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TOP: Towards Open & Predictable
Heterogeneous SoCs

Luca Valente, Francesco Restuccia, Davide Rossi, Member, IEEE
Ryan Kastner, Fellow, IEEE Luca Benini, Fellow, IEEE

Abstract—Ensuring predictability in modern real-time Systems-on-Chip (SoCs) is an increasingly critical concern for many application
domains such as automotive, robotics, and industrial automation. An effective approach involves the modeling and development of
hardware components, such as interconnects and shared memory resources, to evaluate or enforce their deterministic behavior.
Unfortunately, these IPs are often closed-source, and these studies are limited to the single modules that must later be integrated with
third-party IPs in more complex SoCs, hindering the precision and scope of modeling and compromising the overall predictability. With the
coming-of-age of open-source instruction set architectures (RISC-V) and hardware, major opportunities for changing this status quo are
emerging. This study introduces an innovative methodology for modeling and analyzing State-of-the-Art (SoA) open-source SoCs for
low-power cyber-physical systems. Our approach models and analyzes the entire set of open-source IPs within these SoCs and then
provides a comprehensive analysis of the entire architecture. We validate this methodology on a sample heterogenous low-power RISC-V
architecture through RTL simulation and FPGA implementation, minimizing pessimism in bounding the service time of transactions
crossing the architecture between 28% and 1%, which is considerably lower when compared to similar SoA works.

Index Terms—Heterogeneous SoC, Cyber-Physical-Systems, Timing Predictable Architectures, Open-Source Hardware.

✦

1 INTRODUCTION

The exponential growth of cyber-physical systems (CPS)
(e.g., self-driving cars, autonomous robots, ...) and related
applications has been fueled by the increase in computational
capabilities of heterogeneous low-power Systems-on-Chip
(SoCs). These SoCs are complex computing platforms com-
posed of a set of different hardware computing units (e.g.,
CPUs, hardware accelerators), each tailored to a specific
target application, sharing a set of resources (memory,
sensors) through interconnects [1]–[5]. While integrating
multiple computing units on the same platform has enabled
efficient scale-up of computational capabilities, it also poses
significant challenges when it comes to assessing their
timing predictability, which is a requirement for CPSs dealing
with real-time and safety-critical applications: the primary
challenge arises from resource contentions that emerge when
multiple active agents within the SoC must access the same
shared resources [1]–[7].

Numerous research efforts have focused on enhancing
the timing predictability of heterogeneous Systems-on-Chip
(SoCs). This includes safely upper bounding execution times
for data transfers [8]–[10] or the deadline miss ratio for
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critical tasks [1]–[3], with the smallest possible pessimism.
These efforts have predominantly focused on modeling and
analyzing commercial DDR protocols [8], memory IPs [11],
and memory controllers [12], but also predictable intercon-
nects [1], [4] and on-chip communication protocols [13].
Regrettably, despite their value, these studies are scattered,
with each one focusing on only one of these resources at a
time, resulting in being overly pessimistic [5].

Modeling and analysis of communication protocols are
done speculatively on abstract models, thus reducing their
real-world applicability. Recent works for modeling and
analysis of IPs (memories, memory controllers, interconnect,
etc.) have to address the unavailability of cycle-accurate
RTL descriptions. Many of these IPs are either entirely
closed-source [8] or provide loosely-timed behavioral models
[5], [12] or just µarchitectural descriptions [1], [3], [4]. In
essence, the fragmented and proprietary nature of commer-
cial and research IPs restricts studies to the particular IP,
greatly reducing the accuracy achievable through system-
level analysis. For example, Restuccia et al. in [9] bound
the access times of multiple initiators on FPGA reading and
writing from/to the shared DDR memory. The proposed
upper bounds’ pessimism is between 50% and 90%: even
though they finely modeled and analyzed the proprietary
interconnect, the authors did not have access to its RTL
nor to the memory controller and IP. The same applies to
Ditty [10], which is a predictable cache coherence mechanism.
In Ditty, even though the caches’ timing is finely modeled,
the overall execution time can be up to 3× bigger than the
theoretical upper bounds, as the authors did not model
other components. Another example is AXI-ICRT [1], an
advanced AXI interconnect with a sophisticated scheduler
which allows transaction prioritization based on importance.
While proposing a highly advanced interconnect with a
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Fig. 1: Proposed methodology.

tightly coupled model, the authors do not extend the model
to the other components of the SoC, even when assessing the
deadline miss ratio and benchmarking the architecture.

The emergence of open-source hardware creates a major
opportunity for building accurate end-to-end models for real-
time analysis of cutting-edge heterogeneous low-power SoCs
[14]–[16]: the openness of the IPs allows for cycle-accurate
analysis of the whole architecture from the interconnects
to the shared resources. Yet, investigations and successful
demonstrations in this direction are still scarce, primarily
because open hardware has only very recently reached the
maturity and completeness levels required to build full
heterogeneous SoCs [17]. In this context, this is the first work
to bridge the gap between open-source hardware and timing
analysis, demonstrating a methodology that successfully
exploits the availability of the source code to provide fine-
grained upper bounds of the system-level data transfers. We
leverage a set of open-source IPs from the PULP family, one
of the most popular open-hardware platforms proposed by
the research community [14], [18].

Figure 1 shows the proposed methodology, highlighting
the novel contributions in yellow. It consists of (i) a model
for standalone IPs composing modern heterogeneous low-
power SoCs, (ii) a static analysis of the RTL code of such
components, and (iii) a compositional mathematical analysis
of the whole system to upper bound the response time of the
interactions between managers (initiators) and shared sub-
ordinates (targets), considering the maximum interference
generated by the interfering managers. Figure 1 highlights
the differences with previous studies also based on a static
and compositional approach [5], [7], [9]. Previous works
typically focus on one IP at a time [9], or rely on loosely-
timed models [5] or high-level hardware documentation [8].
On the contrary, our approach leverages the RTL source code
to build a precise and detailed description of the hardware
components and leverage it to derive an accurate and holistic
system-level analysis. This limits the proposed upper bounds’
pessimism between 28% and just 1%, in isolation and under
interference, which is considerably lower when compared
to similar SoA works for closed-source or loosely-timed
platforms [1]–[4], [8], [10], as better detailed in Section 7. We
demonstrate our methodology on an open-source prototype
of a heterogeneous low-power SoC for embedded systems
composed of a Linux-capable host core, a parallel accelerator,
a set of IOs, and on-chip and off-chip memories.

The manuscript is organized as follows: Section 2 presents
the target open-source RISC-V-based SoC architecture, and
Section 3 discusses the model we apply to its different
components. Section 4 analyzes the components to specialize
the generic model to each of them, and Section 5 provides
the system-level analysis of the architecture. Finally, Section
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Fig. 2: Sample architecture.

6 validates the results with cycle-accurate experiments (on
simulation and FPGA), Section 7 compares this work with
the SoA. Section 8 concludes the manuscript.

2 ARCHITECTURE

Fig. 2 shows the architectural template we target and the four
classes of hardware modules we identify in the architecture
under analysis, namely (i) controllers, (ii) the main crossbar,
(iii) bridges, and (iv) peripherals, modeled in the next Section.
The architecture leverages a set of fully open-source PULP
IPs [18]. It is based on Cheshire [15], an open-source host
platform consisting of an RV64 Linux-capable CPU, a set of
commodity IOs (SPI, UART, ...), and an AXI-based crossbar
with a configurable number of subordinate and manager
ports for easy integration of accelerators and resources. Our
platform includes a parallel accelerator and a low-power
lightweight HyperBUS memory controller [19].

The host CPU is CVA6 [20], which is a six stages, single-
issue, in-order, 64-bit Linux-capable RISC-V core, supporting
the RV64GC ISA variant, SV39 virtual memory with a
dedicated Memory Management Unit (MMU), three levels
of privilege (Machine, Supervisor, User), and PMP [21].
CVA6 features private L1 instruction and caches, operating
in parallel, with the latter being able to issue multiple
transactions. When needed, CVA6 can offload computation-
intensive tasks to the parallel hardware accelerator, the so-
called PULP cluster [22]. It is built around 8 CV32E4-based
cores [23] sharing 16×8 kB SRAM banks, composing a 128 kB
L1 Scratchpad Memory (SPM). The cluster features a DMA
to perform data transfers between the private L1SPM and the
main memory: data movement is performed via software-
programmed DMA transfers. Once the data are available
inside the L1SPM, the accelerator starts the computation.

