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miRNA-like secondary structures in maize (Zea mays)
genes and transposable elements correlate with small
RNAs, methylation, and expression

Galen T. Martin,1,5 Edwin Solares,1,2,5 Jeanelle Guadardo-Mendez,1 Aline Muyle,1,3

Alexandros Bousios,4 and Brandon S. Gaut1
1Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92617, USA; 2Department of Ecology and
Evolutionary Biology, University of California, Davis, California 95616, USA; 3CEFE, University of Montpellier, CNRS, EPHE, IRD,
34090 Montpellier, France; 4School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom

RNA molecules carry information in their primary sequence and also their secondary structure. Secondary structure can

confer important functional information, but it is also a signal for an RNAi-like host epigenetic response mediated by small

RNAs (smRNAs). In this study, we used two bioinformatic methods to predict local secondary structures across features of

the maize genome, focusing on small regions that had similar folding properties to pre-miRNA loci. We found miRNA-like

secondary structures to be common in genes and most, but not all, superfamilies of RNA and DNA transposable elements

(TEs). ThemiRNA-like regionsmap to a higher diversity of smRNAs than regions withoutmiRNA-like structure, explaining

up to 27% of variation in smRNA mapping for some TE superfamilies. This mapping bias is more pronounced among pu-

tatively autonomous TEs relative to nonautonomous TEs. Genome-wide, miRNA-like regions are also associated with ele-

vated methylation levels, particularly in the CHH context. Among genes, those with miRNA-like secondary structure are

1.5-fold more highly expressed, on average, than other genes. However, these genes are also more variably expressed across

the 26 nested association mapping founder lines, and this variability positively correlates with the number of mapping

smRNAs. We conclude that local miRNA-like structures are a nearly ubiquitous feature of expressed regions of the maize

genome, that they correlate with higher smRNA mapping and methylation, and that they may represent a trade-off be-

tween functional requirements and the potentially negative consequences of smRNA production.

[Supplemental material is available for this article.]

In a highly simplified view, plant genomes consist of transposable
elements (TEs) and genes. Both of these components use RNA to
transmit coding information between one state (DNA) to another
(protein). These RNAmolecules carry information in their primary
sequence of bases and also by their shape. This shape is primarily
defined by the secondary structure of the transcript, a product of
the intramolecular hydrogen bonds between RNA bases.
Secondary structure can mediate the relationship between geno-
type and phenotype, because it affects the localization (Bullock
et al. 2010), splicing (Buratti and Baralle 2004), and translation
(Ding et al. 2014) of mRNAs. As a result, secondary structure influ-
ences nearly every processing step in the life cycle of transcripts
(Vandivier et al. 2016).

Secondary structures can have another effect: They act as a
template for small RNA (smRNA) production (Carthew and
Sontheimer 2009; Li et al. 2012; Hung and Slotkin 2021). This pro-
duction takes place through the binding of Dicer-like proteins
(DCLs) (Axtell 2013; Fukudome and Fukuhara 2017) that degrade
double-stranded RNA (dsRNA). In other words, when single-strand-
ed RNA (ssRNA) forms a hairpin-like secondary structure,DCLs can
recognize structured ssRNA as dsRNA and then degrade the dsRNA
to produce smRNAs. This mechanism is essential for the biogenesis

ofmicroRNAs (miRNAs), a class of smRNAs that are generally∼22nt
in length and that are derived from longer pre-miRNA transcripts
with strong hairpin secondary structures (Carthew and
Sontheimer 2009). However, this process is not limited to
miRNAs, because 21- to 24-nt RNAs can also originate from the sec-
ondary structure of other non-miRNA transcripts (Slotkin et al.
2003; Li et al. 2012; Devert et al. 2015). These smRNAs can, in
turn, cause transcripts to enter into the RNA interference (RNAi)
pathway (Baulcombe 2004; Li et al. 2012; Cuerda-Gil and Slotkin
2016; Hung and Slotkin 2021). These observations suggest that suf-
ficiently structuredmRNAs, likemiRNAs, form secondary structures
that act as dsRNA substrates for degradation into smRNAs.

Little is known about how host genomes initially distinguish
TEs from genes and target them for smRNA production (Marí-
Ordóñez et al. 2013), but some studies suggest that hairpin struc-
tures in TE transcripts act as an immune signal for de novo silenc-
ing of certain TEs (Sijen and Plasterk 2003; Slotkin et al. 2003;
Bousios et al. 2016; Hung and Slotkin 2021). One such example
is Mu-killer, a locus that generates smRNAs and thereby silences
MuDR elements (a DNA transposon) in maize (Zea mays ssp.
mays) (Slotkin et al. 2003). Mu-killer consists of a truncated, dupli-
cated, and inverted copy ofMuDR that, when transcribed, creates a
hairpin secondary structure and is subsequently cut into trans-act-
ing small-interfering RNAs (siRNAs) that target active MuDR tran-
scripts. Another potential example comes from Sirevirus long
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terminal repeat (LTR) retrotransposons in maize (Bousios et al.
2016), which occupy 21% of the maize B73 genome (Bousios
et al. 2012). The investigators mapped smRNAs to full-length
Sirevirus copies, reasoning that loci important for host-plant rec-
ognition and silencing should be associated with a larger number
of smRNA sequences than other regions of the elements. An excess
of smRNAsmapped to regions that had strong predicted secondary
structure owing to clusters of palindromic motifs (Bousios et al.
2016). These studies present evidence that secondary structure
helps initiate silencing of some TEs. In fact, one review has argued
that the only characterized pathway to de novo smRNA produc-
tion relies on RNA secondary structure (Hung and Slotkin 2021).
It should be noted, however, that some phased siRNAs are caused
by miRNA cleavage events that apparently do not require second-
ary structure (Creasey et al. 2014).

If RNA sequences formmiRNA-like hairpin structures, leading
to the production of smRNAs, two important questions must be
addressed. First, how common are miRNA-like secondary struc-
tures across the immense diversity of plant TEs?One prominent re-
view of smRNAs argued that there is an urgent need to annotate
hairpins that may have the capacity to act as a template for
smRNA production (Axtell 2013), but this need has not yet been
met. Thus far, the importance of hairpin structure for de novo si-
lencing has been implicated only in a few individual TE families.
Second, secondary structure is not unique to TEs and exists within
genes too. How often do genes have such structure, and is there ev-
idence that genes form dsRNA substrates in these regions, too? Li
et al. (2012) documented a positive relationship between stability
of mRNA structure and smRNA abundance for Arabidopsis thaliana
genes, suggesting that genic transcripts do form dsRNA substrates.
Yet these genes are still expressed, potentially because of counter-
measures that moderate the potential effects of smRNAs on genes,
including hypothesized protection against RNAi caused by high
GC content (Hung and Slotkin 2021) and active gene demethyla-
tion (Gong et al. 2002; Zhang et al. 2022). Although it has long
been thought that miRNA loci may be derived from TE sequences
(Smalheiser and Torvik 2005), there has not yet been, to our
knowledge, a genome-wide comparison of miRNA-like secondary
structures among genes and TE superfamilies.

In this study,wepredict secondary structures in genes andTEs
of the maize B73 genome. Secondary structure can be empirically
measured through sequencing techniques such as DMS-seq and
SHAPE-seq (Yang et al. 2018), which is applied to the transcribed
component of whole genomes (Ding et al. 2014; Ferrero-Serrano
et al. 2022). However, this approach requires that the sequences
of interest are expressed, preventing comprehensive investigation
of plant TEs, most of which are silent. Thesemethods are also diffi-
cult to perform on large genomes with high repeat content, so that
genome-wide “structurome” sequencing has thus far only been
completed on plantswith relatively small genomes, likeA. thaliana
(Ding et al. 2014; Bevilacqua et al. 2016) and rice, Oryza sativa
(Ritchey et al. 2017). The second approach, which we adopted
here, relies on bioinformatic predictions based on genome se-
quence data. Secondary structure prediction is a subject of active re-
search, and methods vary in their predictions and accuracy. Here
we use two separate methods that rely on distinct algorithms to
identify regions with properties similar to miRNA-like hairpins.
Briefly, the first uses RNAfold (Lorenz et al. 2011), which estimates
theminimum free energy (MFE) of themost likely secondary struc-
ture of a given sequence (Nussinov and Jacobson 1980; Zuker and
Stiegler 1981). Following precedence, we apply RNAfold in a win-
dows-based approach. The second relies on a newer tool,

LinearPartition (Zhang et al. 2020), that calculates a partition func-
tion for a complete (i.e., not windows-based) RNA sequence. The
LinearPartition function includes the sum of equilibrium con-
stants for all possible secondary structures for a sequence (i.e., not
just themost likely structure).We focus specificallyondetecting re-
gions with miRNA-like secondary structures, because miRNAs are
known to fold and thereby act as a dsRNA substrate for Dicer-like
mechanisms.

