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Analyzing Human Negotiation using Automated Cognitive Behavior Analysis:
The Effect of Personality

Pedro Sequeira (psequeira@ccs.neu.edu) and Stacy Marsella (marsella@ccs.neu.edu)
Northeastern University, 360 Huntington Ave.

Boston, 02115 MA

Abstract

In this paper we study the influence of personality traits in ne-
gotiation by using a methodology for automated cognitive be-
havior analysis (ACBA). This methodology uses genetic pro-
gramming (GP) for hypothesis generation and testing of hu-
man behavior with the goal of explaining the underlying men-
tal structures guiding people’s actions during a task. ACBA it-
eratively generates programs—the hypotheses—capable of ex-
plaining the behavior exhibited by an individual during a multi-
level, multi-issue, sequential bargaining task against an artifi-
cial agent. Our study focuses on the influence of the personal-
ity traits of social-value orientation (SVO) and Machiavellian-
ism (Mach). The results show that by using ACBA, we are able
to identify differences in the outcomes of programs emerging
from GP that are consistent with the influences that different
SVO and Mach profiles have in human negotiation behavior.
Keywords: Cognitive Behavior Understanding; Genetic Pro-
gramming; Artificial Intelligence; Negotiation; Social Value
Orientation; Machiavellianism

Introduction
We propose a methodology aimed at explaining the underly-
ing psychological structures within the human mind respon-
sible for the production of overt behavior. By psychological
structures we refer to mental processes influencing decision-
making during the performance of complex tasks. We refer
to this methodology as Automated Cognitive Behavior Anal-
ysis (ACBA) to contrast with standard cognitive task analysis
techniques relying on observation and thinking-aloud proto-
cols (van Someren et al., 1994).

The main idea of ACBA is to use genetic programming
(GP) as hypothesis generation and testing of human behav-
ior, as illustrated in Fig. 1. In particular, we follow an infor-
mation processing perspective to characterize human cogni-
tive processes—symbols are created to represent knowledge
about the self and the task; instructions are formed from these
symbols and combined to generate plans in the form of pro-
grams; decision-making mechanisms then select the most ap-
propriate plan to be executed in a given situation (Miller et al.,
1960; Newell & Simon, 1961; Simon, 1978). This analogy is
depicted in the top part of Fig. 1. The idea is to form pos-
sible hypotheses about the underlying cognitive structures of
behavior—the program is a hypothesis of the response func-
tions operating in an individual if it leads to outcomes consis-
tent with those exhibited by his/her behavior.

Importantly, we follow this perspective to analyze behavior
as being produced at a psychological rather than neurophysi-
ological or physical level.1In addition, a key goal of ACBA is

1Our work is concerned with abstractions over the mental pro-
cesses leading to observable behavior while putting aside the task of
explaining the brain regions realizing such cognitive functions.

the identification of the underlying invariant behavioral struc-
tures across different situations rather than evolving programs
solving for a particular instance. This involves aggregating
the outcomes of GP in order to properly identify the common
structures governing the behavioral phenomenon of interest.

In general terms, ACBA works by iteratively generating
candidate programs capable of explaining the observed be-
havior of an individual after having performed some cogni-
tive task. GP stochastically creates programs by combining
certain operators with symbols encoding relevant task infor-
mation. The fitness of each candidate program is evaluated
according to how consistent its output is in relation to the out-
comes of the exhibited behavior, as depicted in the bottom-
right part of Fig. 1. By using selection and mutation opera-
tors, GP progressively generates candidates attaining higher
and higher fitness. When GP finishes, the most fit programs
are chosen as hypotheses of, i.e., possible solutions for, the
underlying structure of the observed behavior.

Contributions
In this paper we use ACBA to study human negotiation be-
havior. Negotiation is appealing for the purposes of our study
for several reasons: it is a situation prone to conflict, involv-
ing complex decision-making in order to distribute limited
amounts of resources (Pruitt, 1983); it is a task where peo-
ple have to be strategic in order to gain the best possible
outcome (Thompson, 1990); the behavior of an individual is
highly influenced by that of his/her opponents (Galinsky &
Mussweiler, 2001; Thompson, 1990); the problem is well de-
fined, specifically the goals and actions of each negotiator and
whether success in a negotiation was reached.

