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Abstract: One-carbon (1C) metabolism is a complex network of metabolic reactions closely related
to producing 1C units (as methyl groups) and utilizing them for different anabolic processes, in-
cluding nucleotide synthesis, methylation, protein synthesis, and reductive metabolism. These
pathways support the high proliferative rate of cancer cells. While drugs that target 1C metabolism
(like methotrexate) have been used for cancer treatment, they often have significant side effects.
Therefore, developing new drugs with minimal side effects is necessary for effective cancer treat-
ment. Methionine, glycine, and serine are the main three precursors of 1C metabolism. One-carbon
metabolism is vital not only for proliferative cells but also for non-proliferative cells in regulating
energy homeostasis and the aging process. Understanding the potential role of 1C metabolism in
aging is crucial for advancing our knowledge of neoplastic progression. This review provides a
comprehensive understanding of the molecular complexities of 1C metabolism in the context of
cancer and aging, paving the way for researchers to explore new avenues for developing advanced
therapeutic interventions for cancer.

Keywords: cancer prevention; anti-cancer therapeutics; homocysteine; methionine addition; serine
biosynthesis; glycine biosynthesis; folate; senescence; antiproliferative response; redox statuses;
oxidative stress; hyperhomocysteinemia; glutathione; hydrogen sulfide (H2S); antioxidants; diet;
lifestyle; cancer therapy; epigenetics; inflammation; Warburg effect; chemotherapeutic agents

1. Introduction

Cancer cells are found to maintain a different metabolism status than normal cells
to support their uncontrolled proliferation and survival [1–3]. This altered metabolism
of cancer cells was first observed by Dr. Otto Heinrich Warburg, who was awarded the
Nobel Prize in 1931 for his discovery [4]. Dr. Warburg noticed that, unlike normal cells,
most cancer cells produce energy not predominantly through the citric acid cycle and
oxidative phosphorylation (OXPHOS) in the mitochondria but through glycolysis followed
by lactic acid fermentation in the cytosol (this phenomenon is known as the ‘Warburg
effect’) [5]. Although the precise metabolic advantage of the Warburg effect is still unclear,
many hypotheses have been proposed, which include rapid ATP production, one-carbon
metabolism, a defect in the mitochondria/OXPHOS, and reduced reactive oxygen species
(ROS) production in cancer cells [4,6–8]. With or without the Warburg effect, cancer cells
require one carbon (1C) unit for their methylation process; the biosynthesis of nucleotides,
lipids, and proteins; and to maintain their redox status [9]. This increased glucose utilization
has been exploited in the positron emission tomography (PET) imaging of tumor growth
and metastases [10]; however, targeting any specific signaling intermediates of this pathway
remains elusive for cancer treatment.

The term “one-carbon metabolism” is used to refer to a complex network of metabolic
reactions that are closely related to producing 1C units (as methyl groups) and subsequently
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utilizing them for the biosynthesis of important anabolic precursors and methylation
reactions [11]. Tetrahydrofolate (THF) is a universal 1C acceptor, whereas serine and
glycine work as 1C unit donors [12]. In this process, THF converts to methyl-THF, which
is subsequently used for purine synthesis and the re-methylation of homocysteine (via
the methionine-recycling pathway) [13]. One-carbon signaling pathways are regulated
through the de novo serine synthesis pathway and the mitochondrial 1C pathways, as
shown in Figure 1 [12,14]. All cells require 1C units for nucleotide synthesis, methylation
pathways, NADH/NADPH production, and antioxidant production (such as glutathione
and hydrogen sulfide) [11]. Specifically, for cancer cells, these processes are a fundamental
requirement for consistent energy production, cell proliferation, and growth [15,16].
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Figure 1. This cartoon diagram illustrates the enzymatic reactions and compartmentalization of
1C metabolism. Cells utilize 1C units from methionine, serine, and glycine to produce various
compounds that work as building blocks for the biosynthesis of nucleic acids and proteins, regulate
methylation reactions, and help maintain a cellular redox status. Serine and glycine can enter cells
from the outside or be synthesized de novo from the glycolysis intermediate, 3-phosphoglycerate
(3-PG). Methionine and folate always come from diet, are carried over the methionine cycle, and can
operate in both the cytoplasm and mitochondria (all abbreviations are given at the end).

From a historical perspective, enhanced 1C metabolism in cancer cells was identified
in 1948 by Sydney Farber [17]. Sydney Farber noticed that a reduction in dietary folate
decreases the number of leukemic cells in children with acute lymphoblastic leukemia, so
he tried using the folic acid antagonist aminopterin to treat these cancer patients and was
able to achieve temporary remission [18]. This effort from Sydney Farber (who is regarded
as the father of modern chemotherapy) led to the development of other chemotherapeutic
agents against different types of cancer [19]. Although many drugs were later developed
that target the folate and methionine cycles, they showed many deadly side effects due
to the importance of these pathways in normal healthy tissues [20]. Nevertheless, many
recent studies have shown further insights into 1C metabolism in the context of cancer vs.
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aging [21,22], suggesting future possibilities for developing newer therapeutic strategies
for cancer.