After performing computational annotation to predict
miRNA-like regions in the genes and TEs of maize, we investigate
the relationship between these regions to smRNAs, methylation
levels, chromatin accessibility, and, where applicable, gene expres-
sion (Supplemental Fig. S1). With these data, we address four sets
of questions. The first focuses on predicted secondary structure:
How often do TEs and genes contain regions of miRNA-like re-
gions? Are these regions in specific locations? The second set of
questions focuses on the relationship between secondary structure
and smRNAs. Do miRNA-like regions consistently map more
smRNAs, and, if so, of what size? The question of size is important
because it is thought that dsRNA degradation via Dicer feeds into
post-transcriptional gene silencing (PTGS) pathways, which tends
to rely on 21- and 22-nt smRNAs. In contrast, pathways that lead to
transcriptional gene silencing (TGS) tend to relymore often on 24-
nt smRNAs, although these size distinctions are neither strict nor
universal (Fultz and Slotkin 2017; Panda et al. 2020). Our third
set of questions focuses on the potential genomic implications
of hairpins and smRNAs. Do thesemiRNA-like regions have higher
methylation levels or specific chromatin properties? Finally, we as-
sess the effects of miRNA-like secondary structures on gene expres-
sion by including data from 26 parents of the maize nested
association mapping (NAM) lines (McMullen et al. 2009; Hufford
et al. 2021).

Results

Two methods to predict miRNA-like secondary structures and

their comparison

We adopted two complementary bioinformaticmethods to identi-
fy miRNA-like hairpin regions (Fig. 1A). The details of their imple-
mentation are given in theMethods. Here, we provide an overview
of the methods and compare their performance. To aid the reader,
we also provide terms that are used to characterize analyzed se-
quences (Table 1).

RNAfold

The firstmethodappliedRNAfold to slidingwindowsof 110nt, fol-
lowing the methods of previous work (Wang et al. 2009; Bousios
et al. 2016). The 110-nt windows were originally designed by
Wang et al. (2009) to include regions that map 20- to 25-nt
smRNAs, along with ∼90 bp of flanking sequence (Wang et al.
2009). This approach established that pre-miRNA windows of
this size typically have MFEs<−40 kcal/mol (Wang et al. 2009);
weused that empirical cutoff to definewindowsof secondary struc-
ture with miRNA-like stability. By focusing on regions of similar
size to pre-miRNA transcripts and by using their empirical thresh-
old cutoff of−40 kcal/mol, we, in effect, usedmiRNA loci as a “pos-
itive control” for ssRNAs that are expected to form secondary
structures.

We applied RNAfold across features of the B73 reference
maize genome (version 4.0) (Jiao et al. 2017). The features included
miRNAprecursor loci, TEs, and genes. The TEs included all families
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annotated by Jiao et al. (2017), including LTRs, terminal inverted re-
peat (TIR) elements, helitrons, long interspersed nuclear elements
(LINEs), and short interspersed nuclear elements (SINEs). Within
these TE types, we focused on superfamily categories (Wicker et al.
2007), which distinguished (e.g.,) between Ty3/RLG and Copia/
RLC LTR elements and among TIR elements like Mutators/DTM
and Harbingers/DTH. Note that throughout the paper, we refer to
TE superfamilies by their names and also their three-letter designa-
tion from Wicker et al. (2007; Table 2). Notably, these annotations
do not typically include miniature inverted terminal repeats
(MITEs), a class of small nonautonomous TEs that often contain
strong secondary structures. For genes, we studied both the annotat-
ed gene—which included untranslated regions (UTRs), exons, and
introns—and mature transcripts that lacked introns. Altogether,
with this method we examined 373,485 features representing 15
distinct feature categories (Table 2). Because we used sliding win-
dows, each nucleotide within a feature corresponded to one sliding
window (for all but the final 109 nt of a sequence). This approach
was amassive bioinformatic undertaking, requiring anMFE calcula-
tion for a total of 3.56 billion windows.

Because each feature consisted of many RNAfold windows,
we used summary statistics to characterize local secondary struc-
ture in each feature (Table 1). These included the minimum MFE
(minMFE), which was the MFE of the window with the strongest
predicted secondary structure for each feature, and mean MFE
(meanMFE), which averagedMFE across windowswithin a feature.
For each feature, we also concatenated overlapping windows with
MFE<−40 kcal/mol, designating these as lowMFE regions (Table 1;
Fig. 1A,B).

One concern about usingMFE as a quantitative statistic is that
it varies by G:C composition (e.g., higher G:C content tends to in-
ducemore stable secondary structures) and primary sequence (e.g.,
whether the order of bases forms palindromes and stem-loop struc-
tures). Because wewere primarily interested in secondary structure
resulting from the latter, we controlled for base composition by
randomizing the sequence of each feature five times and then re-
peating MFE predictions each time, requiring another 17.8 billion
(=5×3.56 billion) window computations. By randomizing, we
identified features that had more stable secondary structures
than expected given their nucleotide composition.We then classi-
fied a feature as “RF-structured” (RF for RNAfold) when it con-
tained windows with MFEs <−40 kcal/mol and also had a
minMFE significantly lower than permutations (P< 0.05, one-sid-
ed Wilcoxon test, Benjamini and Hochberg corrected) (Table 1).
Conversely, we labeled features as “unstructured” when their
minMFE was not significantly lower than that of randomized se-

quences. Supplemental Figure S2 reports differences between ran-
domized and observed minMFE values for each feature category;
overall, 76% (286,774 of 373,485) of features were RF-structured
(Table 2).

LinearPartition

The second prediction method was based on LinearPartition
(Zhang et al. 2020). This approach did not rely on sliding windows
to infer local secondary structure but analyzed the complete se-
quence of each feature. The advantage was that each feature re-
quired only one computational analysis, vastly improving
computational burden and speed. Accordingly, we applied this
method to the same set of 373,485 features as RNAfold but also
to a larger, updated version of maize TE annotations (Stitzer
et al. 2021), resulting in an expanded data set of 467,255 features
(Table 2).

For each sequence, LinearPartition calculated the partition
function, summarized by the parameter Q. For each nucleotide
site within a feature, the method calculated a pairing probability
between all nucleotides in the feature. We focused on nucleotide
pairs with high probabilities of pairing (>0.90) and searched with-
in each feature for runs of nucleotides that matchedwidely accept-
ed miRNA annotation guidelines for plants (Axtell and Meyers
2018). These guidelines defined hairpins consisting of consecutive
stretches of ≥21 nt that were likely to pair (>90% probability) with
fewer than five mismatched nucleotides, including fewer than
threemismatches in putative asymmetric bulges (i.e., places where
the gap on one side of a hairpin was greater than the gap on the
other side of the hairpin; Methods) (Fig. 1A). We called sequences
that fit these criteria “LP-hairpins” (Table 1).

Comparing the methods

Bothmethodswere designed to identify regions of strong local sec-
ondary structures within features, but they focused on different
miRNA-like properties. Yet, they did yield significant consistencies
and overlaps. For example, we contrasted the two entire-sequence
summary statistics: meanMFE and the partition function normal-
ized for feature length (Qnorm). Across structured features,Qnorm cor-
related strongly with meanMFE (R2 =0.73 across all feature types
and R2 = 0.97 across genes; P=0) (Fig. 1C) and weakly (R2 = 0.04)
but still significantly (P=3.05×10−10) withminMFE.We also com-
pared the overlap in genomic locations between LP-hairpins and
low (<−40) MFE regions (Fig. 1A). Across all of the 287,744 RF-
structured features (Table 2), 78.46% of LinearPartition hairpins
were within a lowMFE region. Given that lowMFE regions

Table 1. Terms defined in the text and that are used to describe and characterize miRNA-like regions

