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Abstract

Background

In 2012, Botswana introduced 13-valent pneumococcal conjugate vaccine (PCV-13) to its

childhood immunization program in a 3+0 schedule, achieving coverage rates of above 90%

by 2014. In other settings, PCV introduction has been followed by an increase in carriage or

disease caused by non-vaccine serotypes, including some serotypes with a high prevalence

of antibiotic resistance.

Methods

We characterized the serotype epidemiology and antibiotic resistance of pneumococcal iso-

lates cultured from nasopharyngeal samples collected from infants (�12 months) in south-

eastern Botswana between 2016 and 2019. Capsular serotyping was performed using the

Quellung reaction. E-tests were used to determine minimum inhibitory concentrations for

common antibiotics.

Results

We cultured 264 pneumococcal isolates from samples collected from 150 infants. At the

time of sample collection, 81% of infants had received at least one dose of PCV-13 and 53%
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had completed the three-dose series. PCV-13 serotypes accounted for 27% of isolates, with

the most prevalent vaccine serotypes being 19F (n = 20, 8%), 19A (n = 16, 6%), and 6A

(n = 10, 4%). The most frequently identified non-vaccine serotypes were 23B (n = 29, 11%),

21 (n = 12, 5%), and 16F (n = 11, 4%). Only three (1%) pneumococcal isolates were resis-

tant to amoxicillin; however, we observed an increasing prevalence of penicillin resistance

using the meningitis breakpoint (2016: 41%, 2019: 71%; Cochran-Armitage test for trend,

p = 0.0003) and non-susceptibility to trimethoprim-sulfamethoxazole (2016: 55%, 2019:

79%; p = 0.04). Three (1%) isolates were multi-drug resistant.

Conclusions

PCV-13 serotypes accounted for a substantial proportion of isolates colonizing infants in

Botswana during a four-year period starting four years after vaccine introduction. A low prev-

alence of amoxicillin resistance supports its continued use as the first-line agent for non-

meningeal pneumococcal infections. The observed increase in penicillin resistance at the

meningitis breakpoint and the low prevalence of resistance to ceftriaxone supports use of

third-generation cephalosporins for empirical treatment of suspected bacterial meningitis.

Introduction

Streptococcus pneumoniae (Spn; pneumococcus) is a major human pathogen that causes infec-

tions ranging from mild respiratory illnesses to invasive pneumococcal disease (IPD), which

includes life-threatening infections such as bacteremia and meningitis [1]. Globally, Spn is a

leading infectious cause of mortality, accounting for an estimated 829,000 deaths in 2019 [2].

The risk of mortality from Spn is highest during infancy and early childhood; among children

less than five years of age, Spn causes more than 300,000 deaths each year, the majority of

which occur in low- and middle-income countries (LMICs) [3]. Colonization of the upper

respiratory tract by Spn is a prerequisite for the development of pneumococcal disease and

horizontal transmission between individuals [4]. Prior studies have found that Spn carriage

rates are highest among young children, with prevalence peaking in the second year of life [5].

Further, data from transmission studies indicate that infants and young children serve as the

major reservoir for Spn, with regular contact with children increasing the likelihood of coloni-

zation and disease among adults [6,7]. Thus, Spn carriage among young children has a sub-

stantial impact on pneumococcal disease epidemiology across the lifespan.

Over the past two decades, the widespread adoption of pneumococcal conjugate vaccines

(PCVs) has led to a dramatic reduction in the global burden of Spn disease, with child deaths

from Spn declining by more than 50% during this time period [8,9]. Carriage of vaccine sero-

types has significantly declined since the introduction of PCVs; however, this decline has con-

sistently been accompanied by increased carriage of non-vaccine serotypes and, in many

settings, increased disease caused by non-vaccine serotypes [10–13]. Moreover, as was

observed prior to the development of PCVs, there is substantial heterogeneity in Spn serotype

epidemiology and patterns of serotype replacement by geographical region, including among

neighboring countries [14].

