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1. Introduction.

In the past few years linear vigcoelastic analysis has drawn much
attention due to the increasing use of plastic bonded elastomers, plas-
tics and polymers for structural components; moreover, materials such
as concrete, asphalt, soil and mebtals may alsoc exhibit viscoelastic
behavior. In order to use materials to their maximum capacity, the
normal elastic analysis appears insufficient to provide adequate design
information. Therefore, there is a defirite need for the development

of solution methods for viscoelastic analysis.

In the state of uniform temperature, a larze class of linesr visco-
elastic problems can be solved by utilizing the elastic-viscoelastic
analogy with the help of integral transform [1]. By the application of
a direct analogy an associated elastic solution can lead to a visco-
elastic solution in the transformed space. In many cases it is difficult
to invert the transformed solution back to the real time space dve to
the complicated expressions of the viscoelastic responses, Schapery [2]
has suggested two approximate methods of inversion based on the use of
the Laplace transform. A further investigation of the aprroximate in-
version methods has been made by Cost [3]. Nevertheless, the transform
technique is not practical for problems with irregular boundaries and
problems with the inclusion of nonuniform tempersture effects. For
bodies with arbitrary boundary shapes, it is impossible to obtain the
analytical elastic solutions, {although Schapery’'s direct method of in-
version may be applied to find the numerical solutions, yet the method
itself is restricted to particulasr materials). The inclusion of a

variable temperature field, in particular, complicates the analysis.



The temperature dependence of viscoelastic materials may be characterized
by the time-temperature equivalence hypothesis originally proposed by
Leaderman [ 4]. Materials which possess a single time-temperature function
have been termed "thermorheologically simple" by Schwarzl and Staverman [5].
Even with this simplification, very few problems have been solved for vari-
able temperature fields [6,710 Various approximate methods have been sug-
gested lately. Lianis and Valanis [ 8] proposed a numerical method in which
the time of integration (based on an integral stress-gtrain law) is subdived
into intervals so that the reduced time can be linearized, the solution in
each time interval can then be extended to the next time interval by apply-
ing the Laplace transform in connection with the convolution theorem. Hilton
and Clements [9] used a similar feature to establish an approximate elastic
viscoelastic analogy for nonuniform temperature field, Direct solution by
numerical integration of the stress-strain relations has been obtained by
‘Lee and Rogers [lO], where the material properties can be expressed graph-
ically and input numerically to the computer. 'Schapery [11] proposed a
method of successive approximations based on the approximate Laplace trans-
form inversion°

In this disse;tation a nﬁmerical method is developed for the solution
of linear viscoélaStic media with the inclusion of deformations of mech-
anical and thermal origin., The work is based on a finite element method
for spatial reduction and a finite difference method for time integration.
The finite elemenggis been widely used for elastic analysis [lQ,lB,thQ
King [15] has applied the technique to study the creep and aging effects

of concrete materials.



The framework for the numerical method is set up in the early part
of this dissertation. The formulations are valid for both isothermal
and non-isothermal cases. Two numerical examples are presented to il-

lustrate the method.



IT. General Formulations.

In preparation for the development to follow, the basic field
equations will be stated briefly to define the type of boundary value
problems to be considered. The principle of virtual displacements for
linear viscoelasticity is formulated for the purpose of finding the

approximate force-displacement relations in the finite element analysis.

1. Field Equations for Viscoelastic Solids.

In the absence of thermo-mechanical coupling effects, the fundament-
al system of field equations governing the quasi-static linear theory
of thermo-rheologically simple viscoelastic solids consists of linearized
strain-displacement relations, equations of equilibrium and viscoelastic

stress-strain laws.

Let Wit Gij(ﬂt)l,OQJC&t) be the cartesian components of
displacement, infinitesimal strain and stress, respectively, at a
material point x =(X,,X;%) and at the time t, and let T(X1) be the
temperature field.

The strain-displacement relations are

— 4 o -
€ = F (wy+ v) (-0)
The equations of equilibrium are
0¢J,j + f, = O ) oy = 0 , (2.2)



where -f; denotes the body forces.

The linear isotropic stress-strain relations in the form of relax-

ation integral law appears as

+
sy ot = | 650 gt
- (2.3}

+
Opx &t) = j G,¢ %—iﬁﬁ. [é.méc,t’)— 5o<,,e(z,t')] dt’ )
e

where S, , €. are devistoric components of stress and strain the
“ Y s

dilatation and (@, the hydrostatic stress,

o= €., =4 Oy = .
e'\,J én.J 3 SLJ GKK ) Sij-- O‘L'J‘ 'éég O.I:K
(2.4)
Ek = €y + €41 €y ) 02«"'07.*021*’033 .

The pseudo-temperature function ©&,t) is defined by
Ta/'é)
, 7
ea,t)=;i-;j L(T)AT ) = 4T {2.5)
7>

If the thermal expansion coefficient « is assumed to be temperature

independent, then

Ocxt)= T(xt) = To ; (2.6)
vhere T(X,£) is the solution of the Fourier heat conduction equation

and T, is the reference temperature.
Finally, the argument % 1is defined as the "reduced time"
t /7
/ Vi 1] 7
=30 ={ F[TOO] | 5= gxt) | @)
while ¢(T) represents the "shift function" which characterizes the temp-

erature dependence of thermo-rheologically simple materials and it has



the properties:
dd
$CT)=1 ,  Pm >,  FF >°

so that ¢ is a monotonically increasing function.

2

In addition, appropriate boundary conditions must be included for

a properly posed boundary value problem.

2, The Principle of Virtual Displacements for the Linear Theory of

Viscoelasticity.

