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Motivated by the ability to consistently apply the Ryu-Takayanagi prescription for general convex surfaces
and the relationship between entanglement and geometry in tensor networks, we introduce a novel, covariant
bulk object—the holographic slice. The holographic slice is found by considering the continual removal of
short-range information in a boundary state. It thus provides a natural interpretation as the bulk dual of a series
of coarse-grained holographic states. The slice possesses many desirable properties that provide consistency
checks for its boundary interpretation. These include the monotonicity of both area and entanglement entropy,
uniqueness, and the inability to probe beyond late-time black hole horizons. Additionally, the holographic
slice illuminates physics behind entanglement shadows, as minimal-area extremal surfaces anchored to a
coarse-grained boundary may probe entanglement shadows. This lets the slice flow through shadows. To aid
in developing intuition for these slices, many explicit examples of holographic slices are investigated. Finally,
the relationship to tensor networks and renormalization (particularly in AdS=CFT) is discussed.

DOI: 10.1103/PhysRevD.98.026010

I. INTRODUCTION

The holographic duality between asymptotically anti–de
Sitter (AdS) spacetimes in dþ 1 dimensions and conformal
field theories (CFTs) in d dimensions is perhaps the closest
realization of a complete theory of quantum gravity [1–3].
One of the most intriguing results stemming from this
correspondence is the renowned Ryu-Takayanagi formula
relating entanglement entropy in time-independent CFTs to
the area of minimal surfaces in the bulk spacetime [4]. The
covariant extensionof this formula to include time-dependent
cases was obtained by Hubeny, Rangamani, and Takayanagi
and uses extremal bulk surfaces (henceforth referred to as the
HRRT prescription) [5]. Remarkably, by including quantum
corrections to this formula, one obtains entanglement wedge
reconstruction [6,7]. These investigations have shed light on
the deep connection between entanglement in the boundary
and emergent gravitational physics in the bulk.
However, there is reason to believe that these results

extend beyond the scope of AdS=CFT. The Bekenstein-
Hawking formula [8,9] and the covariant entropy bound
[10] provide us with holographic bounds on entropy in

general spacetimes. These suggest that gravitational phys-
ics may inherently be holographic [11,12]. Furthermore,
the areas of extremal surfaces anchored to any convex
boundaries satisfy all known entropic inequalities [13–16].
In isometric tensor networks, calculating the entanglement
entropy of a subregion of boundary sites reduces to finding
the minimum cut across the network [17]. A version of
entanglement wedge reconstruction also holds in perfect
and random tensor networks [18,19]. This evidence seems
to indicate that the HRRT prescription may in fact general-
ize to spacetimes outside of AdS.
It is with this perspective that we have pursued inves-

tigations of quantum gravity beyond AdS=CFT. We postu-
late that the HRRT prescription (with quantum corrections
[20,21] to allow for entanglement wedge reconstruction)
applies to general convex boundaries. In particular, we
assume the existence of a quantum state that “lives” on the
convex boundary and encodes the bulk geometry of the
interior. Our previous work [22–24] has focused primarily
on investigating this assumption applied to holographic
screens [25], but holographic screens are only special in the
sense that they are the largest surfaces in which we can
apply the HRRT prescription in general spacetimes. In this
paper, we relax this condition and look at general convex
surfaces; in particular this allows us to consider asymp-
totically AdS spacetimes.
We emphasize that the postulate we adopt here is

falsifiable. At any point in the analysis, had the geometric
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properties of general relativity prohibited a consistent
boundary interpretation, the program would have failed.
Through the present, however, no such roadblock has
presented itself. In fact, we can view the self-consistency
of this work as further evidence that the relationship between
entanglement and geometry prevails in general spacetimes.
The present framework allows us to consider a nested

family of convex surfaces each of which contains less bulk
information than the previous one. Taking a natural
continuum version of these convex surfaces yields a surface
which we dub the holographic slice. As has proved
historically useful, studying covariantly defined geometric
objects yields insights into holographic theories, and the
holographic slice is such an object. In particular, the slice
allows us to visualize the coarse graining of holographic
states and provides us with a method to categorize bulk
regions as being “more IR” than others.
The construction of the slice is purely perturbative, and

thus does not allow us to analyze complex quantum
gravitational states formed as superpositions of many
geometries. It is inherently tied to one background geom-
etry, but this is no more restrictive than the HRRT
prescription itself. For a simply connected boundary, the
slice seems to sweep the maximal bulk region that can be
perturbatively reconstructed, i.e., it pulls the boundary in
through shadows all the way to black hole horizons, and
contracts no further. It was the study of extremal surfaces in
maximally entangled pure states that initiated this work,
where it was realized that maximally entangled states were
fixed points of flow in the direction of small HRRT
surfaces [24].1

A. Overview

In Sec. II, we offer the intuitive motivation for the
construction of the holographic slice. This reveals the
connection to coarse graining and provides a basic defi-
nition for the object. In Sec. III, we geometrically define the
object rigorously and then illustrate some of its most
important properties. These properties must necessarily
be satisfied for a consistent interpretation as coarse graining
of a boundary state. Section IV goes through multiple
explicit examples of the slice in different spacetimes.
After introducing the holographic slice as a geometric

object, we are poised to analyze its boundary interpretation
in Sec. V. Here we delve into its relationship to coarse
graining and emphasize that the slice encodes a sequence of
codimension-0 bulk regions, not merely the codimension-2
bulk convex surfaces. We also describe the relationship to
tensor networks, particularly continuous tensor networks
[27]. Because the holographic slice is constructed from one
boundary time slice, it can be used as a novel gauge fixing

of the bulk; this is discussed in the final subsection of
Sec. V. Since the slice grants us a way to uniquely pull in
the boundary, it is natural to consider its connection to
renormalization. This is explored in Sec. VI. We conclude
with discussing the slice’s place in the wider view of
quantum gravity in Sec. VII. The appendices contain proofs
of various geometric statements made in the body of
the text.

B. Preliminaries

This paper will work in the framework of holography for
general spacetimes proposed in Ref. [22]. We will highlight
the applications to AdS=CFT but use language from
generalized holography. In particular, the term “boundary”
will refer to the holographic screen, which reduces to the
conformal boundary of AdS. Additionally, holographic
screens have a unique time foliation into codimension-2
surfaces called leaves [28]. This uniqueness is lost in the
case of AdS because of the asymptotic symmetries, but to
remain consistent within the generalized framework we
must choose a particular time foliation of the boundary of
AdS [23]. We will then refer to a time slice of this foliation
as a leaf.
For a subregion, A, of a leaf, we will denote its HRRT

surface as γðAÞ and its entanglement wedge as EWðAÞ.
EWðAÞ is defined as the domain of dependence of any
closed, compact, achronal set with boundary A ∪ γðAÞ.2
Throughout this paper, we will work at the lowest order in
bulk Newton’s constant. In particular, we will only consider
extremal surfaces found by extremizing the area, not the
generalized entropy. We expect that by making appropriate
modifications, along the lines of Refs. [20,21,29], our
results can be extended to higher orders.
For an achronal codimension-2 surface ω, we denote the

domain of dependence of any achronal set with boundary ω
as DðωÞ. Wherever GN ¼ ld−1P appears, it represents
Newton’s constant in the bulk spacetime.

II. MOTIVATION

Amongst other things, the concept of subregion duality
in holographic theories allows us to address questions
regarding where bulk information is stored in the boundary
theory [6,7,30–36]. This line of inquiry has provided us
with the intuition that bulk geometric information is
encoded redundantly in the boundary theory. In particular,
a bulk local operator can be represented in multiple

1By maximally entangled, we mean that the von Neumann
entropy of any subregion saturates the Page curve [26]. This was
referred to as maximally entropic in Ref. [24].

2In standard AdS=CFT, reflective boundary conditions are
imposed at the conformal boundary. This extends the domain of
dependence for A ∪ γðAÞ to include the boundary domain of
dependence of A. However, for holographic screens there are no
such impositions on the screen (they can even be spacelike), and
thus EWðAÞ generally does not include any portion of the screen
other than A itself. In particular, there is no generalization of
causal wedges to holographic screens.
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different regions of the boundary, a special case being the
whole boundary space. However, despite this seemingly
democratic distribution of bulk information throughout
boundary degrees of freedom (d.o.f.), lack of access to
a boundary region necessarily prohibits the reconstruction
of a corresponding bulk region. Namely, if one removes
a subregion A from a leaf σ, the maximum possible bulk
region reconstructed from the remaining region, Ā, will be
the entanglement wedge of Ā, EWðĀÞ. This implies that
indispensable information of the region EWðAÞ is stored
in A.
Suppose one were to coarse grain over all boundary

subregions of balls of radius δ. From the logic above, the
bulk region whose information can remain is given by

RðBδÞ ¼ ⋂
p∈σ

EWðBδðpÞÞ; ð1Þ

where BδðpÞ is a ball of radius δ centered at point p on the
boundary leaf σ. Because the intersection of domains of
dependence is itself a domain of dependence,3 RðBδÞ is a
domain of dependence of some achronal set, and thus has a
unique boundary, σðBδÞ.
Motivated by ideas of holographic renormalization in

AdS=CFT [37–41], surface/state correspondence [13], and
previous work on holographic screens [15,22–24], we
conjecture that there exists a holographic state living on
σðBδÞ which encodes aspects of the bulk geometry to its
interior. A check of this proposal is that the HRRT
prescription can be consistently applied, in the sense that
the areas of these HRRT surfaces obey the known holo-
graphic entropy inequalities. Given this consistency check,
we conjecture that “coarse-grained subregion duality”
holds—namely that entanglement wedge reconstruction
holds on this new leaf.
Now suppose one wants to coarse grain over some scale

on this new leaf, σðBδÞ. This will produce a new leaf even
deeper in the bulk. Repeating this process will in turn
produce a series of new leaves, henceforth called renor-
malized leaves. Sending the coarse-graining scale at each
step to zero in a consistent manner will produce a
continuous family of renormalized leaves that sweep out
a smooth surface through the bulk,ϒ. The manner in which
ϒ is constructed naturally reveals its relationship to holo-
graphic coarse graining. This prompts us to assert that the
continuous coarse graining of a holographic state pulls the
boundary slice in along the slice ϒ.