CVA6 and the cluster are the managers of the systems
connected to the main AXI crossbar [24], which routes their
requests to the desired subordinates according to the memory
map. A manager can access any subordinate in the system.
The main subordinates of the systems are, respectively, (i)
the on-chip SRAM memory, (ii) the IO subsystem, and (iii)
the off-chip main memory with a tightly coupled Last Level
Cache (LLC). The on-chip memory is used for low-latency,
high-bandwidth data storage. The APB subsystem is used to
communicate with off-chip sensors or memories through the
commodity IOs. The off-chip main memory is where the code
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and the shared data are stored. Differently from high-end
embedded systems relying on relatively power-hungry and
expensive DDR3/4/5 memories, the platform under analysis
adopts HyperRAMs as off-chip main memory, which are
fully-digital low-power small-area DRAMs with less than 14
IO pins and that provide enough capacity to boot Linux [16]
and bandwidth for IoT applications [19], [25].

3 MODEL

This section presents the model we construct for the different
components of our SoC. Our aim is to propose a general
model that describes the characteristics of the components
and that can be re-targeted to different IPs and novel archi-
tectures, regardless of the number of integrated controllers
and peripherals. This work is also an effort to provide
base support to stimulate further studies in predictability
improvements and analysis for open hardware architectures.

3.1 Communication model
We identify four classes of hardware modules in the archi-
tecture under analysis, shown in Fig. 2, namely (i) controllers,
(ii) the main crossbar, (iii) bridges, and (iv) peripherals. As
the AXI standard is the main communication standard used
to implement non-coherent on-chip communications [24],
we discuss here its main features. It defines a manager-
subordinate interface enabling simultaneous, bi-directional
data exchange and multiple outstanding transactions. Fig. 3
shows the AXI channel architecture and information flow.
Bus transactions are initiated by a controller (exporting
a manager interface), submitting a transaction request to
read/write data to/from a subordinate interface through AR
or AW channels, respectively. A request describes the starting
target address and a burst length. After the request phase, in
case of a read, data are transmitted through the R channel.
In case of a write, data are provided by the controller to the
target peripheral through the W channel. Upon completing
a write transaction, the peripheral also sends a beat on the
B channel to acknowledge the transaction’s completion. For
multiple in-flight write transactions, the standard enforces
strict in-order access to the W channel: the data on the W
channel must be propagated in the same order as the AW
channel requests. Even though the standard does not require
it, many commercial and open-source platforms apply the
same policy for reads, typically to limit the system’s overall
complexity, as reported in their documentation [26], [27].

3.2 Controller model
Controllers have an active role on the bus. Each controller
exports an AXI manager interface, through which it initiates
requests for bus transactions directed to the peripherals. A
generic controller Ci can be described through two param-
eters: the maximum number of outstanding read/write
transactions that it can issue in parallel, denoted with ϕCi

R/W ,
and their relative burst length βi. While our model and
analysis can be applied to a generic architecture, the system
under analysis features as controllers a CVA6 core [20] and
a cluster accelerator [22] (see Section 2). Bus transactions
issued by the cluster interfere with those issued by CVA6
and vice-versa. CVA6 is assumed to compute a critical
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Fig. 3: AXI Channel architecture

periodic workload, running on top of a Real-time Operating
System (RTOS). The PULP cluster executes computation-
intensive tasks and issues bus transactions through its DMA.
Contention internal to the PULP cluster has been profiled
in detail in [28]. However, our analysis provides the worst-
case data transfer time in accessing the shared peripherals to
support the safe scheduling and execution of critical tasks
within their deadline. We specifically focus on interference in
accessing the shared resources. Modeling the internal effects
of controllers, such as pipeline stalls in the core or contention
within the accelerator, is beyond the scope of this work.

3.3 Peripheral model
Peripherals export a subordinate interface through which
they receive and serve the bus transactions. The peripherals
deployed in the system are heterogeneous. Nonetheless, our
model offers a set of parameters representative of a generic
peripheral, and it is not tied to a specific communication
protocol. It works as the baseline for the analysis of any
peripheral deployed in the system under analysis. The generic
peripheral Pj is characterized with two sets of parameters:
(i) the maximum number of supported outstanding reads
(χPj

R ) and write (χPj

W ) transactions; (ii) the maximum number
of cycles incurred from the reception of the request to its
completion, for a read (dPj

R ) and a write (dPj

W ) transaction in
isolation. dPj

R and d
Pj

W are composed of two contributions: (i)
the data time, defined as the time required for the peripheral
to send or receive one word of data (tDATA) multiplied by
the burst length of the transaction in service (βi) and (ii) the
control overhead tCTRL, defined as the maximum time elapsing
between accepting the request and the availability of the first
word of data (reads) or availability to receive data (writes).
From the previous considerations, dPj

R/W = t
Pj

CTRL + t
Pj

DATA · β.
We define two extra parameters ρPj and θPj . The first indi-
cates the level of pipelining in serving multiple transactions.
ρPj = 1 means that each stage of Pj does not stall the
previous, and transactions are served in a pipelined fashion,
while ρPj = 0 indicates that no pipeline is implemented.
θPj = 0 indicates that read and write transactions interfere
with each other. θPj = 1 indicates that read and write
transactions can be handled in parallel by Pj .

3.4 Main crossbar model
We provide here the model of the main crossbar, the routing
component enabling communication among controllers and
peripherals. Each controller has its manager port connected
to a subordinate port of the crossbar. Each peripheral has its
subordinate port connected to a manager port of the crossbar.
We model the crossbar R0 with two sets of parameters: (i) the
maximum amount of outstanding read and write transactions
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that a subordinate port can accept (χR0

R and χR0

W , respec-
tively); and (ii) the maximum overall latency introduced
by R0 on each read (dR0

R ) and write transaction (dR0

W ). dR0

R

and dR0

W are composed of two contributions: (i) the overall
delay introduced by the crossbar on a transaction in isolation
(tPROP); (ii) the maximum time a request is delayed at the ar-
bitration stage due to the contention generated by interfering
transactions (tR0

CON). From the previous considerations, the
propagation latency is modeled as dR0

R/W = tR0

PROP + tR0

CON.
Such parameters depend on the arbitration policies and
routing mechanisms, as we investigate in detail in Section 4.

3.5 Bridge model
Bridges export a single manager interface and a single
subordinate interface. They perform protocol/clock conver-
sion between a controller and the crossbar. Bridges require a
certain number of clock cycles to be crossed but do not limit
the number of in-flight transactions and do not create any
contention. We model the bridges with two parameters: the
overall maximum delay introduced over a whole transaction
for (a) read (dQj

R ) and (b) write (dQj

W ) transactions.

4 ANALYSIS OF THE HARDWARE MODULES

This Section analyzes the worst-case behavior of the periph-
erals, bridges, and the crossbar present in the platform under
analysis through careful evaluation of the RTL code, aided
by cycle-accurate simulation. Our approach is compositional:
in this Section, we derive the IP micro-architecture from the
corresponding RTL code and bound the service times at the
IP level in isolation, according to the model introduced in
Section 3. In Section 5, we provide a worst-case analysis
at the system level, in isolation and under interference. We
define t

Pj

CK as the period of the clock fed to Pj .

4.1 AXI CDC FIFO queues
AXI CDC FIFOs are leveraged to perform clock-domain cross-
ing between two AXI-based devices. The generic AXI CDC
FIFO Fi is a bridge: we apply here the model presented in
Section 3.5. It exports a manager interface and a subordinate
interface. It is composed of five independent CDC FIFOs,
each serving as a buffer for an AXI channel, having depth
Di

CDC (design parameter for the IP under analysis).

4.1.1 RTL IP structure
Figure 4 shows the block diagram of a CDC FIFO in the
platform under analysis. They are structured following
established clock domain crossing (CDC) principles [24].
The design is split into two parts, the transmitter (TX) and
the receiver (RX), having different clock domains. TX and RX
interface through asynchronous signals, namely a counter
for data synchronization (synchronized with two-stage Flip-
Flops (FFs)) and the payload data signal.

4.1.2 Delays analysis
As mentioned earlier, CDC FIFOs are bridges: we apply the
model presented in Section 3.5. The CDC FIFO under analysis
behaves as follows: TX samples the payload data into an FF.
In the following cycle, the TX counter is updated. The TX

counter value gets then through two synchronizations FFs –
the updated pointer value is observed by the RX after two
clock cycles. At that point, RX samples the data in one clock
cycle to then propagate it in the following one. It follows that
crossing the CDC FIFO introduces a fixed delay of one clock
cycle of the TX domain (tTX

CK) and four clock cycles of the RX
domain (tRX

CK). This means that the delay in crossing the CDC
FIFO is equal to tCDC(t

TX
CK, t

RX
CK) = tTX

CK + 4 · tRX
CK.We leverage

this baseline delay to build the overall latency introduced
by Fi, interposed between a manager (clocked at tCCK) and a
subordinate (clocked at tPCK).