Consider a body V in static equilibrium under the action of specified
body forces 41 and surface tractions El which is applied on the boundary
Bw. Let JIQ be a system of virtual displacements applied on V, SML are
regarded as functions of time and space, not to be identified with the

actual displacements, and also
Se&é = 4 (Suy; Sthj,i) (2.8)

The principle of virtual displacements for nonconservative system
has been formulated in general form [1@,17] . For the case of quasi-
static linear viscoelasticity, it can be expressed in a convolution
integral form [|8]

S o % SE, AV = .Z&*Su;als-c-fﬁ. * Sy, dv

v J By 14

(2.9)
where +

{3 = 5 Foe-€) G geth dt
-0

The proof of (2.9) is identically the same as in elasticity [I6].



ITT, Method of Solution.

As seen in the previous section, the stress-strain relations for
the thermoviscoelastic problems are formulated in terms of a reduced
time. The use of a reduced time simplifies the stress-strain relations;
however, it does not render the problems more tractable, since there is
no longer an exact elastic-viscoelastic analogy when the temperature is

a function of time and space [6] .

In order to attack a typical problem in the presence of visco-
elastic action and thermal variations, a method will be developed by
using a finite element technique for spatial reduction and a finite

difference technique for time integration.

1. Spatial Reduction.

The finite element method has been used extensively and success-
fully for the solution of elastic bodies. The method can be readily

applied to problems of arbitrary boundaries and inhomogeneous materials.,

The procedure for the analysis contained herein is based on the
direct stiffness method, in which a continuous body is replaced by an
assemblage of discrete elements interconnected along element interfaces.
Two classes of viscoelastic problems, one~dimensional and two-dimensional
will be treated in this dissertation. For one-dimensional problems,
annular elements will be used to fulfill cylindrical or spherical symmetry.
While for two-dimensional problems, triangular elements will be used to

fit arbitrary boundaries.



1.1 One-Dimensional Problems A thick-walled cylinder subjected
to axisymmetric temperature field and boundary conditions, and a hollow
sphere subjected to point symmetric temperature field and boundary

conditions are considered.

The cylinder or the sphere is divided into a number of annular
elements as shown in Fig. (3-1). Within each element the approximating
temperature is assumed to be uniform so that the material property is
spatially independent, however, the deformation due to temperature change
will be included. Starting from this approximation, the expressions for
element stresses and nodal forces (on the boundaries of the element) may
be derived in terms of nodal displacements through the fundamental set
of field equations. By the continuity condition of radial forces at
each pair of elements, a system of linear integral equations for the

nodal displacements is established.

1.2 Two-Dimensional Problems———— For the case of plane stress cr
plane strain, a continuous body is replaced by an assemblage of tri-
angular elements, which are interconnected along elemént interfaces.
Linear displacement variation is assumed over the element, therefore,
compatibility can be maintained by matching the two displacement com-
ponents at each nodal point (e.g. i, j or k in Fig. (3-2)). A contin-
uous stress problem is thus reduced to one of a finite number of unknown

nodal displacements.

Due to the assumed displacement pattern the sides of the element
remain straight before and after deformation; consequently the compat-

ibility condition for the complete system is fulfilled. Furthermore, for



FIG.(3-1) ANNULAR ELEMENTS FOR CYLINDER

OR SPHERE

FIG.(3~2) DEFORMATION OF A TRIANGULAR

ELEMENT
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bodies subjected to temperature gradients, the temperature distribution
is assumed to be uniform ingide each element; hence the thermally
affected material properties will have no spatial dependence. Based on
these approximations the relationship between the nodal displacements
may be derived. From equilibrium condition of the entire body, a syst@m
of linear integral equations (for an integral constitutive law) for the

nodal displacements may be established.

2. Time Integration.

In both one-dimensional analysis and two-dimensional analysis the
spatial reduction of a continuous body by finite elements results in a
system of linear integral equations for nodal displacements. The step-
forward finite difference method will be used to reduce the integral
equations to a set of linear algebraic equations, from which solutions
for nodal displacements can be obtained with the aid of a computer.

Once nodal displacements at different time steps are known, the stresses
may be found by numerical integration of the stress-displacement rela-

tions for each element.
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IV. Finite Element Method for Spatial Reduction.

In this section the element properties for a cylinder, a sphere
and for two-dimensional plane strain (or plane stress) will be developed.
A constant tempersture field is assumed in each element to simplify the

analysis.

For cylindrical and spherical elements the displacement patterns
are found by satisfying the field equations and approximate stress-strain
laws. TFor a triangular element a linear digplacement variation is
assumed. By use of the priﬁciple of virtual displacements, the expres-
sions of element forces (equivalent nodal forces) in terms of displace-
ments are derived. Finally the nodal force-displacement relationship
for the complete system is constructed from the equilibrium conditions

of the entire body.

1. Cylindrical Element.

Consider a cylindrical element of inner radius a and outer radius b

under the influence of a temperature field of the form

T = T(rt) (L.1)

Fig. (4-1) A Typical Annular Element.
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For a state of axisymmetric plane strain, the displacement components
in cylindrical coordinates reduce to
Uy = wCr,t) , Ue = WUy =0 (4.2)

the strain-displacement relations yield

€ = U H €oo = %
ryr or (24'.3)
€e = €0 = €gz = €z, =0 ’

and the stress tensor also simplifies so that 0., , 0o and (g, are the
only non-zero quantities.