Although studies have shown that biological age is a well-known risk factor for malig-
nancy, the precise mechanism of this interrelated process is still poorly understood [23]. In
this regard, epidemiological data suggest that lifestyle factors (such as leanness, a plant-
based diet, voluntary physical activity, and the avoidance of environmental mutagens)
can slow the aging process and also reduce the probability of developing malignant dis-
eases [24,25]. Among the hypotheses that have been proposed to explain why neoplastic
transformation increases with aging, impaired 1C metabolism is one of them (elaborated
in detail in Section 6). One-carbon metabolism supports the growth and proliferation
of cancer cells and is pivotal to the aging process, mainly via oxidative DNA damage,
lipid peroxidation, and epigenetic alteration [26,27]. This review revitalizes the idea of
targeting 1C metabolism for cancer treatment in the context of the intricate molecular
mechanisms of different signaling pathways associated with aging. We elaborate on the
differential utilization of 1C metabolites between the cancer vs. aging processes and how
these processes are regulated inside a cell. It is the strength of basic science that determines
whether translational therapeutic efforts will have a significant impact. This review work
will likely help many researchers in academia and industry to develop next-generation
anti-cancer therapeutics that disrupt 1C metabolism pathways in a better way with minimal
side effects.

2. Utilization of the 1C Unit in Various Metabolic Pathways
2.1. Methionine Metabolism Pathways

Methionine is one of the essential amino acids that are not synthesized in the mam-
malian system [28]. Therefore, an indispensable source of methionine is from our diet [9,29].
Methionine enters cells via different methionine transporters (like SLC1A5, SLC7A5,
SLC7A8, SLC7A6, SLC7A7, SLC38A1, and SLC38A2) [30]. This amino acid (methion-
ine) is not only used for protein formation but is also metabolized through the methionine
cycle, as shown in Figure 2. In the first step of the methionine cycle, methionine adenosyl-
transferase (MAT) converts methionine to S-adenosylmethionine (SAM) with the use of
one ATP [30,31]. Interestingly, SAM is the only methyl donor that gives a methyl group
to nearly all methylation reactions in the body [32]. After transferring the methyl group
via various transmethylation reactions with the help of different methyltransferases (such
as DNA methyltransferases, histone methyltransferases, etc.), SAM irreversibly converts
to S-adenosylhomocysteine (SAH or AdoHcy) [33]. SAH is the metabolic precursor of
homocysteine (Hcy) and also acts as a negative regulator of all methyltransferases men-
tioned above [34]. Then, SAH is reversibly hydrolyzed to Hcy and adenosine (Ado) by SAH
hydrolase (AHCY or SAHH) [35]. It is important to notice that the hydrolysis of SAH to Hcy
and adenosine is the only reversible reaction in the cycle. Thermodynamically, it favors the
condensation of Hcy and adenosine to SAH. However, this cycle can only proceed if Hcy is
efficiently removed or transformed [36]. High total Hcy levels (>15 µmol/L) in plasma, also
known as hyperhomocysteinemia (HHcy), have been associated with various types of dis-
eases, including cancer [11,31,37]. After the production of Hcy, it bifurcates into the transsul-
furation and remethylation pathways [38]. In normal physiological conditions, 50% of Hcy
goes to the transsulfuration pathway, and another 50% of Hcy is re-methylated back to
methionine with the help of methionine synthase (5-methyltetrahydrofolate-homocysteine
methyltransferase; MTR or MS) or betaine-homocysteine methyltransferase (BHMT) to
complete the methionine cycle (Figure 2) [15]. There are different forms of Hcy found in
blood circulation, which consist of around 1% as free thiol, 70–80% present and bound to
plasma proteins, and the remaining 20–30% present as forms homo/heterodimerized with
other thiols [15]. Due to its exceptionally low pKa of 6.7, Hcy-thiolactone remains mostly
neutral in the blood and is primarily cleared by the kidneys (~1% is reabsorbed, and over
95% is excreted by the kidneys) [39]. In the transsulfuration pathway, Hcy converts to cys-
tathionine with the help of cystathionine-β-synthase (CBS); cystathionine is then converted
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to cysteine by cystathionine γ-lyase (CSE) for the production of glutathione (GSH) [40].
In both of these conversions (Hcy to cystathionine and cystathionine to cysteine), H2S
is produced as a byproduct, which has recently been shown to have an antioxidative,
anti-inflammatory, and anti-apoptotic role in our body [41]. In addition to methylation
reactions, SAM can also be used for polyamine synthesis, as shown in Figure 2. During
polyamine synthesis, S-methyl-5′-thioadenosine (MTA) is produced as a byproduct, which
can be further recycled back to methionine via the salvage pathway [42,43].
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2.2. Serine and Glycine Metabolism Pathways

Serine and glycine are both non-essential amino acids that either come from the
diet or can be synthesized inside our body (via de novo biosynthesis) from glycolytic
intermediate, 3-PG [44]. In the glycolysis pathway, 3-PG is first oxidized to 3-phosphate
hydroxy-pyruvate by phosphoglycerate dehydrogenase (PHGDH), then catalyzed to 3-
phosphoserine by phosphoserine aminotransferase (PSAT1), and, finally, dephosphorylated
to serine by 1-3-phosphoserine phosphatase (PSPH) [45]. Serine and glycine can be mu-
tually converted via hydroxymethyltransferases (cytosolic: SHMT1 and mitochondrial:
SHMT2) [46]. During serine-to-glycine conversion, serine gives 1C unit to THF to produce
5,10-methyleneTHF [47]. Alternatively, glycine can also be converted to serine at the cost of
1C unit from 5,10-methyleneTHF [48,49].