Read transaction: A read transaction ARk is composed
of two phases: (i) the address propagation phase and (ii)
the data phase. This means that Fi is crossed twice to
complete ARk: during phase (i), the manager is on the TX
side, propagating the request. In phase (ii), the subordinate is
on the TX side, propagating the data. Hence, the propagation
latency is tCDC(t

C
CK, t

P
CK) in phase (i) and tCDC(t

P
CK, t

C
CK) in

phase (ii). Adding them together, the propagation latency
introduced by Fi on ARk is equal to:

dCDC
R = tCDC(t

C
CK, t

P
CK) + tCDC(t

P
CK, t

C
CK) = 5(tCCK + tPCK) (1)

Write transaction: A write transaction is composed of three
phases: (i) an address phase (manager on the TX side), (ii)
a data phase (manager on the TX side), and (iii) a write
response phase (subordinate on the TX side). Phases (i) and
(ii) happen in parallel (see [29] p. 45). Thus, tCDC(t

C
CK, t

P
CK) is

incurred for phases (i) and (ii), and tCDC(t
P
CK, t

C
CK) for phase

(iii). The delay introduced by Fi on AWk is equal to the delay
introduced in Equation 1, dCDC

W = dCDC
R .

4.2 AXI SRAM scratchpad memory (SPM)
The AXI SPM is a high-speed, low-latency memory com-
ponent used for temporary data storage – a block design
representation is reported in Figure 5. The SPM memory is a
peripheral: we apply here the model presented in Section 3.3.

4.2.1 RTL IP structure
The first stage of the SPM architecture is represented by
a protocol converter (AXI-SRAM-Interface), translating the
read and write AXI channels into SRAM-compatible trans-
actions. Following the converter, an internal demux directs
the SRAM transactions to the desired SRAM bank, where the
data is stored. Each SRAM bank provides two independent
SRAM ports, one for reads and one for writes, as from the
specification of industry-standard SRAM resources [30].

The AXI-SRAM-Interface is structured in two submodules,
independently managing read and write transactions. The
first stage of each submodule is a FIFO queue (of depth
DSPM

FIFO) buffering the AXI AW or AR channel, respectively.
Each submodule features the logic for protocol translation,
consisting of (i) saving transaction metadata (starting address
and length) and (ii) producing the output SRAM requests.
For writes, the incoming data on the W channel are directly
propagated towards the banks. The logic operating the
protocol conversion generates the address for each W beat.
For reads, the data coming from the SRAM banks are directly
driven on the R channel. The logic keeps compliance with
the AXI standard, adding the last signal or generating write
responses when required. The demux is fully combinatorial
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and selects the target bank according to the request’s address.
The SRAM banks are technology-specific macros instantiated
at design time. Each SRAM bank’s port exports an enable
signal, an address signal, and a signal to determine if a
transaction is a read or a write. The SRAM interface expects
simultaneous propagation of data and commands for writes;
for reads, the data are sent the cycle following the command.

4.2.2 Delays and parallelism analysis

AXI-SRAM-Interface: the FIFOs in the converter are only in
charge of data buffering – each FIFO introduces a fixed
delay of one clock cycle (tSPM

CK ). After the FIFOs, the control
logic requires at most one clock cycle (tSPM

CK ) to set up the
propagation of a burst transaction – the direct connection
over the W and R channels makes the data streaming in a
pipeline fashion, adding no further latency. At the end of a
write transaction, the converter takes two clock cycles (2tSPM

CK )
to generate the write response: one to acknowledge that the
last W beat has been accepted and one to provide the B
response. The same applies to reads, to generate the AXI last
signal. Summing up the contributions, the control latency
introduced by the AXI-SRAM-Interface to each transaction is
upper bound by 4tSPM

CK for both reads and writes.
Demux: The demultiplexing is combinatorial: it connects

the transaction to the SRAM bank in one clock cycle (tSPM
CK ).

Banks: As by the definition of the SRAM interface [30],
an SRAM bank serves one transaction per clock cycle,
which makes tSPM

DATA,R/W = tSPM
CK . For write transactions, the

protocol guarantees that the SRAM bank samples the data
in parallel with the request (in the same clock cycle). For
read transactions, the data are served the clock cycle after the
bank samples the request. So, it contributes to tSPM

CTRL,R with
one clock cycle (tSPM

CK ). Summing up the contributions, the
service time of the SPM in isolation is upper bound by:

tSPM
CTRL,W = 5 · tSPM

CK ; tSPM
CTRL,R = 6 · tSPM

CK ; tSPM
DATA,R/W = tSPM

CK ; (2)

Consider now the parallelism supported by the SPM. The
maximum number of accepted outstanding transactions at
the SPM χSPM

R is defined by the depth DSPM
FIFO of the input

buffers implemented in the AXI-SRAM-Interface. Thus,

χSPM
R = χSPM

W = DSPM
FIFO (3)

The SPM module under analysis is aggressively pipelined,
operations are executed in one clock cycle, and no stall
sources are present in the design. Also, as mentioned earlier,
read and write transactions do not interfere with each other.
From the previous considerations, ρSPM = 1 and θSPM = 1.

4.3 IO Subsystem
The IO subsystem is the peripheral in charge of writing/read-
ing data to/from the off-chip I/Os. We apply here the
model presented in Section 3.3. It is composed of a set
of memory-mapped peripheral registers that are accessed
through a demux and that manage the datapaths issuing the
transactions on the I/O interfaces (e.g., SPI, I2C, etc.).

4.3.1 RTL IP structure
Figure 6 shows the block diagram of the IO subsystem. It is
composed of an AXI-REG-Interface, a demux, and a set of
registers. The first stage of the AXI-REG-Interface is composed
of two FIFOs (of depth DIO

FIFO), buffering read and write
transactions, respectively. After the FIFOs, a round-robin
arbiter manages read and write transactions, allowing only
one at a time to pass to the protocol conversion. Since the IO
subsystem is meant for low-power reads and writes, registers’
transactions share the same set of signals for reads and writes
and are limited to single-word accesses. For such a reason, the
IO subsystem does not support burst transactions (requests
having βi > 1 are suppressed). The demux stage decodes
the request and directs it to the proper register destination,
where it is finally served as a register read or write.

4.3.2 Delays and parallelism analysis
The IO subsystem is a peripheral, thus, we apply the model
proposed in Section 3.5. Considering the maximum service
delays, overall, the IO subsystem is composed of four stages:
(i) the FIFOs, (ii) the protocol conversion, (iii) demultiplex-
ing, and (iv) target register access. The first three stages,
contributing to the control overhead, introduce a fixed delay
of one clock cycle (tIO

CK) each for a total of 3 · tIO
CK clock cycles.

Consider now stage (iv). In the case of a write, the request
and the corresponding data are propagated in parallel in one
clock cycle. In the case of a read, the register provides the
data in the clock cycle following the request – tIO

CTRL requires
one extra clock cycle. Summing all the contributions, the
service time of the I/O subsystem is upper bounded by:

tIOCTRL,W = 3 · tIOCK; tIOCTRL,R = 4 · tIOCK; tIODATA,W/R = tIOCK (4)

Consider now the parallelism. Similarly to the SPM
module, the IO subsystem is capable of buffering up to DIO

FIFO
of each type in its input FIFO queues. Thus, the maximum
number of outstanding transactions supported by the IO
subsystem is equal to:

χIO
W = χIO

R = DIO
FIFO (5)

The IO subsystem serves read and write transactions one at a
time, and no pipelining is implemented among the different
stages. This means that ρIO = 0 and θSPM = 0.
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Fig. 7: Block diagrams of the components of the main memory subsystem. (a) LLC block diagram, (b) Transaction control
flow diagram, (c) Memory controller block diagram.