Term Method Explanation

minMFE RNAfold The minimum free energy (MFE) of the 110-bp window with the lowest MFE score within an individual TE or
gene sequence

meanMFE RNAfold The average estimated MFE across all 110-bp windows in any TE or gene sequence
lowMFE RNAfold A region or regions of a TE or gene that is defined by concatenating overlapping windows of MFE <−40/kcal/

mol
RF-structured RNAfold Designates any TE or gene that has a significantly lower minMFE value than randomized sequences
LP-hairpin LinearPartition Putative hairpin structure identified by combing base-pairing probabilities from LinearPartition with miRNA

hairpin criteria
Qnorm LinearPartition The LinearPartition function reports Q, a summary of secondary structure across an entire sequence; Qnorm

adjusts Q by the length of the sequence
skew Both Measures the relative proportion of distinct smRNAs that map to miRNA-like regions of a sequence compared

with the remainder of that sequence; ranges from −1.0 to 1.0, where 1.0 denotes that smRNAs map only
to miRNA-like regions.
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Table 2. Fifteen feature categories and accompanying statistics

Feature type No.a RFb LPc No.d LP

Genes 39,179 69.00% 29.82% 39,179 29.82%
mRNA 133,812 64.80% 5.02% 133,812 5.02%
miRNA precursor 107 71.00% 66.36% 107 66.36%
Helitrons/DHH 49,235 84.00% 13.00% 22,339 6.43%
hAT/DTA 5602 59.60% 4.15% 5096 4.28%
CACTA/DTC 1264 79.00% 32.52% 2768 41.76%
PIF-Harbinger/DTH 4971 38.80% 17.57% 63,216 6.22%
Mutator/DTM 1319 60.30% 62.82% 928 57.54%
Tc1-Mariner/DTT 458 43.90% 16.69% 67,533 6.75%
L1 LINE/RIL 36 0.00% 0.00% 477 2.73%
Rte LINE/RIT 29 0.00% 0.00% 296 3.04%
Copia/RLC 45,009 98.20% 58.04% 44,242 55.88%
Ty3/RLG 72,976 88.00% 40.57% 70,165 38.47%
Unclassified-LTR/RLX 18,457 85.90% 38.18% 16,205 32.98%
SINEs/RST 1031 0.00% 1.74% 892 1.46%
Totale 373,485 286,744 90,088 467,255 182,749

The statistics include the number of individual features in each category, based on two annotation versions for TEs, and the percentage of features that
have miRNA like structure (structured) based on RNAfold or detectable LP-hairpins.
aThe number of features in each category in the Jiao et al. (2017) annotation.
bThe percentage of RF-structured features in each category, as determined by RNAfold analyses and permutations.
cPercentage of features in each category that contained at least one LP-hairpin as inferred from LinearPartition base pairing probabilities and analyses.
dThe number of features in each TE superfamily based on the updated annotation by Stitzer et al. (2021).
eTotal refers to the total number of sequences in each annotation set, or it refers to the number of sequences that contain miRNA-like regions based on
the RF-structured or LP-hairpin criteria.

A

B

C

Figure 1. Characteristics of miRNA-like secondary structures across two methods. (A) A schematic contrasting the two prediction methods for a genic
region on Chromosome 2. The LinearPartition (LP) method focuses on identifying small regions with hairpin characteristics, and the RNAfold method fo-
cuses on regions with low minimum free energy (MFE). This example illustrates lowMFE regions in red, with overlapping LP-hairpins in blue. Note that
lowMFE regions exceed 110 bp, because they represent the concatenation of overlapping windows with MFE <−40 kcal/mol. (B) The correlation between
meanMFE and Qnorm based on 39,179 genes. (C ) The distributions of three summary statistics—minMFE, meanMFE, and Qnorm—across seven feature cat-
egories. In the key, helitrons correspond toDHH elements (for the three letter designations, see Table 2); LTRs consist of RLC, RLG, and RLX; LINEs are the RIL
and RIT elements; SINEs are RST; and terminal repeat elements consist of DTA, DTC, DTH, DTM, and DTT elements.
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collectively comprised ∼22.95% of annotated features, this repre-
sented a substantial 12.2-fold enrichment of LP-hairpins within
lowMFE regions. By design, lowMFE regionsweremuch larger (me-
dian=348 nt) than LP-hairpins (median=25 nt) and therefore
took up amuch larger proportionof the space inside of comparable
features. In total, lowMFE regions constituted 1.9 ×108 nt versus
1.7 ×107 nt for LP-hairpins.

The prevalence and locations of miRNA-like secondary structures

Prevalence of miRNA-like secondary structures across TE superfamilies

Using both methods of prediction, we detected substantial varia-
tion in the prevalence of miRNA-like secondary structures among
TE categories. Some TE superfamilies contained little evidence of
structure. For example, the LINE (RIL and RIT) elements had no
RF-structured elements and also had no detectable LP-hairpins
(Table 2). Because the 2017 annotation from Jiao et al. (2017) con-
tained few (n=65) RIL and RIT elements, we repeated the
LinearPartition analysis with an expanded set of n=773 elements
from Stitzer et al. (2021), finding again that only a small subset
(∼3%) contained hairpins (Table 2). SINEs/RST also had very low
incidences of miRNA-like structure, with no RF-structured ele-
ments and <2% containing LP-hairpins (Fig. 1B). In contrast to
LINEs and SINEs, LTR elements generally had abundant miRNA-
like structures. For example, 98% of Copia/RLC elements had RF-
structure and 58.0% had LP-hairpins (Table 2; Fig. 1B). We note,
however, that LTR elements were longer on average than the other
TE subfamilies and also that there was an overall negative relation-
ship between feature length and minMFE across all 15 feature
categories (P<2.2 ×10−16, R2 = 0.20, linear model) (Supplemental
Fig. S3).

The prevalence of miRNA-like regions also varied among TIR
superfamilies. Mutator/DTM elements were especially notable for
the high percentage of elements with LP-hairpins (62.82%),
whereas only 32.52% of CACTA/DTC elements contained LP-hair-
pins. Fewer than half of the annotated Tc1-Mariner/DTT and PIF-
Harbinger/DTH elements were RF-structured or contained LP-hair-
pins (Table 2), but this corresponded to thousands of elements in
these superfamilies.

It is worth making two overarching observations from the
analyses reported in Table 2. First, the percentage of sequences
identified by RNAfold and LinearPartition was correlated across
the 15 feature categories (R2 = 0.65; P<0.001), suggesting again
that the two methods identified similar characteristics in most su-
perfamilies. Second, the expanded TE data set of Stitzer et al.
(2021) showed similar trends to the Jiao et al. (2017) annotation
data set (R2 = 0.96; P<0.001). For example, LINEs, SINEs, and
hAT/DTA elements generally had low proportions of elements
with LP-hairpins in both annotation sets, whereas LTR superfam-
ilies had high proportions in both annotation sets.

Biases in the locations of miRNA-like regions

Wenext examined the locationsofmiRNA-like secondary structure
across the length of each feature type. For these analyses, we fo-
cused only on the 286,744 features that were predicted to have
RF-structure (Table 2). For each feature category, we separately
mapped the positions of lowMFE regions and LP-hairpins along
their lengths (Fig. 2). Consistent with previous work (Bousios
et al. 2016), both lowMFE and LP-hairpinswere concentratedwith-
in the LTRs of Copia/RLC elements. In contrast, Ty3/RLG elements
generally lacked an obvious peak for miRNA-like structures. Most
DNAtransposonsuperfamilieshad relativelyuniformdistributions
of lowMFE regions across their lengths (Supplemental Fig. S4), but
LP-hairpins were biased heavily toward the terminal inverted re-
peats for TIR elements like Mutator/DTM (Fig. 2), hAT/DTA, and
CACTA/DTC elements (Supplemental Fig. S4). Finally, Helitrons/
DHH had a distinct 3′ bias for both lowMFE regions and LP-
hairpins (Fig. 2), reflecting the ∼11-nt stem-loop structure com-
mon to Helitron 3′ ends (Kapitonov and Jurka 2007; Xiong et al.
2014). Across TE superfamilies, some secondary structures had sim-
ilar underlying sequences motifs. The most abundant consensus
sequence of Copia/RLC elements was CACCGGACNNNGTCCG
GTG, as reported previously (Bousios et al. 2016), which was pre-
sent in 42.9% of RLC structured regions. This same palindrome
was also the most abundant motif in Helitron/DHH transposons
(MEME e-value =1.0 ×10−165), appearing in 5231 DHH structured
regions (10.7%) (Supplemental Fig. S5).