This 1C unit generated from serine and glycine can be used as a precursor for purine
and pyrimidine nucleotide synthesis [50]. The first precursor for purine biosynthesis is
ribose-5-phosphate, which is synthesized from the pentose phosphate pathway (PPP) [51].
Then, in a series of steps, two 1C units and one glycine unit are added to form inosine
monophosphate (IMP), which is then further converted to different purine nucleotides
(adenosine and guanosine monophosphate) [52]. However, during pyrimidine biosynthesis,
a 1C unit is used in methylation reactions using methylene-tetrahydrofolate (methylene-
THF) as the methyl donor, where deoxyuridine monophosphate (dUMP) is converted to de-
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oxythymidine monophosphate (dTMP) with the help of thymidylate synthase (TYMS) [53].
In this reaction, methylene-THF is converted to dihydrofolate (DHF) and then reduced back
to THF with the help of dihydrofolate reductase (DHFR) via the folate cycle (Figure 2) [54].
In addition to purine and pyrimidine nucleotide synthesis, glycine also acts as a source of
1C units in the glycine cleavage system (GCS), as shown in Figure 1. GCS is localized in
mitochondria, where glycine gives its 1C unit to THF to produce methylene-THF and, as a
consequence, also produces NADH from NAD+.

3. Regulation of 1C Metabolism Under Different Nutrient Statuses

Methionine, glycine, and serine are the three main precursors of 1C metabolism. Ad-
ditionally, dietary micronutrients such as folate and vitamins B12 and B6 contribute to 1C
metabolism, as shown in Figure 2. These dietary sources act as inputs, which are further
processed into different compounds that are required for protein synthesis, nucleotide synthe-
sis, methylation reaction, and antioxidant production (Figure 3) [55]. Although historically
folate and other B vitamins were thought to act as chemoprotectants, later epidemiological
studies suggest that their effect may increase the risk of cancer [56,57]. Research indicates that
higher serum levels of folate may potentially increase the risk of certain cancers, including
lung cancer [58], breast cancer [59], and colorectal cancer [60]. Similarly, elevated vitamin
B12 levels have been found to correlate with an increased risk of cancer within one year
of follow-up, as evidenced by two large population-based studies [61,62]. It is noteworthy
that hypercobalaminemia (i.e., elevated B12 levels in the blood) has been detected in both
solid tumors and hematological cancers and also linked to a greater risk of prostate can-
cer [63,64]. Cancer cells often enhance the expression of folate receptors to address their
increased demands for cell proliferation [65,66]. Additionally, research from animal studies
suggests that administering folate at later stages of colorectal cancer development could
promote tumor growth [67]. Similarly, in human studies, a significant chemoprevention
trial revealed a surprising 67% increase in advanced colorectal adenomas among patients
with a history of adenomas when they received folic acid supplementation (1 mg/day) [68].
These findings underscore the importance of understanding the role of these vitamins
in cancer biology, highlighting the need for further research to clarify their effects and
guide safer supplementation practices. The mammalian target of rapamycin (mTOR) is the
major nutrient sensor of our body; when the availability of dietary energy sources is suffi-
cient, mTOR becomes activated and promotes anabolic metabolism [69,70]. One-carbon
metabolism is part of the anabolic metabolism that supports the growth and proliferation
of cells [15]. When cellular serine levels decrease, it activates one of the main effectors of
the mTOR transcription factor, activating transcription factor 4 (ATF4), which then pro-
motes the expression of serine synthesis pathway (SSP) enzymes to bring the serine level
back to normal [71]. Additionally, the mTOR/ATF4 axis was also found to regulate the
expression of MTHFD2 and activate the mitochondrial branch of the folate cycle [72]. These
studies reinforce the role of mTOR in 1C metabolism and its effects on maintaining cellular
homeostasis. Similarly, another study showed that methionine starvation conditions with
low SAM levels inhibit mTOR1 signaling in a SAMTOR-dependent fashion [73]. On the
other hand, when there are not enough nutrients available to support this anabolic process,
AMP-activated kinase (AMPK) is activated to inhibit anabolism and promote the catabolic
process to restore ATP levels in the cells [74]. Hence, AMPK acts as an energy sensor;
recently, it was shown that AMPK can reduce the flux of 1C units via the expression of
MTHFD1/2/1L through the PGC-1α/ERRα axis [75].



Biomolecules 2024, 14, 1387 6 of 26Biomolecules 2024, 14, x FOR PEER REVIEW 6 of 27 
 

 
Figure 3. Schematic representation showing the inputs of 1C units from dietary sources and their 
processing and utilization in different biosynthesis processes as output. In this process, methionine, 
glucose, serine, and glycine can be used as inputs to carry over 1C metabolism. Serine can be ob-
tained from the diet or produced from glucose via the de novo process. Folate from the diet is con-
verted to THF, which accepts a 1C unit during the folate cycle. Then, serine is broken down into 
glycine, producing a 1C unit which combines with THF to form methylene-THF. Methionine from 
the diet can be used to produce SAM, which is subsequently used for methylation reactions and 
cellular antioxidant production. Different outputs from 1C metabolism also act as building blocks 
for the cellular biosynthesis of DNA, RNA, and protein. 