The temperature distribution is assumed to be uniform in each
element in order to remove the spatial difficulty in solving the equil-
ibrium equation. The constant temperature is taken to be that at the
mean radius of the element. Due to this approximation, the reduced time

g for the element becomes

T = 5Ct) =j ST, )]

[=]

and (4.k4)
fm = & (a+b)

The approximate relaxation integral law for the element in terms of
stress and displacement has the form
+
t ’
TR <) [du U _
g, (nt)= éjé,(i-f)g%[zg%'?]dt + “3"_{62(3 5)&"[8? *r 3°(°e]dt
e e (k.5)

.t
’ ' ’ AU- w 4
Tos8) = § (55122 - 4]us + g—féz(z—m%[ 57+ ~3%eldt
~0

-
From the condition of axisymmetry, the only non-vanishing egquation of
equilibrium is

o o-'r»' - (e
P, + = lm (4.6)
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Rewriting the equation of equilibrium in terms of the displacement,

it is found for the element

t
([266-5) +658)] 7 { mlLgow]]a
4

+ ) (b.7)
= 3 ( G+ [£ (xO)]dt’

Assuming ¥ has a unique inverse function so that one can write, t=9(%),
and also + = 3(1'), and changing the variable t' to g' in the above
equation, yields
% A
f[za,@-x’yréz 5] ({3 (r]jds'= sfeop{5«8)]es (1.8)
)

-0

where O = &(X,E)—:LLQ(,Jc)} and likewise for é .
Bearing in mind that ¥ is a function of t only, apply the Laplace

transform on (lt.8) with respect to < to obtain
A A% ¥ ol
Sl+5 (rd] = sor 58 (1.9)

where ( )* represents the transformed expression of the function,

P is the transform parameter of %, and

#t
3G, P
st = = 4.10
P Pl26]p +6P)] ( )
For elasticity,
# |+ Y !
SP =TT ? ,
Y  is Poisson's ratio,
Integrating (4.9) directly,
’
(L.11)

A A* A
&*cr,p) = A*(p) r o+ Br(P) + 5*‘(;;)'?.—,’— %, &, P)rdf ‘

A



1k

Taking the inverse transform of (4.11) and changing the variable < back

to t for the functions A & and %é, yields

t r
U(nt) = AG r+ Ezé}’ +j 5(§~§/)3%,[;'—faee{ﬁt')fdfjd~t’ ) (4.12)
G (=%
The integration constants A and B are specified in terms of nodal dis-
placements.
Let

Wla, t) = Ualt) , r=a

(4.13)
wib,t) = U (t) 9 r==b R

where u,(t) and u,(t) are defined as the nodal displacements of the element.

Then, from (4.12) and (4.13), one obtains

Aky= — {(bub-auu)- s<s-§’)§;,[face<r,€>rdr dt }
b-a A b

(L.14)

2

b
_ —ab - _ A3 (el t)rdr] at’
bty = 05 (auy- b+ 8._0\;556‘?‘{)3%[! eGt)rdr ] at .

By use of (4.5), (4.12) and (4.14), the element stress-nodal displace-

ment relations may be written in matrix notation as,
(-L—
4 4 !
Tt = | K394 wd)dt + G (00 (4.15)
o J [~ A )

= 0
where

r ot
ey = | IOt )y uGb)= [u‘“‘ ] (4.16)

| Gos(rt)

-,
>

a 1 P ;
_aF(e3) - 2B GG9) | b FC- )+ &L GG2)

, T —————-——
- = + , - /
BOFH T2 aptet)+ 4 Gt ) | bREt)-She)

b

(h,17)
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and the thermal expansion effect is

— t b ,
- S [0+ % Szf‘s-i/)]g%[jo(,eéﬁt')rdr dt
bz_a_m [~
: r Yede ot
- *,’:;j szcyg’;g%_,”ao@(f»t)f f]
-0 o
Tint)= - “4: ~~~~~~~~~~~~~~~~~~~~~~~
, 2 b ’ d,'t,
- __z_‘___zj[51<{.g)_ %" 5;_(?%/)]2?’[ o, Ot )rdr
b-a Py
-0 ; b | /
’ ! /—- - /"’", D\(h@(r/f) 6(.t
+ J,'zfsz@i—’i)(% [Sog@g‘jtjfdﬂdf fsz('f X)H,_[ ]
-0 [~ 00
(L.18)
In the above,
Fay= 4 [6() +260)]
* # %
-1 6.0 [G CP)+26,(P>] < }
s@ =] { 26%p + @@’ |
%oy ¢ X (4.19)
: 261*5}” + Gl
-l
{ {4(”’3} represents the inverse transform.
For elasticity,
E
= e HCE)
Ry U+V) (1-2Y)
= =S ) L.20)
S, YY) (
£
= CHG&
5@ v H&E)

The nodal forces §, and S, are defined per unit radian and act along
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the radial direction at the boundaries r=a and r=b, respectively,

(k.21)
S,¢8) = Oty b,
The positive directions of nodal forces, displacements and element stresses
are shown in Fig. (4-2).
Let §Wlrt) be a continuous virtual displacement field applied to

each element. For convenience, choosing Su in the form such that

N b :

p—a* b-

where Sua,gab are the virtual displacements at r=a and r=b. H(t) is
the Heaviside function. This would be the displacement field ocurring
in a homogeneous, isotropic linear elastic annulus subjected to prescribed
axisymmetric boundary displacement.
Using the principle of virtual displacement (2.9), yields
£
1 1 N ’ é Z, 4
J 27 [8,6-0 &, (Sup HEEY) + 5, ¢e-t) &, (S riet)) ot
@ 4y (4.23)
= f ( { o et [ 68] + o;ect-t’)a%[géee“zf)]} 2w rdrdt’
-y A

Substituting (L4.15) and (4.21) into (4.23), and performing the integration,
one may find the relation between nodal forces and nodal displacements,
+
S@) = | Kee-3)4d, gwathdt +  S+) (k.2k)
~ X at ~