Figure 2. Landscapes of miRNA-like regions across feature types. Each row represents a metaprofile that combines data from all members of each feature
type, based on structured members. Features were divided into 100 equally sized bins from the 5′ end to the 3′ end. The left column shows the number of
features with lowMFE (<−40 kcal/mol) windows, and the right column shows the number of features with LP hairpins. A peak in the landscape represents a
region that commonly contains miRNA-like structures. All panels share the same x-axis, which is represented proportionally across the length of features,
from 0.00 (5′ end) to 1.00 (3′ end). This figure shows these locations for a subset of the 15 categories in Table 2; the remainder of the categories are shown
in Supplemental Figure S4.
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miRNA-like secondary structures within genes

A higher percentage (69.0%) of genes were RF-structured than con-
tained LP-hairpins (29.8%) (Table 2). Whenwe examined the distri-
butions of miRNA-like structures across genes and their mature
transcripts, we found that the twomethods differed in their predic-
tions. In 85% of genes (Fig. 2), lowMFE regions overlapped the 5′

UTRs, where secondary structures are known to participate in ribo-
some binding and translation (Babendure et al. 2006; Matoulkova
et al. 2012). In contrast, LP-hairpins were fairly uniformly distribu-
ted across gene lengths (Fig. 2), with perhaps a slight bias toward
the middle of the gene as documented previously in Arabidopsis
(Li et al. 2012).Most (76.19%) of these LP-hairpinswere found in in-
trons, so that far fewer (5.02%) ofmature mRNA transcripts had LP-
hairpins (Table 2). These results show that 5′ UTRs commonly have
regions of local secondary structure but infrequently contain LP-
hairpins.

Comparing miRNA-like regions to smRNA diversity

Correlations between miRNA-like regions and smRNA mapping abundance

Under the dsRNA-substrate model, genomic regions of high sec-
ondary structure should have homology with more smRNAs com-
pared with nonstructured regions. To test the hypothesis, we
mapped 21-, 22-, and 24-nt smRNAs from up to 42 published
smRNA libraries (see Methods; Supplemental Table S1) to the
B73 maize genome and then counted the number of distinct
smRNA sequences (also known as “smRNA species”) (Bousios
et al. 2017) that mapped with 100% identity to genomic regions.
Because of their different functions (Axtell 2013; Borges and
Martienssen 2015), we examined smRNAs in the three size classes
(21, 22, and 24 nt) separately. Two caveats should be mentioned
about these smRNAs: (1) Although many of these smRNAs may
be hairpin-derived RNAs (hpRNAs) (Axtell 2013), we do not
know their origin and refer to them by the more general
“smRNA” term for clarity, and (2) we do not know that each
smRNAs identified here functions as siRNA, merely that they are
the correct size to act as a canonical siRNAs.

We first examined the relationship between miRNA-like re-
gions and smRNAs using a linear model across all 373,485 features
of the Jiao et al. (2017) annotation set, using correlation statistics.
The correlation coefficient was generally small—for example, R2

was ∼0.1 for models incorporating minMFE—but highly signifi-
cant (Table 3). Moreover, the results were significantly positive
for all RNAfold and LinearPartition summary metrics (Table 3).
Extending this approach separately to the 15 individual feature
categories, three smRNA lengths, and three metrics (minMFE,
meanMFE, and Qnorm), 82% of correlations were significant after
false-discovery rate (FDR) correction (Supplemental Table S2).
These results indicate a weak but consistent relationship between
the presence of a miRNA-like secondary structure in features and

the number of smRNAs that map to those features. We did find
some interesting outliers, however. First, the relationship between
smRNAs and minMFE statistics was generally not significant for
miRNAs (Supplemental Table S2), perhaps reflecting small sample
sizes (n=107) or perhaps the fact thatmiRNA loci generate few dis-
tinct smRNAs despite being highly expressed. Similarly, LINE com-
parisons also were typically not significant; LINEs were heavily
saturated for all three smRNA size classes (Supplemental Fig. S6),
but few had detectable miRNA-like regions. Second, the estimated
linear relationships were typically higher for 21- and 22-nt smRNA
than for 24-nt smRNA, which is consistent with their role during
the initiation of silencing (Table 3; Supplemental Table S2) and
with the observation thatDCL processing of dsRNA substrates typ-
ically yield 21- and 22-nt smRNAs. In genes, for example, correla-
tions between minMFE and 21- to 22-nt smRNAs were again weak
but highly significant (R2 = 0.01, P<4.12×10−106), but the correla-
tion with 24-nt smRNAs was not (R2 = 8.35×10−05, P=0.072)
(Supplemental Table S2).

Measuring smRNA abundance with skew

We also examined the relationship betweenmiRNA-like structures
and smRNA counts within features by measuring skew, that is, the
ratio of smRNAmapping inmiRNA-like versus non-miRNA-like re-
gions (Methods; Table 1).We defined skew to be zerowhen smRNA
mapping was equivalent on a per nucleotide basis between
miRNA-like and non-miRNA-like regions, and skew ranged from
−1.0 to 1.0. When it was positive, smRNA mapping was more
abundant in miRNA-like regions.

Generally, TEs in all superfamilies showed positive skews, re-
flecting the tendency formore smRNAs tomap to LP-hairpins (Fig.
3A,B) and the lowMFE regions of RF-structured elements
(Supplemental Fig. S7). For example, Copia/RLC elements had pos-
itive skews, with slightly higher skews for 22-nt smRNAs as op-
posed to 21- and 24-nt smRNAs (Fig. 3A). These results were
confirmed by linear mixed-effect models; all three smRNA
lengths were significantly higher in Copia/RLC LP-hairpin regions
with minMFE, meanMFE, and Qnorm (all P-values < 1.23×10−04)
(Supplemental Table S2; Supplemental Figs. S8, S9). Overall, LTR
elements had more obvious skew than DNA elements, although
five of six DNA superfamilies had positive skews for all three
smRNA lengths (Fig. 3A), and these observations were largely sup-
ported by mixed-effect models (Supplemental Tables S3, S4).

We also examined skew within genes. Genes had homology
with far fewer smRNA species thanmost TE types (nearly 100 times
less in most cases) (Supplemental Fig. S6), but smRNA species
abundance was roughly equivalent between genes and their tran-
scripts. Although genes mapped fewer smRNAs overall, they had
stronger skews than any of the TE superfamilies. For example,
roughly threefold more smRNAs (of all size classes) mapped to
lowMFE in genes compared with the 1.5- and 1.3-fold difference
in CACTA/DTC transposons and Copia/RLC retrotransposons.
This effect was more pronounced for LP-hairpins. Genes had an
approximately 89-fold greater smRNA density in LP-hairpins com-
pared with nonhairpin regions, compared with 2.9-fold greater
density for LTR retrotransposons (which includes the RLC, RLG,
and RLX superfamilies). Linear mixed-effect models were signifi-
cant for higher smRNA abundance in lowMFE regions and LP-hair-
pins of genes for all three smRNA lengths (P≅0) (Supplemental
Tables S3, S4; Supplemental Figs. S8, S9). As a negative control,
we analyzed organellar genes because they are typically seques-
tered from the cytosolic complexes like DCL and RDR6 and hence

Table 3. Correlation value (with FDR-corrected P-value in parenthe-
ses) between secondary structure summary statistics and numbers of
smRNA species across all 373,485 features

Summary
metric

21-nt
smRNA 22-nt smRNA 24-nt smRNA

minMFE 0.091 (0.00) 0.103 (0.00) 0.074 (0.00)
meanMFE 0.017 (0.00) 8.6 × 10−3 (0.00) 0.004 (5.01 × 10−227)
Qnorm 0.101 (0.00) 0.133 (0.00) 0.089 (0.00)
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should not show any skew. smRNAsmapped to organellar genes at
low levels but had no skew (Supplemental Fig. S10).

Expression matters: putatively autonomous vs.

nonautonomous TEs

Nonautonomous DNA transposons are not transcribed (except
when they are within expressed UTRs or introns), and therefore,
RNA secondary structure generally cannot drive the creation of
smRNAs for these elements (Panda et al. 2016). We therefore pre-
dicted a difference in skew between autonomous and nonautono-
mous DNA elements. To investigate, we separated DNA
transposons into nonautonomous and autonomous elements using
transposase homology data (see Methods) (Stitzer et al. 2021) and
then repeated our skew and linear model analyses. In most cases,

nonautonomous elements had notably
less smRNAskew thandid autonomous el-
ements (Fig. 3B). This pattern was consis-
tent among Helitron/DHH (autonomous
mean skew among all smRNA lengths=
0.91, nonautonomous mean=0.37),
CACTA/DTC (autonomous mean=0.44,
nonautonomous mean=0.34), Harbin-
ger/DTH elements (autonomous mean=
0.37, nonautonomous mean=0.27), and
Mutator/DTM (autonomous mean=0.51,
nonautonomous mean=0.05), but it was
particularly notable for 21- and 22-nt
smRNAs (P<7.5×10−31) among Heli-
trons/DHH and Mutator/DTM elements,
most of which are nonautonomous in
maize (Stitzer et al. 2021). Note that all
Mariner/DTT elements were nonautono-
mous, which may relate to their overall
lack of skew (Fig. 3B).