4.4 The main memory subsystem
The main memory subsystem is a peripheral: we apply here
the model presented in Section 3.3. It is composed of three
macro submodules: (i) the AXI Last-level Cache (LLC); (ii) the
HyperRAM memory controller (HMC); and (iii) the HyperRAM
memory (HRAM). It is based on HyperRAM memories
leveraging the HyperBUS protocol [25]. HyperRAMs are
optimized for low-overhead data storage while offering up
to 3.2Gbps bandwidth. HyperRAMs expose a low pin count,
a fully digital 8-bit double-data-rate (DDR) interface used
for commands and data. HyperRAMs serve transactions in
order, one at a time, as required by the protocol [25]. While
a pure in-order strategy is simpler than those deployed by
high-end commercial memory controllers, it is important
to note that these controllers are typically complex closed-
source IPs, making detailed analysis extremely challenging.
Notably, our analysis is the first to explore this level of detail.
Furthermore, the memory subsystem under analysis has
shown to be effective in tape-outs of Linux-capable chips [16].
We model the service times of a single transaction in case of
an LLC hit and miss. By doing so, we provide upper bounds
that can be leveraged by future studies focusing on LLC
interference between different controllers at the application
level. For example, advanced cache management studies for
real-time applications (e.g., cache coloring) could leverage the
upper bounds provided here to bound overall task execution
times.

4.4.1 RTL IP structure
The AXI Last-Level Cache is the interface of the memory
subsystem with the platform. The LLC under analysis has
configurable cache line length, defined as LWLLC. Figure 7(a)
shows the LLC’s block diagram, composed of 5 pipelined
units: (i) burst splitter, (ii) hit-miss detection, (iii) eviction/re-
fill, (iv) data read/write, and (v) data ways. Figure 7(b)
shows how these units cooperate to serve the requests. The
burst splitter buffers and splits the incoming AXI requests
into multiple sub-requests that have the same length of the
cache line, and it calculates the tags of the sub-transactions.
A βi-word AXI burst request is split internally into ⌈ βi

LWLLC
⌉

requests of length LWLLC. The tags are the input to the hit-
miss detection unit, which analyzes them to determine if
any sub-request will be a (a) hit or (b) miss. In case (a), the
transaction is directed to the read/write unit: if it is a (a.i)
read, the read response is generated and immediately sent
through the AXI subordinate port, completing the transaction.
In the case of a (a.ii) write, the locally cached value is updated,
and a write response is generated and sent back to the

AXI interface to complete the transaction. In case (b), the
transaction is submitted to the eviction/refill unit. Refill is
performed on every miss and consists of issuing a read to
the memory controller to fetch the missing data and update
the data way. Eviction is performed when a cache set is full
to free the necessary spot before a refill. A Least Recently
Used (LRU) algorithm is used in the module under analysis.

The HyperRAM memory controller [31] is depicted in
Figure 7(c). It consists of two tightly coupled modules
working in two separated frequency domains: (i) the AXI
front-end and (ii) the back-end PHY controller. The front-end
handles and converts the AXI transactions into data packets
for the PHY controller; it runs at the same clock as the LLC
(tHMC

CK ). The back-end features a Finite State Machine (FSM) to
send/receive the data packets and keep compliance with the
HyperBUS protocol timings and data flow; it runs at the same
clock as the HyperRAMs (tHRAM

CK ). The back-end handles two
off-chip HyperRAMs in parallel, configured with interleaved
addresses. As each HyperRAM arranges data as 16-bit words,
the word size of the back-end is DWHYPER = 32 bits.

The first stage of the front-end is composed of two FIFOs
buffering incoming AXI read and write requests. Then, a
serializer solves conflicts among reads and writes, allowing
only one AW or AR request at a time. Following, three
modules translate between AXI and the back-end protocol:
(i) AXTOPHY, translating the AXI AW or AR requests into
commands for the back-end; (ii) PHYTOR converting the data
words from the back-end into AXI read beats for the AXI
interface; and (iii) WTOPHY, converting AXI W data beats
into data words and generating write response at the end of
the transaction. Three CDC FIFOs are deployed between the
AXTOPHY, WTOPHY, and PHYTOR and the back-end. The
back-end deploys an internal FSM arranging the requests
coming from the front-end into 48-bit vector requests, as
required in the HyperBUS protocol, and propagating the
data packets to/from the two physical HyperRAM memories
through two transceivers (TRX).

The HyperRAM memory is an off-chip memory IP [25].
It is provided with a cycle-accurate model, fundamental for
our analysis purposes [32]. Each HyperRAM is organized
as an array of 16-bit words and supports one outstanding
burst transaction, up to 1kB long. As two HyperRAM are
interleaved, the overall burst can be up to 2kB long [19].

4.4.2 Delays and parallelism analysis
We now bound the worst-case service time of the main
memory subsystem, analyzing its components one at a time.
Starting with the LLC, we follow the control flow diagram



7

reported in Figure 7(b) to guide the explanation. The LLC
collects the requests incoming to the main memory. Three
scenarios can happen: (i) LLC cache hit, (ii) LLC cache miss
with refill, and (iii) LLC cache miss with eviction and refill.

In case (i), the LLC directly manages the request, and no
commands are submitted to the HMC. The request proceeds
through the LLC splitter, hit/miss unit, read/write unit, and
data way stages. By design, each stage of the LLC requires
a fixed number of clock cycles. The burst splitter executes
in one clock cycle (tLLC

CK ). The hit/miss detection stage takes
two clock cycles (2tLLC

CK ): one for tag checking and one to
propagate the request to the read/write unit or the evict/refill
unit. The read/write unit requires one clock cycle (tLLC

CK ) to
route the transaction to the data ways. The data ways accept
the incoming request in one clock cycle (tLLC

CK ) to then access
the internal SRAM macros (same as the SPM, Section 4.2).
The internal SRAM takes one clock cycle to provide the
read data (tLLC

CK ), but no further latency is required on writes.
Once it gets the response, the read/write unit routes the
read channel to the AX interface, whereas it takes one clock
cycle (tLLC

CK ) to generate the write B response at the end. Thus,
read/write unit and data ways take together three clock
cycles (3tLLC

CK ). Summing up the contributions, the service
time in case of a hit is upper bound by:

tMS-HIT
CTRL,R/W = 6 · tLLC

CK ; tMS-HIT
DATA,R/W = tLLC

CK ; (6)

Consider now cases (ii) and (iii): the eviction and refill
stage is also involved, and a read (for refill) and, optionally,
a write (for eviction) is issued to the main memory. Eviction
and refill are run in parallel. Each operation performs two
steps, each taking one clock cycle: (a) generating a transaction
for the main memory and (b) generating a transaction for
the data way. Thus, summing the latency introduced by the
eviction and refill stage (2tLLC

CK ) with the ones from the other
stages, the LLC’s contribution to the overall control time in
case of a miss is upper bound by:

tLLC-MISS
CTRL,R/W = tMS-HIT

CTRL,R/W + 2tLLC
CK (7)

Consider now the delay introduced by the HMC on a
generic request. Later, we will use it to bound the service
time for the batch of transactions issued by the LLC. As
described earlier, the HMC is composed of (a) the front-
end, (b) the CDC FIFOs, and (c) the back-end. Consider
(a): each one of the front-end’s submodules takes one clock
cycle to sample and process the transaction, except for the
serializer, which takes two. As transactions pass through 4
modules (FIFOs, serializer, AXITOPHY, and either WTOPHY
or PHYTOR), the overall delay contribution of the front-end
is equal to 5tHMC

CK . Consider now (b): these are the CDC FIFOs
composing the AXI CDC FIFOs introduced in Section 4.1.
For writes, the transmitter (TX) is the front-end, sending data
to the back-end from the AXTOPHY and the WTOPHY. As
both transfers happen in parallel, the delay introduced by
the CDC on a write is upper bound by tCDC(t

HMC
CK , tHRAM

CK ).
For reads, first, the front-end transmits (TX) the AXTOPHY
request, and then the back-end transmits the data beats: the
delay introduced by the CDC on a read is upper bound
by tCDC(t

HMC
CK , tHRAM

CK ) + tCDC(t
HRAM
CK , tHMC

CK ). Consider now
(c): the back-end’s FSM parses the incoming request into a
HyperRAM command in one cycle (tHRAM

CK ). Following this,
an extra cycle is required for the data to cross the back-end.