?
-0



FIG.(4-2) DESCRIPTION OF A TYPICAIL, ELEMENT

17
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where

t
J zgét i)dt' ) dt’ may be defined as the stiffness

operator for the element, and K the stiffness matrix, with

P

/ | @REEaEs)  —ab[ et 4]
K(§-%) = -7 (k.25)
add b & / ’ 2 ’ 2 /
~ab[FED) +6,&Y)]  pFEE) + A GET)
-
Note that K‘IZ == K..g_1
t b a
Finall '
inally, é_r(-t-) = —"-%?f@z({‘g')%,[f LOrnthrdrig’. (1.26)
A ~b

2. Spherical Element.

A typical spherical element of inner radius a2 and outer radius b
is subjected to the effect of temperature T=T(r,t). Because of the

point symmetry of the problem, the displacement field simplifies to

=
i\
-3

S

Wy = Uht) 5 weg= Up = O (
In this section, the field equations for the spherical element are
developed. The derivation of these equations is similar to that given

in Section 1.
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The approximate stress-displacement relations are

G ) =% fm 5)5—, ["“ “]df +3 féz@-s)ﬁ{z‘ +38-348]at’

G () = Jm Do - #]at’ 4 jﬁzb‘;‘g)&‘/[y +24 s 6]’ (i.28)

D

%4, (rt)y= 0"89 )

vhere the reduced time "¢" has the same definition as (k.k4).
The equation of equilibrium in terms of displacement can be written

t
L ([2660+as ] & (£ 5 5 (Fw)] | ae

—CD

‘t 4
= S Gz@’i/)a%/faér (4.€)] at

-0

(4.29)

Let u,(t) and u,(t) be the nodal displacements at r=a and r=b for
the spherical element, the relationship between element stresses and

nodal displacementsis found to be

+
0ty = f %:Cr,?i')fr‘g gardr + 0n(nt) (4.30
where
W t)
@’ Y:t)
,Q:’(r‘,'t): i y 0% = 0be uee) = (4.31)
Tae(r 1) het®

; ! 3[)2 ’ 2 e
2‘,’2’ G &)~ X G(T) ?—%—3—— G0+ b G(5-2)

{
’
;_Lg,(r' )= ba__a?

N ; 3 2 ’ 2 _ 2
@%{ GaH-L6ET) - ERGEUFEGET)

(k.32)
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and the thermal expansion effect is

o -

+
S j [seee+ 2 e m]at[j»«ewrdr o

b - a
J 5, () U"‘oe(f Y Ja

s éﬂs (s5)- % 5,(x- i)]f-/[jdcsmf)"‘d"]&‘i

E OS] f % ¢ t)fdp Ja! f s ) el O

(9
o - e

(k.3

)

(e8]

The definitions of $,(% ) and S,(% ) are the same as defined in (%.20).
Let §(t) and s t) be the nodal forces perunit solid angle acting

along the radial direction at r=a and r=b, respectively,

5, Gt) = L0 ()

s, ) (b.3k)

b 07, (b,t)

Similarly, the nodal force-nodal displacement relation can be derived

in integral form,

/o 4 /
§,&>=f KRG23) @eHdt 5 (4.35)

where
5,&)

S,

t
f ;(_(%*E')ﬁ,( ) dt is defined as the
0
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stiffness operator for the spherical element, and K the stiffness matrix,
~

and

- b

208G(s3+dalse)  —aB 266+ GEV]

’ ’ 4 /
455@@@%Hﬁgﬁﬂ 283b G(ET)+ b G(5-1)

L. 1.

(4.36)
The thermal effect is

¢ b o
2 G [(wott)rar]at’
R0 = el )et = (1.37)
—D a.

g - & -b
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3. Triangular Element.

The formulations of the triangular element method with 3-nodal
points in elastic media are established in detail by Wilson [13]. For
linear viscoelasticity the development of the finite element method will
be similar to that of elasticity except that an additional variable,
time t, 1s involved due to the viscoelastic behavior. A typical tri-
angular element is shown in Fig. (4-3). Let X, ¥ be the local material
coordinates for the element, aj, a bj’ bk be the dimensions of the

element.
*Yy”'

Ay

i

U

J

Fig. (4-3) Element Dimensions

The displacement field in the element is assumed to be a linear Ffunction

of space with time varying coefficients, therefore

Wex, g, 4) = Wit (U + G Y
(k.38)
v, g,t) = U o+ Gox + Geed

where ui, Vi are the displacement components at point i along the pos-

itive x and y directions respectively. Furthermore let u be the nodal
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displacement vector and E'be the nodal force vector, defined by

- - o L -

e &

R 2
7.3

(_:U\P ol

E
f
&
W
il

S F S
wx

and let € be the element strain vector and ' be the stress vector,

€ 0x
£=| & ) =0 (L.%0)
2613 0;3 .

From the definition of infinitesimal strain (2.1) and the assumed dis-
placement pattern (4.38), the element strain and nodal displacement

relation may be established through a transformation matrix gﬁ

€ = A Y (b.41)
Lad g J
where
(b= o by o -b o
!

2 et | o a-a; o© -4 o &
A = 4 ek €% Q| (hk2)

- bi~bx -ax bk &) b

For non-homogeneous temperature problems, the temperature distribution
inside the element is assumed to be uniform, consequently the reduced
time g for each element is independent of position in the element. In

the state of plane strain, the stress-strain relationship is reduced



from (2.3) to
t
G-(t) =j 5,((—‘{') aO—LE/ ﬁCfbdtl

-0

where .

