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Abstract

The advent of high-resolution magnetic resonance imaging (MRI) has enabled in vivo research in 

a variety of populations and diseases on the structure and function of hippocampal subfields and 

subdivisions of the parahippocampal gyrus. Due to the many extant and highly discrepant 

segmentation protocols, comparing results across studies is difficult. To overcome this barrier, the 

Hippocampal Subfields Group was formed as an international collaboration with the aim of 

developing a harmonized protocol for manual segmentation of hippocampal and parahippocampal 

subregions on high-resolution MRI. In this commentary we discuss the goals for this protocol and 

the associated key challenges involved in its development. These include differences among 

existing anatomical reference materials, striking the right balance between reliability of 

measurements and anatomical validity, and the development of a versatile protocol that can be 

adopted for the study of populations varying in age and health. The commentary outlines these key 

challenges, as well as the proposed solution of each, with concrete examples from our working 

plan. Finally, with two examples, we illustrate how the harmonized protocol, once completed, is 

expected to impact the field by producing measurements that are quantitatively comparable across 

labs and by facilitating the synthesis of findings across different studies.
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Introduction

The medial temporal lobe (MTL) in general, and the hippocampus in particular, have 

attracted extensive interest in in vivo human studies of a wide range of diseases (e.g. (Small 

et al., 2011)), normal life-span development (e.g. (Daugherty et al., 2016)) and cognitive 

abilities (e.g. (Squire et al., 2004;Van Petten, 2004;Carr et al., 2010;Kyle et al., 2015a)) 

involving structural (e.g. (Mueller et al., 2008)) as well as functional magnetic resonance 

imaging (MRI) (e.g. (Yassa et al., 2010)). The MTL includes the hippocampal formation and 

several cortical regions within the parahippocampal gyrus, namely the entorhinal, perirhinal, 

and parahippocampal cortices. The hippocampal formation itself is a complex structure that 

is composed of distinct subfields—the subicular complex (including prosubiculum, 

subiculum proper, presubiculum and parasubiculum), Cornu ammonis (CA1-CA4), and the 

dentate gyrus (DG)1 (e.g. (Duvernoy et al., 2005;Insausti and Amaral, 2012)). In the early 

2000's, in vivo measurement of hippocampal subfields first became possible through 

advancements in neuroimaging and analysis techniques (Small et al., 1999;Small et al., 

2000;Zeineh et al., 2000;Zeineh et al., 2001). Since then, over 20 manual protocols (e.g. 

(Insausti et al., 1998;Small et al., 1999;Zeineh et al., 2001;Kirwan et al., 2007;Mueller et al., 

2007;Ekstrom et al., 2009;Olsen et al., 2009;Kerchner et al., 2010;La Joie et al., 

2010;Malykhin et al., 2010;Preston et al., 2010;Yassa et al., 2010;Bonnici et al., 2012;Libby 

et al., 2012;Wisse et al., 2012;Bender et al., 2013;Palombo et al., 2013;Winterburn et al., 

2013;Suthana et al., 2015); see also (Yushkevich et al., 2015a)) and several automatic 

procedures (e.g. (Fischl et al., 2009;Van Leemput et al., 2009;Yushkevich et al., 

2010;Augustinack et al., 2013;Pipitone et al., 2014;Iglesias et al., 2015;Yushkevich et al., 

2015b)) have been developed for in vivo segmentation on MR images of hippocampal and 

parahippocampal subregions. These manual and automatic segmentation protocols are 

highly discrepant from one another and often employ different terminology and definitions 

of the regional boundaries (Yushkevich et al., 2015a). This variability in segmentation 

protocols produces widely inconsistent results, even when studying similar populations and 

phenomena (e.g. (de Flores et al., 2015a;Wisse et al., 2015)). This variability complicates 

meaningful comparison of results between studies (de Flores et al., 2015a) and hampers the 

ability to draw broader theoretical conclusions. Thus, there is a strong need for a harmonized 

protocol that can be employed consistently across laboratories. Due to the wide variability in 

segmentation protocols and the lack of consensus in the field, no single protocol can be 

readily adopted as a common standard. Instead, it is necessary to develop a new manual 

segmentation protocol via consensus from the scientific community that resolves the various 

discrepancies and consolidates the commonalities across procedures and neuroanatomical 

reference sources. Although automated methods are appealing for efficiency and ease of 