III. HOLOGRAPHIC SLICE

The geometric object ϒ is what we will refer to as the
holographic slice. In this section, we give a more rigorous
definition of holographic slices and highlight some of the
salient properties of them.

A. Definition

Consider a closed codimension-2 achronal surface σ
living in a (dþ 1)-dimensional spacetime M. Denote the
two future-directed null orthogonal directions as k and l.
Suppose the null expansions along these directions satisfy
θk ≤ 0 and θl > 0.4 For concreteness, one could imagine σ
to be a leaf of a past holographic screen (θk ¼ 0, θl > 0) or
a time slice of the (regularized) boundary of AdS.
Borrowing this language, we will call σ a leaf. From
Ref. [15], we know that the boundary of the domain of
dependence of σ, DðσÞ, is an extremal surface barrier for
HRRT surfaces anchored to σ. In addition, the boundary of
an entanglement wedge of a subregion Γ on σ serves as an
extremal surface barrier for all extremal surfaces anchored
within EWðΓÞ.
Now, on σ, consider a family of open, codimension-0

(within the leaf) smooth subregions, with an injective
mapping from points on the leaf, p, to subregions, CðpÞ,
with the constraint that p ∈ CðpÞ and that CðpÞ varies
continuously with p. For example, one may take CðpÞ to be
open balls of radius δ centered at p, BδðpÞ. Now, let

RðCÞ ¼ ⋂
p∈σ

EWðCðpÞÞ; ð2Þ

where CðpÞ is the complement of CðpÞ in σ. From
Appendix A, we know that RðCÞ itself is a domain of
dependence of some achronal sets, all of which share a
unique boundary, σ1C, called a renormalized leaf; see Fig. 1.
Provided the characteristic scale of EWðCðpÞÞ is suffi-

ciently smaller than the extrinsic curvature scale of σ, we
can identify all points on σ1C with those on σ. At each point
on σ, consider the plane generated by k and l. This will
intersect σ1C at one point so long as adjacent planes do not
intersect at a caustic before hitting σ1C, which is guaranteed
if we take CðpÞ to be sufficiently small. We now have
a natural identification of the points on σ with points
on σ1C. In particular, we can identify the length scale δ on σ
to the appropriate scale on σ1C. Moreover, since σ1C ⊆
EWðCðpÞÞ ∀ p and the boundary of EWðCðpÞÞ serves
as an extremal surface barrier for all surfaces anchored
within EWðCðpÞÞ, all extremal surfaces anchored to σ1C are
contained within RðCÞ ¼ Dðσ1CÞ. If we interpret the area of
these extremal surfaces as entanglement entropies for the
associated subregions, the convexity of RðCÞ and the null
energy condition ensure that all known holographic entan-
glement inequalities are satisfied. This allows us to interpret
these extremal surfaces as HRRT surfaces.
Utilizing coarse-grained subregion duality, we can repeat

the construction above but with new subregions, C1ðpÞ, on
the renormalized leaf, σ1C. This yields a new leaf σ2C. We can

3We could not find a proof of this statement, so we have
included one in Appendix A.

4Appropriate modifications can be made to extend to surfaces
where θk ≥ 0 and θl < 0.
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associate points on σ2C with those on σ1C, and hence on σ, as
was done above. All we require of the new subregions is that
the size scale of CiðpÞ match with that of CðpÞ under the
natural identification described previously. This procedure
can be repeated until stringy effects become important, i.e.,
when the size of the renormalized leaf is OðlsÞ.
In the limit of sending the size of CðpÞ to 0 for all p, the

collection of all renormalized leaves in M, ϒ ¼ fσiCg
sweeps out a continuous surface. This is a holographic
slice. Note that we can take the GN → 0 limit in discussing
classical spacetime, so we may take CðpÞ → 0 thus making
ϒ continuous in this limit. We can then label the renor-
malized leaves of ϒ by some continuous parameter λ,
corresponding to the depth of the renormalized leaf, i.e.,
σðλÞ is some σiC and σð0Þ ¼ σ. Below we take λ to decrease
as i increases, so that λ ≤ 0.

B. Properties

1. Uniqueness

ϒ is dependent on an extraordinary number of d.o.f.,
namely the shape CðpÞ at each point on σ. Despite this
freedom, we find that ϒ is unique provided some mild
assumptions hold.
In particular, imposing homogeneity and isotropy on

CðpÞ (and each subsequent CiðpÞ) yields a unique holo-
graphic slice. For example, one can restrict themselves to
the case where CiðpÞ are composed of the same shape and
with random orientations. These all reduce to the slice
formed by considering balls of constant radius forCðpÞ and
mapping these balls to the subsequent renormalized leaves.
We will focus on this preferred slice for the remainder of
the paper.

A full discussion of uniqueness is provided in
Appendix B. However, one of the primary results is that
the vector s, which is tangent to ϒ and radially evolves the
leaf inward is given by

s ¼ 1

2
ðθklþ θlkÞ: ð3Þ

This tells us that for a (nonrenormalized) leaf of a holo-
graphic screen, s ∝ k and θs ¼ 0. In these situations, the
holographic slice initially extends in the null direction and
the leaf area remains constant.
In fact, the s vector coincides with the Lorentzian

generalization of the mean curvature vector of the leaf
[42,43]. This preferred holographic slice is then realized as
the mean curvature flow of the initial leaf.

2. Monotonicity of renormalized leaf area

One of the most important features of the holographic
slice is that the area of the renormalized leaves decreases
monotonically as λ decreases. This is crucial to the
interpretation as coarse graining. This property can be
shown in a manner similar to Ref. [44], but only after
showing that θk ≤ 0 and θl ≥ 0 for each renormalized leaf.
This is proved in Appendix C.
Armed with this knowledge, consider a point p on σ and

the s vector (defined in the previous section) orthogonal to
the leaf σ at p. The integral curves of s passing through p
provide a mapping of p to a unique point on each σðλÞ.
Now consider an infinitesimal area element δA around p.
The rate at which this area changes as one flows along s is
measured by the expansion

θs ¼ θkθl ≤ 0; ð4Þ
as found in Appendix B.
Since the area for all infinitesimal area elements

decreases on flowing along s, the total leaf area also
decreases. In fact, this property holds locally. For any
subregion of a renormalized leaf, as one flows inward along
the holographic slice the area of the subregion decreases
monotonically.

3. Monotonicity of entanglement entropy

Along with the fact that the renormalized leaf area
shrinks, the entanglement entropy of subregions also
decreases monotonically. This must necessarily happen
for a consistent interpretation that the coarse-graining
procedure continuously removes short-range entanglement.
This is precisely the spacelike monotonicity theorem of
Ref. [22], so we will only sketch the idea.5

Consider a leaf σ ¼ σðλ0Þ and a renormalized leaf
obtained after some small amount of radial evolution,

FIG. 1. RðBδÞ is the entanglement wedge associated with the
new leaf σ1C, where we have taken CðpÞ ¼ BδðpÞ. It is formed by
intersecting the entanglement wedges associated with the com-
plements of spherical subregions of size δ on the original leaf σ.

5This interpretation may in fact be the most natural explanation
of why the spacelike monotonicity theorem holds.
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σ0 ¼ σðλ0 þ δλÞ, where δλ < 0. A subregion A of σ is
mapped to subregion A0 of σ0 by following the integral
curves of s.
Suppose the HRRT surface γðA0Þ anchored to A0 is the

minimal surface on a spacelike slice Σ0. Now extend Σ0 by
including the portion of the holographic slice between σ
and σ0, such that Σ0 is now an achronal slice with boundary
σ. Now consider the minimal surface ΞðAÞ anchored to A
on this extended Σ0. ΞðAÞ has a portion in the exterior of σ0
which can be projected down to σ0 using the normal vector
s. This projection, denoted by ΞðAÞ → πðΞðAÞÞ, decreases
the area of ΞðAÞ due to the spacelike signature of Σ0. This
projection results in a surface anchored to A0, which must
have an area greater than that of γðA0Þ. On the other hand,
due to the maximin procedure [35], ΞðAÞmust also have an
area less than the area of the HRRT surface γðAÞ anchored
to A. In summary,

kγðA0Þk ≤ kπðΞðAÞÞk ≤ kΞðAÞk ≤ kγðAÞk; ð5Þ

where kxk represents the volume of the object x (often
called the area for a codimension-2 surface in spacetime).
The inequalities arise from minimization, projection, and
maximization, respectively.

4. Subregion flow contained within
entanglement wedge

Suppose one were given access to a finite subregion A on
the leaf σ and chose to apply the holographic slice con-
struction only to this subregion. The result would be a
sequence of renormalized leaves given by σðλÞ ¼ AðλÞ ∪ Ā,
with AðλÞ denoting the sequence of subregions that result
from radially evolving A as illustrated in Fig. 2.
An interpretation of this procedure as coarse graining

requires that it should not add any further information than
what was already available. Thus, it should not allow one to
reconstruct points in the bulk beyond what was already
accessible from A, i.e., EWðAÞ. This is ensured by the fact
that the boundary of EWðAÞ acts as an extremal surface
barrier for HRRT surfaces anchored to points inside
EWðAÞ, and thus, at no step does AðλÞ cross outside
EWðAÞ. In fact, if there were a nonminimal extremal
surface anchored to A which is contained within EWðAÞ,
the holographic slice would not be able to go beyond this.
This would be the case if one were to consider A to be a
large subregion of the boundary dual to an AdS black hole.