Summing up the contributions just described, the control
time of the HMC on a generic transaction is upper bound by:

tHMC
CTRL,R = 5 · tHMC

CK + tCDC(t
HMC
CK , tHRAM

CK ) + tCDC(t
HRAM
CK , tHMC

CK ) + 2 · tHRAM
CK

tHMC
CTRL,W = 5 · tHMC

CK + tCDC(t
HMC
CK , tHRAM

CK ) + 2 · tHRAM
CK

(8)

Consider now the delays introduced by the HyperRAM
memories on a generic request. The control overhead time to
access the HyperRAM memory is defined by the HyperBUS
protocol [25]. First, the 48-bit HyperRAM command vector is
sent over the two memories in 3 · tHRAM

CK clock cycles, as the
HyperBUS command bus is 16 bits. Following, the HyperBUS
provides a fixed latency for the maximum time to access the
first data word, accounting for refresh effects and crossing
row boundaries. The specifications [33] bound such a delay
between 7 and 16 clock cycles. In our case, this is set to
12 · tHRAM

CK . Thus, the total control latency of the HyperRAM
memory is upper bound by:

tHRAM
CTRL,R/W = 15 · tHRAM

CK (9)

At this point, data are ready to be propagated. As the AXI
domain and the HyperRAM have different data widths, the
number of cycles to send/receive an AXI word is:

tHRAM
DATA,R/W = DWHYPER · ⌈

DWAXI
DWHYPER

⌉ · tHRAM
CK (10)

We now have all the elements to bound the overall service
time of the whole main memory subsystem in case of a
miss (ii) with refill and (iii) eviction and refill. First, we
bound the service time to serve a refill (read) request. A
βi-long transaction is split by the LLC into ⌈βi/LWLLC⌉ sub-
transactions to the memory, each LWLLC-long. Therefore, by
multiplying the control time of each sub-transaction (tHMC

CTRL,R+

tHRAM
CTRL,R) by the number of transactions issued (⌈ βi

LWLLC
⌉), we

bound the control time introduced by the memory controller
and the off-chip memories. To this, we sum the control time
of the LLC in case of a miss (tMS-MISS

CTRL,W/R) and obtain the whole
control overhead. The same reasoning applies to the data
time: the total number of values requested by the LLC to the
memory will be equal to LWLLC · ⌈ βi

LWLLC
⌉ and the overall

time spent reading LWLLC · ⌈ βi

LWLLC
⌉tHRAM

DATA,R/W. It follows that
the time to serve one word is LWLLC

βi
· ⌈ βi

LWLLC
⌉ · tHRAM

DATA,R/W.
Summing it with the data time of the LLC (tMS-HIT

DATA,R/W), we
obtain the following upper bounds for case (ii):

tMS-MISS-REF
CTRL,R/W = tLLC-MISS

CTRL,R +

⌈
βi

LWLLC

⌉
· (tHMC

CTRL,R + tHRAM
CTRL,R);

tMS-MISS-REF
DATA,R/W = tMS-HIT

DATA,R/W +
LWLLC

βi
·
⌈

βi

LWLLC

⌉
· tHRAM

DATA,R;

(11)

If the eviction is also required, ⌈ βi

LWLLC
⌉ extra write trans-

actions of length βi are performed to save the evicted
data. Following the same reasoning as earlier, this batch of
transactions will introduce ⌈ βi

LWLLC
⌉(tHMC

CTRL,W + tHRAM
CTRL,W) clock

cycles to the control time and LWLLC
βi

· ⌈ βi

LWLLC
⌉ · tHRAM

DATA,W to the
data time. We sum these numbers to eq. 11 to upper bound
the overall control and data time as follows:

tMS-MISS-REF-EV
CTRL,W/R = tMS-MISS-REF

CTRL,W/R +

⌈
βi

LWLLC

⌉
(tHMC

CTRL,W + tHRAM
CTRL,W);

tMS-MISS-REF-EV
DATA,W/R = tMS-MISS-REF

DATA,W/R +
LWLLC

βi
·
⌈

βi

LWLLC

⌉
· tHRAM

DATA,W;

(12)



8

Consider now the parallelism of the main memory
subsystem. This is defined by the LLC, which acts as an
interface with the rest of the platform, buffering up to DLLC

FIFO
read and write transactions. This means that the maximum
number of supported outstanding transactions is as follows:

χMS
R = χMS

W = DLLC
FIFO (13)

The LLC is pipelined: in the case all the enqueued accesses
are hits, there is no stalling. However, the memory controller
handles only one transaction at a time, stalling the preceding
ones, and only serves one read or one write at a time. Hence,
as soon as one access is a miss, ρMS = 0 and θMS = 0.

4.5 AXI host crossbar
The AXI host crossbar under analysis is a consolidated AXI
crossbar already validated in multiple silicon tapeouts [16],
[15], [24]. We apply here the generic model for the crossbar
proposed in Section 3.4. The crossbar is referred as R0.

4.5.1 RTL IP structure
As detailed in Figure 8, the crossbar exports a set of input
subordinate ports (S) and output manager ports (M). Each
S port is connected to a demultiplexer, which routes the
incoming AW and AR requests and W data to the proper
destination. Each M port is connected to a multiplexer, which
(i) arbitrates AW and AR requests directed to the same
peripheral, (ii) connects the selected W channel from the
controller to the peripheral, and (iii) routes back the R read
data and B write responses. The crossbar under analysis can
be configured for a fully combinatorial (i.e., decoding and
routing operations in one clock cycle) or pipelined structure
with up to three pipeline stages. In the platform under
analysis, it is configured to be fully combinatorial.

4.5.2 Delays and parallelism analysis
To analyze the maximum propagation delays introduced
by the crossbar, we upper bound the overall latency on a
transaction by combining the delays introduced on each
AXI channel. We provide two upper bounds, one for trans-
actions in isolation (i.e., tR0

PROP,R/W as defined in Section
3) and the other for transactions under contention (i.e.,
tR0

PROP,R/W+tR0

CON,R/W as defined in Section 3). We will use both
of them in our architectural analysis reported in Section 5.

Maximum delays in isolation: Thanks to the combinatorial
structure, it is guaranteed by design that a request for a
transaction, a data word, or a write response crosses the
crossbar in one clock cycle (tR0

CK). Consider a whole AXI
transaction. For a read transaction, the crossbar is crossed
twice: on the AR and R AXI channels, respectively. For each
AXI write transaction, the crossbar is crossed two times: the
first time is crossed by the AW and W beats (propagated in
parallel), and the second time by the B response. Thus, the
propagation delays in isolation are equal to:

tR0

PROP,R/W = 2 · tR0
CK; (14)

Maximum delays under contention: Under contention, mul-
tiple controllers connected to the crossbar can attempt to
concurrently send requests to the same peripheral, generating
interference. The arbiters deploy a round-robin scheme capa-
ble of granting one AW and one AR request for each clock
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Fig. 8: AXI Crossbar block diagram

cycle. In the worst-case scenario, the request under analysis
loses the round-robin and is served last, experiencing a delay
of MR0

− 1 clock cycles (with MR0
the number of controller

capable of interfering with the request under analysis). From
the previous considerations, the maximum propagation time
introduced by the crossbar is upper bound by:

tR0
CON,R = tR0

CON,W = MR0 − 1 (15)

Consider now the parallelism. Concerning reads, the
crossbar does not keep track of the inflight transactions.
To route the responses back, it appends information to the
AXI ID. Doing so does not limit the maximum number of
outstanding transactions. The behavior is different for writes:
AXI enforces a strict in-order execution of write transactions
(see [29] p. 98). This requires the crossbar to implement
a table to know the order of granted transactions. The
maximum number of outstanding write transactions per
S port is limited by the depth of such tables, refereed as
DR0

TAB. From the previous consideration: χR0

W = DR0
TAB. In the

architecture under analysis, χR0

W is set to be bigger than the
parallelism supported by the peripherals so that the crossbar
does not limit the overall parallelism of the system.

5 SYSTEM-LEVEL WORST-CASE RESPONSE TIME
ANALYSIS

This section introduces our system-level end-to-end analysis
to upper bound the overall response times of read and write
transactions issued by a generic controller and directed to
a generic peripheral, considering the maximum interference
generated by the other controllers in the system. Our approach
is static [34] and compositional [35]: we leverage the model
from Section 3 and the component-level static analysis from
Section 4 to compose, step-by-step, the system-level worst-
case service time of transactions traversing the architecture.

We make an assumption aligned with the SoA [3], [4],
[8], [11], [12], [36] to ensure independence among peripherals
while not compromising the generality of the analysis. It is
assumed that multiple outstanding transactions of the same
type (either read or write) issued by the same controller target
the same peripheral: before issuing a transaction targeting a
peripheral Pj , a controller completes the pending transactions
of the same type targeting a different peripheral Pz . Without
such an assumption, due to the strict ordering imposed by
the AXI standard [29] on the W channel, and the structure
of some peripherals generating interference between reads
and writes (i.e., ρPj = 0), transactions issued by Ck and
directed to Pj might interfere with transactions issued by Ci

and directed to Pz , if Ci also issues in parallel transactions
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to Pj , and vice-versa. This assumption allows us to relax
our analysis, removing such pathological cases. It is worth
noticing that it does not enforce any relationship between
read and write transactions. Such an assumption can either
be enforced at the software level or at the hardware level.
The results of our analysis can be extended to such corner
cases if required. We leave this exploration for future works.

