipates 
in the regulation of circadian transcription, by 
interacting with the core clock factors BMAL1 
and CLOCK at the chromatin level. Both inter-
action and presence of RelB at the promoter of 
circadian genes appears to be strictly depen-
dent on a functional CLOCK:BMAL1 com-
plex (Fig. S4 and 6). Moreover, RelB appears to 
directly control circadian transcription as shown 
by the use of RelB-deficient MEFs (Fig. 5; 

Fig. S7). It is still unclear whether RelB-induced repression of the 
circadian clock has a role during the inflammatory response. It is 
tempting to speculate that RelB might partecipate in mediating 
the repression of circadian genes during inflammation (Fig. S1), 
establishing an intriguing link between the clock system and the 
NFκB pathway. This possibility could be of great relevance dur-
ing inflammatory responses and apoptosis and could establish 
the basis for the development of novel pharmacological strategies 
and therapeutic approaches.

Materials and Methods

Plasmids. C-terminal Flag-tagged RelB pcDNA3, RelA 
pcDNA3, p52 pcDNA3 and p50 pcDNA3 were purchased from 

RelB controls the amplitude of circadian transcrip-
tion. Our findings strongly suggested that RelB modulates 
CLOCK:BMAL1 and thereby contribute to the normal oscil-
lation of circadian transcription. This notion was confirmed by 
using a chromatin immunoprecipitation approach, which dem-
onstrated that RelB is present at the promoter of the clock-con-
trolled gene Dbp in parallel with CLOCK and BMAL1 (Fig. 5A). 
To address the question, we used MEFs in which the RelB gene is 
deleted and compared to the profile of circadian gene expression 
with equivalent wild-type MEFs cells. We followed the expres-
sion of various circadian genes during a 24 h cycle after serum-
shock synchronization. The transcription of Dbp was enhanced 
in asynchronous cells (CT0), and the amplitude of the oscil-
lation during the circadian cycle was significantly increased in 

Figure 3. RelB interaction with BMAL1 and CLoCK. (A) HeK-293 cells were cotransfected 
with Myc-CLoCK and Myc-BMAL1 (C/B), without or with Flag-RelB or Flag-RelA. Flag-
tagged proteins were immunoprecipitated by FLAG-Agar, and abundance of coimmu-
noprecipitated proteins was determined by western blotting with anti-Myc antibody 
and anti-Flag antibody. Asterisks indicate specific signals for BMAL1 and CLoCK proteins. 
(B) HeK-293 cells were cotransfected with Myc-CLoCK and Myc-BMAL1 (C/B) and series of 
expression vectors as described. total lysates were prepared and subjected to immunopre-
cipitation using FLAG-Agar and coimmunoprecipitated proteins were detected by western 
blotting with anti-BMAL1 and anti-CLoCK antibodies. Lower panels show the expression 
of Flag-tagged proteins in total cell lysates as an input. (C) Cell extracts prepared from 
wild-type (Wt), Clock mutant (c/c) and Clock mutant stably transfected with wild-type 
Myc-CLoCK (c/c-wt-C) were immunoprecipitated with RelB antibody or normal IgG, and 
immunoprecipitated BMAL1 and RelB were detected by probing with the BMAL1 and RelB 
antibody, respectively. Lower panel shows RelB expression in total cell lysates as an input.
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Signaling Technology and Santa Cruz Biotecnology, Inc., respec-
tively. Antibodies against RelA, p50 and p100/p52 were from 
Cell Signaling Technology. Antibodies against CLOCK and rab-
bit IgG were from Santa Cruz Biotecnology; anti-BMAL1 was 
from Abcam; anti-Myc and anti-GAPDH were from Millipore, 
anti-flag and anti-α-tubulin from Sigma-Aldrich. Anti-Flag M2 
affinity resin for immunoprecipitation experiments was from 
Sigma-Aldrich.

Cell culture. HEK-293 cells (ATCC) were mantained in 
DMEM (4.5 g/L glucose) supplemented with 10% newborn calf 
serum (NCS) and antibiotics and cultured at 37°C in 5% CO

2
. 

MEFs from c/c mutants, Cry1/2 -/- and Bmal1 -/- were cultured 
in DMEM supplemented with 10% FBS and antibiotics. MEFs 
c/c + CLOCK were previously generated.50 RelB +/+ and -/- 
were coltured with 10% BCS and antibiotics. Wild-type and 

Addgene. N-terminal Myc-tagged plasmids Myc-mCLOCK/
pSG5, Myc-mCLOCKΔ19/pSG5, Myc-mBMAL1/pCS2  
and Myc-mCRY1 were previously described.48 Myc-
mCLOCKΔC/pSG5 and mCLOCKΔN/pSG5 were made 
by deletion of a DNA fragment from Myc-mCLOCK/pSG5, 
encoding the C-terminal part (571–855) and the N-terminal 
part (1–434) of mCLOCK, respectively. All the Myc-tagged 
proteins contain six copies of Myc epitope at the N and C ter-
mini. Plasmids expressing both β-galactosidase (pGL3-lacZ) for 
transfection control and luciferase (luc) for luminometry based 
expression (pGL3-mPer1-Luc promoter, pGL3-Ebox X3 luc) 
were described previously.49