We are particularly interested in using ACBA to capture the
variability of negotiation behavior according to the subjects’
personality. A key question is whether the solutions emerging
from GP confirm the negotiation predispositions attributed to
different personality traits as described in the negotiation lit-
erature (e.g., de Dreu & van Lange, 1995; Gunnthorsdottir
et al., 2002). Given their influence on negotiation goals, dy-
namics and outcomes, we focus on the dimensions of social
value orientation (SVO), assessing the weight attached to the
welfare of others (Murphy et al., 2011), and Machiavellian-
ism (Mach), which relates to tendencies of being deceptive
and manipulative (Christie & Geis, 2013). To achieve that, in
this paper we present a set of techniques to aggregate the out-
comes of GP regarding the behavior of different individuals
in the same negotiation task—the idea is to identify the un-
derlying shared structures governing their behavior according
to their personality traits.
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Figure 1: Our vision for genetic programming as hypothesis
generation and testing of human behavior.

Background
Related Work
A common method for understanding human behavior is by
performing cognitive task analysis (CTA) (Clark et al., 2008)
or using thinking-aloud (TA) protocols (van Someren et al.,
1994). These methods use diverse interview and observation
strategies to capture the knowledge, thought processes and
goal structures used by experts when performing some task.
The output is a set of precise descriptions of the underlying
cognitive processes of the experts, that can be used as records
of task performance to e.g., train novices by developing ex-
pert systems or build models of team performance. In fact,
Newell & Simon (1961) recorded traces of humans reasoning
while solving particular tasks to write programs using primi-
tives that best simulated the observed behavior.

The main problem with these protocols is that they require
subjects to interpret and rationalize their behavior while per-
forming a task, making it more deliberate and slower (Simon,
1978). Moreover, subjects’ interpretation of their behavior
might seem more coherent and planful than it actually was
(van Someren et al., 1994). Unlike these protocols, ACBA
generates programs given relevant information features about
a task,2 as depicted in Fig. 1. As such, our method tries to ex-
plain behavior based on observable information, all in an au-
tomated manner. We argue that, as long as it can be accessed
by an external observer, such features might be sufficient to
explain an individual’s behavior. Although the features need
to be selected and encoded into the GP procedure, we claim
that data collection using ACBA is more objective—does not
depend on the subjects’ opinions and introspection capabili-
ties and does not interrupt task performance.

Some previous works also used GP as a way to learn mod-
els of human behavior. Namely, the approach in (Fernlund et
al., 2006) combines context-based reasoning and GP to learn
models of strategic behavior through observation of humans
performing a driving task in a simulator. The approach is
more concerned with learning behavior models of individuals
in one task and in a particular instance and therefore cannot

2Such features may include task-related information, e.g., the
state of a game or problem-solving task, as well as subject-related
information, e.g., previous actions, task knowledge, goals, etc.

generalize within or across individuals. In contrast, our ap-
proach tries to capture common, invariant properties leading
to behavior in some task.

The procedure used in (Addis et al., 2016) is very similar
to our own in that it uses GP to automatically generate and
test cognitive theories. In particular, GP is used to evolve the
sequence of cognitive functions leading to action selection
whose accuracy, variance and duration best match the perfor-
mance of individuals in a delayed match-to-sample task. De-
spite the similarity in the approach, the work tries to discover
the architectural details underlying the behaviors, which re-
quires a designer to define the architecture components to
be optimized via GP. As a consequence, the architectural as-
sumptions of the model will constrain the types of solutions
that GP can generate. Conversely, ACBA abstracts from the
structure of the underlying mental processes and does not re-
strict information processing during GP—we allow several
possible solutions to be generated and then analyze their char-
acteristics within some group of subjects a posteriori. This
allows not only interpreting the underlying strategies but also
discovering behavior trends that possibly contradict existing
theoretical assumptions.