5. Probes the directly reconstructable region

Using the definition of Ref. [23], we define the directly
reconstructable region of spacetime as the set of bulk points
which can be localized by the intersections of some set of
boundary anchored HRRT surfaces and the boundary of
their entanglement wedges. Boundary operators correspond-
ing to the maximally localizable bulk operators are dual to
local operators in the directly reconstructable region [45].

As argued in Ref. [23], the interior of an equilibrated
black hole cannot be reconstructed using the intersection of
entanglement wedges. Since the horizon acts as a barrier for
all extremal surfaces anchored to points outside the black
hole, σðλÞ stays outside the horizon at each step. Thus, the
holographic slice cannot enter the black hole interior. This
implies that bulk regions that are not directly reconstruct-
able using the entire holographic screen are inaccessible to
any holographic slice.
In fact, as long as σðλÞ does not become extremal, the

holographic slice procedure can continue moving the leaf
spatially inward. This is a consequence of Theorem 1 in
Ref. [24]. As we will see later, the radial evolution will
only halt once the boundary state on the renormalized
leaf no longer has distillable local correlations. This can
happen in two ways. The first is that the surface closes off
to zero area (corresponding to the vanishing of the coarse-
grained Hilbert space). The second is if the surface
asymptotes to a bifurcation surface or Killing horizon
(corresponding to a maximally entangled state).
Holographic slices probe entanglement shadows, the

spacetime regions which cannot be probed by HRRT
surfaces anchored to a nonrenormalized leaf σ. The
extremal surfaces anchored to σ that probe the shadow
regions are nonminimal. This prevents the reconstruction of
points in these regions by using the intersection of HRRT
surfaces anchored to σ. However, the set of HRRT surfaces
used for constructing subsequent renormalized leaves need
not be minimal on σ; they need only be minimal on the
renormalized leaf at hand. Since nonminimal surfaces
anchored to σ become minimal when anchored to an
appropriately renormalized leaf σðλÞ, the holographic slice

FIG. 2. The radial evolution procedure when restricted to a
subregion A results in a new leaf σðλÞ ¼ AðλÞ ∪ Ā, where A is
mapped to a subregion AðλÞ contained within EWðAÞ (blue). The
figure illustrates this for two values of λ with λ2 < λ1 < 0
(dashed lines).
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can flow through entanglement shadows. We will see an
example of this in the next section.
Not only will the holographic slice itself flow through

entanglement shadows, HRRT surfaces anchored to a
renormalized leaf will probe regions behind shadows of
the original leaf. Again, this is because the minimal
extremal surfaces anchored to renormalized leaves need
not be portions of minimal extremal surface anchored to the
original leaf. In fact, one immediately starts recovering
portions of shadow regions once the boundary is pulled in.
This is what occurs in dense stars and conical AdS. In these
cases, more and more of the shadow is recovered as the
boundary is pulled in, and the entire shadow is only
recovered once the slice contracts to a point.6

Because the holographic slices pass through shadows, it
seems that the collection of all holographic slices anchored
to boundary leaves will sweep out the directly reconstruct-
able region. However, this breaks down if one considers a
disconnected boundary. Consider the case of a two-sided
AdS black hole. The directly reconstructable region can
include regions behind the horizon if one picks a foliation
of the left and right boundaries with an offset in time (see
Appendix A of Ref. [24]). The intersection of HRRT
surfaces anchored to large subregions with support on
both boundaries allow for the reconstruction of points
behind the horizon. On the other hand, the holographic
slice is built from infinitesimal HRRT surfaces anchored to
individual boundaries and hence cannot recover regions
built from these long-range correlations. In the two-sided
black hole (no matter what the offset in boundary times),
the holographic slice will always connect through the
bifurcation surface and never probe behind the horizon;
Sec. IV B explains this in detail.

IV. EXAMPLES

In this section, we illustrate salient properties of the
holographic slice using a few example spacetimes.

A. Conical AdS

We first consider conical AdS3 to illustrate that the
holographic slice probes regions inside entanglement
shadows. In order to obtain conical AdS3, we start with
the AdS3 metric

ds2 ¼ −
�
1þ r2

L2

�
dt2 þ

�
1þ r2

L2

�
−1
dr2 þ r2dθ2; ð6Þ

where L is the AdS length scale. We then perform a Zn
quotient, so that the angular coordinate θ has periodicity

2π=n. Locally, this spacetime is identical to AdS3, and
solves the Einstein equations for a negative cosmological
constant away from r ¼ 0. However, there is a conical
defect at r ¼ 0 introduced by the Zn quotient.
HRRT surfaces in this spacetime simply correspond to

minimal-length geodesics anchored to subregions at the
conformal boundary. As illustrated in Fig. 3, there are n
geodesics in the parent AdS3 spacetime which are candi-
date extremal surfaces for a given subregion. However,
generically only one of them is minimal and corresponds to
the HRRT surface. The geodesics in AdS3 are described by
the equation

tan2 θ ¼ r2 tan2 α − L2

r2 þ L2
; ð7Þ

where α is the half-opening angle of the subregion being
considered. Since the angular coordinate θ has a periodicity
of 2π=n, the minimal-length geodesic that probes deepest
into the bulk is obtained when α ¼ π=2n. From Eq. (7), this
gives a critical radius of [49]

rcritðnÞ ¼ L cot

�
π

2n

�
; ð8Þ

which takes a nonzero finite value for n ≠ 1. Thus, the
region r < rcritðnÞ is an entanglement shadow, which
cannot be probed by HRRT surfaces anchored to the
conformal boundary.

FIG. 3. The case of conical AdS3 with n ¼ 3. The points B, B0,
and B00 are identified. There are three geodesics from A to B, of
which generically only one is minimal. Here, we have illustrated
the subregion AB with α ¼ π=6, where two of the geodesics are
degenerate. This is the case in which the HRRT surface probes
deepest into the bulk, leaving a shadow region in the center.
Nevertheless, the holographic slice spans the entire spatial slice
depicted.

6This will be explored in future work. This is similar to how
entanglement of purification probes portions of shadow regions
[46]. However, to recover the entire shadow region using
entanglement of purification, one must impose additional con-
ditions on the purification [47,48].
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The holographic slice is constructed by finding infini-
tesimal HRRT surfaces starting from the (regularized)
conformal boundary. Since the spacetime is locally
AdS3, the HRRT surfaces for small regions are identical
to those in AdS3. Because of the static and spherically
symmetric nature of AdS3, the renormalized leaves corre-
spond to surfaces of constant r and t. Now, since rcritðnÞ is
not an extremal surface barrier, as can be seen from the
existence of nonminimal extremal surfaces penetrating it,
the holographic slice suffers no obstruction in crossing over
to the entanglement shadow. This implies that the holo-
graphic slice is simply given by a constant time slice that
covers all of the spatial region r ∈ ½0;∞Þ.
In general, holographic slices do not have any difficulty

in going into entanglement shadow regions, since these
shadows are not associated with extremal surface barriers
which any extremal surfaces anchored to the outside cannot
penetrate [50]. In fact, holographic slices also sweep
entanglement shadows other than those in the centers of
conical AdS, e.g., regions around a dense star [51].

B. Black holes

Consider a two-sided eternal AdSdþ1 Schwarzschild
black hole. The metric is given by

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩ2

d−1; ð9Þ

where

fðrÞ ¼ 1þ r2

L2
−
�
rþ
r

�
d−2

�
1þ r2þ

L2

�
; ð10Þ

with rþ being the horizon radius. As can be seen in Fig. 4,
the two exterior regions have a timelike Killing vector.
Thus, the HRRT surfaces anchored to subregions with
support only on one boundary respect the Killing symmetry
and lie on the constant t slice connecting the respective
boundary to the bifurcation surface. Subregions anchored
on both boundaries could potentially lie on a different
spatial slice if the HRRT surface is connected. However,
since we are considering the holographic slice being
built up using HRRT surfaces anchored to infinitesimal
subregions, those anchored on both sides always stay
disconnected.
Thus, the holographic slice, as seen in Fig. 4, is the union

of static slices in both exterior regions and terminates at the
bifurcation surface. As shown in Ref. [24], the bifurcation
surface itself is extremal and lies on a Killing horizon, and
hence the process of renormalizing leaves must asymptote
to this surface.
The phenomenon of a holographic screen being termi-

nated at a nontrivial surface requires the existence of a
bifurcation surface, which is absent in most physical
situations. For example, consider an AdS-Vaidya metric

where a black hole is formed from the collapse of a thin null
shell of energy [52]. The metric in ingoing Eddington-
Finkelstein coordinates is given by

ds2 ¼ −fðr; vÞdv2 þ 2dvdrþ r2dΩ2
d−1; ð11Þ

where

fðr; vÞ ¼ 1þ r2

L2
− θðvÞ

�
rþ
r

�
d−2

�
1þ r2þ

L2

�
; ð12Þ

with

θðvÞ ¼
�
0 for v < 0;

1 for v > 0:
ð13Þ

The null shell lies at v ¼ 0, and this spacetime is obtained
simply by stitching together an AdS-Schwarzschild metric
to the future of the shell and a pure AdS metric to the past.
The composite global spacetime is time dependent, but
each of the building blocks admits a timelike Killing vector
locally as shown in Fig. 5. As discussed earlier, since the
HRRT surfaces relevant to the holographic slice are those
of infinitesimal subregions, they only sense the local
spacetime, which is static. This allows us to construct
the holographic slice independently in each region. The
static slices can then be stitched together to obtain the
holographic slice as shown in Fig. 5.
An important feature here is that at late times, i.e.,

sufficiently after the black hole has stabilized, the holo-
graphic slice constructed from a leaf stays near the horizon
for a long time. Eventually, this flow terminates at r ¼ 0.