Methylation peaks in miRNA-like

regions

One function of smRNAs is to recruit
methylases, leading to RNA-directed
DNA methylation (RdDM) (Matzke and
Mosher 2014). We predicted that miRNA-
like structures should be more highly
methylated because they map more
smRNAs.We further predicted that this ef-
fect should be primarily detected in the
CHH context, because mCHH is more de-
pendent on RdDM than mCG and
mCHG (Law and Jacobsen 2010).We plot-
ted weighted methylation levels (Schultz
et al. 2012) from B73 (Hufford et al.
2021), focusing on regions of miRNA-like
structure and 2 kb upstream and down-
stream. Both LP-hairpins (Fig. 4) and
lowMFE regions (Supplemental Fig. S11)
had peaks of CHH methylation centered
on the region; this peak dissipated rapidly,
especially for LP-hairpins. These peaks
were found in all feature types with detect-
ablemiRNA-like structures, including RNA
elements, DNA elements, and genes. We

also confirmed that miRNA-like regions had significantly higher lev-
els of CHH methylation than other regions by comparing them to
randomly chosenunstructured regions of the same length as LP-hair-
pins (Fig. 4). Finally, we found that CHH methylation levels in LP-
hairpins were significantly higher than those in the rest of the corre-
sponding feature sequence (paired t-test; P-values between 3.43×
10−81 and 1.16×10−165 among genes, TIRs, LINEs, LTRs, and heli-
trons), with enrichments as high as ∼10× in genic hairpins.

miRNA-like structures and gene expression

Genes possess regions with stable RNA secondary structure (Figs. 1,
2), and this secondary structure coincides with the presence of
smRNAs (Fig. 3C; Supplemental Tables S3, S4) and methylation
(Fig. 4; Supplemental Fig. S11). Yet, genes are usually expressed,

A

B

C

Figure 3. The distribution of skew for smRNAmapping in different feature categories. Skew is present-
ed on the x-axis. Height on the y-axis represents the Gaussian-estimated kernel density of skew values.
Skew measures the relative enrichments of smRNAs in miRNA-like regions compared with non-miRNA
regions and ranges from 1.0 (enrichment in miRNA-like regions) to −1.0 (enrichment in non-miRNA-
like regions). All panels use the same x-axis. The dotted vertical line represents zero, where smRNA density
is not skewed to either low- or highMFE regions. (A) Skew for retrotransposons for 21-, 22-, and 24-nt
smRNAs, separately for Copia (RLC), Ty3 (RLG), and unknown retrotransposons (RLX). (B) Skew for
DNA transposons, with names for the three letter codes provided in Table 2. The dashed lines represent
skew for putatively autonomous elements, and solid lines represent nonautonomous elements. (C ) Skew
measured in genes. These graphs are based on LP-hairpins but are analogous for lowMFE regions, and all
feature categories are presented in Supplemental Figure S7.
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which raises the question as to whether these miRNA-like struc-
tures have a quantifiable relationship to gene expression. To ad-
dress this question, we used previously published RNA-seq data
from 23 B73 tissues across developmental stages and tissues (Wal-
ley et al. 2016). We focused these analyses on structured genes
with lowMFE regions (as opposed to LP-hairpins), both because
they were common in the UTRs and gene bodies of genes (Fig. 2)
and because 5′ secondary structure is known to be important to
gene function. In contrast, LP-hairpins were detected in only
∼5% of genic transcripts (Table 2); however, the results presented

below for lowMFE regions were often recapitulatedwith LP-hairpin
data.

We began by comparing expression in 27,025 structured ver-
sus 5060 unstructured genes. Structured genes had significantly
higher expression (t-test, P<2.0 ×10−16) (Fig. 5A), and this was
true for all tissues (Supplemental Fig. S12), as well as for genes
that contained LP-hairpins (Supplemental Fig. S13).We suspected,
however, thatmost unstructured genes either were pseudogenes or
were misannotated. To focus on evolutionarily conserved (and
hence presumably bona fide) genes, we identified 24,784 B73

Figure 4. Methylation at LP-hairpins. The left column shows methylation in the CG context (mCG), and the right column showsmethylation in the CHH
context (mCHH). Each row represents a different feature type. The blue lines summarize the patterns of methylation in the hairpin (variable sizes, median=
25 nt) across all hairpins in a given feature type (e.g., all TIR hairpins, gene hairpins, etc.) and their flanking regions, divided into 40 nonoverlapping 100-bp
windows. We assigned a control window to each hairpin in the data set by choosing a random window of the same size as the hairpin within the same
element. The red line corresponds to methylation patterns around these randomized control loci.
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genes with syntelogs in Sorghum bicolor (seeMethods) (Muyle et al.
2021). Among the syntelog set, 16,171 were structured, and 460
were unstructured. Structured syntelogs still had a mean expres-
sion level that was slightly higher than unstructured syntelogs (P
=3.7 ×10−4) (Fig. 5A). More important, however, was the quantifi-
able relationship between the minMFE and gene expression.

Among structured syntelogs, the relationship was significantly
positive such that gene expression peaked at a minMFE of ∼40
kcal/mol (Fig. 5B). The opposite was true among unstructured
genes because higher expression occurred with lower MFEs (Fig.
5B). This pattern implies the existence of an optimal minMFE for
gene expression. These trends are present for many of the 23

A B

C D

E

Figure 5. Expression differences between structured and unstructured genes, as defined by RNAfold analysis, in B73. The expression data are based on
combined data across 23 tissues. (A) Difference in the overall magnitude of expression in all structured (n = 27,034) versus unstructured (n = 5054) genes
and in structured versus unstructured genes with a syntelog in S. bicolor. The box plots report the range of the middle quartiles; whiskers report the range;
and lines represent the median. (B) Expression as a function of minMFE for structured (dashed line) and unstructured genes with a S. bicolor syntelog (solid
line). Both lines report the linear regression; both slopes are highly significant, as indicated by P-values on the figure. (C) The coefficient of variation (CV) of
gene expression across the 26 NAM parents compared between structured and unstructured genes with a S. bicolor syntelog. The two categories differ
significantly (P<2.22 ×10−16). The graph also reports CV among B73 tissues, which does not differ significantly between structured and unstructured
genes (P=0.32). (D) smRNAmapping to structured and unstructured genes and for three smRNA lengths. For all three lengths, the difference is significant
(P<2.22 ×10−16). The violin plots show the distributions of smRNA counts, and the boxplots are formatted the same as in A. (E) Epigenetic and genetic
features in lowMFE regions of genes. The plots show the number of expected and observed features overlapping (or not overlapping) the lowMFE region.
For example, the number of ACRs (left graph) overlapping lowMFE regions is very similar to the number expected, based on the distributions along genes.
In contrast, the numbers of observed SVs (middle) and SNPs (right) are highly underrepresented in lowMFE regions.
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separate B73 tissues separately (Supplemental Fig. S14) and for the
complete gene set, that is, not just syntelogs (Supplemental Fig.
S15).

Among syntelogs, structured genes also mapped significantly
more smRNAs than do unstructured genes (Fig. 5C), which raises
an interesting question: Could this phenomenonmodulate the ex-
pression of genes? To examine this idea, we analyzed expression
data across the 26 NAM founder lines (McMullen et al. 2009).
For these analyses, we assumed that the secondary structure desig-
nations predicted in B73 applied to its syntelog across all 26 NAM
parents (Hufford et al. 2021). We then compared gene expression
among lines using the coefficient of variation (CV) based on ex-
pression values that were normalized across eight tissues in each
line (see Methods) (Hufford et al. 2021). Our analyses revealed
that structured genes had significantly higher CVs than nonstruc-
tured genes (P<0.01, permutation test) (Fig. 5D). This was true
both for comparisons between all genes in each group and be-
tween a down-sampled subset of structured genes that was equal
in size to the set of unstructured genes. One concern about this
analysis is that the CV is standardized by the mean, which could
bias results, but this did not drive our results for two reasons.
First, we fitted a linear model of expression CV as a function of
B73 gene expression, but the correlation was negative (i.e., more
highly expressed genes were slightly less variable across lines; R2

= 6.1 ×10−4; P=1.5 ×10−7, estimate =−0.01). Second,we examined
CV across 23 B73 tissues. There was no difference in CV between
the structured and unstructured syntelogs across tissues (Fig. 5C),
illustrating that the CV metric alone does not explain the signifi-
cant difference across genotypes.