3 [266 D46669)]

+ 05(Ct) 7

1[6te)-GGs)]

/
,{g.(‘é—iﬁ = | £[6G9- 66N £ [26G)+6E5)]
(&} O
the thermal expansion effect is
+ -1
roa /
0r k) = J G (v V) s (%8)dt | -,
~ 2o .
For plane stress/
HGEY RED o ]
y ’
%1(“{) = | Ha(¥-¥) Hey) O
5 o 166V
+ LS , -1 T
) = J s,(w3) gy (90) 4t |
- ?
Wwhere
£ { alde +269] X %
= !
H, &) 26Xp) + 62 CP)
N NI NG
H,) = £ { : " ) ?
2G%p) + &SP

3GIP) G p)

5,6 = ;3'{ o e }

2L

(4.43)

. -

o (k. 4h)

+4,3%)
)

(k.k5)
(4.46)
(L. 47)
(4.48)
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The expressions of element stresses in terms of nodal displacements are

derived from (L4.41) and (4.43)

4
) —-=f (3 A & st) + 0@ (4.49)
-
Use the principle of virtual work to find the relation between the nodal

forces s and the nodal displacements u . OSuppose that the element is

subjected to a system of virtual nodal displacements Su., such that

§¢ = A Sy (4.50)

s

From (2.9) one may formulate the area integral for the element,

~

Areq. 3

T T
[ Tebe de = 57w bu (4.51)
where ( )T is the matrix transpose

Let (S% = ’%y‘ H(E) ; (’4.52)

2

v
where 4 is a virtual nodal displacement vector which is independent of time.
Substitution of‘guéé and S% from (4.4%9), (4.50) and (4.52) into equation
(4.51) yields

T v
5 W

i

.

t T
/ ’ / v
5 (2eb- 0 b - j EOA e at y o] A
-~ (k.53)

RX

Since 2; can be arbitrary, (%.53) yields the nodal force-displacement

expressions
+
/ / 4
s = [ REOZ LA+ 5 (4.55)
~ i s
-00
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where
T ,
K(gg) = (b —ab) A &0 4 (1.55)
and
S0 = § (4 a4 Gl (1.56)

t
(R gC ) o

A is defined as the stiffness

operator of the triangular element and‘ﬁ;the stiffness matrix.
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L, Integral Equations for the Complete Continuum

The element nodal force-displacement relations in integral form
have been formulated in the previous section {equations (4.24), (4.35)
and (4.54)). Once the element properties are specified, the entire
structure is considered to be composed of the elements as the structural
components. Therefore, from the equilibrium conditions of the complete
system, the relationship between applied nodal forces and resulting
nodal displacements can be obtained by superpcsition of element

stiffness matrices around a nodal point,

t :
? A / I= 't/ .
§ 5@.@) Fogehdt’ = Ret) (4.57)
-0
t , ,
where \f kg(%?i)jil( ) dt is the stiffness operator
-

for the entire structure, the elements of the matrix kjg;<} are
functions of time and temperature, and serve as the Kernel function for
the integral operator. §(t) is an applied nodal force vector and/or

thermal load vector.

For linear materials, the stiffness matrix K is symmetrical and
by appropriate nodal sequencing can be restricted to a banded width

about the principal diagonal.

In a computer analysis of the problem, the symmetric and narrow

band properties simplify the computations and programming procedures.



28

V. Pinite Difference Approximation.

Reductiion of a continuous body into & system of finite elements
results in a set of linear integral equations (4.57) with nodal dis-
placements as unknowns. In general i1t is difficult to obtain a closed
solution to a large sysitem of simultaneous integral equations, especially
when they are not in simple convolutional form (as in the presence of
temperature gradients). However, a numerical solution can be effected
conveniently by application of finite difference methods. The use of
step-forward numerical integration process leads to a system of linear
algebraic equations which may be solved for the unknowns at different
time steps. The numerical calculations may be accomplished with the
aid of a high speed electronic computer.

Many standard difference formulae, (for instance, trapezoidal rule,
Simpson's rule, etc.), are available to approximate an integral ex-
pression. To obtain the solution of the integral equations (4.57), the
standard difference formulse, however, can not be readily applied to
the integral expressions where the integrands involve the derivatives
of the unknown functions. In this section, a modified difference
formula is suggested and some simplifications are made under certain
restrictions. The section concludes with a discussion of solution ac-

curacy.
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1. Numerical Integraticn.

The finite difference technique was used by Hopkins and Hamming [19]
to solve a convolution integral equation interrelating the creep and
relaxation functions, and also by Rogers and Lee [lO] for viscoelastic
analysis involving a single integral equation. A similar method will
be used for the present analysis.

Departing from the matrix equations for convenience, a single

integral equation will be studied,

+
[ k) g wdt = e (5.1)
~00

W
Assuming u(t) ;—.o)V{-<o and removing the contribfion at t=0, yields

t
’ +
S K<) & wct)hdt = R - SSULCVA (5.2)
4
o]

The present time t is divided into n intervals by the integration time
ti’ i=1,2,......, ntl, with ty=0 and t, 4=t. Accordingly the reduced
time ¥ is also divided into n intervals §.L, i=1,2,...4..,n%l., The

integral expression in (5.2) may then be written as

+ " tiﬂ
j K(i‘gl)f‘t” wthdt' = > J K(i‘il)f‘%f ity dt (5.3)
J 4:-_:[ €,

0



i
If the function K is continuous for ¢ é[ﬁ,{uJ and the time interval
is chosen to be small enough such that the derivative of u(t) does not
change sign inside [+, t{ﬂ], then, from the second mean value theorem,
Ly

the integral in (5.3) may be approximated by
Lo ) 1 CLMCE) i
/ ~ N - - . chieied
g K(2=Y) ﬁ, ult) o2 —4’: [ KOS, S HKE T ) TRE,; W]St pr dt
4} :
= £ [K&GE)+4KEM 0+ KS, 2] [uth)- uetp] _

(5.4)
Equation (5.4) will be called the 3-point approximation formula for
integration.
By virtue of (5.2) - (5.4), it follows that,
- .
Fw@= [K©)] - R6) for t=%=0 (5.5)
-1
{ utta) = AT {R(ﬁm)— K(§) l0*) = - é.fk@w‘ S+ 4K Sy
+ K S J [ Ul = uct)] j + Wit for >0
(5.6)

where

b= £ [ K85 80+ 4K, G b K@] (5.7)
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As one may see from (5.5), the solution at the time of interest £y is
obtained by summing over the entire history. To this end, in a computer
solution 1t would be necessary to store all the previous values of the
dependent variables. Thus, it is possible to exceed the computer storage
or overtax the computer in solving problems with a large number of un-

knowns. Simplications can be made through certain restrictions.