4. Regulation of 1C Metabolism Under Different Redox Statuses 
Oxidants (like free radicals and other reactive species) are continuously produced in 

different metabolic processes, and our body has different endogenous antioxidants (like 
GSH, H2S, CAT, etc.) that scavenge and neutralize these oxidants to maintain cellular ho-
meostasis [76]. However, during different disease conditions, this redox homeostasis be-
comes disrupted, consequently affecting different signaling pathways [77]. The nuclear 
factor erythroid-derived 2 (NRF2) is a master regulator of redox homeostasis; it has been 
shown that NRF2 controls the expression of the key enzymes involved in serine and gly-
cine biosynthesis (PHGDH, PSAT1, and SHMT2) [78]. A study using quantitative flux 
analysis showed that the knockdown of either cytosolic or mitochondrial MTHFD iso-
zyme decreased cellular NADPH/NADP+, reduced/oxidized GSH ratios (GSH/GSSG), 
and increased cell sensitivity to oxidative stress [79]. This study suggests that other than 
nucleotide synthesis, another function of 1C metabolism is to develop the reducing power 
of a cell. Moreover, it was found that besides NAD(P)H production, 1C flux also maintains 
redox homeostasis via GSH production [80]. 

GSH is produced from cysteine (via the transsulfuration pathway) via two-step reac-
tions. In the first step, glutamate cysteine ligase (GCL) catalyzes the ATP-dependent con-
densation of cysteine and glutamate to form the dipeptide gamma-glutamylcysteine (γ-
GC) and then, in the second step, γ-glutamylcysteine reacts with glycine to form GSH 

Figure 3. Schematic representation showing the inputs of 1C units from dietary sources and their
processing and utilization in different biosynthesis processes as output. In this process, methionine,
glucose, serine, and glycine can be used as inputs to carry over 1C metabolism. Serine can be obtained
from the diet or produced from glucose via the de novo process. Folate from the diet is converted
to THF, which accepts a 1C unit during the folate cycle. Then, serine is broken down into glycine,
producing a 1C unit which combines with THF to form methylene-THF. Methionine from the diet
can be used to produce SAM, which is subsequently used for methylation reactions and cellular
antioxidant production. Different outputs from 1C metabolism also act as building blocks for the
cellular biosynthesis of DNA, RNA, and protein.

4. Regulation of 1C Metabolism Under Different Redox Statuses

Oxidants (like free radicals and other reactive species) are continuously produced in
different metabolic processes, and our body has different endogenous antioxidants (like
GSH, H2S, CAT, etc.) that scavenge and neutralize these oxidants to maintain cellular
homeostasis [76]. However, during different disease conditions, this redox homeostasis
becomes disrupted, consequently affecting different signaling pathways [77]. The nuclear
factor erythroid-derived 2 (NRF2) is a master regulator of redox homeostasis; it has been
shown that NRF2 controls the expression of the key enzymes involved in serine and
glycine biosynthesis (PHGDH, PSAT1, and SHMT2) [78]. A study using quantitative
flux analysis showed that the knockdown of either cytosolic or mitochondrial MTHFD
isozyme decreased cellular NADPH/NADP+, reduced/oxidized GSH ratios (GSH/GSSG),
and increased cell sensitivity to oxidative stress [79]. This study suggests that other than
nucleotide synthesis, another function of 1C metabolism is to develop the reducing power
of a cell. Moreover, it was found that besides NAD(P)H production, 1C flux also maintains
redox homeostasis via GSH production [80].

GSH is produced from cysteine (via the transsulfuration pathway) via two-step re-
actions. In the first step, glutamate cysteine ligase (GCL) catalyzes the ATP-dependent
condensation of cysteine and glutamate to form the dipeptide gamma-glutamylcysteine
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(γ-GC) and then, in the second step, γ-glutamylcysteine reacts with glycine to form GSH
catalyzed by GSH synthetase (GS). Cysteine is the rate-limiting substrate in this process
because the intracellular concentration of glutamate and glycine are higher than the Km
values of these reactions [81]. As cystine is produced via the 1C metabolism pathway, any
disruption of this pathway may interfere with cellular GSH production.

During the process of electron transfer through the respiratory chain in oxidative
phosphorylation, mitochondria play a crucial role in managing reactive oxygen species
(ROS). To effectively prevent this ROS (O2•−, OH, HOO•, H2O2) from leaking into the
cytosol and causing potential harm, mitochondria utilize an antioxidant defense system
for ROS scavenging. Different antioxidant enzymes like catalase, peroxiredoxin (Prx), and
glutathione peroxidase (GPx) convert these ROS into harmless oxygen and water. After
reacting with H2O2, Prx is reduced back to its functional form through its interaction with
thioredoxin (Trx), while oxidized GPx is mainly reduced by glutathione (GSH) [82]. Al-
though GSH is oxidized to glutathione disulfide (GSSG), the enzyme glutathione reductase
(GR) ensures the regeneration of GSH from GSSG with the help of nicotinamide adenine
dinucleotide phosphate (NADPH) (Figure 4) [83]. The balance of the intracellular redox
status is effectively measured by the GSH/GSSG ratio. In healthy conditions, this ratio
typically exceeds 100, but it is known to decline to 10 or less during oxidative stress [84,85].
This dynamic regulation highlights how 1C flux also maintains redox homeostasis via
GSH production.
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Figure 4. Regulation of redox homeostasis by glutathione (GSH). The enzyme glutathione peroxidase
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whereas the enzyme glutathione reductase (GR) efficiently converts GSSG back to GSH with the help
of NADPH, thereby preserving the antioxidant capacity of cells.