Can the variable expression of structured genes be explained
by smRNAs? We predicted that more smRNAs should lead to
more expression variation across lines. To investigate this possi-
bility, we fit a linear model of expression CV as a function of
smRNA density and found that CV was positively correlated
with smRNA abundance (P = 6.7 × 10−283; R2 = 0.010). To see
whether an effect was discernible between structured genes of
variable minMFE values (as suggested by Fig. 4B), we separated
structured genes into four quartiles based on their minMFE and
then plotted the numbers of smRNAs that map to each gene in
B73. Consistent with our hypothesis, genes in the lowest
minMFE quartile mapped more smRNAs than the other three
quartiles for all three smRNA lengths, and minMFE was signifi-
cantly but weakly correlated with CV in a linear model (P = 5.8
× 10−79; R2 = 0.0031).

This evidence shows that higher CVs for expression are relat-
ed to the number of smRNAs that map to a gene, but additional
factors likely cause (or contribute to) expression variability across
NAM genotypes. One potential factor is chromatin accessibility.
We assessed whether accessibility varies more in lowMFE genic re-
gions by using ATAC-seq data (Hufford et al. 2021), which defines
accessible chromatin regions (ACRs) among NAM parents (see
Methods). For each parent, we identified whether ACRs over-
lapped with lowMFE regions more than unstructured (MFE>−40
kcal/mol) genic regions. We found no difference between the
two categories (Fig. 5E). Genetic effects, like SNPs and structural
variants (SVs), contribute to gene expression variation across the
NAM lines, particularly given that regions of structure can have al-
tered mutation rates (Hoede et al. 2006; Monroe et al. 2022). We
therefore also examined SNPs and SVs in these regions, based on
the data of Hufford et al. (2021). We found that lowMFE regions
were less likely to contain SNPs or SVs thanwere unstructured gen-
ic regions (Fig. 5E).

Discussion

We have profiled miRNA-like secondary structure in annotated
features of the maize genome. To our knowledge, this study is
the first to comprehensively catalog such structures, and we have
done so by applying two bioinformatic prediction methods. The
methods rely on different algorithms (RNAfold vs. LinearParti-
tion), different approaches (overlapping windows vs. no win-
dows), and different characteristics to define miRNA-like regions.
By design, the LinearPartition analyses relied on a narrower defini-
tion (Fig. 2), and so, there were fewer observations. Yet, the two
methods provide largely concurrent insights about miRNA-like re-
gions, including their relative abundances among TE superfamilies
(Table 2), their locational biases in some TE superfamilies (Fig. 2),
their association with elevated smRNA counts in TEs and genes
(Fig. 3), and their genome-wide correspondence to peaks of meth-
ylation (Fig. 4).

Detecting miRNA-like secondary structures

For detecting secondary structure, we have included two positive
controls: miRNA precursor loci (Wang et al. 2009) and Copia/
RLC elements (Bousios et al. 2016). As expected, these two feature
categories have extreme statistics based on, for example, the pro-
portion of RF-structured elements (Table 2), the proportion of fea-
tures with LP-hairpins, and average minMFE (Fig. 1). However,
these positive controls also indicate an appreciable false negative
rate, because 29% (RF-structure) and 38% (LP-hairpin) of pre-
miRNA loci do not have detectable miRNA-like structures.

The methods have additional limitations. We need to first re-
iterate that the approach was not designed to identify all second-
ary structures. Our goal was to identify regions similar to miRNA
precursors, because they are thought to be involved in forming
dsRNA substrates that lead to the production of smRNAs.
Second, there are limitations to the TE annotation sets. For exam-
ple, MITEs are not included in either annotation set. MITEs are
short nonautonomous elements that are characterized by their
tendency to form stem-loop structures and to insert near genes
(Bureau andWessler 1992, 1994), where they are often incorporat-
ed in read-through transcripts. They are an interesting topic for ad-
ditional work, but we can provide no insights about them here.
Third, we know that some summaries are biased; for example,
minMFE is correlated with feature length, and lowMFE regions
are more likely in sequences with high G:C composition. We
have addressed these biases by using multiple summary statistics,
by randomizing the primary sequence to test for significant evi-
dence of structure, and by using two prediction methods.
Finally, we recognize that bioinformatic predictions are approxi-
mations that may not correspond to in vivo assessments (Ding
et al. 2014).

Nonetheless, despite these limitations, the two distinct pre-
diction methods yield several similar trends, including higher
smRNA mapping and methylation levels in miRNA-like regions
(Table 2; Figs. 1, 2). One prosaic explanation for these results is
that they are caused by systematic biases in the prediction meth-
ods, but this seems highly unlikely because (1) error in secondary
structure prediction should lead to randomness, namely, inconsis-
tent correlations; (2) the inclusion of false negatives among un-
structured elements makes the measured correlations inherently
conservative; and (3) the results, althoughnot identical, are largely
consistent between prediction methods. Because both genes and
TEs show this relationship, we conclude that the association
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between miRNA-like structure and smRNA abundance is a general
characteristic of the maize epigenome.

miRNA-like regions, epigenetic signals, and potential

mechanisms

Given knownpathways ofmiRNA and smRNAbiogenesis (O’Brien
et al. 2018; Hung and Slotkin 2021), we believe the most likely ex-
planation for the observed association is that miRNA-like second-
ary structures lead directly to smRNA production via DCL
mechanisms. This conclusion is bolstered by the fact that
smRNA skew is more pronounced for expressed genomic regions
(like genes and putatively autonomous elements) for which this
mechanism is expected to bemost active (Fig. 3). However, we can-
not prove that the structure:smRNA correlations are caused by the
formation and processing of dsRNA substrates by DCL mecha-
nisms. Arguably, the most straightforward way to do so would be
to map smRNA libraries from maize mutants lacking DCL func-
tion.We found no such libraries but didmap the available libraries
from maize RdDM mutants: mediator of paramutation1 (mop1) and
required to maintain repression2 (rmr2) (Barbour et al. 2012; Gent
et al. 2014). These mutants affect the repression of TEs that have
already been silenced (Barbour et al. 2012); they are thus not par-
ticularly good candidates to test the dsRNA-substrate model. We
nonetheless assessed the effect of mutants on skew by comparing
mutant smRNAs to WT individuals from the same study
(Supplemental Fig. S16), but we did not observe any clear or con-
sistent patterns across smRNA lengths or TE superfamilies. These
comparisons relied on single libraries and are thus more subject
to sampling variability than our other observations, which were
based on joint consideration of dozens of smRNA libraries.

Because we cannot prove that processing of dsRNA sub-
strates is a causal mechanism, it is worth considering alternative
explanations. For example, structure:smRNA correlations could
reflect abundance rather than production; one way this could oc-
cur is if smRNAs generated from miRNA-like regions degrade less
quickly. It is hard to imagine how this might happen, but it is
known that smRNAs that are loaded onto AGO have biases (Mi
et al. 2008), and thus some may be more stable with longer
half-lives. Another possibility is that these structures correlate
with degradation through other, non-DCL pathways. Some stud-
ies have attempted to correct for degradation and other effects by
focusing only on genomic regions inwhich the proportion of 21-,
22-, and 24-nt smRNAs exceed an arbitrary threshold compared
with smRNAs of all lengths (Lunardon et al. 2020).We did not ap-
ply such a threshold here, because this approach necessarily as-
sumes that some 21-, 22-, and 24-nt smRNAs should be ignored
as biologically uninformative. We did, however, assess overlaps
in genomic positions between the annotated, 21- to 24-nt
siRNA producing loci of Lunardon et al. (2020) and our miRNA-
like hairpin structures. Relative to random chance, we found a
modest but significant enrichment in overlapping locations in
genes and in all TE superfamilies except SINEs and LINEs
(Supplemental Table S5), which generally lack miRNA-like struc-
tures (Table 2). These analyses suggest that a subset of ourmiRNA-
like secondary structures correspond to loci thought to produce
21- to 24-nt siRNAs.

As a negative control, we repeated this exercise with a set of
annotated loci that do not produce smRNAs within the canonical
21- to 24-nt length range (Lunardon et al. 2020), revealing lower
enrichment across all features compared with 21- to 24-nt produc-
ing loci (Supplemental Table S5).