We also note that the cognitive tasks used in these works
are more simple compared to how we use ACBA to discover
and interpret strategies in a complex sequential negotiation
task and then relate those strategies to trait characteristics.

Personality and Negotiation
Regarding the effects of SVO in negotiation, de Dreu & van
Lange (1995) analyzed how different profiles can influence
individuals’ behaviors. In particular, prosocials adopted co-
operative strategies initially but became noncooperative as
soon as partners repeatedly failed to reciprocate—they made
lower demands and higher concessions when compared to
pro-self 3 oriented subjects, especially after the second round.
In contrast, pro-self subjects adopted noncooperative strate-
gies even when partner consistently cooperated. As for the
Mach variable, Huber & Neale (1986) showed that high-
Mach individuals initially aim for higher goals and achieved
greater final payoffs when compared to low-Machs. In an-
other study, Gunnthorsdottir et al. (2002) showed that low-
Machs reciprocate trust in one-shot negotiation while high-
Machs strongly defected when it was advantageous for them.

Methodology
As a validation setting, we used data (Xu et al., 2017) col-
lected of people negotiating in a turn-based, multi-level,
multi-issue bargaining setting (Thompson, 1990) against an
agent using a fixed strategy. The task involved turn-based, se-
quential offers corresponding to full partitions over 3 records,
2 lamps and 1 painting. Notably, the subjects were unaware
of playing against an artificial agent, thus making the col-
lected data suitable for the purposes of our study. Besides
the behavioral data, we collected information on the subjects’

3Individualistic and competitive subjects are often merged into
one “pro-self” or “egoistic” group (de Dreu & van Lange, 1995).
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Figure 2: The ACBA methodology for predicting and under-
standing human behavior.

personality using standard instruments to assess their SVO
(Murphy et al., 2011) and Mach (Christie & Geis, 2013).

The challenge of using ACBA in this scenario is to explain
the behavior of the human subject for each collected negotia-
tion instance. We assume that: 1) subjects make offers based
on an underlying, i.e., non-observable, target payoff responsi-
ble for the generation of the observed outcome, i.e., the offer
made, at each round; 2) such target payoff can be recovered
through a mathematical combination of symbols encoding the
observable state features. The goal of GP is then to generate
programs that, given a negotiation instance, predict the whole
sequence of offers made by the human subject. By using these
assumptions we ensure that the inputs and outputs for the in-
dividual and the GP procedure are comparable and coherent,
as illustrated in Fig. 1. We reinforce here the idea that only
when the output of programs is consistent with the observed
behavior, we can conjecture about the underlying psycholog-
ical structures operating in the subjects’ minds.

Behavior Data-set
Fig. 2 depicts the GP-based methodology used in this paper to
analyze the behavior of human negotiators. We first create a
behavior data-set from the data collected in (Xu et al., 2017).

Definition 1 (Data-point). A data-point corresponds to all
information pertaining some negotiation instance, including
all information about the offers and counter-offers made by
the human and agent negotiators therein.

Formally, let d = 〈Oh,Oa〉 denote a data-point, where
Oh = oh

1, . . . ,o
h
K is the sequence of offers made by the human

negotiator and Oa = oa
1, . . . ,o

a
K the sequence of counter-offers

made by the agent. Each offer ok ∈ O,k = 1, . . . ,K repre-
sents a particular partition over the set of items proposed by
the respective negotiator at round k, with K representing the
length of the negotiation in number of rounds. Each offer
is in the form [#records,#lamps,#paintings] and identifies
the items that the proposing negotiator wishes to get for it-
self. O is the set of all possible partitions between the items
and hence we have |O| = 24. The agent used in (Xu et al.,
2017) used a fixed-strategy based on the one in (de Dreu &
van Lange, 1995). Its sequence of offers was: Oa = [3,2,1],
[2,2,1], [2,2,0], [2,1,1], [2,1,0], [1,2,1], repeating the last

offer thereafter. To facilitate the analysis in this paper, we
attribute the following payoffs to each item:4 one record is
worth 11, one lamp 5 and the painting 2. Therefore, each offer
o ∈ O has associated a unique payoff, denoted by P(o) ∈ R,
obtained by summing the values of each item therein. As
such, in our task we have that maxo∈OP(o) = 45, and thus a
fair value is considered to be around 23.