The first step of the analysis is to bound the overall
response time of a transaction in isolation (Lemma 1).
Secondly, we bound the maximum number of transactions
that can interfere with a transaction under analysis, either of
the same type (e.g., reads interfering with a read, Lemma 2)
or of a different type (e.g., write interfering with a read,
and vice versa, Lemma 3). Lemma 4 bounds the maximum
temporal delay each interfering transaction can delay a
transaction under analysis. Finally, Theorem 1 combines the
results of all the lemmas to upper bound the overall worst-
case response time of a transaction under analysis under
interference. We report the lemmas in a general form. AXi,j

can represent either a read or write transaction issued by
the generic controller Ci and directed to the generic peripheral
Pj . The crossbar is referred to as R0. To make our analysis
general, we assume that Ψj = [C0, ..., CM−1] is the generic
set of interfering controllers capable of interfering with Ci

issuing transactions to Pj and that that a generic set of bridges
Θi = {Q0, ..., Qq−1} can be present between each controller
Ci and the crossbar R0. The cardinality of Ψj is referred
to as

∣∣ Ψj

∣∣ and corresponds to the number of controllers
interfering with AXi,j .

Lemma 1. The response time in isolation of AXi,j is upper
bounded by:

dXi,j = d
Pj

R/W +
∑

Ql∈Θi,j

d
Ql

R/W + dR0

R/W (16)

Proof. Section 4 upper bounds the worst-case delays in
isolation introduced by each component in the platform.
According to their definition, such delays account for all of
the phases of the transaction. The components in the platform
are independent of each other. Thus, the delay introduced
by each traversed component is independent of the behavior
of the other components. It derives that the overall delay
incurred in traversing the set of components between Ci and
Pj is upper bounded by the sum of the worst-case delays
introduced by all of the components in the set. Summing up
the maximum delay introduced by the target peripheral Pj

(dPj

R/W), by the set of traversed bridges Θi, and by the crossbar
R0 (dR0

R/W), the lemma derives.

Lemma 2. The maximum number of transactions of the same type
that can interfere with AXi,j is upper bounded by:

SX
i,j = min

 ∑
Cy∈Ψj

ϕ
Cy

X , χ
Pj

X +
∣∣ Ψj

∣∣ (17)

Proof. The min in the formula has two components. As from
the AXI standard definition, an interfering controller Ck can-
not have more than ϕCk

X pending outstanding transactions.
This means that summing up the maximum number of
outstanding transactions for each interfering controller in
Ψj provides an upper bound on the number of transactions
of the same type interfering with AXi,j – the left member

of the min derives. From our peripheral analysis reported
in Section 4, Pj and R0 can limit the maximum amount of
transactions accepted by the system: Pj accepts overall at
most χPj

R/W transactions – when such a limit is reached, any
further incoming transaction directed to Pj is stalled. After
Pj serves a transaction, R0 restarts forwarding transactions
to the peripheral following a round-robin scheme (see Sec-
tion 4). In the worst-case scenario, Ci loses the round-robin
arbitration against all of the

∣∣ Ψj

∣∣ interfering controllers in
Ψj , each ready to submit an interfering request. Summing
up the contributions, also χ

Pj

R +
∣∣ Ψj

∣∣ upper bounds the
maximum number of transactions interfering with AXi,j –
the right member of the min derives. Both of the bounds
are valid – the minimum between them is an upper bound
providing the least pessimism – Lemma 2 derives.

Lemma 3. The maximum number of transactions of a different
type (represented here as Y, i.e., write transactions interfering with
a read under analysis, and vice versa) interfering with AXi,j is
upper bounded by:

UY
i,j = (SX

i,j + 1) · (1− θPj ) (18)

Proof. According to Section 4.5, R0 manages transactions of
different types independently – thus, no interference of this
type is generated at the R0 level. From Section 3, θPj =
1 represents the case in which the peripheral is capable of
serving read and write transactions in parallel (e.g., the SPM
peripheral, Section 4.2). Thus, no interference is generated
among them – the second equation derives. From Section
3, θPj = 0 represents the case in which Pj does not feature
parallelism in serving read and write transactions (i.e., also
write transactions interfere with reads, e.g., main memory
subsystem, Section 4.4). Considering lemma 2, at most SX

i,j

transactions of the same type can interfere with AXi,j . With
θPj = 0, and assuming a round-robin scheme arbitrating
between reads and writes at the peripheral level, each one
of the SX

i,j interfering transaction of the same type can be
preceded by a transaction of the opposite type, which can,
therefore, create interference. The same applies to AXi,j ,
which can lose the arbitration at the peripheral level as well.
Summing up the contribution, it follows that SX

i,j + 1 can
overall interfere with AXi,j – the first equation derives.

Lemma 4. The maximum time delay that a transaction of any
kind AXk,j issued by the generic interfering controller Ck can
cause on AXi,j is upper bounded by:

∆k,j = dR0

R/W + (1− ρPj ) · tPj

CTRL,R/W + t
Pj

DATA,R/W · βk (19)

Proof. In traversing the path between Ck and Pj , AXk,j

shares a portion of the path with AXi,j , i.e., the target
peripheral Pj and the crossbar R0 – no bridges from Θk belongs
to the shared path, thus the delay propagation of AXk,j do
not contribute in delaying AXk,j . Considering the delay
generated by AXk,j at R0, this is upper bounded by dR0

R/W in
Section 3.4. As from Section 3.3, tPj

CTRL,R/W + t
Pj

DATA,R/W · βk is
the maximum service time of Pj for the transaction AXk,j

and upper bounds the maximum temporal delay that AXk,j

can cause on AXi,j at Pj . As from the definition of an
interfering transaction, AXk,j is served by Pj before AXi,j .
As defined by the model in Section 3.3, when ρPj = 1,
the peripheral works in a pipeline fashion. This means that
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for ρPj = 1, the control time t
Pj

CTRL,R/W of an interfering
transaction is pipelined and executed in parallel with the
transaction under analysis. Differently, when ρPj = 0, no
pipeline is implemented, and the control time of the inter-
fering transaction can partially or totally interfere with the
transaction under analysis. From the previous considerations,
the contribution (1− ρPj ) · tPj

CTRL,R/W + t
Pj

DATA,R/W ·βk derives.
Summing up the contributions, the lemma follows.

Theorem 1. The overall response time of AXi,j under the
interference generated by the other controllers in the system
is upper bounded by:

HX
i,j = dXi,j + (SX

i,j + UY
i,j) ·∆k,j (20)

Proof. Summing up the contribution in isolation for AXi,j

(Lemma 1) with the sum of the maximum number of
interfering transactions of the same type (Lemma 2) and
of a different type (Lemma 3) multiplied by the maximum
delay generated by each interfering transaction (Lemma 4),
Theorem 1 derives.

The results presented in this Section represent analytical
upper bounds derived through static code analysis and the
formulation of mathematical proofs. Section 6 will validate
them through a comprehensive set of cycle-accurate exper-
iments and measurements, and it will discuss the model’s
limitation and dependency on the analyzed IPs.

6 EXPERIMENTAL VALIDATION

This Section describes the experimental campaign we con-
ducted to validate the methodology and models. The aim
of the experimental campaign is to assess that the results
presented in the previous Sections correctly upper bound
the maximum delays and response times at the component
level and the architectural level. We follow a hierarchical
approach: at first, Section 6.1 aims to validate the results at
the component level we proposed in Section 4. Following,
in Section 6.2, we experimentally validate the system-level
analysis we proposed in Section 5. The experiments are
conducted in a simulated environment (leveraging the
Siemens QuestaSIM simulator) and by deploying the design
on an FPGA platform. In the simulated experiments, we
deploy custom AXI managers for ad-hoc traffic generation and
cycle-accurate performance monitors. The generic custom
manager represents a generic configurable controller Ci

issuing requests for transactions – we will refer to that as
GCi. In the FPGA, we leverage CVA6 and the PULP cluster
to generate the traffic with synthetic software benchmarks
and rely on their performance-monitoring registers to collect
the measurements. The experimental designs are deployed
on the AMD-Xilinx VCU118, using the Vitis 2022.1 toolchain.
Similar State-of-the-Art works upper bounding the execution
time of a single transaction leverage synthetic benchmarks
to measure the worst-case access times since generic applica-
tions fail to do so [8]–[10]. For this reason, we concentrate on
synthetic benchmarks at the IP and the system level.