1Note that the terminology for MTL structures differs per neuroanatomy laboratory. For example, some neuroanatomists prefer the 
term CA4 (Duvernoy et al., 2005), whereas others refer to this region as hilus (West and Gundersen, 1990) or part of CA3 (Insausti 
and Amaral, 2012).
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adoption across research groups, the current automated protocols also differ widely from one 

another (Yushkevich et al., 2015a) and, when pitted against the “gold standard” of manual 

segmentation protocols, show limited concurrent validity, especially for smaller subfields. 

Automation of subfield segmentation therefore remains a hopeful future goal, but the first 

necessary step in its development is to establi sh a harmonized protocol for manual 

segmentation.

Inspired by the European Alzheimer's Disease Consortium (EADC) - Alzheimer's Disease 

Neuroimaging Initiative (ADNI) Harmonized Protocol (HarP) project (Boccardi et al., 

2015;Frisoni et al., 2015), which successfully developed a reliable harmonized segmentation 

protocol for labeling the whole hippocampal formation as a single structure on 1 mm3 T1-

weighted images, the Hippocampal Subfields Group (HSG) was formed in 2013 with the 

aim of developing a harmonized protocol for the segmentation of hippocampal subfields and 

the adjacent entorhinal, perirhinal and parahippocampal cortices (Kivisaari et al., 2013) for 

high-resolution T2-weighted 3 and 7 tesla (T) MRI data. T2-weighted imaging is the most 

commonly used for subfield segmentation because the stratum moleculare laconosum 

radiatum that is visualized as a “dark band” is used to separate the CA and the DG; this band 

is less visible on T1-weighted images. As one of the first steps towards harmonization, 21 

segmentation protocols for hippocampal and parahippocampal subregions were compared 

directly and revealed a range of similarities and differences between protocols (Yushkevich 

et al., 2015a). The greatest disagreement between protocols in the hippocampal body, for 

example, was in the demarcation of the CA1-subicular complex boundary (see Figure 1). 

This comparison underscores the urgent need for a harmonized protocol.

Since publication of this comparison paper in 2015, the HSG has developed a working plan 

for creating a harmonized protocol for high-resolution T2-weighted MRIs. In short, it 

includes: 1) localizing subfield boundaries on histology in a reference set of multiple ex vivo 
specimens, 2) deriving specific rules for placing boundaries on in vivo MRI using this 

histological reference material, 3) sharing the protocol with the larger community to solicit 

feedback, and 4) performing a formal reliability analysis on the agreed manual segmentation 

protocol. These steps are illustrated in Figure 2. This working plan reflects three key goals: 

attaining content (anatomical) validity, establishing measurement reliability, and enabling 

application to study normative and pathological changes across the lifespan. These key goals 

are discussed below in the context of the unique challenges posed in this venture and the 

proposed working plan for achieving each goal. In addition, we elaborate on the expected 

impact of this harmonized protocol on the field.

Key goals and challenges in the development of a harmonized 

segmentation protocol for hippocampal and parahippocampal subregions

Content Validity: Agreement with Anatomy

The harmonized protocol must achieve content validity for anatomy confirmed by various 

histological reference materials. Although extant segmentation protocols adhere to printed 

neuroanatomical atlases (e.g. (Duvernoy et al., 2005;Mai et al., 2008;Insausti and Amaral, 

2012)), they largely rely on different reference materials (Yushkevich et al., 2015a), which 
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may have, in part, contributed to the variability amongst protocols. In addition to simply 

providing different images and different anatomical definitions, most references depict a 

limited number of slices along the anterior-posterior length of the hippocampus. 

Furthermore, the angulation of histology samples commonly differs from the orientation of 

MRI, thereby limiting their usefulness as the anchors of validation. Moreover, printed 

anatomical atlases often show only a limited number of specimens, making approximation 

of individual differences in anatomical landmarks and variability of subfield boundaries 

along the anterior-posterior axis of the hippocampus difficult to assess.