Although we cannot document a definitive mechanism, pre-
cedent suggests that processing of dsRNA substrates likely contrib-
utes to the genome-wide structure:smRNA relationship. If true,
then we can add insights about its effects. First, we can estimate
the relative amount of smRNAs that are produced via processing
of dsRNA substrates compared with other smRNA-generating
mechanisms. Across the entire data set of 373,485 features (Jiao
et al. 2017), minMFE explains 10% of the smRNAmapping results
for 21-nt smRNAs (Table 3), providing a rough estimate for the pro-
portion of smRNAs produced from dsRNA substrates. This value is
larger for somemetrics within specific feature categories; for exam-
ple, Qnorm explained 24% of the 22-nt smRNA mapping variation
in genes, and meanMFE explained 21% of the 21-nt variation for
CACTA/DTC elements (Supplemental Table S2). On average,
across feature categories and smRNA lengths, the summary statis-
tics minMFE, meanMFE, and Qnorm explained 8% of mapping var-
iation between miRNA-like regions and non-miRNA-like regions
(Supplemental Table S2). These low but highly significant values
are consistent with the fact that dsRNAs are only one of several
routes to smRNA production (Carthew and Sontheimer 2009).

Second, our data show that miRNA-like regions are associated
with peaks of elevated methylation (Fig. 4). Because siRNAs guide
DNA methylation mechanisms (Law and Jacobsen 2010), these
peaks likely reflect causal relationships among structure, smRNAs,
andmethylation. It is especially notable that these peaks are elevat-
ed for CHH methylation, which is deposited de novo each genera-
tion and thus represents active methylationmechanisms (Law and
Jacobsen 2010).Methylation in these peaks is also elevated in other
contexts, for example, the CG context (Fig. 4), such that the peaks
resemble mCHH islands. mCHH islands are short (∼100-bp) re-
gions of elevated methylation typically found both upstream of
and downstream from genes. They were first identified in rice as as-
sociated withMITEs (Zemach et al. 2010). Inmaize, mCHH islands
are associated with several TE types, are found near roughly half of
genes, are enriched near highly expressed genes, and are negatively
associated with body-methylated genes (Gent et al. 2013; Li et al.
2015; Martin et al. 2021). It is not yet known whether mCHH is-
lands typically correspond to miRNA-like secondary structures,
but it is a fitting topic for future investigations.

TE superfamilies vary in the number and pattern of miRNA-like

regions

Our work wasmotivated, in part, by a lack of knowledge about the
incipient stages of plant host recognition that lead to TE silencing
(Bousios and Gaut 2016). Because processing of dsRNA substrates
remains the only recognized pathway to de novo smRNA produc-
tion (Hung and Slotkin 2021), we had hoped that characterizing
miRNA-like regionswould provide clues into properties of host rec-
ognition across specific TE superfamilies. Our work does not in-
form this mystery, except to show that most annotated TEs have
some miRNA-like regions and also to provide a snapshot of varia-
tion across TE superfamilies.

One cannot help but wonder why miRNA-like regions are
commonwithinTEs. If secondary structure can lead to the potential
for host recognition through smRNAs, there should be selective
pressure to lose structure.We suspect that there is a cost to loss relat-
ed to function. In Sireviruses (the principal representative of the
Copia/RLC superfamily), there is evidence that palindromic motifs
define the cis-regulatory region of the LTR (Grandbastien 2015).
In fact, studies of different TE families in different organisms have
revealed that cis-regulatory regions are often arranged as arrays of
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complex, sometimes palindromic, repeats (Vernhettes et al. 1998;
Araujo et al. 2001; Fablet et al. 2007; Ianc et al. 2014; Martínez
et al. 2016), implying that secondary structures often assume a cis-
regulatory function. We hypothesize that Copia/RLC elements are
engaged in a tug of war between the functional necessities of sec-
ondary structure and the tendency of these same regions to act as
templates for smRNAs.Wepresume similar dynamics apply toother
TE superfamilies, although clearly this conjecture requires further
detailed analyses of structure and function in specific TEs.

Genes: evidence for a trade-off

Our analyses have uncovered a few unexpected features of genes.
One is that the two methods provide different insights. The
RNAfold approach identifies 85% of genes as RF-structured
(Table 2), with an evident bias toward 5′ UTR regions (Fig. 2).
This result is not unexpected, given that secondary structures in
5′ UTRs are tied to crucial functions in ribosome binding and trans-
lation (Babendure et al. 2006; Matoulkova et al. 2012). In contrast,
LP-hairpins are primarily found in introns. We conclude that 5′

UTRs commonly have miRNA-like regions (as defined by MFEs)
but apparently lack the stem-loop structures identified by
LinearPartition. Nonetheless, both lowMFE regions and LP-hair-
pins associate positively with smRNAs and show elevated CHH
methylation levels within genes (Figs. 3, 4; Supplemental Fig. S11).

This is not the first such observation for plant genes, because Li
et al. (2012) discovered that Arabidopsis mRNA transcripts with
more stable secondary structures had higher smRNA expression
with lower genic expression. Our work expands this previous work
in two ways. First, we have extended the observations to maize; it
is notable that genes in maize and Arabidopsis share these trends
because maize has a larger genome with more TEs. Second, we
have shown that secondary structure does not universally correlate
negatively with gene expression. Rather, the relationship is tiered:
There is a qualitative difference in expression between genes with
and without RF-structure (Fig. 4A,B), probably reflecting that sec-
ondary structure in 5′ UTRs is crucial for some aspects of gene func-
tion. Among genes with RF-structure, however, genes with strong
structure (as measured by minMFE) tend to be less expressed than
genes with moderate RF-structure (Fig. 5B). That is, genes with par-
ticularly strong secondary structures (i.e., very lowMFEs) have lower
expression.

This relationship suggests that there can be “too much of a
good thing”when it comes tomiRNA-like structures. The potential
functional consequence of “too much” is illustrated across the
NAM parental genotypes because structured genes with higher co-
efficients of variation tend tomapmore smRNAs (Fig. 5B) andhave
more variable expression among genotypes (Fig. 5C). We investi-
gated whether this observation could be explained by other fea-
tures of the miRNA-like regions, such as especially high
variability in chromatin accessibility or high numbers of SNPs or
SVs, because some work has shown that structured regions can
have higher mutation rates (Hoede et al. 2006). However, none
of these variables explain higher expression variation across geno-
types. In fact, the miRNA-like regions tend to have fewer SNPs and
SVs than the rest of the gene (Fig. 5E), suggesting that the miRNA-
like regions are under purifying selection.

Altogether, these results suggest the possibility of an evolu-
tionary tradeoff between selection for stable secondary structure
against too much secondary structure. Even so, we are still left by
a paradox: If genes have miRNA-like regions that serve as a tem-
plate for smRNA production, why are they not silenced? We do

not have the answer, but we believe it must rely on the bevy of dif-
ferences between heteromatin and euchromatin. It is known, for
example, that genic regions have distinct sets of chromatin mark-
ers relative to heterochromatin and also that demethylases like
Increased in Bonsai Methylation 1 (IBM1) and repressor of silencing 1
(ROS1) (Gong et al. 2002; Penterman et al. 2007) actively demethy-
late expressed genes (Saze et al. 2008; Miura et al. 2009). Some as-
pects of genic methylation are under selection (Muyle et al. 2022),
and selection will be particularly strong against mechanisms that
silence genic regions. These mechanisms may have evolved in
part to counter the potentially deleterious effects of the formation
of dsRNA structures and subsequent production of smRNAs.

Methods

B73 annotation and secondary structure prediction

Version 4 of the B73maize genome and version 4.39 of the genome
annotation were downloaded from Gramene (https://www
.gramene.org). B73 TE annotations were retrieved from https://
mcstitzer.github.io/maize_TEs/ (Jiao et al. 2017; Stitzer et al.
2021). The data were filtered for redundancy, and then both BED
and FASTA files were generated. From each feature, 110-nt sliding
windows (with 1-nt step size) were fed into RNAfold v2.4.9 from
ViennaRNA (Lorenz et al. 2011). Summary statistics (minMFE,
meanMFE, and lowMFE) were calculated for each feature, based
on all windows in that feature. To determine whether a feature con-
tained significant structure, the feature sequence was randomized
by shuffling nucleotide positions five times across the feature
length, calculatingminMFE each time. The significance of observed
structure versus the five randomizations was calculated using a
Wilcoxon one-sided test with Benjamini–Hochberg correction in
R (v. 4.1.0) (R Core Team 2022). We plotted lowMFE regions across
features (Fig. 2; Supplemental Fig. S4) by splitting each feature into
100 equally sized bins and counting the number of <−40 kcal/mol
regions overlapping each bin. Motifs within lowMFE regions were
analyzed by the MEME motif finder (v5.4.0) (Bailey and Elkan
1994) using the DNA alphabet in classic mode and selecting the
top 10 overrepresented sequences for each category.