Genetic Programming
The GP component depicted in Fig. 2 searches in a space of
mathematical expressions for programs that best fit the human
negotiator’s behavior—referred to as symbolic regression.

Definition 2 (Program). A program corresponds to a specific
combination of symbols and mathematical operators. The in-
put is some negotiation data-point and the output is the value
resulting from executing the mathematical expression accord-
ing to the information stored in that data-point.

Programs can be represented as syntax trees, where
nodes correspond to either mathematical functions or nu-
merical terminals. For the functions we considered the set
F = {(x+y),(x-y), (x/y), (x*y), max(x,y), min(x,y),
(xˆy), (x?y:z:w)}, where (x?y:z:w) represents a con-
ditional operator that selects y if x = 0, z if x > 0, or w
otherwise. For the terminals we used T = C ∪ V , where
C = {0,1,2,3,5,6,7,11,23,34,45} are the constants—we
included the payoffs and available quantity of each item
as well as quarter values of the maximum payoff of 45.
As for the variables we used V = {Round, OffPayoff,
InitOffPayoff, PropPayoff, InitPropPayoff,
OffRecords, OffLamps, OffPaintings, PropRecords,
PropLamps,PropPaintings} encoding all relevant infor-
mation available for the human negotiator at each round.
Namely, given a data-point d, at each round k = 2, . . . ,Kd

we have that: Round returns k; PropPayoff returns
P(oh

k−1); InitPropPayoff returns P(oh
1); OffPayoff

returns 45− P(oa
k−1); InitOffPayoff returns 45− P(oa

1);
PropRecords, PropLamps and PropPaintings return the
quantity of the corresponding item in oh

k−1; OffRecords,
OffLamps and OffPaintings return the quantity of the
respective item offered by the agent, i.e., in oa

k−1.
Fitness Function. Recall that our objective is to use GP to
derive programs predicting the sequence Oh = oh

2, . . . ,o
h
K .5

Because each offer has associated a unique payoff, the offer
sequence has associated a unique payoff sequence P(oh

2), . . . ,
P(oh

K). As such, we use the output value of a program as an
estimate of the payoff of offers at each round. Formally, let
P̂d

k (p) denote the value resulting from executing some pro-
gram p according to the information stored in data-point d at
round k. To calculate a program’s fitness, we first derive an
estimated offer at each round, denoted by ôk, whose payoff
is the closest (greater than or equal) to the program’s output.
We then define the fitness of a program regarding a data-point

4These payoffs are based on the descriptions of the items’ rela-
tive values provided to the subjects prior to the task (Xu et al., 2017).

5Single-shot negotiations where K = 1 were not considered.
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d, denoted by Fd(p), as the negative root-mean-square error
(RMSE) between the payoffs as predicted by the program and
the ones observed from the negotiator’s actual offers, i.e.:

Fd(p) =−
√

∑
K
k=2

(
P̂d

k (p)−P(oh
k)
)2
/K (1)

Evolutionary Procedure. Given a behavior data-set, the
goal of the GP component in Fig. 2 is to iteratively gener-
ate candidate programs explaining the behavior of the human
negotiator for all data-points as measured by Eq. 1.
Definition 3 (Candidate program). Corresponds to a pro-
gram generated during the GP evolutionary procedure.

For each data-point, GP starts by creating 100 independent
populations of 500 programs by combining terminals and op-
erators. Then, for each generation (maximum of 5000), GP
uses tournament selection and standard crossover and muta-
tion operators to generate a new generation of candidate pro-
grams. The output of GP is a set of candidate programs for
each data-point analyzed.

Solution Collection
The Solution Collection component in Fig. 2 is the first step
towards understanding the behavior of the human negotiators.
Definition 4 (Solution program). A solution program, or sim-
ply solution, represents an hypothesis for the underlying be-
havior structures of the negotiator in a given data-point.