5. Involvement of 1C Metabolism in Cancer

Cancer cells adapt quickly by changing their metabolism in order to support enhanced
cell proliferation and growth [9]. This section discusses how cancer cells become addicted to
1C metabolism for their survival. Due to their high proliferative rate, cancer cells excessively
use 1C sources, which are further processed to different compounds, as discussed in the
subsequent paragraphs.

5.1. Elevated Consumption of 1C Metabolism Precursors in Cancer
5.1.1. High Methionine Utilization in Cancer

One of the primary raw materials of 1C metabolism is methionine, which is required
to produce SAM (a methyl group donor), as discussed in Section 2.1 [86]. Cancer cells have
high proliferation and growth rates, so they have a high demand for methionine to carry
out the methionine cycle [9]. Methionine addition has been known since 1959, when a
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study by Sugimura et al. showed that the tumor growth rate was considerably reduced
when rats were on force-fed diets lacking in methionine amino acid [87]. After that, several
studies proposed that compared to non-cancerous cells, many cancer cells stop proliferating
when methionine is replaced by its metabolic precursor Hcy [3,88–91]. This dependence
on methionine of cancer cells is known as methionine addiction (a list of methionine-
addicted cancer cell lines is summarized in Table 1). A PET study using 11C-methionine
and 18C-fluorodeoxyglucose (FDG) reported that methionine utilization is higher than
that of glucose in low-grade glioma [92]. Some studies have also proposed that the high
utilization rate of methionine in cancer cells is associated with histone methylations [93].

Table 1. List of methionine-addicted cancer cell lines.

Types Name of the Cell Lines References

Breast Cancer MDA-MB468 [91,94]
Breast Cancer MDA-MB361 [91]
Breast Cancer MCF7 [3,90,94]

Breast Cancer
HCC1806, HCC1143, SKBR3,
BT-549, ZR-75-1, SUM-159,

T47D
[94]

Breast Cancer W-256 [88,89]
Colon cancer SK-CO-1 [3]

Prostate cancer PC-3, DU145 [3,90,95]
Prostate cancer LNCaP [95]

Lung cancer A2182, SK-LU-1 [3,90]
Lung cancer A549 [3]

Bladder cancer J82, T24 [3,90]
Melanoma A375 [3]

Cervical cancer HeLa [3]
Kidney cancer A498 [3,90]
Glioblastoma A172 [3,90]

Neuroblastoma SK-N-SH [3,90]
Rhabdomyosarcoma A673, A204 [3,90]

Osteosarcoma HOS [3,90]
Fibrosarcoma HT1080, 8387 [3,90]

Monocytic leukemia J111 [89]
Lymphatic leukemia (mouse) L1210 [89]

Transformed fibroblast SV80 [88]
SV40-transformed human cells W18VA2 [88]

5.1.2. High Serine and Glycine Utilization in Cancer

In addition to methionine addiction, the elevated consumption of serine and glycine
was also noted across the NCI-60 human tumor cell lines [96]. Nonetheless, an isotope
tracer analysis found that only serine, not glycine, feeds 1C metabolism in cancer cells
in vitro [48]. In normal cell culture conditions, due to the presence of excess methionine
and the absence of cobalamin (vitamin B12), homocysteine’s re-methylation was prevented;
hence, serine-mediated 1C flux is found only in nucleotide synthesis [97,98].

5.2. Elevated Expression of 1C Metabolism Genes in Cancer

Consistent with the high demand for raw materials for DNA synthesis to support a
high rate of cell proliferation, cancer cells are often found to upregulate the expression
of multiple 1C metabolic enzymes [99]. It has been shown that the expression of 1C
metabolism pathway genes is controlled by the same transcription factors as those which
are involved in cancer progression [53]. It was noted that cancer cells drive cell proliferation,
growth, and metastasis by regulating these transcription factors, as shown in Figure 5 [100].
Other than protein expression, different reports also showed genomic amplifications of one
of the first enzymes of the serine pathway, PHGDH [101]. Additionally, cancer cells were
also found to overexpress the TYMS and DHFR genes involved in the folate cycle [101].
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Interestingly, a meta-analysis of tumor gene expression identified that MTHFD2, which is
involved in the mitochondrial folate cycle, is overexpressed in multiple cancer types [102].
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Moreover, a comparative oncogenomic analysis identified that SHMT2, another mito-
chondrial gene involved in 1C metabolism, is amplified and is very important for tumor
development [103]. These studies highlight the direct involvement of the folate cycle in the
DNA replication demands of cancer cells. Surprisingly, another meta-analysis revealed that
the expression of enzymes involved in the mitochondrial folate cycle better correlates with
sensitivity to methotrexate than the cytosolic folate cycle [104]. Studies also found that the
high expression of MTHFD2 is correlated with the migration and invasiveness of breast
cancer cells and is associated with a poor prognosis in breast cancer [105,106].