The shifts in serotype epidemiology that occur following PCV introduction can also affect

the prevalence of antibiotic resistance among pneumococci. While implementation of PCVs

has generally been associated with an initial reduction in the prevalence of antibiotic-resistant
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Spn isolates, several studies have documented increased resistance among specific vaccine and

non-vaccine serotypes [12,15,16]. For example, the introduction of 7-valent pneumococcal

conjugate vaccine (PCV-7) in the United States in 2000 resulted in a marked decline in car-

riage of vaccine serotypes that was accompanied by a decrease in penicillin-resistant isolates;

however, two years after vaccine introduction, there was an abrupt increase in penicillin-resis-

tant isolates driven primarily by the emergence of serotype 19A [17–19]. Further, more than

half of pneumococci isolated from 7,156 children with non-invasive pneumococcal infections

or IPD in the United States between 2011 and 2020 were resistant to at least one antibiotic,

with a similar prevalence of antibiotic resistance observed in other geographical regions [15].

This rise in antibiotic resistance has the potential to lead to treatment failures, increased treat-

ment costs, and higher morbidity and mortality among patients with pneumococcal infections

[20]. Importantly, antibiotic resistance of pneumococci varies by region and country, even for

isolates of the same serotype; thus, surveillance studies are critical to identify temporal changes

in local serotype epidemiology and patterns of antibiotic resistance [12].

An understanding of local Spn epidemiology is necessary to effectively prevent and treat

pneumococcal infections. Although most high-income countries have robust IPD surveillance

programs, several barriers exist to establishing these programs in LMICs [21]. Because naso-

pharyngeal colonization precedes infections caused by Spn, carriage studies can be used to

characterize local trends in serotype epidemiology, monitor and evaluate the impact of existing

vaccine programs, and inform the deployment of new vaccines against Spn [1,22]. In the cur-

rent study, we determined the serotype and antibiotic susceptibility of pneumococcal isolates

colonizing infants in southeastern Botswana during a four-year period (2016–2019) beginning

four years after the inclusion of 13-valent pneumococcal conjugate vaccine (PCV-13) in the

national immunization program. We assessed for temporal changes in the serotype epidemiol-

ogy and antibiotic resistance of circulating pneumococci during the study period and evalu-

ated associations between infant characteristics and carriage of vaccine serotypes.

Methods

Study setting

Botswana is a landlocked country in southern Africa with a semi-arid climate and a rainy sum-

mer season that typically occurs from November to March. Gaborone is Botswana’s capital

and largest city, with a population of 246,325 based on the 2022 census [23]. Botswana intro-

duced PCV-13 (Prevnar-13; Pfizer) into its immunization program in July 2012. The vaccine

is administered at 2, 3, and 4 months of age (3+0 schedule), and was introduced without a

catch-up campaign. The estimated national coverage rate for the complete vaccine series in

infants has been above 90% since 2014; between 2013–2014, the estimated rate of pneumococ-

cal meningitis among children less than 5 years of age was 0.6 (95% confidence interval: 0.1–

1.8) per 100,000 person years [24].

Study population and procedures

This study included nasopharyngeal swabs and sociodemographic data from infants enrolled

in a prospective cohort study of 300 mother-infant pairs conducted at a referral hospital and

public clinics in or near Gaborone between 2016 and 2019, as described previously [25]. Naso-

pharyngeal samples were collected from infants monthly during the first six months of life and

bimonthly thereafter until the infant was 12 months of age. Sample collection was independent

of the presence of illness at the time of collection, and none of the children in this study devel-

oped IPD. Nasopharyngeal samples were placed directly into MSwab medium (Copan Italia,

Brescia, Italy), transported to the National Health Laboratory in Gaborone, and frozen within
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4 hours of collection to −80˚C. All nasopharyngeal swab samples were tested for the presence

of Spn using a quantitative PCR assay targeting the lytA gene, as previously described [26,27].

Laboratory methods for pneumococcal serotype identification and

characterization

A subset of nasopharyngeal samples from which Spn was detected by quantitative PCR were

used for selective culture for pneumococci, including the first sample after birth from which

Spn was detected for each infant; additional samples were selected for culture based on the

lytA cycle threshold value to maximize the yield for isolation of pneumococci by culture. For

broth enrichment cultures, frozen nasopharyngeal samples were thawed and mixed by vortex-

ing. Approximately 200 μl of sample was added to 5 mL serum-supplemented Todd Hewitt