Solutions are selected from the set of candidate pro-
grams for a data-point according to the accuracy with which
they predict the sequence of actions of the first negotiator.
Specifically, we follow Occam’s razor principle by selecting
from the existing hypothesis—candidates attaining maximal
fitness—the ones with the fewest assumptions, i.e., that use
less functions and terminals. Based on the insights from a
previous study using synthetic data,6 we excluded data-points
whose solutions’ length is higher than 25, and those that orig-
inate a significantly-higher number of solutions when com-
pared to all other data-points. In addition, we excluded data-
points where Kd < 3, i.e., negotiations that were too short and
thus not rich enough (Xu et al., 2017).
Augmenting the Solution Set. Because we are analyz-
ing human data, the resulting programs might be complex,
e.g., long, deep and deal with several variables, meaning that
it will be hard for GP to generate programs attaining a fitness
of 0 according to Eq. 1. Therefore, in this paper we generate
within Solution Collection a set of plausibly-equivalent solu-
tions given a solution set. Formally, let us denote by c ∈ R
the value of some constant and by vd

k ∈ R the value of vari-
able v ∈ V at round k according to the data in d. We then
augment Sd by creating copies of all programs p ∈ Sd and re-
placing the constants c therein for variables v ∈ V satisfying
vd

k = c,k = 1, . . . ,Kd , i.e., by variables whose value is con-
stant during the negotiation.

The output of Solution Collection is then a solution-set for
each non-excluded data-point.

6We found that random strategies lead to very long solutions
while simple strategies to too many when compared to all others.

Table 1: Mean values of features regarding our procedure.
Bold values indicate significant differences (p < 10−2).

Group Size Count Vars. Length
Prosocial 196 34.9± 41.9 4.4± 1.6 11.4± 4.7
Pro-self 104 43.7± 51.2 5.3± 2.2 14.2± 6.0
Low-Mach 189 35.1± 42.0 4.7± 1.7 12.4± 5.0
High-Mach 111 42.7± 50.6 4.8± 2.1 12.6± 6.0
Overall 300 38.0± 45.5 4.7± 1.9 12.5± 5.4

Solution Analyses
As mentioned earlier, a key goal in this paper is to understand
the behavior of negotiators according to their trait character-
istics, i.e., across different negotiation instances, in order to
uncover the invariant structures responsible for the behavior
within a specific group. To that end, the set of components at
the end of the pipeline in Fig. 2 analyze the solution programs
across different partitions of the data-set. Namely: Solution
Characteristics Analysis gathers statistical information about
the set of solutions for one or more data-points, allowing us
to analyze general characteristics of the underlying structures
and how the behavior complexity varies according to differ-
ent trait characteristics; Frequency Analysis measures the fre-
quency of solutions and their sub-programs7 to identify com-
mon structures emerging from GP across data-points; Solution
Robustness Analysis computes the mean fitness of all solu-
tions and their sub-programs when used to evaluate different
data-points according to Eq. 1, thus assessing the robustness
of each (sub-)program in predicting the respective behaviors.

Analysis of Results
We applied the ACBA methodology over the human negoti-
ation data-set of (Xu et al., 2017). Out of the 405 original
data-points, our filtering mechanisms excluded 74 due to the
negotiation being too short, 5 for originating very long solu-
tions, and 26 for having a relatively high number of solutions.

Meta-Analysis
We start by examining some high-level characteristics of the
negotiations and solutions. Table 1 presents several statistics
regarding the solutions and the negotiators’ behavior when
grouping data-points according to SVO and Mach. “Size” is
the number of data-points in each partition. “Count” is the
mean number of solutions per data-point. “Vars.” is the mean
number of unique variables required by solution programs
to predict the negotiator’s behavior—we use it to assess the
amount of memory that would be required by a negotiator if
he/she was following the strategy underlying the solution pro-
gram. “Length” indicates the number of nodes in a program’s
tree—we use it to assess programs’ complexity and richness.