Approach—To resolve the outlined challenges, at least three neuroanatomy laboratories 

(e.g. KA, RI & JCA) will provide a specimen, processed according to the standards in the 

specific labs, and all three labs will annotate each sample (Step 1)—thus creating a variety 

of samples whilst allowing direct comparison of anatomical boundary demarcation between 

neuroanatomists. Notably, subfield boundary placement may differ between 

neuroanatomists, potentially arising from differences in processing methods or their own 

subfield definitions. While resolving these potential discrepancies is beyond the scope of our 

effort, we will use all available information and characterize the range in which the 

boundaries may fall to develop a protocol for MRI. Moreover, the use of different processing 

methods will broaden the applicability of the harmonized protocol. Critically, the samples 

will include multiple slices spanning the anterior-posterior length and sectioning will be 

oriented similar to common neuroimaging protocols (i.e. perpendicular to the long axis of 

the hippocampus (Mueller et al., 2007;Yushkevich et al., 2015a)). This reference set will be 

the most comprehensive dataset to date and will be a good starting point, used in addition to 

canonical atlases, to develop a protocol for in vivo MRI segmentation. Although unique and 

comprehensive, this atlas set only includes 3 samples because of practical constraints—e.g., 

the labor intensive nature of annotating histological samples, the available time of the expert 

neuroanatomists and the availability of data either still intact or cut perpendicular to the long 

axis of the hippocampus, which is not a common neuroanatomical procedure. Therefore, 

existing histological references materials will also be used throughout the process and the 

neuroanatomists and MRI groups will continue to consult throughout the protocol 

development, particularly as it relates to individual differences in anatomical features.

Optimizing measurement reliability while maintaining anatomical validity

As important as the content validity vis-à-vis the anatomy is, the harmonized protocol must 

also produce reliable volumetric measures. High inter-rater reliability is particularly 

essential for this protocol as it is meant to be adopted and applied uniformly across groups. 

Because many of the features used to determine hippocampal subfield boundaries ex vivo 
(e.g., cell shape, size or density) cannot be visualized on high-resolution MRI, attempts to 

directly replicate anatomical boundaries commonly result in unreliable measures. An 

example is the endfolial pathway (Lim et al., 1997) in the stratum oriens of CA3, composed 

of loosely packed cells, which forms the inferior border of the CA3 curving into the DG. 

Although this border has been reported to be discernable on 7T MRI (Parekh et al., 2015), 

this border cannot be consistently observed on the typically-used lower-resolution 3T scans 

and might therefore lead to unreliable measurements. The use of a geometrical rule for this 

border on 3T data may therefore be necessary. Given the limitations of MRI resolution and 
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quality, some small compromises in neuroanatomical precision are to be expected as 

boundaries must be reliably reproduced. Thus, the HSG endeavors to create a protocol that 

strives to maximize the approximation of the MTL anatomy while affording high reliability 

of its measurement.

Approach—Toward this end, we will develop a manual segmentation protocol for T2-

weighted MRI based on the comprehensive anatomical reference set, while testing reliability 

at multiple stages. In Step 2, we will derive heuristic rules from the anatomical reference set 

and, via comparison to MRI, determine landmarks available in the vast majority of in vivo 
T2-weighted MR images that are commonly used for hippocampal subfield segmentation. 

The draft protocol will be tested for reliability and may be subsequently re-tested until 

sufficient reliability is attained (Fig 2), based upon criteria reported in the literature and if 

needed, by majority voting. Additionally, following critical feedback from the larger 

community (Step 3), we will perform a formal reliability analysis of the final protocol in 

Step 4 with six raters drawn from across laboratories which will ensure that the protocol can 

be adopted by different research groups.

Broad application of the harmonized protocol

A final key goal is to develop a harmonized protocol that can be adopted widely for the 

study of populations across the lifespan and across several diseases. There are several 

practical challenges to achieving this goal: differences in scanning platform and acquisition 

protocols, variable scan quality (e.g., common motion artifacts in MRI scans of children or 

patients with Alzheimer's disease), segmentation goals of a particular study (e.g. the number 

of hippocampal subfields or cortical regions of interest) and potential differences in the 

hippocampal subfield boundary locations due to alterations in the internal composition of the 

hippocampus in certain populations.