FIG. 4. The exterior of a two-sided eternal AdS black hole can
be foliated by static slices (black dotted lines). The holographic
slice (red) connects the boundary time slices at t ¼ t1 on the right
boundary and t ¼ t2 on the left boundary to the bifurcation
surface along these static slices.
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This behavior of holographic slices is, in fact, general in
one-sided black holes; see Fig. 6 for a schematic depiction.
Note that the picture of Fig. 6 is obtained in the GN → 0

limit. When GN ≠ 0, renormalized leaves will hit the
stretched horizon [53], where the semiclassical description
of spacetime breaks down, before being subjected to the
long flow near the horizon.

C. Friedmann-Robertson-Walker spacetimes

We now discuss a nontrivial example in a time-dependent
spacetime, away from the standard asymptotically AdS
context. Consider a (dþ 1)-dimensional flat Friedmann-
Robertson-Walker (FRW) spacetime containing a single
fluid component with equation-of-state parameter w

ds2 ¼ aðηÞ2ð−dη2 þ dr2 þ r2dΩ2
d−1Þ: ð14Þ

Here,

aðηÞ ¼ cjηjq; ð15Þ

where c > 0 is a constant, and

q ¼ 2

d − 2þ dw
: ð16Þ

The discontinuity of q at w ¼ ð2 − dÞ=d is an artifact of
choosing conformal time, and physics is smooth across this
value of w.
The spherically symmetric holographic screen is located

at

rðηÞ ¼ aðηÞ
da
dη ðηÞ

¼ η

q
: ð17Þ

By spherical symmetry, the holographic slice must be a
codimension-1 surface of the form η ¼ gðrÞ, where each
renormalized leaf is an Sd−1. Consider a renormalized leaf
at η ¼ η� and r ¼ r�. Generalizing the results from
Refs. [24,54], HRRT surfaces anchored to a small spherical
cap of half-opening angle γ of the renormalized leaf are
given by

ηðξÞ ¼ η� þ
_a
2a

ðξ2� − ξ2Þ þ � � � ; ð18Þ

where ξ ¼ r sin θ and ξ� ¼ r� sin γ with θ being the polar
angle, and a≡ aðη�Þ and _a≡ da=dηðη�Þ. We refer the
reader to Appendix C 3 of Ref. [24] for more details.
The next renormalized leaf is generated by joining

together the deepest point of each such HRRT surface.
Suppose Δη and Δr represent the change in conformal time
and radius from one renormalized leaf to the next. Then we
have

Δη ¼ _a
2a

ξ2� þ � � � ; ð19Þ

Δr ¼ −ðr� − r� cos γÞ; ð20Þ

so that

FIG. 5. Penrose diagram of an AdS-Vaidya spacetime formed
from the collapse of a null shell (blue), resulting in the formation
of an event horizon (green). Individual portions of the spacetime,
the future and past of the null shell, are static. Thus, the
holographic slice (red) can be constructed by stitching together
a static slice in each portion. FIG. 6. A schematic depiction of holographic slices for a

spacetime with a collapse-formed black hole in ingoing Edding-
ton-Finkelstein coordinates.
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Δη
Δr

¼ −
_a
2a r

2�sin2γ
r�ð1 − cos γÞ ¼ −

_a
a
r�: ð21Þ

Taking the limit γ → 0, we obtain a differential equation for
the radial evolution of the holographic slice

dη
dr

¼ −
qr
η
: ð22Þ

Integrating this equation gives us

η2 þ qr2 ¼ η2� þ qr2� ¼
1þ q
q

η20; ð23Þ

where η0 is the conformal time of the original nonrenor-
malized leaf.
Let us highlight a few interesting features of this holo-

graphic slice. First, it spans the entire interior region of the
holographic screen. Next, substituting r ¼ η=q into
Eq. (22) tells us that the holographic slice starts out in
the null direction from the leaf; see Eq. (17). This is
because the k direction locally has zero expansion there, as
discussed in Sec. III B. As we move inward along the radial
flow, however, the slope becomes flatter, and eventually the
surface reaches the highest point given by

ηðr ¼ 0Þ ¼ η0

ffiffiffiffiffiffiffiffiffiffiffi
1þ q
q

s
: ð24Þ

In Fig. 7 we have depicted holographic slices, given by
Eq. (23), for several values of w with d ¼ 3.

D. Asymptotically AdS and flat spacetimes

Here we discuss certain subtleties associated with holo-
graphic screens that lie on an asymptotic boundary. First,
consider a (dþ 1)-dimensional asymptotically AdS space-
time, which can be expanded in a Fefferman-Graham series
[55] near the boundary

ds2 ¼ L2

z2
fgabðxa; zÞdxadxb þ dz2g; ð25Þ

where L is the AdS length scale, and

gabðxa; zÞ ¼ gð0Þab ðxaÞ þ z2gð2Þab ðxaÞ þ � � � ð26Þ

Here, gð0Þab represents the conformal boundary metric, and
the subleading corrections represent deviations as one
moves away from the boundary at z ¼ 0.
In an asymptotically AdS spacetime, the holographic

screen H formally lies at spacelike infinity. In order to
construct a holographic slice in such a situation, one needs
to first consider a regularized screen H0 at z ¼ ϵ and then
take the limit ϵ → 0 after constructing the slice. Suppose

that a leaf is given by a constant t slice of H0, with hij
representing the induced metric on the leaf. The null
normals are then given by

kμ ¼ dz − dtþOðϵ2Þ; ð27Þ

lμ ¼ −dz − dtþOðϵ2Þ; ð28Þ

where the Oðϵ2Þ corrections arise due to deviations away
from the boundary. The null expansions are

θk ¼ hijΓz
ij − hijΓt

ij ¼ −
ϵðd − 1Þ

L
þOðϵ2Þ; ð29Þ

θl ¼ −hijΓz
ij − hijΓt

ij ¼
ϵðd − 1Þ

L
þOðϵ2Þ: ð30Þ

Thus, we see that the expansion θk vanishes only in the
limit ϵ → 0.
This implies that a leaf σ0 of a regularized screen H0

(ϵ ≠ 0) is, in fact, a renormalized leaf (θk ≠ 0), and thus the
results in Sec. III B—that the holographic slice initially
extends in the null direction and the leaf area remains
constant—do not apply. In fact, the holographic slice
extending from σ0 initially evolves inward along the z
direction up to corrections of OðϵÞ, as can be seen from the
fact that θk ¼ −θl up to OðϵÞ. In the limit ϵ → 0, both θk
and θl vanish simultaneously. This leads to a holographic
screen at spacelike infinity in a formal sense.7

A similar situation arises in asymptotically flat space-
times. A general asymptotically flat spacetime can be
expanded in the Bondi-Sachs form [56,57] as

FIG. 7. Holographic slices of (3þ 1)-dimensional flat FRW
universes containing a single fluid component with equation-of-
state parameter w.

7Strictly speaking, this does not satisfy the definition of the
holographic screen in Sec. III A, which requires θl to be strictly
positive.
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ds2 ¼ −
V
r
e2βdu2 − 2e2βdudr

þ r2hABðdxA −UAduÞðdxB −UBduÞ; ð31Þ

where each of the functions admits a large-r expansion with
the following behavior:

V ¼ rþOð1Þ; β ¼ O

�
1

r2

�
; ð32Þ

UA ¼ O

�
1

r2

�
; hAB ¼ Oð1Þ: ð33Þ

In order to construct a holographic slice, the holographic
screen H must be regularized to become a timelike surface
H0 at r ¼ R, where we can eventually take the limit R → ∞.
The null normals of a leaf on a constant time slice are

kμ ¼ du; ð34Þ

lμ ¼ −
V
r
du − 2dr; ð35Þ

giving the null expansions near the boundary

θk ¼ −
2

R
þO

�
1

R2

�
; ð36Þ

θl ¼
2

R
þO

�
1

R2

�
: ð37Þ

Thus, similar to the case of asymptotically AdS spacetimes, a
leaf of a regularized holographic screen is a renormalized
one, and both θk, θl → 0 simultaneously as R → ∞.

As a simple example, we illustrate the case of a
Minkowski spacetime in Fig. 8. As the limit R → ∞ is
taken, the holographic slices become complete Cauchy
hypersurfaces which are constant time slices anchored to
spatial infinity. In the limit t → þ∞ (−∞), future (past)
null and timelike infinities are obtained as a holographic
slice. In this situation, time evolution of the boundary
theory from t → −∞ to þ∞ corresponds to an S-matrix
description of the bulk.

V. INTERPRETATION AND APPLICATIONS

We have introduced the geometric definition of the
holographic slice and demonstrated some of its properties.
But what does the slice correspond to in the boundary
theory? What questions can it help us address? The
construction of the slice naturally lends itself to an
interpretation of eliminating information at small scales,
and hence can be well understood in the context of coarse
graining. Through this, we can think of the slice as an
isometric tensor network. This provides us with a new way
to think about holographic tensor networks and the bulk
regions of spacetime that they encode.
Throughout this section we will be talking about various

Hilbert spaces in which holographic states belong. To do
so, we will be taking GN to be finite but small. This is an
appropriate approximation for classical spacetimes pro-
vided we only concern ourselves with length scales
sufficiently larger than the Planck length.