Broth and incubated for 4 hours at 37ºC in 5% CO2. This enriched culture was plated on tryp-

ticase soy agar with 5% sheep blood supplemented with gentamicin and incubated for 18–24

hours at 37ºC in 5% CO2. Identification of Spn colonies was confirmed by α-hemolysis on

these plates and inhibition by optochin. A representative colony was chosen from each culture

and subjected to capsular serotyping. In the case where cultures appeared to contain multiple

colony morphologies, additional colonies were chosen for further analysis. Capsular serotype

identification was performed by Quellung reaction using serotype-specific pneumococcal anti-

sera (SSI Diagnostica, Denmark) [28]. When multiple isolates of the same serotype were cul-

tured from samples collected from the same infant, only the isolate from the earliest sample

after birth was included in these analyses. Each cultured Spn isolate was tested for susceptibil-

ity to amoxicillin, azithromycin, ceftriaxone, penicillin, and trimethoprim-sulfamethoxazole

(TMP-SMX) using E-tests (bioMérieux, Cambridge, MA). Spn cultures were collected from

blood agar plates into tryptic soy broth and culture density was adjusted to the 0.5 McFarland

Standard [29]. A swab of the bacterial solution was thoroughly streaked on a plate of Mueller

Hinton agar with 5% sheep blood. Each antibiotic strip was gently placed on the bed of the

media with sufficient room between strips to visualize zones of inhibition. Plates were incu-

bated overnight at 37˚C in 5% CO2. Minimum inhibitory concentrations (MICs) were deter-

mined as per manufacturer’s instructions. Strains were classified as susceptible, intermediate,

or resistant using 2017 Clinical and Laboratory Standards Institute (CLSI) breakpoints [30].

Statistical analyses

We classified serotypes/serogroups into PCV-13 serotypes (1, 3, 4, 5, 6A/C, 6B, 7F, 9V, 14,

18C, 19A, 19F, 23F), additional 15-valent pneumococcal conjugate vaccine (PCV-15) serotypes

(22F, 33F), additional 20-valent pneumococcal conjugate vaccine (PCV-20) serotypes (8, 10A,

11A, 12F, 15B/C), and non-vaccine serotypes. Serotype 6C was included as a PCV-13 serotype

due to cross-protection from the serotype 6A antigen [31]. We evaluated associations between

infant and sample characteristics and isolate serotype classification using Chi-square or Fish-

er’s exact tests (categorical variables) and Wilcoxon rank-sum tests (continuous variables). We

assessed for differences in the number of days since the last dose of PCV-13 among infants col-

onized with a PCV-13 serotype and a non-PCV-13 serotype using Welch’s t-test. We evaluated

for changes in the prevalence of different serotype categories and antibiotic resistance over

time using Cochran-Armitage tests for trend. We assessed for temporal changes in antibiotic

minimum inhibitory concentrations (MICs) using Mann-Kendall trend tests. We used multi-

variable logistic regression to evaluate associations between infant characteristics and the car-

riage of PCV-13 serotypes. Statistical analyses were conducted using R version 4.3.0.
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Ethical statement

All study participants or their legal guardians provided written informed consent to participate

in this study. The study protocol was approved by the Botswana Health Research and Develop-

ment Committee, the Princess Marina Hospital ethics committee, and institutional review

boards at the University of Pennsylvania, Children’s Hospital of Philadelphia, McMaster Uni-

versity, and Duke University.

Results

Participant characteristics

Of the 150 infants who had samples included in this study, slightly over half of the infants were

female (n = 80, 53%), 48 (18%) were born to mothers living with HIV, and 14 were classified

as low birth weight (birth weight<2500g; 5%) (Table 1). We cultured a total of 391 Spn isolates

from samples collected from the 150 infants included in this study. When multiple isolates

identified as a given serotype were cultured from samples collected from the same infant, only

the isolate from the earliest sample after birth was included in subsequent analyses, resulting

in a final set of 264 isolates cultured from 263 nasopharyngeal samples (two isolates of different

serotypes were cultured from a single sample). The majority of Spn isolates (n = 213, 81%)

were from infants who had received at least one dose of PCV-13, and more than half (n = 140,

53%) were from infants who had completed the three-dose vaccine series. Respiratory viruses

were detected in 113 (43%) samples from which Spn was cultured, with rhinovirus/enterovirus

being the most commonly identified virus (n = 76, 29%).