1.1. Solutions Based on Measured Relaxation (or Creep) Data of Visco-

elastic Materials with Limited Memory Practically most viscoelastic
materials exhibit finite memory behavior. If the material function,
taking the relaxation function as shown in Fig. (5-1) for instance,
effectively reaches its equilibrium state in short time <t so that the
number of summations required is within the capacity of computer stor-

age, then it is only necessary to store a certain number of previous

solutions for solutions at large times.

-5

Fig. (5-1) Relaxation Modulus



Due to the above assumption, the expression of displacement (5.6) for

large time may be reduced to

W) = A {RE) -KEIUD =L T [ KT S 4K S0 L)

P

=~
A
o
o
-

+ K&y 3 u.)] [ wek ) - ué&g] - K [ Ultn- u-(o*)]} +ul,)

where Ko ¢ Egquilibrium modulus, a constant.
Ko ¢ Initial modulus.

/
n-m-1l # Number of summations required for o<t £tg

?

The advantages in the formulation of {508> are two fold:

1) It is only necessary to store a certain number of solutions in order
to perform the numerical time integrations,

2) Material functions can be taken directly from test data or graphs,
therefores there is no need to approximate the experimental results of

material properties by closed form expressions.

1.2 Solutions Based on the Material Functions Which Are Expressed by

o

Dirichlet or Prony Series———Expmential series expressions have often
been used to approximate the rheological data for viscoelastic materials.

As an example, the relaxation modulus may be approximated by

E(t) = Z E, exp(~- ‘t/z.;) (5.9)

im0

Schapery [2] hag taken advantage of this expression to propose an effect-
ive collocation scheme of approximate Laplace inversion for viscoelastic

analysis. A further advantage of this expression is as follows.
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Replacing K(3-3) by ZK;¢P() (dauve to(5.9)) for the integral
s

expression in (5.2), yields

t d TN
i K ) g ult) dt

i

+ ,
f [ keep(- 33 )] & wethar’
o g=0
>
L=

R ’
Xy 4o uhde!
K, aP(“%){L,QIF( 2 ) g M )dt

a

fan ,

’ /
e G
tn

2

Again the integrals in the above equation may be approximated by the
difference formulas (5,3) and (5.4)e One may see from the expression
inside the bracket of (5.10) that the sum at time t 4 can be obtained
by adding the contribution between t, and o to the sum at time €3
therefore, for the solutions at the time of interest, there is no need

to sum all the way back to the starting time.
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2, Accuracy of Solution.

The use of the finite element method and the finite differéncev
method céntains certain approximations. Consequently, the computed
solution must differ to some extent from the true solution. It is the
objective of this section to discuss the sources of error. The main
sources of error appear as:
i)° Error due to the application of the finite element method, (especialm
ly when a constant temperature is assumed in each element ).

ii). Rounding error in the computing process.

iii). Truncation error due to replacing the integral by an approximate
difference formula.

iv). The propagation of errors from early time to later time.

It was pointed out [13] that the solution obtained from the finite
element method converges to the true sclution as the dimensions of the
elements are successively reduced and provided that the displacement
compatibility between elements is retained., BSuppose the error from the
use of finite element technique and the rounding error being kept small,
the error introducéd by the finite difference approximation will then
be examined.

In order to find the truncation error due to the use of difference

formula, rewrite the integral expression (5.4) by Simpson's approximation,

+,

L+l tin
I-= j K%, = §) f uct) dt’ = f Kt t) G N AE”
+

. L

= % [ K(t'“).ti)ul&f—) + 4'K&'”'in+i‘>“/(f£+t) + K(-t"’*')‘t.‘.ﬂ) “L’<t2,+i)] + 81

(5.11)
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where
! .t +tiy

w'ty;) = c%t" wt)) . o Y E T

t'=+,

L

ho= ‘ti»‘w"‘ti (5012)

5 4
h. GL ’ Fo
€1=—7ﬁ;(f)2?4[deﬁ)w&q
’ truncation error

due to nuunerical integration formula ,
Using forward difference to approximate ulfp) central difference to
approximate ulthi) and backward difference to approximate ulﬁfﬂ in