A. Coarse graining

We take the view that a boundary state, jψð0Þi, lives on
the original leaf, ϒð0Þ, i.e., it lives in an effective Hilbert
space, H, having a local product space structure with
dimension log jHj ¼ kϒð0Þk=4GN. The HRRT prescrip-
tion says that the emergent bulk geometry is intricately
related to the entanglement of the boundary state. In
particular, despite the fact that bulk information is delo-
calized in the boundary theory, a bulk region cannot be
reconstructed if some boundary subregions are ignored.
The size of the smallest subregion for this to occur gives us
some idea of what scale of boundary physics this bulk
region is encoded in. Using this intuition, we can then
attempt to address what coarse graining the boundary state
corresponds to in the bulk.
At each step in the construction of the holographic slice,

we eliminate the region of spacetime associated with a
small length scale, δ, of the boundary. In particular, this is
the region of spacetime whose information is necessarily
lost if we cannot resolve below the length scale δ. In this
sense, we are coarse graining over the scale δ and obtaining
a new bulk region whose information has not been lost.
Recursively doing this and sending δ to zero produces a
continuum of bulk domains of dependence with unique

FIG. 8. Penrose diagram of a Minkowski spacetime. The
holographic slices (red) are anchored to the regularized holo-
graphic screen H0 (blue). As the limit R → ∞ is taken, the
holographic slices become complete Cauchy slices.
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boundaries sweeping out the holographic slice, ϒðλÞ. This
is depicted in Fig. 9.
A consistency check for this interpretation is that the size

of the effective Hilbert space should necessarily decrease as
we coarse grain over larger and larger scales. This is
precisely the monotonicity property listed in Sec. III: as one
flows along the holographic slice, the area of the renor-
malized leaves decreases. This tells us that the size of the
effective Hilbert space describing the bulk domain of
dependence also decreases.
As the coarse-graining procedure progressively removes

information at small scales, a corresponding removal of
bulk information closest to the renormalized leaf occurs.
Given this global removal of short-range information, one
should expect the entanglement between any region and its
complement to correspondingly decrease. This is precisely
the monotonicity of entanglement entropy property
observed in Sec. III. This is consistent with the interpre-
tation that at each step we are removing short-range
entanglement.
Using the holographic slice, we can address the question

of how much entanglement between a subregion and its
complement is sourced by physics at different scales. By
following the integral curves of s for the subregion, we can
stop at whatever scale we desire and use the HRRT
prescription on the renormalized leaf. This gives us the
entanglement entropy sourced by physics at length scales
larger than that associated with the renormalized leaf.

B. Radial evolution of states

We will now be more explicit in describing the frame-
work for coarse graining holographic states. Given a bulk

region Dðϒð0ÞÞ, there exists a quantum state jψð0Þi living
in some fundamental holographic Hilbert space, HUV, in
which the bulk information of Dðϒð0ÞÞ is encoded via the
HRRT prescription. This implies that HUV has a locally
factorizable structure. On the other hand, the area of ϒð0Þ
provides an upper bound for the dimension of the effective
Hilbert space that jψð0Þi lives in, which we callHϒð0Þ. That
is, jψð0Þi ∈ Hϒð0Þ ⊂ HUV. The dimension, jHϒð0Þj, of the
effective Hilbert space is defined as

ln jHϒð0Þj ¼
X
i

Si ¼
kϒð0Þk
4GN

: ð38Þ

Here, Si represents the entanglement entropy of jψð0Þi in
an infinitesimally small subregion, Ai, of the holographic
space Ω on whichHUV is defined. We sum over all of these
small subregions such that Ω ¼ ∪i Ai and Ai ∩ Aj ¼ ∅
(i ≠ j). This reduces to calculating the area of ϒð0Þ
because of the HRRT prescription. Namely, the size of
the effective Hilbert space that jψð0Þi lives in is determined
by the entanglement between the fundamental d.o.f. of
HUV, and kϒð0Þk=4GN is the thermodynamic entropy
associated with this entanglement structure.
As one continuously coarse grains jψð0Þi, information

encoded in small scales is lost. Correspondingly, informa-
tion of the bulk geometry that is stored in small scales is
lost, and the dimension of the effective Hilbert space that
the coarse-grained state lives in decreases. At a given scale
of coarse graining corresponding to λ, the new state, jψðλÞi,
lives in the same Hilbert space as the original leaf, HUV,
but now in an effective subspace, HϒðλÞ, with dimension
given by ln jHϒðλÞj ¼ kϒðλÞk=4GN. Additionally, jψðλÞi
only contains information of DðϒðλÞÞ, as we have explic-
itly lost the information necessary to reconstruct any part
of Dðϒð0ÞÞnDðϒðλÞÞ.
Because all of the coarse-grained states live in the

same Hilbert space, HUV, we can consider the coarse-
graining procedure as a unitary operation that takes us from
state to state, along the lines of the work in Ref. [58].
That is,

jψðλÞi ¼ Uðλ; 0Þjψð0Þi: ð39Þ

We can write Uðλ1; λ2Þ as

Uðλ1; λ2Þ ¼ P exp

�
−i

Z
λ1

λ2

KðλÞdλ
�
; ð40Þ

where P represents path ordering. KðλÞ is a Hermitian
operator removing physical correlations between nearby
subregions at the length scale, lλ, associated to λ on Ω.
Some appropriate measures of physical correlations would
be the mutual information [IðA; BÞ], entanglement nega-
tivity [NðA; BÞ], or entanglement of purification [EðA;BÞ]

FIG. 9. This depicts the holographic slice (maroon), and the
successive domains of dependence encoded on each renormal-
ized leaf.
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between neighboring small subregions of the leaf under
consideration, ϒðλÞ. Note that as the boundary state
becomes maximally entangled, all three of these measures
will vanish. This also happens if the boundary state in
consideration has no entanglement, i.e., is a product state.
Of the three measures, entanglement of purification

already has a bulk description that naturally characterizes
some measure of moving into the bulk. In particular, the
authors of Refs. [59,60] proposed that the entanglement of
purification of two boundary subregions, A and B, is
calculated by the minimum cross section, ζ, of a bipartition
of the extremal surface anchored to A ∪ B; see Fig. 10.
Considering the case where ∂A and ∂B coincide at some
point, and whose connected phase is the appropriate
extremal surface, the entanglement of purification gives
some measure of the depth of the extremal surface. In bulk
dimensions higher than 2þ 1, kζk will not be in units of
length, but it is still related to the depth of the extremal
surface. Thus it seems natural that KðλÞ is some (quasi)
local function, F, of physical correlations, including but not
necessarily limited to quantum entanglement, at the scale
lλ. For example, it may be related to the entanglement of
purification:

KðλÞ ∼
Z

dd−1xFðEλðxÞÞ; ð41Þ

where x are the coordinates of Ω. Here, EλðxÞ is the
“density” of the entanglement of purification between the
d.o.f. in two neighboring regions on σðλÞ around x.
Alternately, the case of subregion coarse graining as in

Fig. 2 motivates the usage of results from Ref. [61], which
can be used to map the state from σ to σðλÞ. In AdS=CFT,
modular evolution allows one to explicitly reconstruct bulk
operators on the HRRT surface. With our assumption that
the HRRT formula holds (with quantum corrections), a
similar construction should be possible given complete
knowledge of the boundary theory. KðλÞmay then be better
understood as a convolution over modular evolutions with
infinitesimal boundary subregions:

KðλÞ ∼
Z

dd−1xFðκλðxÞÞ; ð42Þ

where κλðxÞ is the modular Hamiltonian density on σðλÞ at
x. It would be interesting to make the connection ofKðλÞ to
modular evolution clearer in the future.
The process of removing short-range correlations con-

tinues until all correlations at the scale lλ have been
removed, and hence no more bulk spacetime can be
reconstructed. This can happen when the slice contracts
to a point and no local product structure exists in the
effective Hilbert space HϒðλÞ. Note that in HUV this state
corresponds to a product state, so that Si ¼ 0 for every
subregion in HUV. The other way in which all relevant
correlations vanish is when the coarse-grained state
becomes maximally entangled in HϒðλÞ. In HUV, this
corresponds to a state which satisfies SA ¼ P

i⊂ASi for
all subregions, A, of Ω, where i is a partition of A.
When the coarse-grained state becomes maximally

entangled in HϒðλÞ, Uðλþ dλ; λÞ becomes the identity
for Eq. (41) as KðλÞ becomes 0. Hence, the state remains
invariant under the coarse-graining operation. There are
two ways for this to happen geometrically. One is
if the slice approaches a bifurcation surface; then the
extremal surfaces coincide with the renormalized leaf,
hence preventing any further movement into the bulk.
This is the case for eternal two-sided black holes. The
second is if the slice approaches a null, nonexpanding
horizon and the state is identical along the horizon. This
is the case in de Sitter space. This result is complementary
to Theorem 1 of Ref. [24], which proves that if a
boundary state is maximally entangled, it must either
live on a bifurcation surface or a null, nonexpanding
horizon.
This may initially seem like a contradiction—that

both the state becomes maximally entangled and that
there are no more correlations to harvest. However, it is
precisely because we are examining correlations at small
scales that this occurs. A small boundary region is
maximally entangled with the rest of the boundary,
and hence the short-range entanglement must vanish.
One can quantify this by examining the entanglement
negativity of bipartitions of small subregions on σðλÞ.
As states become maximally entangled, the entangle-
ment negativity vanishes for two small subregions. This
places an upper bound on the real, distillable entangle-
ment between these subregions. Hence, the true quan-
tum entanglement at small scales vanishes as a state
becomes maximally entangled. Correspondingly, the
coarse-graining procedure halts. This is indeed what
happens to the holographic slice.
The same can also be seen by considering the modular

evolution, Eq. (42), of a maximally entangled subregion. In
this case, the modular evolution is proportional to the
identity operator, and hence the modular flow of the state is
stationary. This corresponds to no movement into the bulk
as expected by the properties of the holographic slice for
maximally entangled states.