Serotype epidemiology of pneumococcal isolates

Seventy-two of 264 (27%) Spn isolates were serotypes contained within PCV-13 (Fig 1), with

the most common vaccine serotypes being 19F (n = 20, 8%), 19A (n = 16, 6%), and 6A (n = 10,

4%) (S1 Table). Only three (<1%) isolates were identified as the additional serotypes contained

within PCV-15 (22F, 33F), while 37 (14%) isolates were additional serotypes contained in

PCV-20 but not PCV-15, with the most common additional PCV-20 serotypes being 15B

(n = 15, 6%) and 11A (n = 14, 5%). One hundred fifty-two (58%) Spn isolates were identified

as serotypes not contained within any currently available conjugate vaccine, with the most

prevalent non-vaccine serotypes being 23B (n = 29, 11%), 21 (n = 12, 5%), 16F (n = 11, 4%),

7C (n = 10, 4%), and 35B (n = 10, 4%). The proportion of isolates classified as PCV-13

(Cochrane-Armitage test; p = 0.39), additional PCV-15 (p = 0.23), additional PCV-20

(p = 0.19), or non-vaccine (p = 0.15) serotypes did not change during the study period. More-

over, the Spn colonization density did not differ between PCV-13 serotypes and other serotype

categories (median of 7.45 vs. 7.52 log10 copies/mL; Wilcoxon rank-sum test, p = 0.39).

Infant characteristics associated with PCV-13 serotype carriage

We next evaluated carriage of vaccine serotypes by the number of doses of PCV-13 received at

the time of sample collection (Fig 1B). The proportions of isolates classified as PCV-13, addi-

tional PCV-15, additional PCV-20, or non-vaccine serotypes did not differ based on vaccina-

tion status (Chi-square test, p = 0.71). Among infants who had received three doses of PCV-

13, 38 (27%) Spn isolates were classified as PCV-13 serotypes. There was no difference in the

time since receipt of the most recent dose of PCV-13 among infants colonized with PCV-13

serotypes and infants with non-PCV-13 serotypes [mean (standard deviation): 104 (82) days

vs. 107 (79) days; Welch’s t- test, p = 0.82]. We additionally sought to identify infant sociode-

mographic and clinical characteristics associated with PCV-13 serotype carriage. At the time
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of sample collection, the characteristics of infants from whom a PCV-13 serotype was cultured

were similar to those of infants colonized by a non-PCV-13 serotype (Table 2). Specifically,

these groups did not differ based on sex, maternal HIV status, breastfeeding status, birth

weight, location of residence, PCV-13 doses received, recent receipt of antibiotics, or respira-

tory virus detection. Further, the likelihood of detecting a PCV-13 serotype isolate did not dif-

fer by collection year or season of sample collection.

Antibiotic susceptibility of pneumococcal isolates

Of 264 Spn isolates, 59 (22%) were resistant to at least one antibiotic, with the prevalence of

antibiotic-resistant isolates being stable over the time period of the study (18% in 2016, 21% in

2017, 25% in 2018, and 29% in 2019; Cochrane-Armitage test for trend, p = 0.19). Spn isolates

Table 1. Characteristics of infants and samples from which pneumococcal isolates included in this study were

cultured.

Infant characteristics (n = 150) n (%)

Female sex 80 (53%)

Maternal HIV infection 48 (32%)

Birth weight (g), median (IQR) 3122 (2859, 3435)

Low birth weight (<2500g) 14 (9%)

Sample characteristics (n = 264)

Age (days), median (IQR) 155 (92, 299)

Breastfeeding 170 (64%)

Location of residence

Rural 80 (30%)

Urban 184 (70%)

Year

2016 51 (19%)

2017 92 (35%)

2018 93 (35%)

2019 28 (11%)

Season

Dry 190 (72%)

Rainy 74 (28%)

Doses of PCV-13 vaccine received

0 51 (19%)

1 44 (17%)

2 29 (11%)

3 140 (53%)

Antibiotic exposure since prior study visit 58 (22%)

Amoxicillin 28 (11%)

Metronidazole 6 (2%)

Trimethoprim-sulfamethoxazole 19 (7%)

Respiratory virus detection 113 (43%)

Adenovirus 11 (4%)

Rhinovirus/enterovirus 76 (29%)

Other 26 (10%)

g, grams; IQR, interquartile range.

https://doi.org/10.1371/journal.pone.0302400.t001
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were most frequently resistant to TMP-SMX (n = 48, 18%), including more than one-quarter

of isolates identified as serotypes 15A, 19A, 23A, and 23B (S2 Table, Fig 2). Relatively few iso-

lates were resistant to amoxicillin (n = 3, 1%), azithromycin (n = 15, 6%), or ceftriaxone (n = 4,