Approach—We have incorporated a number of solutions in our working plan to ensure that 

the harmonized protocol meets the requirements and needs of different research groups. 

First, to allow for the highest level of adoption across research groups, we aim for the 

harmonized protocol to include definitions to separately segment the following subfields: 

subicular complex, CA1, CA2, CA3, and DG (including Fascia dentata and CA4), and the 

parahippocampal, perirhinal and entorhinal cortices. Such delineation will be contingent 

upon the achievement of high reliability and validity for each region. The protocol is 

intended to remain flexible for the user to decide which subfields to potentially collapse into 

a single measurement (e.g., the common inclusion of CA3 with the DG) depending on the 

particular research goals. Of note, we deliberately limit our protocol to the selected subfields 

in an effort to maintain high reliability of all measures, as the amount of detail on in vivo 
MR images is insufficient, in our opinion, to segment additional structures at 3T. Developing 

a protocol for 3T data is the first focus of the group as it is most common in the field. Upon 

completion of the 3T harmonized protocol, it will be adjusted for other applications, such as 

7T structural images, which may involve adding more fine-grained demarcations to the 3T 

protocol.
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Second, we will develop and test our protocol in two different datasets consisting of scans 

from different research groups and reflecting the different ages and diseases most commonly 

studied in relation to these MTL regions. More specifically, it will include the age range 

from 7-100 years, and scans from healthy subjects as well as patients with hypertension, 

epilepsy and Alzheimer's disease. Importantly, these images also reflect the different types 

of 3T scanner manufacturers and sequences used in the field, as well as commonly observed 

imaging artifacts. Relatedly, by using anatomical features that are observable on these MRI 

scans and rules that can fit hippocampi with varying shapes, the protocol will be able to 

accommodate variability in hippocampal morphometry that occurs in development and 

diseases such as epilepsy and Alzheimer's disease, as has been shown to be feasible by 

previous segmentation work in these populations (Mueller et al., 2010;Daugherty et al., 

2016;Santyr et al., 2016). However, our MRI dataset does not include all possible MTL 

abnormalities that can occur due to injury or disease (e.g. encephalitis or prenatal/postnatal 

abnormalities that may affect the folding of the hippocampus (Rosenbaum et al., 2014)). We 

will therefore additionally leverage the collective experience of the large research 

community contributing to this effort, including members who have first-hand experience 

with segmentation in special cases of MTL abnormalities. Additionally, it should be noted 

that we currently only have access to histological material from older adults, but not to 

histological material from younger age groups or some of the diseases of interest in our 

effort. Thi s may limit our ability to confirm anatomical validity of our protocol when 

applied to various pathological conditions that may plausibly alter the internal composition 

and shape of the hippocampus. When evaluating the validity of the protocol, we will 

therefore complement our histological dataset of healthy brains with histological reference 

material from pathology (e.g. (Insausti et al., 2010) whenever feasible. In the application to 

the study of development, we have a reasonable expectation that a similar protocol can be 

applied to samples of children and adults. Although hippocampal structure and 

morphometry continue to develop into adolescence (Insausti et al., 2010), the 

cytoarchitectonic differences that define the subfields as observed in the adult brain can be 

seen as early as mid-gestation (Humphrey, 1967;Arnold and Trojanowski, 1996) and are 

almost adult-like from the first postnatal year on (Insausti et al., 2010). Additionally, some 

cells in the hippocampal formation take on adult-like qualities between the 2nd and the 8th 

year (Seress et al., 2001;Seress, 2007). However, in the future, if more histological datasets 

become available with sectioning perpendicular to the long axis of the hippocampus, this 

may allow the validation of this protocol in younger age groups or certain disease 

populations and potentially necessitate updating the protocol.