6.1 Component-level hardware modules
6.1.1 Delays analysis
This subsection presents the tests run to measure the worst-
case access latency time in isolation for the peripherals (dPj

R/W ),

the crossbar (dR0

R/W ) and the bridges (dQj

R/W ) from Section 4. We
connect the generic controller CGi to the IP under analysis
for these experiments. We let CGi issue 100’000 transactions,
one at a time, with random burst length (βi). We monitor the
service times and then pick the longest ones for different βi.

Figure 9 compares the maximum measured experimental
delays with the upper bound proposed in Section 4. Fig-
ure 9(a) reports the maximum service time of the main
memory subsystem in case of a miss as a function of
the burst length of the transaction under analysis, either
when (i) only a refill is necessary and (ii) both refill and
eviction are necessary, compared with the bounds proposed
in Section 4.4. The measured service times are lower than
the bounds. The pessimism is between 3% and 10.1%; the
larger βi, the higher the pessimism. Higher pessimism on
longer transactions is due to the internal splitting at the
LLC. As from our analysis, the memory subsystem is not
fully pipelined (ρMS = 0). However, in practice, the control
and data phases of consecutive sub-transactions might be
partially served in parallel by the LLC and the memory
controller. This means that the longer the transaction, the
higher the number of sub-transactions and their overlap, and
the lower the service time compared to our model. Thus, the
pessimism increases. Figure 9(b) reports the measured results
on the main memory subsystem but in case of a hit, compared
with the bounds proposed in Section 4.4. As we consider an
LLC hit, the access to the HyperRAM is not performed: this
test analyzes the service time of the LLC. Our bounds are
always upper bounds for the maximum measured results.
The trend here is reversed w.r.t. Figure 9(a) – as βi increases,
the relative pessimism decreases from 7.7% down to 0.4%. In
this case, the source of the pessimism comes only from the
control time, which does not depend on βi, while there is
no pessimism on the data time. Hence, this pessimism gets
amortized as the burst length and the overall service time
increase. We conduct the same experimental campaign also
on the AXI SPM – the measured results, compared with the
bounds proposed in Section 4.2, are reported in Figure 9(c).
The trends are similar to the ones reported in Figure 9(b)
for LLC hits – the pessimism of our analysis is limited to
1 and 2 clock cycles for reads and writes on the control
time, respectively. As in the case of the LLC HITs, the upper
bound on the control overhead gets amortized for longer
transactions, and the pessimism reduces from 8.8% to 0.5%.

Figure 9(d) reports the maximum measured latency to
cross an AXI CDC FIFO as a function of the manager clock
period (the subordinate clock period is fixed to 30 ns) and
compared with the bounds proposed in Section 4.1. The
results are independent of the length of the transaction. To
stimulate the highest variability, the phases of the clocks
are randomly selected on a uniform distribution. The first
bar reports the crossing delays from the manager to the
subordinate side, corresponding to the delays introduced on
the AW, W, and AR AXI channels. The second bar reports
the crossing delays from the subordinate to the manager
side, corresponding to the overall delays on the AXI R and B
channels. The third bar shows the overall delay on a complete
transaction, corresponding to the sum of the two previously
introduced contributions (see Section 4.1). The pessimism of
our bounds is, at most, one clock cycle of the slowest clock
between manager and subordinate.
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Fig. 9: Services time in isolation.

Figure 9(e) reports the measured propagation delays
introduced by the crossbar over an entire write and read
transaction, compared with the bounds of Section 4.5, vary-
ing the number of controllers. As explained in Section 4.5,
the propagation delay is the sum of the propagation latency
without interference (eq. 14) and the additional contention
latency (eq. 15), which depends on the number of controllers.
Thanks to the simplicity of the arbitration operated by the
crossbar (pure round-robin), our proposed bounds exactly
match the measurements. We conducted the experimental
campaign also on the IO subsystem. We measured the
maximum service time and compared it with the upper
bounds of Section 4.3, which we do not show for space
reasons: such IP supports only single-word transactions. Our
upper bounds exceed the maximum measured service time
with pessimism of down to 2 clock cycles, with service times
of 4 (write) and 5 (read) clock cycles.

6.1.2 Parallelism
We also demonstrate our analysis of parallelism of the
peripherals (χPj

R/W ) and the crossbar (χR0

R/W ) analyzed in
Section 4. To do so, we configured CGi to issue unlimited
outstanding transactions to the peripheral under test. In
parallel, we monitor the maximum number of accepted
outstanding transactions. Our measurements match our
analysis: the maximum number of outstanding transactions
is defined by the maximum parallelism accepted at the input
stage of the peripherals and the crossbar.

6.2 System-level experiments
While the previous experiments focused on the evaluation
at the IP level, this set of experiments aims to evaluate the
system-level bounds proposed in Section 5. We first validate
our analysis in simulation. We developed a System Verilog
testbench with two configurable AXI synthetic controllers
CGi connected to the target architecture (see Figure 2)
stimulating overload conditions to highlight worst-case
scenarios. We also validate our results on FPGA, generating
traffic with CVA6 and the PULP cluster.

At first, we evaluate the results in isolation at the system
level as a function of the burst length, leveraging the same
strategy used for the previous experiments. Namely, these
tests are meant to validate Lemma 1 (eq. 16). To measure
the service time at the system level in isolation, we let
one GCi issue 100’000 transactions, one at a time, with
different βi, while the other GCk is inactive. We monitor
the service times and then pick the longest ones for each

βi. Figures 10 (a) and (b) report the maximum measured
system-level response times in isolation for completing a
transaction issued by the generic controller GCi and directed
to (a) the main memory subsystem (case of cache miss,
causing either refill or both refill and eviction) and (b) to
the SPM memory, compared with the bounds proposed in
Lemma 1. The measured service times are smaller than the
bounds in all the tested scenarios. The measure and the
trends reported in Figure 10(a) are aligned with the ones
found at the IP level and reported in Figure 9(a). This is
because the overhead introduced by the crossbar (in isolation)
and the CDC FIFOs is negligible compared to the memory
subsystem’s service time. Figure 10(b) shows a trend aligned
with the results at the IP-level reported in Figure 9(c): the
lower βi, the higher the pessimism. It is worth mentioning
that the analysis shows higher pessimism at the system level
than at the IP level. This is due to the extra pessimism from
the crossbar and the CDC, which is nevertheless amortized
on longer transactions, down to 1.9%.

We now analyze the results under maximum interference,
to verify the results of Lemma 2 and 3 and Theorem 1.
For these tests, the execution of GCi (100’000 transactions,
one at a time) receives interference by controller GCk. βk

is fixed and equal to βi, while we vary the amount of
outstanding transactions GCk can issue (ϕCGk

R/W ). Figures 10
(c), (d), and (e) report the maximum measured system-
level response times for completing a transaction issued
by the generic controller GCi and directed to (c) the main
memory with an LLC miss considering βi = 16, (d) the SPM
memory, considering βi = 16, and (e) the SPM memory,
considering βi = 256, and compare them with the upper
bounds proposed in equation 20. Figures 10 (c), (d), and (e)
verify the results of Lemma 2 and 3: when ϕCGk

R/W > χMS
R/W

(two bars on the right), the total service time is defined by
the parallelism of the peripheral itself – as expected, after
saturating the number of interfering transactions accepted by
the peripheral, the measured results are the same regardless
of the increase of ϕCGk

R/W . Differently, when ϕCGk

R/W ≤ χMS
R/W ,

a reduced value of ϕCGk

R/W corresponds to lower interference
and response times. Figure 10(c) refers to the case of an LLC
miss under interference when βk = 16. The results confirm
the safeness of our analysis, which correctly upper bounds
the overall response times with a pessimism around 15%,
which is slightly higher than the pessimism of a transaction
in isolation at the system level. As explained in the previous
subsection, when multiple transactions are enqueued, the
memory subsystem can partially serve their data and control
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Fig. 10: Services times under interference.

phases in parallel. However, our model only allows ρMS = 1
or ρMS = 0, i.e., either the peripheral is fully pipelined or not
pipelined at all. Since ρMS = 0, the pessimism is slightly
higher when more transactions are enqueued (and partially
served in parallel) as equation 19 counts the service time
of a transaction fully when ρMS = 0. Varying βk of GCk

gives comparable results – we do not report such results for
briefness and lack of space. We provide two charts for the
SPM, in Figure 10(d) and Figure 10(e). The comparison of
the two charts highlights how the interfering transactions’
length impacts the analysis’s pessimism, ranging between
19.7% for β = 16 to 1% for β = 256. The trend here is
aligned with the service time at the system level in isolation:
the pessimism comes from the control times of SPM and
propagation latency of the crossbar and the CDC, which are
amortized as the data time increases with βk.