2%). We did not identify any Spn isolates that were resistant to penicillin at the non-meningitis

breakpoint; however, more than half of isolates were resistant to penicillin at the meningitis

breakpoint (n = 152, 58%), including over 90% of isolates identified as serotypes 19A, 19F, and

35B (S2 Table, Fig 2). The proportion of isolates that were resistant to penicillin at the menin-

gitis breakpoint increased over the course of the study (41% in 2016, 52% in 2017, 69% in

2018, and 71% in 2019; Cochrane-Armitage test for trend, p = 0.0003), a trend that was

observed among both PCV-13 (p = 0.03) and non-PCV-13 (p = 0.002) serotypes. Finally, we

identified three multidrug-resistant Spn isolates: one 19A isolate (resistant to azithromycin,

ceftriaxone, and TMP-SMX), one 19F isolate (resistant to amoxicillin, azithromycin, and

TMP-SMX), and one 35B isolate (resistant to amoxicillin, azithromycin, and TMP-SMX).

Although the prevalence of antibiotic resistance was relatively low among pneumococci in

this study, 197 (75%) isolates were non-susceptible to at least one antibiotic (S3 Table). Rela-

tively few Spn isolates were non-susceptible to amoxicillin (n = 4, 2%), azithromycin (n = 43,

16%), ceftriaxone (n = 15, 6%), or penicillin at the non-meningitis breakpoint (n = 4, 2%).

However, 176 (76%) isolates were non-susceptible to TMP-SMX, including 54 (75%) of the

isolates identified as PCV-13 serotypes and 122 (64%) of the isolates identified as non-PCV-13

serotypes. The proportion of Spn isolates that were non-susceptible to TMP-SMX increased

during the study (55% in 2016, 67% in 2017, 69% in 2018, and 79% in 2019; Cochrane-

Fig 1. Prevalence of pneumococcal serotypes by year and by number of PCV-13 doses received. Pneumococcal isolates from infant nasopharyngeal swabs

collected during the first year of life were subjected to the Quellung reaction to identify specific serotypes. A) Bars depict the proportion of specific serotypes of

pneumococcal isolates collected from infants in Botswana by year of enrollment. PCV-13 serotypes are shaded red to pink, additional serotypes covered by PCV-15

are in orange, additional serotypes covered by PCV-20 are shaded in yellow, and non-vaccine serotypes are presented in shades of blue. B) Each pie chart shows the

proportion of isolates identified as PCV-13 serotypes, additional serotypes covered by PCV-15 and PCV-20, and non-vaccine serotypes in infants who had received

zero, one, two, or three doses of PCV-13 at the time of sampling.

https://doi.org/10.1371/journal.pone.0302400.g001
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Armitage test for trend, p = 0.04); however, this trend was only observed among PCV-13 sero-

type isolates (p = 0.03). In contrast, non-susceptibility to azithromycin decreased over time

among all isolates (p = 0.0001) and isolates identified as non-PCV-13 serotypes (p<0.0001).

No significant trends in the values of MICs for specific antibiotics were observed over time

during the study period (Fig 3, S4 Table).

Discussion

We found that PCV-13 serotype carriage was stable over a four-year period among infants in

Botswana four years after introduction of the vaccine into the national immunization pro-

gram. Notably, PCV-13 serotype carriage did not differ by vaccination status or other recorded

infant characteristics. Twenty-two percent of Spn isolates were resistant to at least one antibi-

otic with the prevalence of antibiotic resistance among isolates remaining stable during the

study period. However, we observed increases in the proportions of Spn isolates that were

resistant to penicillin at the meningitis breakpoint and isolates that were non-susceptible to

TMP-SMX. Our findings provide valuable information regarding the serotype epidemiology

Table 2. Multivariable logistic regression analysis of infant characteristics associated with PCV-13 serotype carriage.