Third, the HSG is a large, international collaborative group (approx. 150 members from 

more than 15 countries) that represents all levels of expertise and experience with different 

types of data, and different research interests. The HSG community will be asked for input 

in two stages. In Step 2, the boundary working group members (approx. 30) that are not 

involved in developing the in vivo definitions will be asked for initial feedback. In Step 3 

feedback will be solicited from the larger community via an on-line questionnaire, similar to 

the Delphi procedure used in the HarP project (Boccardi et al., 2015). To further increase the 

versatility and expertise of the HSG, the authors invite other researchers to join this open 

effort and to provide input (www.hippocampalsubfields.com/mailing-list/).
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Impact of a harmonized segmentation protocol for hippocampal and 

parahippocampal subregions

We expect that this harmonized protocol will have a significant impact in the research 

community as its use will enable direct comparison of results between studies, thereby better 

accommodating the replication of results and the pooling of data for meta-analyses. Existing 

data could potentially be reanalyzed with the harmonized protocol and we encourage 

researchers to consider this approach as an avenue for reconciling current discrepancies in 

the literature. Additionally, capitalizing on a uniform segmentation protocol adopted across 

research groups, the field can gain further insight into lifespan developmental trajectories 

and related diseases on hippocampal and parahippocampal structure and function. We 

provide two compelling examples of this in the study of aging and of pattern separation and 

completion for which the harmonized protocol could specifically be of added value.

Example 1: Age-related hippocampal subfield atrophy

Characterizing effects of advanced age on hippocampal subfield volumes is of great 

importance for understanding typical cognitive decline and departure from normal 

trajectories in the course of disease. Unfortunately, so far results pertaining to the association 

of age with hippocampal subfield volumes are inconclusive, with studies finding an effect of 

ageing on virtually all possible combinations of subfields (e.g. (Mueller and Weiner, 

2009;Shing et al., 2011;Pereira et al., 2014;Wisse et al., 2014;de Flores et al., 

2015b;Daugherty et al., 2016), for a review see (de Flores et al., 2015a)). These 

discrepancies most likely reflect, at least in part, differences between segmentation 

protocols. For example, the seemingly disparate findings of age differences in CA1 or 

subicular volume, might in fact pertain to the same region as these labels often overlap 

between segmentation protocols.

Hypothetically, new and existing data could be analyzed with the harmonized protocol and 

not only accommodate direct comparisons of age effects, but also evaluate differences in 

population characteristics and health (e.g., age-related decline in cardiovascular health 

(Shing et al., 2011;Bender et al., 2013)) that might account for variability among studies. In 

addition, a harmonized protocol will enable the synthesis and integration of results across 

studies that have included different age groups, thus allowing for a characterization of 

hippocampal volume across the lifespan without a single lab having to collect data from 

each age group.

Example 2: Pattern separation and completion

High-resolution fMRI studies of hippocampal subfields aim to elucidate their functional role 

across various cognitive tasks. Two important mechanisms thought to be involved in human 

memory and spatial navigation are pattern separation and pattern completion (Marr, 

1971;McClelland et al., 1995;Yassa and Stark, 2011). Whereas it is proposed that pattern 

separation plays an important role whenever similar memories have to be encoded in a 

distinct fashion, pattern completion is critical for recalling episodes based on partial or 

degraded cues (Yassa et al., 2010;Hunsaker and Kesner, 2013). Anatomical evidence from 

non-human animal work, suggests that pattern separation relies on the DG (Leutgeb et al., 
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2007), while pattern completion appears to be associated with a network of recurrent 

collaterals in CA3 (Neunuebel and Knierim, 2014).

So far, most human neuroimaging studies of pattern separation and completion mechanisms 

combine CA2, CA3 and DG into one region, due to limited spatial resolution currently 

available at 3T (e.g. (Bakker et al., 2008;Yassa et al., 2010;Dudukovic et al., 2011;Kyle et 

al., 2015b;Stokes et al., 2015)). With new technological advancements at 3T and increasing 

availability of high-resolution 7T imaging (Feinberg and Yacoub, 2012;Todd et al., 2016), it 

will become increasingly feasible to functionally separate these subregions. However, most 

extant segmentation protocols propose different locations of the CA3 boundaries and as a 

result variable numbers of CA3 voxels are counted towards DG (e.g. (Wisse et al., 

2012;Winterburn et al., 2013;Iglesias et al., 2015;Yushkevich et al., 2015b)). This results in 

high anatomical variability in DG and CA3 masks among protocols. A harmonized protocol 

will therefore be critical to better understand the specific functional roles of DG and CA3 in 

pattern separation and completion using human in vivo imaging.