FIG. 10. Let A and B two boundary subregions. The blue lines
represent the HRRT surface of A ∪ B and ζ is the minimal cross
section. The entanglement of purification of A and B is given by
kζk=4GN. In the limit that A and B share a boundary point, ζ
probes the depth of the extremal surface.
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C. Tensor network picture

In this language the relationship to tensor networks is
very clear. The holographic slice arises as the continuous
limit of a tensor network that takes a boundary state and
disentangles below a certain scale, reducing the effective
Hilbert space size. This is a slight generalization of the
continuous multiscale entanglement renormalization ansatz
(cMERA) [27], which is restricted to hyperbolic geometries.
In general, we can consider a tensor network as a

noncontinuum modeling of the holographic slice, which
isometrically embeds boundary states into spaces of lower
effective dimension by removing short-range correlations;
see Fig. 11. In the ground state of AdS=CFT, this
corresponds to an instance of the multiscale entanglement
renormalization ansatz (MERA) [62]. Each layer of the
tensor network then lives on the corresponding renormal-
ized leaf of the discrete version of ϒ. From this we see that
the tensor network lives on this discrete version of the
holographic slice. Because isometric tensor networks obey
a form of HRRT, one may mistakenly conclude that the cut

through the network computes the area of the correspond-
ing surface in the bulk along the holographic slice. This is
generally not the case; the maximin method tells us that
this area provides only a lower bound on the entanglement.
The entanglement calculated in this way instead corre-
sponds to the area of the HRRT surface anchored to the
appropriate subregion of a renormalized leaf. In other
words, the tensor network should not be viewed as a
discretization of the holographic slice, but rather as a set of
boundary states dual to successively smaller domains of
dependence.
In fact, this interpretation can be applied to any isometric

tensor network, and we argue that this is the proper way to
view tensor networks representing bulk spacetimes.
That is, given a state represented by an isometric tensor
network, one can find a set of states by pushing the
boundary state through the tensors one layer at a time
such that no two layers have the same boundary legs.8

These successive states are then dual to bulk domains of
dependence that are successively contained in each other,
and whose boundaries lie on (a discrete version of) the
holographic slice.

D. Time evolution and gauge fixing

The preferred holographic slice of Sec. III B 1 provides
us with a novel way to foliate spacetimes. By applying the
holographic slice procedure to each boundary time slice,
one foliates the bulk spacetime with holographic slices.
In order for this to provide a good gauge fixing, the

holographic slices generated from different boundary time
slices must not intersect. In spherically symmetric cases,
these intersections do not occur. From the spherical
symmetry of the spacetime, the renormalized leaves must
also be spherical. Thus, if two holographic slices did
intersect, they must intersect at a renormalized leaf.
However, the evolution of the slice is unique from this leaf,
and hence these two slices do not intersect. Furthermore, the
reverse flow is also unique and hence the slices must exactly
coincide. This prevents ambiguities in the gauge fixing of
the bulk spacetime.
Outside of spherically symmetric cases, if sgnðKÞ, the

sign of the extrinsic curvature of the slice, is constant over
the slice then no slices will intersect. By joining a slice
with the past (future) portion of the holographic screen in
the K ≥ 0 (≤0) case, one can create a barrier for extremal
surfaces anchored in the interior of the barrier. This implies
that any slice constructed from a leaf cannot penetrate

FIG. 11. A tensor network for a nonhyperbolic geometry. The
green rectangles correspond to disentanglers while the blue
triangles are coarse-graining isometries. Each internal leg of
the tensor network has the same bond dimension. We are
imagining that σ corresponds to a leaf of a holographic screen
and each successive layer (σ1 and σ2) is a finite size coarse-
graining step of the holographic slice. Through this interpretation,
the tensor network lives on the holographic slice. However, the
entanglement entropy calculated via the min-cut method in the
network does not correspond to the distance of the cut along the
holographic slice in the bulk. It corresponds to the HRRT surface
in the appropriate domain of dependence. The locations of σ1 and
σ2 in the bulk are found by convolving the HRRT surfaces for the
small regions being disentangled and coarse grained. The holo-
graphic slice is a continuous version of this tensor network.

8This picture can perhaps be used to show that the dynamical
holographic entropy cone is contained within the holographic
entropy cone [14]. By explicitly constructing the holographic
slice tensor network that encodes a state of a time dependent
geometry, we will have found a model that encodes the entropies
in a way that ensures containment within the holographic entropy
cone.
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slices generated from leaves towards its future (past) if
K ≥ 0 (≤0).
As explained in Secs. III B and IV, the foliation gen-

erated by the holographic slices will not probe behind late-
time horizons. Thus this foliation provides a gauge fixing of
the region of spacetime exterior to black hole horizons. In
this region, the foliation provides a covariant map from
boundary time slices to bulk time slices.

VI. RELATIONSHIP TO RENORMALIZATION

In this section, we discuss how our coarse-graining pro-
cedure is related to conventional renormalization, both in the
context of standard quantum field theories and AdS=CFT.

A. Analogy to renormalization
in quantum field theories

We first draw an analogy between pulling in the
boundary along the holographic slice and standard renorm-
alization in quantum field theories. In particular, we liken
the limitations of fixed-order perturbation theory to the
existence of reconstructable shadows. We begin by review-
ing renormalization in quantum field theories phrased in a
way to make the relationship clear.
Suppose one computes the amplitude of a process

involving two widely separated mass scales m and E in
fixed-order perturbation theory. In terms of a renormalized
coupling constant g, it is given generally in the form

M ¼
X∞
n¼0

cn

�
g

16π2
ln
E
m

�
n
; ð43Þ

where the cn’s are of the same order. This implies that even
if g=16π2 is small, this perturbation theory breaks down
when lnðE=mÞ ∼ 16π2=g.
There is, however, a way to resum these logarithms: the

renormalization group. Introducing the concept of a run-
ning coupling constant, gðμÞ, defined at a sliding scale μ,
the amplitude of Eq. (43) can be written as

M ¼
X∞
n¼0

cn

�
gðμÞ
16π2

ln
E
μ

�
n
: ð44Þ

The process can now be calculated perturbatively as long as
both gðmÞ=16π2 and gðEÞ=16π2 are small, where gðmÞ and
gðEÞ are related by a continuous renormalization group
evolution. In general, the range of validity of this renorm-
alization-group-improved perturbation theory is larger than
that of fixed-order perturbation theory.
This phenomenon is analogous to the existence of

shadows in the holographic reconstruction. If one tries to
reconstruct the bulk in a “single shot” using HRRT surfaces
anchored to the original leaf, then there can be regions in
spacetime (shadows) that cannot be reconstructed. This,
however, is not a fundamental limitation of the perturbative

reconstruction of the bulk. As we have seen, we can
reconstruct a portion of entanglement shadows by perform-
ing a reconstruction in multiple steps by first renormalizing
the leaf and then using HRRT surfaces anchored to the
renormalized leaf. By doing this renormalization with more
steps, one can progressively probe deeper into shadow
regions. Going to the continuum limit (the holographic
slice), we find that we can describe physics in shadows
without difficulty.
Even with the renormalization group improvement, the

perturbative description of physics stops working when
gðμÞ hits a Landau pole or approaches a strongly coupled
fixed point. This is analogous to the fact that the evolution
of the holographic slice halts, Uðλ1; λ2Þ ∝ 1 in Eq. (40),
once the renormalized leaf contracts to a point or
approaches a horizon. Incidentally, this picture is consonant
with the idea that describing the interior of a black hole
would require “nonperturbative” physics.9

We stress that from the boundary point of view, the
renormalization of a leaf corresponds to the coarse
graining of a state at a fixed time. A natural question is
if there is an effective theory relating coarse-grained states
at different times. We do not see a reason to doubt the
existence of such a theory, at least for d.o.f. sufficiently
deep in the bulk. Since the coarse graining depends on the
state, however, the resulting description may well be
applicable only within a given geometry, i.e., a selected
semiclassical branch of the fundamental state in quantum
gravity.

B. Comparison to holographic renormalization
in AdS=CFT

How is the holographic slice related to holographic
renormalization in asymptotically AdS spacetimes?
There is extensive literature devoted to the latter subject.
Here we will highlight the essential difference between our
renormalization procedure and the perspective of Susskind
and Witten [67].
If one kept N2 (the number of field d.o.f.) fixed per cutoff

cell and applied the Susskind-Witten method of regulari-
zation deeper in the bulk, a local description of physics on
the boundary would break down once R ≈ lAdS. Here, R and
lAdS are the radius of the cutoff surface and the AdS length
scale, respectively. This is because the number of d.o.f.
within an lAdS-sized bulk region is of order ðlAdS=lPÞd−1,
which is just N2. Here, lP is the Planck length in the bulk.
However, holography extends to sub-AdS scales, and

the extremal surfaces anchored to a cutoff at lAdS satisfy
the appropriate properties to be interpreted as entangle-
ment entropies [13,15]. As emphasized throughout the

9In particular, an interior description may require changing the
basis of multiple black hole microstates [63,64], each of which
can be viewed as having different background geometries
corresponding to slightly different black hole masses [65,66].
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text, the connection between entanglement and geometric
quantities seems to extend beyond AdS=CFT [19,68].
Because of this, we expect that there should be some
way to renormalize the boundary state in such a way to
preserve the HRRT prescription at all scales. This is,
however, prohibited if we fix N2 because already at an
lAdS-sized region we lose the ability to talk about the
entanglement of boundary subregions (as there is only one
boundary cell).
Therefore, if one wants to preserve the ability to use the

HRRT prescription, N2 must change as the boundary is
pulled in. Simply requiring that N2 ≥ 1 per cell will allow
renormalization down to lP. This is easily seen by noticing
that the number of cells for a boundary moved in to radius
R (≤ lAdS) is given by the total number of bulk d.o.f.,
ðR=lPÞd−1, divided by N2. This implies that when R ¼ lP
the number of cells is of order unity, and the holographic
description must break down. In fact, the bulk description is
expected to break down before this happens. Suppose that
the gauge coupling, g, of the boundary theory stays
constant. Then the requirement of a large ’t Hooft coupling,
N2 ≥ 1=g4 ¼ ðls=lPÞd−1, implies that the bulk spacetime
picture is invalidated when R≲ ls. Here, ls is the string
length. Assuming the existence of a renormalization
scheme preserving the HRRT prescription implies that
there exists a way to redistribute the original N2 d.o.f.
spatially on a coarse-grained holographic space.
The construction of the holographic slice requires

extremal surfaces to be anchored to renormalized leaves,
so the renormalization procedure utilized must necessarily
preserve the ability to use the HRRT prescription. The
holographic slice, therefore, must employ the special
renormalization scheme described above.