Characteristics PCV-13 Serotype

(n = 72, 27%)

Non-PCV-13 Serotype

(n = 192, 73%)

Odds Ratio

(95% CI)

p

Age (days), median (IQR) 158 (90, 299) 154 (93, 298) 1.00 (0.99, 1.00) 0.80

Male sex 36 (50%) 100 (52%) 1.05 (0.59, 1.87) 0.86

Maternal HIV infection 23 (25%) 49 (28%) 0.88 (0.35, 2.18) 0.79

Breastfeeding 48 (67%) 123 (64%) 1.10 (0.44, 2.82) 0.84

Birth weight (g), median (IQR) 3210 (2795, 3441) 3128 (2910, 3440) 1.00 (0.99, 1.00) 0.85

Low birth weight (<2500g) 5 (7%) 19 (10%) 0.67 (0.17, 2.31) 0.54

Location of residence 0.33

Rural 19 (26%) 61 (31%) Reference

Urban 53 (74%) 131 (68%) 1.36 (0.74, 2.59)

Year — — 0.84 (0.60, 1.15) 0.29

2016 17 (24%) 34 (18%)

2017 24 (33%) 68 (35%)

2018 24 (33%) 69 (36%)

2019 7 (10%) 21 (11%)

Season 0.94

Dry 52 (72%) 138 (72%) Reference

Rainy 20 (28%) 54 (28%) 1.02 (0.54, 1.88)

Doses of PCV-13 vaccine received, median (IQR) 3 (1, 3) 3 (1, 3) 0.93 (0.61, 1.41) 0.75

Antibiotic exposure since prior study visit 16 (22%) 42 (22%) 1.02 (0.50, 2.00) 0.96

Amoxicillin 10 (14%) 18 (9%)

Metronidazole 1 (1%) 5 (3%)

Trimethoprim-sulfamethoxazole 6 (8%) 13 (7%)

Respiratory virus detection 31 (43%) 82 (43%) 1.00 (0.57, 1.74) 0.99

Adenovirus 2 (3%) 9 (5%)

Enterovirus/Rhinovirus 23 (32%) 53 (28%)

Other 6 (10%) 20 (8%)

CI, confidence interval; IQR, interquartile range; g, grams.

https://doi.org/10.1371/journal.pone.0302400.t002
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and antibiotic resistance of Spn following PCV-13 introduction in Botswana, a country with a

high burden of pneumococcal disease that lacks a robust IPD surveillance program [32].

We observed that PCV-13 serotype carriage was stable during the study period, with vac-

cine serotypes making up 27% of Spn isolates. These findings are consistent with previous

studies conducted in southern Africa that reported that PCV-13 serotypes continued to

account for approximately one-quarter of Spn isolates following vaccine introduction [33–35].

We additionally observed that the number of vaccine doses received by infants was not associ-

ated with PCV-13 serotype carriage. This observation that the prevalence of PCV-13 carriage

did not differ based on vaccination status, combined with our prior data demonstrating a

marked decline in PCV-13 serotype carriage after vaccine introduction in Botswana, suggest

that a sufficient portion of the population is vaccinated to provide herd protection to children

who are not fully vaccinated [33,36]. Botswana currently uses a 3+0 schedule for PCV-13

administration, with infants receiving doses at approximately 2, 3, and 4 months of age. Recent

studies have indicated that this schedule may be associated with continued circulation of

Fig 2. Proportion of pneumococcal isolates classified as susceptible, intermediate, or resistant to specific antibiotics by year. E-tests were used to determine

the minimum inhibitory concentrations for pneumococci to amoxicillin, azithromycin, ceftriaxone, penicillin, and trimethoprim-sulfamethoxazole. Antibiotic

susceptibility classifications were determined using the 2017 Clinical & Laboratory Standards Institute (CLSI) breakpoints.

https://doi.org/10.1371/journal.pone.0302400.g002
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vaccine serotypes and breakthrough IPD infections among older children, likely due to anti-

body waning in the year following the third dose [37]. These observations have led several

countries to implement PCV schedules with a booster dose in the second year of life, poten-

tially reducing the reservoir of vaccine serotypes in older children [9]. We found that PCV-13

serotype carriage did not differ based on the duration of time from the last PCV-13 dose; how-

ever, antibody waning may be more pronounced among children older than one year of age.