(5.11), yields

+..)) - ué) " ult,, )~ uet;)
I = %{K(ﬁwﬁ;)[ wlhn) Z ‘*')h - 'é'h U-(ef)] + 4K<J°n+n){e+.{>[ ——=

z

1 ‘f:L - W) h
- ,—'g_— w Cez)]'f‘ Kd:m,fw)'[ -u:-t—i%:*——- +Z u (QA)Jf + €,

= b [ Kt + 4K by g) + K Gy tin) ][ wctig) - (8] + E;
7

or

I = B[ KO8+ 4K, - Ty) F K )] [t -] + &,

wh (5.13)
ere Ei= €1+el
€, ¢ truncation error due to the derivative approximation,
l'Ls ! g K .t " 8.) kL
€, ’—’-T‘;[K(‘tm,)e}“"( )]" I} [K ty tig ) W ( 3] (5.14)
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Assuming that K has bounded derivatives up to the fourth and 4 hag bound-
ed derivatives up to the fifth, it follows that the truncation error E;
is of <D(ﬁ) , therefore, the nﬁmerical integration method is of O(Pf)°
VOn the other hand if the dependent variable W is a slowly varying func-
tion in time so that the difference formula for ult) is a good approxi-
mation, then the truncation error due to integration formula dominates.
Hence the truncation error E; is of (DUE) and the method may become (D(Kb,
The truncation error from the finite difference formula is a local
matter. A knowledge of. local error is not sufficient to determine the
‘accuracy of the extended process. For, during the step-by-step numerical
integration, the error at each time step will affect the solutions at
later time steps. In particular if such errors tend to accumulate rapidly;
it will cause instability in the solution. To study the propagation

of errors, the coefficients of early time solutions in (5.6) will be

examined,
U-(ﬁm) = \Z'p "Ll-tn) + b)l (’L(‘t"") + -----t b)"’- LL(-E""L)+ T
(5.15)
where b) . Ko—Ka t 4<K,/z... K5/2)
t A
= K- Ka + 4 (Kip = Ksy)
. =
A (5.16)
g, = _Kia Kis ‘9’4('(1-5“}(1-}1)
L

A 4
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and

A = Kh+4KJ/L+Kﬂ
(5.17)

Ko = KK(&) Kbi = K (“g"*rg"-'fi) y Ky = chur g’fl-) > Kg/zzK(Sﬂ*T §»'L—‘g:)

Since the function K is either a monotonically decreasing function con-

cave upward, or a monotonically increasing function concave downward, then

)< 1, Jduf<t | - —oooo , <t ==~ (5.18)

Furthermore,

Ki=Kirz *4(’<i+-§_~'KL+s/z)
Kin =Kt + 4( Kicd = Kisy)

< | (5.19)

If the time interval at/r tends to zero, f,,3£:~-%7 will also tend to
vanish., Thus the effect of error from the early steps to the later
steps will die out rapidly.

To illustrate the convergence of the finite difference formula, a

convolutional integral equation will be studied,

t
S Gue-t) & shat’ =1 (5.20)
~eD

Assuming the relaxation function is a five element model with the

following expression

Y. -
GE) =09 +3€ ° 4 3 e 5th (5.21)
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The plot of G(t) is shown in Fig. (5-2), where it is noted that G(t)
has s steep'initial slope. The creep function may be found by the

Laplace transform, and is given by the expression,

~ 02046t/ -3(866 t/r

j(‘t): 1.’1]’“0»‘{0578 _‘70.0605 e (5022)

Equation (5.20) is also solved by applying the difference formula (5.k4)

and the 2-point approximation formula,

L

bt i‘%' T dt = & [G&M,—tw)a«e&,,ﬂ-ti)] [ et = ucty | ‘

H‘&/\

{5.23)

The solutions for different time meshes are plotted in Fig. (5-=3), As
the‘ time mesh becomes smaller, the solution éonverges to the analytical
solution monotonically and the solution for Ad =05 is indistinguishable
from the analytical solution. Values obtained from 3-point approximation
with A{/f/.o are even better than those from Z2-point approximation at

Tiner time mesh, at/r =0.5
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VI. Numerical Examples.

1. Infinite Cylinder Bonded to a Thin Elastic Case.

A viscoelastic hollow cylinder bonded to a thin elastic case (as
shown in Fig. (6-1)) will be studied. The cylinder is internally
pressurized and stress free at the outer boundary. Three different
temperature conditions are consjdered:

i), A uniform témperature field.
ii). A steady state temperature field where the outer boundary tempera-

ture is elevated 40° F, hence

ecr'_t)= 3Q,0828 'nr ‘H(f) (6’1)

iii). A steady state temperature field where the inner boundary tempera-

ture is elevated 40° F, hence

O(rt) = 36,0828 In(3.03/r) « HE) (6.2)

For the present purpose it is assumed that the steady state temperature
has been reached before load application. As no particular application

is intended, the following hypothetical mechanical properties are used,

G/ = o9 t3e M3

(6.3)
GIQ)/E = (00 H(Y)

where E is a material constant, 7 is a characteristic time.
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The shift function is taken as

0005 (T-T,)

p(t) = 10 (6.4)

The viscoelastic portion of the cylinder is divided into 10 equal elements.
All the calculations are carried out through a computer program. Diff-
erent time steps are tried; it is found that the real time interval of
0.5t is sufficiently accurate for isothermal case and that of 0.25T for
steady state temperature. The solution is continued until t=6.5[, at
this point all the stresses are close to the asymptotic values and the
responses are changing gquite slowly,

As a direct check on the accuracy of the numerical method, the
radial stress at the interface of the viscoelastic core and the
elastic case under uniform temperature is found analytically. The
analytical solution and the approximate solution are plotted in Fig.(6-2)
for comparison. As one may see, there is no distinct difference between
them. The distribution of radial stresses and tangential stresses in
the cylinder are also shown in Fig. (6-3) and Fig. (6-4), respectively.
The stresses under the temperature effect reach the asymptotic values
much faster than those in the isothermal state, especially when the
temperature on the pressurized boundary is elevated. It should be noted
here that the tangential stresses under the effect of non-uniform
temperature are not continuous between the elements because of the dis-
crepancy in temperature assumption. The tangential stresses at the
interfaces of the elements are further approximated by averaging those

from the related elements.



Flastic Case

Viscoelastic Core

FIG.(6-1) CROSS-SECTION OF THE HOLLOW CYLINDER
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2. A Star Grain Bonded to A Rigid Case.