A first observation is that the data-points of high-Machs
and pro-selfs originate more solutions. Although the differ-
ences are not significant, this is a first indication of more
complex underlying strategies used by individuals in these

7Given the representation of programs as syntactic trees, a sub-
tree is also a program, i.e., a sub-program.
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groups. This analysis is also supported by the length of and
number of variables in the solution programs. In particular,
pro-selfs’ solutions are significantly more complex than those
of prosocials, requiring more computations and information
to predict the negotiators’ behavior. This is consistent with
the findings in (de Dreu & van Lange, 1995), as pro-self indi-
viduals adopt more complex negotiation strategies, e.g., rea-
soning about issue priorities and the opponent’s offers. As for
the Mach dimension, results show a similar trend, with high-
Machs’ solutions involving more variables and slightly more
computations (higher length).

Solution Frequency and Robustness Analysis
We now try to make sense of the strategies used by the human
negotiators by looking at their solutions’ expressions. As in-
dicated in Table 1, the total number of solutions per data-point
is too high for us to analyze every single one. As such, we use
the outputs of Frequency Analysis to assess (sub-)programs ap-
pearing frequently in the expressions of solution programs
and the results of Solution Robustness Analysis to determine
what are the (sub-)programs that best predict the negotiators’
behavior, according to the personality traits. The results are
listed in Table 2, with the first line of each group indicating
the most frequent sub-program where |s|> 1 and the second
line showing the most robust sub-program and the mean fit-
ness attained when evaluating all data-points of the group.
Overall. Regarding Frequency Analysis, we note that the
most frequent terminals appearing in the solutions of data-
points (not listed) were OffLamps, OffPaintings and
OffRecords, in this order. First, this means that the num-
ber of items offered by the agent was a major determinant of
the human responses. In fact, two of the most important ne-
gotiation strategies, yielding and logrolling, involve precisely
strategizing concessions based on the demands of others and
issue priorities (Pruitt, 1983). Moreover, given the relative
value of the items in our scenario, the bargaining seems to
be more focused on the number of lamps, which incidentally
is also the item whose number changes the most throughout
the agent’s sequence of offers. As for the Solution Robust-
ness Analysis, the results in Table 2 show that we could not
find, given all solutions in SD, sub-programs predicting the
behavior of all negotiators within any group, thus resulting in
negative mean fitness values. Notwithstanding, our interest
here is in analyzing the most robust solution programs.
Trait Differences. As we can see in Table 2, the solutions
for pro-selfs and high-Machs involve calculating the ratio be-
tween the payoff offered by the agent in its first offer and
the previous one. Given the anchoring effect of first of-
fers in negotiation (Galinsky & Mussweiler, 2001), this ra-
tio can help negotiators assess how the opponent is deviat-
ing from its initial offer to determine an appropriate form of
retaliation. In fact, we see two slightly different uses for
the ratio when looking at the solutions in which this sub-
program is used (not listed). For pro-selfs, it is used as
a scaling factor for the proposal, e.g., in max(OffPayoff,
(InitPropPayoff*(InitOffPayoff/OffPayoff))), thus

Table 2: Results of Frequency Analysis and Solution Robust-
ness Analysis overall and for each trait characteristic.