6. Involvement of 1C Metabolism in Aging

There is a plethora of evidence which has reported that the dysregulation of 1C
metabolism is associated with aging. There are many metabolites which are associated
with 1C metabolism and also aligned with age and age-related phenotypes. Research on
folate metabolism in young versus aged rats offers valuable insights into the impact of
aging on serum folate levels, which decline by approximately 50% [107]. Interestingly, this
study found that liver folate content remains stable with age [107]. This suggests that while
aging affects the availability of folate in the body, it does not necessarily compromise liver
reserves. Mice subjected to a folate-deficient diet from weaning until 8 and 10 months show
notable impairments in their circadian rhythms, reminiscent of the changes seen in older
adults [108]. Furthermore, such dietary deficiencies manifest as signs of brain aging in these
mice, including short-term memory difficulties and alterations in S-adenosylmethionine
(SAM) metabolism and acetylcholine levels [108]. On a positive note, supplementing folate
within a broader dietary context appears to have beneficial effects on their lifespan [109].
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Methionine is an essential amino acid, and recent research has highlighted the po-
tential benefits of reducing its intake for promoting longevity [110–112]. Additionally,
genetic modifications that induce methionine restriction have yielded similar positive
outcomes [113,114]. This insight suggests that methionine restriction (MR) may effectively
replicate some of the beneficial metabolic effects associated with caloric restriction (CR).
For example, both MR and CR have been shown to lower the production of reactive oxygen
species (ROS) in mitochondria, reducing the oxidative damage to mitochondrial DNA
(mtDNA) in mice [115].

Elevated plasma levels of homocysteine (Hcy) serve as an important indicator of
various age-related diseases, such as cardiovascular issues and stroke [116]. Moreover, both
the ubiquitous and neuron-specific overexpression of CBS can lead to increased lifespan
in well-fed flies, demonstrating the potential role of CBS in promoting longevity [117].
Functional CBS plays a crucial role in lifespan extension during dietary restriction as
well [117,118]. Additionally, overexpressing cbs-1 in the nematode intestine or body wall
muscles has been shown to extend the lifespan at both standard (20 ◦C) and elevated
(25 ◦C) temperatures [119]. These findings underscore the potential benefits of targeting
these pathways for promoting health and longevity in various organisms. In the following
paragraphs, we discuss role of 1C metabolism in DNA methylation, cellular senescence,
and telomere shortening.

6.1. Role of 1C Metabolism in Epigenetic Alteration in Relation to Aging

Epigenetics is closely involved in gene transcriptional regulation through modifica-
tions super-imposed onto the nucleotide sequence of DNA, such as DNA methylation,
through chromatin remodeling systems [120]. In order to regulate gene expression during
aging, DNA and histone methylation need methyl donors, such as SAM, from one-carbon
metabolism. When this pathway is disrupted, aberrant epigenetic modifications are in-
duced, activating aging-related pathways and contributing to cellular identity loss [21].
Several studies have shown a correlation between the circulating biomarkers of one-carbon
metabolism and alterations in nuclear DNA methylation levels in people suffering from
age-related diseases. There are increasing numbers of studies demonstrating that even
mitochondrial DNA (mtDNA) can be methylated [121]. As mitochondrial activity declines
with age, mtDNA methylation may be sensitive to this decline [122]. In one study, Dzi-
toyeva and colleagues observed that 5-hydroxymethylcytosine levels in mtDNA decreased
with aging and a higher expression of genes encoded by mtDNA were seen in the frontal
cortex of 4- and 24-month-old mice [122].

6.2. Role of 1C Metabolism in Cellular Senescence in Relation to Aging

Cellular senescence has received considerable attention as a factor contributing to
aging and disease susceptibility (as described in detail in this section). As evidenced by the
identification of senescent cells in multiple tissues with age, senescence plays a key role in
the aging process [123], and targeting senescent cells has been found to provide protection
in both progeroid models [124] and during normal aging [125].

6.3. Role of 1C Metabolism in Telomere Shortening in Relation to Aging

Telomeres are often referred to as an ‘aging clock’ that determines the lifespan of
cells. Telomere length can be affected by DNA methylation and, specifically, through
DNA’s role in nucleotide biosynthesis, which is essential for telomere maintenance and
DNA replication. Insufficient nucleotide availability can cause telomere attrition and the
premature aging of cells if this pathway is disrupted. Several review articles have outlined
various biological mechanisms through which one-carbon metabolism factors can affect
telomere length [126–128].
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6.4. Role of 1C Metabolism in Redox Balance in Relation to Aging

The redox theory of aging presents an intriguing perspective on how longevity may be
influenced by the cellular redox state, specifically through the ratios of GSH (glutathione)
to GSSG (oxidized glutathione) and of NADP+ to NADPH [129]. This theory highlights the
important role of redox buffering systems, which not only protect macromolecules from
oxidative damage but also help control the levels of reactive oxygen species (ROS). These
ROS function as signaling components, contributing to the aging process [130]. In yeast,
research has shown that the depletion of the Gsh1 gene can significantly affect chronological
lifespan based on varying dietary glucose levels [131]. Meanwhile, studies in Drosophila
melanogaster reveal that enhancing the expression of the catalytic or modulatory subunits
of GCL (glutamate-cysteine ligase) can lead to an increase in glutathione levels and promote
a longer lifespan [132]. It is important to point out that earlier studies suggested that small
amounts of GSH could extend longevity, while more recent investigations have indicated
that prolonged supplementation with dietary thiols, such as N-Acetyl Cysteine (NAC) and
GSH, may actually accelerate aging [133]. This contrast prompts a closer examination of
the mechanisms at play and highlights the complexity of redox biology in aging.