6.3 Discussion
In this Section, we validated the analysis of Sections 4 and
5 through an extensive set of tests. We demonstrated how
the proposed approach enables detailed explanations of the
analysis’s pessimism and facilitates iterative refinement. This
allows us to derive upper bounds that are safe yet not overly
pessimistic, particularly when compared to similar state-
of-the-art works based on closed-source or loosely-timed
IPs. Nevertheless, while the methodology is promising, the
resulting analysis may seem limited in comparison to other
works that model more sophisticated closed-source IPs. Here,
we discuss the limitations of our analysis, focusing on its
dependence on the underlying characteristics of the available
open-source hardware.

It is noteworthy how the analysis leverages the round-
robin policy of the main interconnect and the in-order
nature of peripherals in Lemmas 2 and 3. The absence of
internal reordering allows to derive the number of trans-
actions preceding the one under interference directly from
the arbitration policy. As long as the peripherals serve the
transactions in order, extending the analysis to support other
arbitration policies is expected to require minimal effort.
Instead, supporting peripherals with internal transaction
reordering can lead to timing anomalies [7] and make the
proposed model unsafe, as previously demonstrated in [5].
Our analysis focuses on the available peripherals within
the target architecture, as out-of-order peripherals are not
available open-source to us. We envision expanding the

analysis to match higher-performance platforms as open-
source hardware evolves.

Lastly, it is important to note that the analysis bounds
only a single transaction issued by Ci – this limitation is not
imposed on the interfering controllers. Lemma 2 does not
consider Ci to have more pending transactions, except for
the ones already accepted by Pj . In other words, Lemma 2
assumes that there is not a queue of transactions buffered
in the bridges between Ci and R0, which could exist when
Pj is full. We could potentially extend the model to define a
batch of enqueued transactions and then modify Lemma 2 to
analyze this scenario. Such an extension would further build
upon the proposed model and analysis, which is limited to
bound the access time of a single transaction.

7 RELATED WORK

In this Section, we provide a thorough comparison with
previous works focusing on enhancing the timing predictabil-
ity of digital circuits. Traditionally, the majority of these
works leverage commercial off-the-shelf devices [34], [38]
or predictable architectures modeled with a mix of cycle-
accurate and behavioral simulators [39]. Also, they focus
on bounding the execution times for predefined specific
software tasks rather than the individual transaction service
times [7], [38]–[40]. Furthermore, they build the models from
dynamic experiments rather than from static analysis, largely
due to the dearth of detailed hardware specifications [35],
limiting the generality of their approach. More recent works
advocate for static modeling and analysis of protocols [8],
[13], interconnect [1], [3], [9], and shared memory resources
[5], [10] to provide more generic and comprehensive models.
While their value is undeniable, due to the unavailability of
the source RTL, each one focuses on only one of these re-
sources, resulting in a significant penalty to the pessimism of
the upper bounds [5]. Our work breaks from this convention,
presenting a holistic static model of an entire open-source
architecture rigorously validated through RTL cycle-accurate
simulation and FPGA emulation. As Table 1 shows, this is
the first work to analyze and model the open-source silicon-
proven RTL of all the IPs composing a whole SoC to build
the least pessimistic upper bounds for data transfers within
the architecture when compared to similar SoA works.

Biondi et al. [13] developed a model of the memory-access
regulation mechanisms in the ARM MPAM and provided
detailed instantiations of such mechanisms, which they
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TABLE 1: Comparison with State-of-the-Art works for predictability. IC = Interconnect. DMR = Deadline miss ratio.

Target Analysis on Pessimism Technology Open RTL
Biondi et. al. [13] ARM MPAM Protocol Protocol specs (Model) No HW ✗ ✗
Hassan et. al. [8] JEDEC DDR3 Protocol Protocol specs (Model) 0% − 200% ✗ ✗

Abdelhalim et.al. [5] Whole mem. hier. IPs & System (C++ Model) 16% − 50% ✗ ✗
BlueScale [3] Hier. mem. IC IC uArch (Black-box) DMR FPGA ✗
AXI-RT-IC [1] AXI SoC IC IC uArch (Black-box) DMR FPGA ✗

Restuccia et. al. [9] AXI Hier. mem. IC IC uArch (Black-box) 50% − 90% FPGA ✗
AXI-REALM [37] AXI traffic regulator No analysis No model FPGA & ASIC ✓

Ditty [10] Cache coher. mechanism IP (Fine-grained RTL) 100% − 200% FPGA ✓
This Work SoC IC, peripherals & system-level IP & System (Fine-grained RTL) 1% − 28% FPGA & ASIC ✓

then evaluated with IBM CPLEX, a decision optimization
software for solving complex optimization models. While
elegant, this approach is not validated on hardware and,
therefore, is limited in terms of applicability and precision.
A more practical and adopted approach is the one proposed
by Hassan and Pellizzoni [8]. The authors develop a fine-
grained model of the JEDEC DDR3 protocol, validated
with MCsim [12], a cycle-accurate C++ memory controller
simulator. Unfortunately, not having access to the RTL
prevents fine-grained modeling and analysis and mandates
over-provisioning, strongly impacting the overall pessimism
of the system, which can be as high as 200%. Abdelhalim
et al. in [5] present a study bounding the access times of
memory requests traversing the entire memory hierarchy and
propose µarchitectural modifications to the arbiters in such
hierarchy. Their modifications result in very low pessimism
(down to 16%) on synthetic and real-world benchmarks.
However, the results are validated on C++ models of the
cores, interconnect, and memory controllers, not RTL code
targeting silicon implementation.

More recently, different researchers proposed models of
hardware IPs that they could validate through cycle-accurate
experiments [1], [4], [9]. In [9], Restuccia et al. focused on
upper bounding the response times of AXI bus transactions
on FPGA SoCs through the modeling and analysis of generic
hierarchical interconnects arbitrating the accesses of multiple
hardware accelerators towards a shared DDR memory. In
this work, the interconnect under analysis is a proprietary
Xilinx IP, which had to be treated as a black box. Also, due
to the unavailability of the RTL code, the authors did not
model the other IPs composing the target platform, limiting
the precision of the proposed upper bounds, which achieve
a pessimism between 50% and 90%. Jiang et al. modeled,
analyzed, and developed AXI-ICRT [1] and Bluescale [3], two
sophisticated interconnects providing predictability features
and coming with a comprehensive model. However, the
model and analysis proposed in AXI-ICRT [1], and Bluescale
[3] are not as fine-grained as ours: the authors do not
provide upper bounds of the access times but rather focus
on the deadline miss ratio given a fixed workload for the
different controllers in the system. Moreover, the authors
do not provide the RTL of such solutions. AXI-REALM [37]
proposes completely open-source IPs supporting predictable
communications. However, it misses a holistic model and
analysis. In Ditty [10], researchers propose an open-source
predictable directory-based cache coherence mechanism for
multicore safety-critical systems that guarantees a worst-case
latency (WCL) on data accesses with almost cycle-accurate
precision. However, Ditty’s model only covers the coherency
protocol latency and the core subsystem, overlooking system-

level analysis and achieving very pessimistic boundaries. In
this landscape, it emerges clearly that our work is the first
one covering both modeling and analysis of the interconnects
and the shared memory resources, with an in-depth analysis
of silicon-proven open-source RTL IPs and achieving the
lowest pessimism when compared to similar SoA works.

8 CONCLUSIONS

In conclusion, this is the first work to bridge the gap
between open-source hardware and predictability modeling
and analysis. It presented (i) a fine-grained model and
analysis for the typical building blocks composing modern
heterogeneous low-power SoCs directly based on the source
RTL, and (ii) a full mathematical analysis to upper bound
data transfer execution times. Namely, we demonstrated a
methodology that successfully exploits the availability of
the source code to provide safe, but not overly pessimistic,
upper bounds for the execution times of data transfers when
compared to similar SoA works based on closed-source IPs.

As discussed in Section 6, after this thorough evaluation,
we envision extending our results to other popular open-
source IPs and different arbitration policies. To hopefully
stimulate novel research contributions, we open-source a
guide to replicate the results shown in Section 6 at https:
//github.com/pulp-platform/soc model rt analysis, com-
prehensive of the simulated environment and the software
benchmarks to run on a sophisticated Cheshire-based SoC
targeting automotive applications.
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