A grain section (as shown in Fig.{6-5)) bonded to a rigid case
will be studied. In the present analysis, a constant internal pressure
and uniform temperature field is considered. For simplicity the problem
is treated as plane strain; accordingly, only a segment of the grain
will be analyzed.

The segment is idealized as a system of 220 triangular elements
and 132 nodal points. The internal pressure is approximated by con-
cehtrated forces acting at nodal points along the inner boundary. Points
on the radial boundaries of the segment are fixed along the tangential
direction and points on the outer boundary are prevented from moving
along any direction.

Again, as no particular application is intended, the material prop-
erties to be used herein are the same as defined by equations (6.3)
where the corresponding Poisson'’s ratio variesg with time from 0.45 to
0.k493.

Of particular interest are the varistions of the hoop strain across
the section A-B, the hoop stress and strain at the ster poimt A andithe con=
tact stresses {radial stress and huop Stfé@&@ vetween the gradin and the rigid
case, (as shown in Figs. (6-6}, (6-7) and {6-8) respectively) It is of
interest to note the change of stress state from tension to compression
(Fig.(6-6)) and the high strain concentration (Fig.(6-T)) at the star
point A, The stress distribution in the grain at large time becomes a
near hydrostatic state (except the region near the star point) since

the material is near incompressible.



FIG.(6-5) STAR GRAIN SECTION
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VII. Conclusions

A numerical method of solution for stress analysis in viscoelastic
media has been formulated and some representative results are obtained.
As pointed out before,the method is readily applicable to problems of
inhomogeneous, anisotropic materials. As far as numerical integration
is concerned, the method can be extended to the application of visco-
elastic media with more general behavior, e.g. the material may be
described by a function of the form f(t,T), where the variable T may
represent the effect of temperature in thermoviscoelastic problems or
the aging effects of the material. Furthermore, problems with moving
boundary conditions present no difficulty in the analysis.

In addition, a heat conduction problem may also be solved by use
of the finite element method [20]. Once the temperature variations in
the solid are found numerically, they can be used as the input data in

a computer program of the stress problem.



VIII.

52

Bibliography.

Lee, E. H., "Viscoelastic Stress Analysis,” Proc. First Symposium

on Naval Structural Mechanics, Pergamon Press, Oxford, 1960.

Schapery, R. A., "Approximate Methods of Transform Inversion for

Viscoelastic Stress Analysis," Proc, Fourth U, S. Natl. Congr.
Appl. Mech., 2, 1075, 1962,

Cost, T. L., "Approximate Laplace Inversion in Viscoelastic Stress
Analysis," AIAA J., 2, 2157, 196k,

Leaderman, H., Elastic and Creep Properties of Filamentous

Materials, Textile Foundation, Washington D. C., 19L43.
Schwarzl, F. and A, J. Staverman, "Time-Temperature Dependence of

Linear Viscoelastic Behavior," J, of Appl. Phys., 23, 838, 1952.

Morland, L. W. and E. H. Lee, "Stress Analysis for Linear Visco-

elastic Materials with Temperature Variation," Trans. Soc. of

Rheology, 4, 233, 1960,
Muki, R, and E. Sternberg, "On Transient Thermal Stresses in
Viscoelastic Materials with Temperature Dependent Properties,”

J. Appl. Mech., 29, 193, 1961,

Lianis, G. and K. C, Valanis, "The Linearization of the Prcblem of
3 3

Transient Thermo-viscoelastic Stresses," Tech. Rept. A & ES 62-2,

School of Aero. and Eng. Sci., Purdue University; April 1962,

Hilton, H. H. and J. R, Clements, "Formulation and Evaluation of

Approiimate Analogies for Transient Temperature Dependent Linear

Viscoelastic Media,"” Proc. of Conf. on Thermal Loading and Creep,

Inst. Mech. Eng., London, 196k.



10,

11.

12.

13.

1k,

15.

16.

17.

18.

19.

20.

53

Lee, E. H, and T. G. Rogers, "Solution of Viscoelastic Stress An-
alysis Problems Using Measures Creep or Relaxation Functions,"

J. Appl. Mech, 30, 127, 1963.

Schapery, R. A., "An Approxiﬁate Method of Stress Analysis for A

Large Class of Problems in Viscoelasticity,” Tech. Rept. A & ES

62-18, School of Aero. and Eng. Sci., Purdue University, April 1963.

Clough, R. W., "The Finite Element Method in Plane Stress Analysis,”

Proc. A.S.C,E. 2nd Conf. on Elect. Comput., Sept. 1960.

Wilson, E. L., "Finite Element Analysis of Two-Dimensional Structures”

University of California, SEL Report 63-2, 1963.

Wilson, E. L., "Structural Analysis of Axisymmetric Solids,” AIAA J.,
3, 2269, Dec..1965.

King, I. P., "On the Finite Element Analysis of Two-Dimensional
Stress Problems with Time Dependent Properties,' Doctoral Dis-
sertation, University of California, 1965.

Novozhilov, V. V., Theory of Elasticity, Pergamon Press, 1961.

Taylor, R. L., "Problems in Thermoviscoelasticity,” University of
California, Tech. Rept. series 199, Jan. 1963.
Gurtin, M. E. and E. Stermberg, "On the Linear Theory of Visco-

elasticity."” Arch. for Rat. Mech. and Anal., 11, 291, 1962,

Hopkins, I. L. and R. W. Hamming, "On Creep and Relaxation,"” J. Appl.
Phys., 28, 906, 1957.
Wilson, E. L., and R. L, Nickell, "Application of the Finite Element

Method to Heat Conduction Analysis," Proc. Fifth U, S. Natl. Congr.

Appl. Mech., 841, June 1966.