7. Involvement of 1C Metabolism in Aging vs. Cancer

It is well-documented that the incidence of cancer is higher in the older age categories
compared to younger age categories, which suggests the involvement of a closely inter-
linked process that may induce more incidences of cancer in the older population [134].
Over the years, extensive research has delved into uncovering the keys to longevity, and
these studies suggest the involvement of altered 1C metabolism in this process [135]. It is
interesting to notice that folic acid is a crucial micronutrient in one-carbon metabolism, as
described in Section 3. It is recommended that pregnant women take folate supplements
to support the healthy development of fetal neurons and to help reduce the risk of neural
tube defects [136]. The disruption of IC metabolism lies at the heart of age-related diseases
like neurodegenerative diseases, cancer, aging, and cardiovascular disease [77,135,137].
During 1C metabolism, via the methylation cycle, Hcy is produced as an intermediate,
and excess Hcy levels (i.e., HHcy) have been associated with the aging process via the
induction of oxidative stress, lipid peroxidation, DNA damage, etc. [138]. Indeed, stud-
ies have shown a prevalence of HHcy in the older population compared to the younger
population [139]. Moreover, cysteine, produced during Hcy metabolism via the transsulfu-
ration pathway plays a crucial role in GSH biosynthesis. This GSH acts as a co-substrate
for glutathione peroxidase (GPX)-catalyzed reactions, aiding in the removal of hydrogen
peroxide (H2O2) and lipid hydroperoxides and generating its oxidized form, glutathione
disulfide (GSSG) [15]. Glutathione reductase uses NADPH to facilitate the reduction of
GSSG back to GSH. According to the redox theory of aging, the ratios of GSH/GSSG and
NADP+/NADPH levels are important factors that may affect longevity by modulating
the cellular redox status [140]. The dysregulation of 1C metabolism during aging is associ-
ated with the impairment of the oxidative defense mechanism and epigenetic alteration,
which further potentiate neoplastic transformation [141]. In the subsequent paragraphs, we
discuss how this altered 1C metabolism during aging leads to neoplastic transformation.

7.1. Role of 1C Metabolism in Epigenetic Changes in Aging vs. Cancer

The connection between metabolic intermediates and epigenetic regulation has become
increasingly important. A phenomenon known as transgenerational inheritance, which
suggests that dietary changes can alter the epigenetic landscape, potentially transfers to
successive generations [142]. This underscores the importance of metabolites in chromatin
dynamics, as well as in all epigenetic modifications, which in turn affect gene expression.
Studies have shown that the availability of different nutrients affects the production of
Acetyl-CoA, S-adenosylmethionine (SAM), and adenosine triphosphate (ATP), and these
metabolites are pivotal for processes like the acetylation, methylation, and phosphorylation
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of histones [143]. Overall, understanding how metabolites shape epigenetic regulation
offers valuable insights into health, with potential implications in aging and cancer.

Histone and DNA methylation are enzymatic reactions that either add or remove
methyl groups and regulate the availability of S-adenosylmethionine (SAM) and spe-
cific enzymes essential for these processes [144]. SAM acts as a methyl donor and, after
the transmethylation reaction, is converted into S-adenosylhomocysteine (SAH), as dis-
cussed in Section 2.1. For histones, histone methyltransferases (HMTs) facilitate these
reactions [144], whereas for DNA, DNMTs catalyze these reactions [145]. Interestingly, SAH
has the potential to inhibit both types of methyletransferases [146,147]. Hence, variations
in the SAM/SAH ratio (known as the “Methylation Index”), can influence the activity
of various methyltransferases, thus either enhancing or diminishing methylation reac-
tions [148]. Recent advancements have successfully mimicked the chemical structure of
SAH, leading to the development of innovative drugs targeting methyltransferases [149].
A prominent example is EZH2, which is significantly overexpressed in several cancer types,
including prostate cancer [150]. As a member of the polycomb repressive complex, EZH2
represses transcriptional activity through the methylation of histone H3 at lysine 27 (H3K27
marks) [151]. These developments offer exciting prospects for targeted therapies in cancer
treatment, enhancing our understanding of epigenetic regulation. Another enzyme is
AHCY, which converts S-adenosylhomocysteine (SAH) to homocysteine and interacts with
the CLOCK-BMAL1 complex, playing a key role in circadian regulation [35]. This interac-
tion is crucial for oscillating H3K4me3 marks, suggesting that daily chromatin changes may
depend on AHCY activity [152]. Similarly, MAT1A has been shown to join the same chro-
matin complex, indicating its potential role in one-carbon enzyme regulation, although its
specific contributions need further exploration [153]. MAT2A, which converts methionine
to S-adenosylmethionine (SAM), interacts with the chromatin complexes critical for gene
expression, and particularly that of the MafK-dependent HO-1 gene [153,154]. MAT2A also
represses cyclooxygenase 2 (COX2) via its interaction with the H3K9 methyltransferase
SETB1, indicating a potential role of 1C metabolism and its association with epigenetic
changes [155]. Although these findings hint at important functions for 1C metabolism
enzymes in epigenetic alteration, more research is needed to clarify their specific roles and
broader impacts within the chromatin landscape.