We used LinearPartition v1.0 (Zhang et al. 2020) to annotate
LP-hairpins. We ran LinearPartition with default arguments on
each feature sequence, outputting the partition function, Q, and
thematrix of base-pairing probabilities.Qnormwas calculated by di-
viding Q by the length of each feature. We used the base-pairing
matrix to infer the locations of miRNA-like hairpins by searching
for consecutive runs of likely pairing bases in R, using functions
from the IRanges and GenomicRanges (Lawrence et al. 2013),
data.table (Dowle and Srinivasan 2023), and tidyverse (Wickham
et al. 2019) packages. We focused on bases with more than 0.90
pairing probabilities and required LP-hairpins to be ≥21-nt long
with fewer than five mismatched nucleotides (fewer than three
mismatches in asymmetric bulges) (Axtell andMeyers 2018), with-
out an upper limit on length.

smRNA library analysis

smRNA-seq libraries were downloaded using NCBI Sequence Read
Archive (SRA) tools and SRAExplorer (https://github.com/ewels/
sra-explorer) from the sources indicated in Supplemental Table S1.
Adapters, regions with low quality, and low-quality reads were
trimmed using FastQC and cutadapt v0.39 (Martin 2011). The list
of adapters for each library is included in Supplemental Table S6.
Trimmed reads were filtered and split based on size, matching 21,
22, and 24 nt in length. We identified unique smRNA sequences,
which we refer to as “species,” following previously described
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methods (Bousios et al. 2016, 2017). smRNAspeciesweremapped to
B73 V4 using Bowtie 2 v2.4.2 (Langmead and Salzberg 2012), pre-
serving only perfect alignments. SAMtools v1.10 (Danecek et al.
2021) was used to convert and sort the alignment output. At each
nucleotide, both uniquely and nonuniquely mapping smRNAs
were used to calculate the number of smRNA species; strand was
not taken into account. Normalization was performed when com-
paring sequence regions of different lengths by summing counts
and dividing by region length.

Correlations between smRNA species density andmiRNA-like
regions were fitted using the base R (v4.1.0) lm() function. To fit
these models, smRNA species were summed across all libraries
for each feature. These linear models can be expressed as log
(smRNA counts per kilobase across feature + 1)∼ secondary structure
metric.

To test the significance of differences in smRNA species den-
sity between high and lowMFE regions within features, mixed-ef-
fect models were fit for each smRNA size class using the R package
lme4 (Bates et al. 2015). In these models, smRNA mapping counts
from each library were not combined, meaning that each smRNA
library:feature pair was counted individually. These mixed-effect
models can be expressed as log(smRNA counts per kb across region +
1)∼ structure designation + (1|feature).

Skew (Fig. 4) was calculated for each TE superfamily and
genes as

hairpin
species
nt

( )
− nonHP

species
nt

( )

hairpin+ nonHP
species
nt

( ) .

For these calculations, feature-library pairs with zero smRNA
species in either miRNA-like or non-miRNA-like regions were re-
moved from each data set. We tested whether skew differed from
zero using Wilcoxon one-sided tests in R.

Autonomous versus nonautonomous designations for TEs
were defined depending on TE type, but they were determined
based on the presence or absence of open reading frames within
the TEs, as identified by Stitzer et al. (2021; downloaded from
https://github.com/mcstitzer/maize_genomic_ecosystem). TIRs
were considered autonomous if they contained sequence homolo-
gy with a transposase, and helitrons were considered autonomous
if they contained Rep/Hel (Stitzer et al. 2021).

Methylation analyses

Preprocessed B73 genome-wide methylation data from Hufford
et al. (2021) were downloaded from https://datacommons.cyverse
.org/browse/iplant/home/shared/NAM/NAM_genome_and_annot
ation_Jan2021_release/DNA_METHYLATION_UMRs/DNA_methyl
ation_coverage_bigwig_files/NAM_methylation_coverage_on_B73
v5_coordinates. We converted V5 coordinates to V4 using the
EnsemblPlants CrossMap (v0.6.4) converter. For each region of in-
terest, we calculated the weighted methylation level for each cyto-
sine sequence context (CG or CHH) by dividing the number of
methylation-supporting mapped cytosines by the total number of
cytosines in the reference within that region (Schultz et al. 2012).
To find random control regions to compare to miRNA-like regions,
we randomly assigned a region of equal size to the miRNA-like re-
gion in the feature that did not overlap with it. We did not consider
features for which over half of the features fell withinmiRNA-like re-
gions, because random control regions could not be determined.

B73 RNA-seq analyses

B73 gene expression data were downloaded from the ATLAS ex-
pression database (www.ebi.ac.uk/gxa/) in transcripts per million

(TPM) based on RNA-seq data from 23 maize tissues (E-GEOD-
50191) (Walley et al. 2016). The statistical significance of differenc-
es between expression of genes in different structure classifications
was determined using unpaired t-tests, implemented with t.test()
in R. Linear models of expression versus secondary structure
were separately fit for expression in each tissue type with lm() in
R and graphed using ggplot2 (Wickham 2016). These linear mod-
els can be expressed as log(gene expression +1)∼MFE metric. For
analysis of syntelogs, we focused on genes with S. bicolor syntelogs
listed in Supplemental Table S10 of Muyle et al. (2021).

Comparative analyses among NAM founders

For comparisons across NAM lines, we analyzed data from genes
that were shared among all lines (as determined by Hufford
et al. 2021). Expression, ATAC-seq, SNP, and SV data for each
NAM line were downloaded with B73 coordinates from CyVerse
at https://datacommons.cyverse.org/browse/iplant/home/shared/
NAM/NAM_genome_and_annotation_Jan2021_release. Gene IDs
were converted to V4 using the EnsemblPlants ID history convert-
er (https://plants.ensembl.org/Zea_mays/Tools/IDMapper). Coor-
dinates of TEs and structured regions were converted using the
EnsemblPlants CrossMap (v0.6.4) converter with the B73_Ref
Gen_v4 to Zm-B73-REFERENCE-NAM-5.0 parameter. Normalized
expression data were downloaded in RPKM format from merged
RNA-seq libraries from https://datacommons.cyverse.org/browse/
iplant/home/shared/NAM/NAM_genome_and_annotation_Jan
2021_release/SUPPLEMENTAL_DATA/pangene-files. The data
included RNA-seq normalized across eight tissues in each line: pri-
mary root and coleoptile at 6 d after planting, base of the 10th leaf,
middle of the 10th leaf, tip of the 10th leaf at the vegetative 11
growth stage, meiotic tassel and immature ear at the V18 growth
stage, and anthers at the reproductive 1 growth stage.

The CV of expression was calculated for each gene among the
26 lines using normalized RPKM expression data from Hufford
et al. (2021).We calculatedCVusing the sd() andmean() functions
in base R. We determined statistical significance of differences be-
tween categories using unpaired t-tests in R. We also built a linear
model with lm() in R to correlate themagnitude of gene expression
in B73 with the CV of that gene across lines: log(B73 expression +1)
∼NAM line CV.

We also measured epigenetic and genetic features across the
NAM lines and tracked their overlap with miRNA-like regions.
For the former, we concatenated ACRs that overlapped positions
between lines, producing a set ofmergedACRs.We produced these
merged sets using the R libraries IRanges and GenomicRanges
(Lawrence et al. 2013). We also extracted the positions of SNPs
from the filtered VCF file from Hufford et al. (2021). The expected
overlapwas calculated as the proportion of genic space taken up by
lowMFE regions× the total length of features. We assessed overlap
between ACRs/SVs/SNPs and miRNA-like regions using
GenomicRanges in R.

Data access

Custom scripts for these analyses are available as Supplemental
Code and at GitHub (https://github.com/GautLab/maize_te_
structure). Additional Supplemental Files are also available as
Supplemental Material and at Figshare (https://figshare.com/
projects/siRNAs_and_secondary_structure_in_maize_genes_and_
TEs/150714).
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