Strategy Most frequent / robust (sub-)program

Prosocial (34-OffPayoff)
(18+(PropPayoff/6)) −4.4± 2.8

Pro-self (InitOffPayoff/OffPayoff)
(24-PropPaintings) −5.4± 3.4

Low-Mach min(OffPaintings,OffLamps)
max(23,(PropPayoff-OffPayoff))−4.6± 3.0

High-Mach (InitOffPayoff/OffPayoff)
max(23,(PropRecords*9)) −4.8± 3.2

Overall (InitOffPayoff/OffPayoff)
max(23,(PropRecords*9)) −4.7± 3.0

indicating a strong retaliation when the offered payoff de-
creases during the negotiation—this result is in line with
the characteristic of pro-selfs in maximizing the relative
advantage over others’ outcomes (Murphy et al., 2011).
For high-Machs, it is used as a reduction factor of their
proposals, e.g., (23+(OffPaintings*(max(OffLamps,1)-
(InitOffPayoff/OffPayoff)))), meaning that the higher
the offer by the opponent, the less the reduction and thus the
higher the proposal will be—which is consistent with the ma-
nipulative and exploitative nature of high-Machs (Gunnthors-
dottir et al., 2002). We observe a similar trend for Solution
Robustness Analysis. Namely, the (sub-)program that best
predicts the behavior of pro-selfs corresponds to an almost
constant strategy proposing offers whose payoff is in [23,24],
i.e., above-fair proposals that do not take into account the op-
ponent’s behavior—this denotes the non-conceding nature of
pro-selfs’ negotiation behavior (de Dreu & van Lange, 1995).
As for high-Machs, we observe a payoff-maximizing strategy
depending on the number of initially-proposed records—the
highest-valued item—, which is consistent with the tenden-
cies of people with this trait (Gunnthorsdottir et al., 2002).

In contrast with these findings, the solutions of proso-
cials and low-Machs are more integrative and cooperative,
i.e., aiming for a fair payoff distribution. In particular, proso-
cials’ solutions frequently compute the difference between an
unfair payoff (34) and the opponent’s offered payoff. When
looking at the solutions in which this sub-program is used
(not listed), e.g., max(23,(34-OffPayoff)), we see that the
resulting value is used by prosocials to establish a minimum
acceptable payoff, i.e., their best alternative to a negotiated
agreement (BATNA) (Galinsky & Mussweiler, 2001). In ad-
dition, its most robust solution corresponds to a program tar-
geting fairness—the mean payoff of prosocials’ first offers is
≈ 24, meaning that this program outputs a value in [18,22],
thus indicating that, on average, the maximum target payoff is
right below fairness. These programs therefore correspond to
highly-cooperative strategies, as predicted by this personality
trait (de Dreu & van Lange, 1995; Murphy et al., 2011).

As for the low-Mach group, the frequency results show that
the number of offered paintings and lamps plays an impor-
tant role, especially in determining how much is added to a
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fair payoff as e.g., in (min(OffPaintings,OffLamps)+23).
Furthermore, by looking at the expression of the most ro-
bust (sub-)program, we see that only when the difference be-
tween what the negotiator proposed and his/her opponent of-
fered (PropPayoff-OffPayoff) is very high, the right side
of max is selected, otherwise, fairness will be the target pay-
off. Given the decreasing nature of the agent’s proposals, this
sub-program has a higher effect in the beginning of the nego-
tiation. These two facts are highly-related with low-Machs’
tendency to adhere to moral standards such as reciprocity
(Christie & Geis, 2013; Gunnthorsdottir et al., 2002).

Conclusions and Future Work
We showed how the ACBA methodology can be used to study
human behavior in a task involving negotiating over a set of
items. To validate the methodology and support our analy-
sis, we resorted to two personality traits having a major role
in bargaining behavior: SVO and Mach. Overall, the results
of applying ACBA to a previously-collected negotiation data-
set showed that: 1) we were able to uncover distinct behav-
ioral structures in the expressions of solution programs for the
data-points of different trait groups; 2) such structures have
into account task information and lead to outcomes that are
consistent with the behavioral trends exhibited by individu-
als having the corresponding traits, as described in the litera-
ture. These analyses more generally reveal that ACBA can be
used to expose hypotheses about the underlying motivations
of complex sequential behavior in dynamic contexts.

The results of this study provide positive indications as for
the potential of ACBA in understanding human cognitive be-
havior. In particular, an interesting application of this work in
the context of negotiation is hypothesizing personality trends
of opponents and predicting their behavior in the absence of
personal information. We are currently developing mecha-
nisms to further process the solutions emerging from GP. We
are especially interested in studying the variety of solutions
within some group of individuals. We are creating techniques
to cluster programs based on their behavioral semantic simi-
larity. Using a similar technique, we are also determining the
similarity of data-points, which we will use to group subjects
according to how similar the underlying structures of their be-
havior are—our goal is to discover novel ways of classifying
individuals’ behavior tendencies.
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