Summary

In summary, we are proposing to develop a harmonized segmentation protocol for in vivo 
T2-weighted MR images for hippocampal and parahippocampal subregions that maximally 

represent the underlying MTL anatomy while affording high reliability of its measurement 

and that can be applied in different study populations and on scans acquired in different 

research groups with different scanners. The development of this harmonized protocol for 

the currently available 3T and 7T data is crucial in the immediate future as the heterogeneity 

in protocols is greatly hampering progress of research related to these MTL regions. We 

believe the current plan will allow us to achieve our main aim of harmonization while also 

attaining acceptable anatomical validity. However, in the future, the protocol may be updated 

based upon advances in imaging and analysis techniques, as well as more comprehensive 

histology reference sets from different populations as they become available via ongoing 

research endeavors. Additionally, in the future, it would be helpful to obtain a common 

understanding of the parcellation at the microscopic scale, in which discrepancies in labeling 

are also an issue, e.g., with CA4 part of some histological segmentations but not others (e.g. 

(Duvernoy et al., 2005;Insausti and Amaral, 2012)).

We have started our effort by developing a manual segmentation protocol of the 

hippocampal subfields within the hippocampal body for T2-weighted 3T images because the 

body is included in all existing segmentation protocols (Yushkevich et al., 2015a) and is 

more uniform than the head and tail regions of the hippocampus. We plan to extend the 

protocol to the head and tail portions. We aim to finalize and publish the harmonized 

protocol for the hippocampal body in the near future to all ow for its more immediate 

adoption while continuing the efforts for procedures in the remainder of the hippocampus, as 

well as the adjacent cortical regions.

To facilitate wide adoption of the harmonized protocol by new users, we plan to provide 

training resources, for example an instructional video or an example dataset, alongside the 

segmentation protocol. Additionally, we plan to implement it into (semi-)automated 

segmentation algorithms. All extant (semi-)automated segmentation procedures are atlas-
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based and can be updated with the harmonized segmentation protocol. This step will 

therefore follow after the initial development of a manual harmonized segmentation 

protocol. When finished, this manual protocol will be made available to the research groups 

involved in the development of automated subfield segmentation algorithms (Pipitone et al., 

2014;Iglesias et al., 2015;Yushkevich et al., 2015b), several of whom are part of this 

collaborative effort.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparison of 21 segmentation protocols in a coronal section in the hippocampal body of 

one subject. Figure from Yushkevich et al, NeuroImage, 2016; reprinted with permission 

from Elsevier.

Alv=Alveus; CA=Cornu ammonis; CSF=Cerebrospinal fluid; DG=Dentate gyrus; 

DG:H=Dentate gyrus Hilar region; Fim=Fimbria; GCL=Granular cell layer; 

H=Hippocampus; Para=Parasubiculum; PHC=Parahippocampal cortex; Pre=Presubiculum; 

Sub=Subiculum; SP=Stratum pyramidale; SRLM=Stratum Radiatum Lacunosum 

Moleculare
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Figure 2. 
Overview of the concrete steps involved in the harmonization project. In Step 1 in a set of 

three tissue samples, the boundaries on histology will be annotated by three anatomists. In 

Step 2 the boundaries on MRI will be derived based on the anatomical reference set in Step 

1. The se boundaries are divided into two sets: the outer boundaries with surrounding 

structures and the boundaries between the subfields. Note for Step 2 that for both protocols 

an initial reliability test will be performed and the protocols will be shared with the 

Boundary Working Group (BWG). In case the reliability criteria are not met or in case of 

considerable critique, the protocol will be adjusted. This will be an iterative process. In Step 

3 feedback will be elicited from the larger Hippocampal Subfields Group (HSG). In Step 4 a 

formal reliability analysis will be performed by six raters from different labs.
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