We specifically identified continued high prevalence of the PCV-13 serotypes 19A and 19F

[33]. Recent surveillance studies conducted in the United Kingdom and The Gambia similarly

identified 19A and 19F as serotypes that persisted after PCV-13 introduction [38,39]. The con-

tinued circulation of these serotypes is concerning as serogroup 19 has been identified as a

common cause of IPD among children in several settings, including Brazil, South Africa, and

Australia, and serotype 19F has a high prevalence of antibiotic resistance [40–42]. The mecha-

nisms underlying such persistence of vaccine serotypes are not well understood; however,

advances in genomic sequencing technologies may provide new insights. For instance, a recent

Fig 3. Minimum inhibitory concentrations (MICs) of pneumococcal isolates for common antibiotics by year. E-tests were used to determine the MICs for

pneumococci to amoxicillin, azithromycin, ceftriaxone, penicillin, and trimethoprim-sulfamethoxazole (TMP-SMX). Each point represents the MIC for a single

pneumococcal isolate. The breakpoints for intermediate (dotted line) and resistant (dashed line) are based on the 2017 Clinical & Laboratory Standards Institute

(CLSI) breakpoints. All isolates with MICs above the breakpoint for resistance are shown at the dashed line.

https://doi.org/10.1371/journal.pone.0302400.g003
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analysis of serogroup 19 isolates from children with IPD in Australia identified core genome

sequence clusters that emerged after PCV-7 and PCV-13 introduction and that were associated

with antibiotic resistance and vaccine failure [40]. Additionally, a genomic analysis of serotype

19A isolates from IPD cases in Ireland identified a sub-clade of 19A that was associated with

vaccine failure and characterized by a specific allele of the galE gene that may contribute to

pathogenicity [43]. Future studies are needed to identify genomic markers that influence sero-

type persistence and vaccine failure in populations with varied exposure patterns and selective

pressures.

In many settings, the introduction of PCVs has been accompanied by an increase in the

prevalence of both non-vaccine serotype carriage and IPD [12,44,45]. While our study only

evaluated carriage and was not powered to detect changes in the carriage of individual sero-

types, the non-vaccine serotypes 7C, 16F, 21, 23B, and 35B were highly prevalent in the study

population. Many of these non-vaccine serotypes have been observed to increase following

PCV-13 introduction in other settings [38,39,46,47]. Moreover, several of these serotypes are

common causes of IPD or have a high prevalence of antibiotic resistance [47–49]. Taken

together, our findings and those of these prior studies demonstrate that continued surveillance

is needed to identify replacement serotypes for both carriage and IPD and to identify popula-

tion characteristics associated with patterns of serotype replacement.

Implementation of PCVs has also been associated with changes in the prevalence of antibi-

otic resistance among both vaccine and non-vaccine serotypes [50]. In our cohort, resistance

to commonly used antibiotics was generally low, although more than three-quarters of isolates

were non-susceptible to TMP-SMX. TMP-SMX is often used for the treatment of mild respira-

tory and gastrointestinal infections among young children in Botswana, and the rising preva-

lence of isolates non-susceptible to TMP-SMX could reflect increasing use of this antibiotic in

local pediatric populations. Alternatively, TMP-SMX has been used widely in Botswana as an

agent for Pneumocystis jirovecii pneumonia prophylaxis among people living with HIV, which

may have promoted selection of pneumococci with some degree of resistance to this antibiotic

[51]. We additionally observed a high and increasing prevalence of resistance to penicillin at

the meningitis breakpoint. Given that Spn accounts for approximately 20% of meningitis cases

among children in Botswana, the observed resistance to penicillin at the meningitis breakpoint

supports use of third-generation cephalosporins as the first-line treatment for suspected bacte-

rial meningitis among children in this setting [24].

This study has a number of strengths and limitations. Strengths include the relatively large

sample size, the high PCV-13 coverage rate in Botswana, and the evaluation of Spn isolates

across a four-year period after vaccine introduction. Limitations include analyses being limited

to Spn isolates that could be cultured; given that prior studies suggest that colonization density

may vary by serotype, this approach could have resulted in oversampling of serotypes that col-

onize the nasopharynx at high density [52]. Additionally, study subjects were recruited at four

sites in or near Gaborone, Botswana, which may limit the generalizability of these findings to

other geographical areas. The study included only Spn isolates from infants, thus precluding

analyses of pneumococcal carriage in other age groups. Finally, data on the serotypes that

caused IPD in Botswana during the study period were unavailable, and future studies are

needed to determine the serotype epidemiology and antibiotic resistance of isolates that cause

pneumococcal disease in the country.

In summary, our findings indicate that PCV-13 implementation resulted in sustained

reductions in carriage of vaccine serotypes among infants in Botswana. We additionally deter-

mined the prevalence of antibiotic resistance among pneumococci colonizing infants in this

setting, providing valuable local data to inform the treatment of children with suspected pneu-

mococcal infections.
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