VII. DISCUSSION

The holographic slice is defined using HRRT surfaces,
and hence is inherently background dependent. This
prohibits the use of the holographic slice as some way
to analyze the coarse-grained behavior of complex quan-
tum-gravitational states with no clear bulk interpretation. In
particular, if a state is given by a superposition of many
different semiclassical geometries,

jΨi ¼ c1jψ1i þ c2jψ2i þ � � � ; ð45Þ

then the holographic slice prescription can be applied to
each branch of the wave function, jψ ii, independently.
However, there is no well-defined slice for jΨi. This is
the same limitation one would face when considering the
entanglement wedge of similar states. Despite this, for
superpositions of states within the code subspace, the
analyses of Refs. [23,69] tell us that the holographic slice
construction is well defined.

Regardless, the holographic slice sheds light on the nature
of bulk emergence. The construction of the slice harvests
short-range entanglement between small subregions—not in
the form of entanglement entropy. It is precisely this that
allows the slice to flow into the bulk and through entangle-
ment shadows. This work emphasizes the idea that entan-
glement entropy asmeasured by vonNeumann entropy is not
sufficient to characterize the existence of a semiclassical bulk
viewed from the boundary. Other measures of entanglement
(negativity, entanglement of purification, etc.) may be more
useful to analyze bulk emergence. This was explored
extensively in Ref. [24].
The slice additionally provides a very natural interpre-

tation for nonminimal extremal surfaces as the entangle-
ment entropy for subregions of coarse-grained states.
Because the coarse-graining procedure mixes up the
boundary d.o.f. while removing the short-range informa-
tion, the interpretation of nonminimal extremal surfaces in
terms of purely UV boundary terms will necessarily be very
complicated [49]. However, once coarse graining occurs
these complicated quantities manifest with a simple inter-
pretation. This is also what is seen in the entanglement of
purification calculations.
By assuming that the holographic states all live within

the same infinite-dimensional Hilbert space,HUV, we were
able to discuss the mapping from a boundary state to a
coarse-grained version of itself. This is what gave rise to the
KðλÞ operator in Sec. V B. Alternatively, rather than use
HUV to discuss coarse graining, one can use it to talk about
time evolution in the boundary theory. One of the major
hurdles in formulating theories for holographic screens is
the fact that the area of the screens is nonconstant. If one
were to view this area as determining the size of the true
Hilbert space the state lived in, then time evolution would
require transitions between Hilbert spaces. However, by
viewing the leaf area as a measure of the size of the
effective subspace that the state lives in, we are free from
this complication. In fact, modeling time evolution is
similar to performing the reverse of the coarse-graining
operation. This introduces entanglement at shorter and
shorter scales, which increases the effective subspace’s
size. Of course, time evolution must account for other
complex dynamics, but simply increasing the screen area is
not difficult. This interpretation suggests that the area of
holographic screens is a thermodynamic entropy measure,
rather than a measure of the fundamental Hilbert space size.
Concluding, the holographic slice is a novel, covariantly

defined geometric object. It encodes the bulk regions dual
to successively coarse-grained states and we proposed that
the flow along the slice is governed by distillable corre-
lations at the shortest scales. This may be related to the
entanglement of purification of small regions or the
modular evolution of such regions. An investigation of
the explicit boundary flow along the slice seems to be the
most promising avenue of future work. It may also be
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fruitful to study the mean curvature vector flow of codi-
mension-2 convex surfaces in Lorentzian spacetimes, as
characterizing solutions to this flow may provide insights
into the coarse-graining operation.
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APPENDIX A: INTERSECTION OF DOMAINS
OF DEPENDENCE

Lemma 1. Let Σ be a closed, achronal set and DðΣÞ be
the domain of dependence of Σ. Let p and q be points in
DðΣÞ, and λ a causal curve such that λð0Þ ¼ p and λð1Þ ¼
q where p lies to the past of q. Then, all points r ¼ λðtÞ for
t ∈ ½0; 1� are contained in DðΣÞ.
Proof.—Suppose that such a point r does not belong to

DðΣÞ. Then, there must exist an inextendible causal curve
λ0 that passes through r and does not intersect Σ. Without
loss of generality, assume that r lies to the past of Σ.
Consider a causal curve composed of λ to the past of r and
λ0 to the future of r. This would then be an inextendible
causal curve passing through p but not intersecting Σ,
implying that p does not belong toDðΣÞ, thus contradicting
the assumption. ▪
Lemma 2. Let R be a closed set such that every causal

curve connecting two points in R lies entirely in R. Let Σ be
the future boundary of R defined by points p ∈ R such that
∃ a timelike curve λ passing through p that does not
intersect R anywhere in the future. Then,
(1) Σ is an achronal set, and
(2) R ⊆ DðΣÞ.
Proof.—We first show that Σ is an achronal set. Suppose

there exist two pointsp and q inΣ that were timelike related.
Without loss of generality, assume thatp lies to the past of q.
Consider an open neighborhood of p denoted by UðpÞ.
Consider a point r such that r ∈ fIþðpÞ ∩ UðpÞgnR. By
continuity, ∃ a timelike curve λ connecting r to q. λ can then
be extended to pass through p in the past. Thus, we have
found a causal curve that connects points p and q, both of
which belong to R, and passes through r ∉ R. This contra-
dicts the assumption, and hence, Σ must be an achronal set.
Now, we can show that R ⊆ DðΣÞ. Consider a point p

such that p ∈ RnΣ. Then, IþðpÞmust intersect Σ. To show
this, suppose it were not true and consider a future causal
curve λ from p which does not intersect Σ. The boundary
point of λ ∩ R then also has a timelike curve through it

which does not intersect R anywhere in the future, and
thus should be included in the set Σ. Therefore, IþðpÞ
either intersects Σ everywhere in the interior of Σ or
intersects some portion of the boundary of Σ. In the
first case, all inextendible causal curves through p
necessarily pass through Σ, and hence p ∈ DðΣÞ. In the
second case, extend Σ in a spacelike manner to an open
neighborhood around Σ where a point q outside Σ is
timelike related to p. Causal curves from p to qwould not
intersect Σ since q is spacelike related to all points on Σ.
Consider the intersection of this curve with R. It must
have a boundary point which does not belong to Σ. This
point would then have inextendible timelike curves
through it that do not intersect R in the future. This
contradicts the assumption that this point was not in Σ.
This implies that the second case is impossible. Hence, we
have proved that R ⊆ DðΣÞ.
Theorem 1. Consider two codimension-1 spacelike

subregions Σ1 and Σ2 that are compact. Let their domains
of dependence be DðΣ1Þ ¼ D1 and DðΣ2Þ ¼ D2. Then
D ¼ D1 ∩ D2 is the domain of dependence of the future
boundary of D denoted by Σ.
Proof.—Consider any two pointsp andq that belong toD.

Both p and q belong toD1 andD2. Using Lemma 1, we can
conclude that all points on a causal curve joining p and q
belong to bothD1 andD2. Hence, any such point also belongs
to D. Thus, D satisfies the condition required for R above in
Lemma 2. Using Lemma 2 then tells us that D ⊆ DðΣÞ.
Since Σ is defined to be the future boundary ofD, Σ itself

is necessarily contained inD. Now consider any p ∈ DðΣÞ.
Any causal curve λ passing through p intersects Σ by
definition. However, since Σ ⊆ D, all inextendible causal
curves through Σ necessarily intersect both Σ1 and Σ2.
Thus, all inextendible causal curves through p also pass
through both Σ1 and Σ2. This implies DðΣÞ ⊆ D.
Combining the above two results, we have shown that

D ¼ DðΣÞ. Namely, the intersection of two domains of
dependence is also a domain of dependence.

APPENDIX B: UNIQUENESS OF THE
HOLOGRAPHIC SLICE

Consider a codimension-2, closed, achronal surface σ in
an arbitrary (dþ 1)-dimensional spacetime M. Suppose σ
is a convex boundary. We assume that both M and σ are
sufficiently smooth so that variations in the spacetime
metric gμν and induced metric on σ, denoted by hij, occur
on characteristic length scales L and Lσ , respectively.
Theorem 2. Consider a subregion R of characteristic

length δ ≪ L; Lσ on σ. To leading order, the extremal
surface anchored to ∂R lives on the hypersurface generated
by the vector s ¼ θtt − θzz normal to σ. Here, t and z are
orthonormal timelike and spacelike vectors perpendicular
to σ, and θt ¼ hijKt

ij and θz ¼ hijKz
ij whereK

t
ij andK

z
ij are
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the extrinsic curvature tensors of σ for t and z, respectively.
This property is independent of the shape of R.
Proof.—Start from a point p ∈ R and set up Riemann

normal coordinates in the local neighborhood of p,

gμνðxÞ ¼ ημν −
1

3
Rμρνσxρxσ þOðx3Þ: ðB1Þ

In these coordinates, we are considering a patch of size δ
around the origin p with Rμρνσ ∼Oð1=L2Þ. Equivalently,
we could consider a conformally rescaled metric

xμ ¼ ϵyμ; ðB2Þ

ds2 ¼ ϵ2gμνðϵyÞdyμdyν; ðB3Þ

ds̃2 ¼ gμνðϵyÞdyμdyν ¼ g̃μνðyÞdyμdyν; ðB4Þ

where ϵ ¼ δ=L ≪ 1.
In this alternate way of viewing the problem, we have a

patch of size L with the metric varying on a larger length
scale L=ϵ. In these coordinates, each derivative of the
conformal metric brings out an extra power of ϵ; for
example,