Reagents and antibodies. LPS and mouse recombinant 
TNFα were purchased from Sigma-Aldrich. Antibodies against 
RelB for western blot and ChIP experiments were from Cell 

Figure 4. RelB represses CLoCK:BMAL1 transactivation potential. (A) effect of RelB on CLoCK:BMAL1 dependent transcription. Vectors expressing 
CLoCK and BMAL1 (C/B) were cotransfected with a construct containing the mper1-luc promoter, with or without RelB. the total DNA amount was 
kept constant by adding carrier plasmid DNA. After normalization for transfection efficiency using β-galactosidase activity, reporter gene activity 
was expressed as relative luciferase units (RLU) (activity of the control transfected only with non-expressing plasmid was set to 1). All the values are 
the mean +/- SD (n = 3); (**) p < 0.01 (B) the e box promoter element mediates RelB repression of CLoCK:BMAL1. experimental condition was as in 
(A), except that a reporter construct containing three copies of the ebox consensus sequence was used (ebox-luc). All the values are the mean +/- SD 
(n = 3); (***) p < 0.001. (C) Additive effect of RelB and cry1 repression on CLoCK:BMAL1 dependent transcription. experimental conditions are as in A 
except that Cry1 was cotransfected with C/B or C/B + RelB. All the values are the mean +/- SD (n = 3); (**) p < 0.01, (***) p < 0.001. (D) RelB repression is 
CRY-independent. CLoCK and BMAL1 were cotransfected as in A in wild-type (Wt) and CRY1/2 Ko MeFs. % of RelB repression of CLoCK:BMAL1 trans-
activation is shown. All the values are the mean +/- SD (n = 3). (e) effect of RelB and p52 on CLoCK:BMAL1 dependent transcription. Vectors express-
ing CLoCK and BMAL1 (C/B) were cotransfected with a construct containing the per1-luc promoter, with or without RelB and p52, as described. After 
normalization for transfection efficiency using β-galactosidase activity, reporter gene activity was expressed as relative luciferase units (RLU) (activity 
of the control transfected only with non-expressing plasmid was set to 1). All the values are the mean +/- SD (n = 3); (**) p < 0.01, (***) p < 0.001.
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TCC TTG TGC-3' RV 5'-GCT CTC ATC AGG ACA GCC 
CAG GT - 3' Rev-erbα: FW 5'-GGG CAC AAG CAA CAT 
TAC CA-3' RV 5'-CAC GTC CCC ACA CAC CTT AC-3'; 
b-actin: FW 5'-GGC TGT ATT CCC CTC CAT CG-3' RV 
5'-CCA GTT GGT AAC AAT GCC ATG T-3'; Gapdh: FW 
5'-TGT AGA CCA TGT AGT TGA GGT CA-3' RV 5'-AGG 
TCG GTG TGA ACG GAT TTG-3'.

Chromatin immunoprecipitation (ChIP) assay. Dual cross-
linking ChIP assay52 was used. Briefly, after 2 h of serum shock 
with media containing 50% horse serum, cells were incubated 
with serum-free medium for the indicated time. Then, cells 
were washed three times with room temperature PBS and PBS 
with 1 mM MgCl

2
 was added. Disuccinimidyl Glutarate (DSG, 

Pierce) was added to a final concentration of 2 mM for crosslink-
ing and incubated 45 min at room temperature, formaldehyde 
was added to a final concentration of 1% (v/v) and cells incu-
bated for 15 min for dual crosslinking, and glycine was added 
to a final concentration of 0.1 M and incubated for 10 min to 
quench formaldehyde cross-linking. After harvesting, cells were 
lysed in 500 μL ice-cold cell lysis buffer (50 mM Tris/HCl 
pH 8.0, 85 mM KCl, 0.5% NP40, 1 mM PMSF, 1x protease 
inhibitor cocktail (Roche) for 10 min on ice. Nuclei were precipi-
tated by centrifugation (3,000 g for 5 min) resuspended in 600 
μL ice-cold RIPA buffer (50 mM Tris/HCl pH 8.0, 150 mM 
NaCl, 1 mM EDTA pH 8.0, 1% Triton X-100, 0.1% SDS, 0.1% 
sodium deoxycolate, 1 mM PMSF, 1x protease inhibitor cocktail) 
and incubated on ice for 30 min. Sonication was performed to 
obtain DNA fragments 100–600 bp in length.
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Figure 5. RelB negative regulation is required for proper circadian gene expression. (A) Cross-linked cell extracts were isolated at the indicated time 
points after serum shock from MeFs. the samples were subjected to ChIp assay with anti-CLoCK, anti-BMAL1, anti-RelB and anti-IgG and analyzed 
by quantitative pCR with primers for Dbp promoter (Dbp Up and Dbp 3'). Control IgG and Dbp 3'UtR were used as control for immunoprecipitation 
and pCR, respectively. All the values are the mean +/- SD (n = 3). (B) Circadian Dbp mRNA expression profile in wild-type (Wt) and RelB Ko MeFs, after 
serum-shock synchronization, analyzed by quantitative pCR. the values are relative to those of β-actin mRNA levels at each circadian time (Ct). time 0 
(unsynchronized cells, Ct0) in wt cells was set to 1. All the values are the mean +/- s.e.m. (n = 3), (*) p < 0.05, (***) p < 0.001.
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