∂2

∂yρ∂yσ g̃μν ¼ ϵ2
∂2

∂xρ∂xσ gμν ∼
ϵ2

L2
: ðB5Þ

The connection coefficients Γμ
ρσ vanish at p due to our

choice of Riemann normal coordinates. This implies that
for points in the neighborhood of p, we can Taylor expand
to find

Γμ
ρσ ∼

ϵ2

L
; ðB6Þ

Rμρνσ ∼
ϵ2

L2
: ðB7Þ

Note that these quantities are obtained using the rescaled
metric g̃μν in the yμ coordinates.
Since there is still a remaining SOðd; 1Þ symmetry that

preserves the Riemann normal coordinate form of the
metric, we can use these local Lorentz boosts and rotations
to set t and z as the coordinates in the normal direction to σ
at p while yi parametrize the tangential directions. This is a
convenient choice to solve the extremal surface equation in
a perturbation series order by order. The extremal surface
equation is given by [5]

g̃ρσð∂ρ∂σYμ þ Γμ
λη∂ρYλ∂σYη − Γλ

ρσ∂λYμÞ ¼ 0: ðB8Þ

This is a set of dþ 1 equations for the embedding of the
extremal surface Yμ, which are functions of d − 1 inde-
pendent coordinates. The equations in the tangential
directions are trivially satisfied by taking the d − 1

parameters to be yi. This leaves only two equations in
the normal directions to be solved.
From the discussion above, when restricted to the local

patch of size L, we have

g̃μν ¼ ημν þOðϵ2Þ; ðB9Þ

Γμ
ρσ ¼ O

�
ϵ2

L

�
: ðB10Þ

Assuming the extremal surface is smooth, derivatives of Yμ

typically bring down a power of Lσ. Thus,

∂Y ∼Oð1Þ; ðB11Þ

∂2Y ∼O

�
1

Lσ

�
: ðB12Þ

Using this, at the leading order in ϵ and ϵσ ¼ δ=Lσ , the
extremal surface equations simply become

δij∂i∂jYμ ¼ 0; ðB13Þ

where μ takes the t and z directions. We write these as

∇2tE ¼ ∇2zE ¼ 0; ðB14Þ

where tE and zE are functions of yi.
Let Kt

ij, K
z
ij denote the extrinsic curvature tensors for the

t and z normals, respectively. Following the above scaling
arguments, Kt

ij; K
z
ij ∼ ϵ=Lσ. Here, we have assumed that

Lσ ≲ L, although this is not essential for the final result.
Because t and z are normal to the leaf, the equations for the
leaf, described by tLðyiÞ and zLðyiÞ, can be Taylor
expanded in the neighborhood R as

tLðyiÞ ¼ −
1

2
Kt

ijy
iyj þO

�
ϵ2y3

L2
σ

�
; ðB15Þ

zLðyiÞ ¼
1

2
Kz

ijy
iyj þO

�
ϵ2y3

L2
σ

�
; ðB16Þ

where the negative sign in the first line is due to the timelike
signature of the t normal. The boundary conditions for the
extremal surface equation are

tEð∂RÞ ¼ tLð∂RÞ; ðB17Þ

zEð∂RÞ ¼ zLð∂RÞ: ðB18Þ

Now, consider δt ¼ tE − tL and δz ¼ zE − zL. The extremal
surface equations are then given by

∇2δt ¼ −∇2tL ¼ θtf1þOðϵσÞg; ðB19Þ
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∇2δz ¼ −∇2zL ¼ −θzf1þOðϵσÞg; ðB20Þ

where θt ¼ hijKt
ij and θz ¼ hijKz

ij. Note that hij ¼ ηij at
this order. The boundary conditions are given by

δtð∂RÞ ¼ δzð∂RÞ ¼ 0: ðB21Þ

It is now clear that at leading order δt=θt and −δz=θz
satisfy the same equation with the same boundary con-
ditions. Thus,

δt
δz

¼ −
θt
θz

þOðϵσÞ; ðB22Þ

for all points on the extremal surface. Rewritten, the
extremal surface lives on the hypersurface generated by
s ¼ θtt − θzz, orthogonal to σ.
This result is independent of the explicit shape of

subregion R. ▪
Theorem 2 essentially brings us to the uniqueness of the

holographic slice. The new surface, σ0, is generated by a
convolution of the “deepest” points on each γðRÞ.
Considering balanced shapes such that the “deepest” point
corresponds to yi ¼ 0, δt=δz has the interpretation of the
slope of the evolution vector s from p which takes it to the
new leaf σ0. Slight imbalances in the shape would only
affect the slope at subleading order in ϵ; ϵσ and thus, the
slope of s is determined in a shape-independent manner in
the limit ϵ; ϵσ → 0. In order to move to σ0, we must also
specify the distance, δλðpÞ, by which we move along s at
each step. If the size of CðpÞ is homogeneous across σ, then
δλðpÞ is independent of p to leading order. Thus, the new
leaf σ0 obtained at each stage is unique up to small error
terms. Following a similar procedure at each stage, e.g. by
choosing random uncorrelated shapes of size δ0 (found by
mapping length δ to σ0 by s) for subregions C0ðpÞ at each
point p, ensures that the error terms do not add up
coherently. This implies that the holographic slice is
obtained by following the integral curves of the evolution
vector s starting from each point p ∈ σ, and hence is
unique.
Corollary 1. Construct a holographic slice such that

CiðpÞ is homogeneous and uncorrelated with CjðpÞ, j ≠ i.
Let the sizes of CiðpÞ be determined by mapping the
characteristic length, δ, of CðpÞ on σ to σi by s. The
continuum version (sending δ → 0) of all such slices are
identical.
As an aside, there are certain interesting features that this

analysis highlights. Consider a generic leaf of a holo-
graphic screen σ and the future-directed orthogonal null
vectors k and l normalized as k · l ¼ −2. The t and z
vectors are then given by

t ¼ 1

2
ðkþ lÞ; z ¼ 1

2
ðk − lÞ: ðB23Þ

From the linearity of extrinsic curvature, this leads to

θt ¼
1

2
ðθk þ θlÞ; θz ¼

1

2
ðθk − θlÞ: ðB24Þ

The evolution vector s and its associated expansion θs are
given by

s ¼ θtt − θzz ¼
1

2
ðθklþ θlkÞ; ðB25Þ

and

θs ¼ θ2t − θ2z ¼ θkθl ≤ 0; ðB26Þ

respectively.
At the holographic screen, θk ¼ 0. This leads to

s ∝ k; θs ¼ 0: ðB27Þ

Namely, the initial evolution of the holographic slice from a
nonrenormalized leaf occurs in the k direction with a
nonexpanding or contracting leaf area.

APPENDIX C: CONVEXITY OF
RENORMALIZED LEAVES

Definition. On a spacelike slice Σ, a compact set S is
defined to be convex if all the codimension-1 minimal
surfaces γðAÞ anchored to a codimension-2 region A ⊂ S
are such that ∀A, γðAÞ ⊂ S.
Lemma 3. S is convex if and only if KΣð∂SÞ ≤ 0, where

KΣð∂SÞ is the trace of the extrinsic curvature of ∂S
embedded in Σ for the normal pointing inward.
Proof.—This follows from the fact that if KΣð∂SÞ ≤ 0,

∂S acts as a minimal surface barrier and hence, all the
minimal surfaces must be contained within S. For the
converse, suppose KΣð∂SÞ > 0 somewhere on ∂S; then by
considering small enough subregions anchored to this
portion of ∂S, one can explicitly construct minimal surfaces
that are outside S.
Definition. In a spacetimeM, a codimension-2 compact

surface σ is called a convex boundary if on every codi-
mension-1 spacelike slice Σ such that σ ⊂ Σ, the closure of
the interior of σ is a convex set.
Theorem 3. σ is a convex boundary if and only if the

null expansions in the inward direction, i.e., θk and θ−l, are
both nonpositive.
Proof.—An inward normal n on a spacelike slice Σ is

given by a linear superposition of k and l, i.e., n ¼ αk − βl
with some α; β ≥ 0. If θk ≤ 0 and θl ≥ 0, then KΣðσÞ ¼
θn ¼ αθk − βθl ≤ 0 for all choices of α; β ≥ 0. Thus, from
Lemma 3, σ would be convex on all Σ containing σ. For the
converse, suppose θk > 0. One can then choose Σ such that
KΣðσÞ > 0 by taking β ≪ α. Thus, from Lemma 3, σ would
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not be convex on Σ, and hence σ would not be a convex
boundary. The same argument applies if θl < 0. ▪
Fact. A leaf of a holographic screen is a convex

boundary. The boundary of any entanglement wedge is
also a convex boundary.
Theorem 4. The intersection of the interior domains of

dependence of two convex boundaries σ1 and σ2, repre-
sented by D1 and D2, is the interior domain of dependence
of a convex boundary σ0.
Proof.—As shown in Appendix A, D0 ¼ D1 ∩ D2 is the

interior domain of dependence of some σ0. We only need to
show that σ0 is convex. In order to show this, we can consider
two slicesΣ1 andΣ2 passing through σ1 and σ2 such that they
are identical in the interior of σ0 and are disjoint in the exterior

of σ0. Let us denote the slice through the interior of σ0 as Σ0.
Now consider any codimension-2 region A ⊂ Σ0. Then, from
the convexity of σ1, the minimal surface γðAÞ is contained in
the interior of σ1 on Σ1. Similarly, γðAÞ is contained in the
interior of σ2 on Σ2. This is only possible if γðAÞ is contained
in the interior of σ0 on Σ0. This is true for arbitrary Σ0 and
hence, by definition, σ0 is a convex boundary. The maximin
process can now be applied to σ0. ▪
Corollary 2. In a black hole spacetime or the case of a

spacelike screen in an FRW spacetime, the coarse-graining
procedure moves away from the singularity in the direction
where the expansions θk and θl have opposite signs. At
each step of coarse graining, θk and θl in general have
opposite signs.
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