Changes in DNA and histone methylation are also key indicators of aging. The ad-
dition or removal of epigenetic marks relies on enzymatic reactions in the 1C metabolism
pathway, with S-adenosylmethionine (SAM) as the universal methyl donor [15]. As stud-
ies have shown that the removal of epigenetic marks may speed up the aging process,
impairments in this 1C metabolism pathway may decrease epigenetic marks and in turn
speeding up aging [156,157]. A study by Kang et al. (2024) compared aged and young
mice and found that aged muscle stem cells (MuSCs) had reduced heterochromatin levels,
attributed to a depletion of SAM, which prioritized polyamine production over nuclear
methylation [158]. Remarkably, supplementing with SAM or inhibiting the polyamine
pathway enhanced heterochromatin formation and improved MuSC functionality, offering
promising strategies for promoting healthier aging.

7.2. Role of Methionine Metabolism in Aging vs. Cancer

Although aging is a natural process, it may induce a cancer risk via the accumulation
of various factors, including the loss of telomeres, problems with 1C metabolism, mito-
chondrial dysfunction, the loss of certain tumor-suppressor genes, and the overactivity
of cancer-related genes [159]. As calorie restriction (CR) is the most effective non-genetic
intervention at delaying aging, it may reduce cancer risk [160,161]. A preclinical study in
rodents indicated that a low-calorie intake is associated with an extended lifespan [162].
Specifically, a 40% CR has been shown to reduce the production of mitochondrial ROS and
mitigate oxidative damage to mitochondrial DNA in rodent organs [163]. Past studies have
shown that CR decreases ROS production (via reducing NADH levels), thus minimizing
oxidative damage and extending the lifespan [164]. Furthermore, various studies have
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suggested that reducing the intake of 1C metabolites, such as methionine, may be pivotal
in extending the lifespan [165]. In rodent studies, it was found that an isocaloric 80%
methionine restriction led to increased longevity in rats [166] and mice [167]. Additionally,
an 80% methionine restriction was shown to decrease the incidence of age-related degener-
ative diseases and age-related disease-associated markers, including reductions in serum
glucose, insulin, cholesterol, triglycerides, and leptin [43,168,169]. Based on these studies,
it is evident that a methionine restriction diet may have a beneficial effect on aging as well
as on the development and progression of cancer.

7.3. Role of Serine and Glycine Metabolism in Aging vs. Cancer

Like the essential amino acid methionine, some non-essential amino acids involved in
1C metabolism are also connected to aging. In the methionine cycle, during the conversion
of SAM to SAH, the methyl group can also be transferred to glycine to form sarcosine
(dimethylglycine) via glycine N-methyltransferase (GNMT) [170]. Mice lacking GNMT
show a significant increase in free methionine (up to 7-fold) and S-adenosyl-L-methionine
(up to 35-fold) [171]. Similarly, studies have reported that glycine supplementation could
reduce methionine levels in C. elegans [172] and the overexpression of GNMT could
elongate the lifespan of Drosophila [173]. The transfer of a methyl group via GNMT acts as
a methionine clearance process, serving as a methionine restriction mimetic, and plays a
role in prolonging lifespan [174]. Besides its involvement in the methionine cycle, glycine
can act as a building block of GSH production, which may indirectly prolong aging via the
reduction of oxidative DNA damage [175]. Interestingly, some studies have also reported
that mice lacking GNMT are more prone to hepatocellular carcinoma and steatosis [176].

Similarly to glycine, serine can also affect the aging process via several metabolic
regulations [177]. In one process, serine can indirectly influence aging via GSH production
through its conversion to glycine [178]. In another mechanism, serine can also produce
NADPH, which is found to regulate the senescence process [178]. NADPH levels tend
to decrease during aging, and an overexpression of NADPH-synthesizing enzymes is
associated with a longer lifespan in certain biological models [179]. These studies suggest
that both serine and glycine positively impact the aging process. Aging is a gain-of-function
change in cells that may promote their proliferation, migration, and survival, which are
also characteristics of cancer cells [180].

7.4. Altered Redox Status in Aging vs. Cancer

In the course of aging, different internal factors (e.g., free radicals) and external stres-
sors (e.g., UV radiation, diet, stress, etc.) can heighten genomic instability and, ultimately,
lead to oncogenic mutations [181,182]. Reactive oxygen/nitrogen species can react with
DNA, causing various types of DNA damage, whereas antioxidant systems such as an-
tioxidant enzymes (e.g., catalase and glutathione peroxidase), vitamins (e.g., vitamins C
and E), and other radical scavengers (e.g., glutathione) can prevent these effects [37,183].
Cellular transformation and tumor initiation mainly occur due to oncogenic mutations,
often leading to increased growth-promoting signals, disturbed antiproliferative signals,
or faulty proapoptotic signaling [184,185]. When cells are damaged due to DNA damage,
shortened telomeres, genomic instability, or oncogenic mutations, they can either progress
to their apoptotic or senescence stage to suppress tumor development [186]. Apoptosis is
a process of programmed cell death that eliminates damaged cells and their subsequent
pathology [187], whereas senescence is a process of growth arrest, with cells remaining
metabolically active and impacting their neighboring cells in a paracrine fashion [188]. It
is still poorly understood which factors determine whether cells will undergo apoptosis,
senescence, or both simultaneously.

7.5. Antiproliferative Responses During Cellular Damage

Both apoptosis and senescence use cellular defense mechanisms to prevent the progress
toward cellular transformation [189]. When these defense mechanisms fail, the DNA dam-
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age response is activated, stopping the cell cycle for DNA repair [190]. Essential com-
ponents of the DNA damage response include ataxia-telangiectasia-mutated (ATM) and
ataxia-telangictasia-Rad3-related (ATR) [191]. ATM and ATR activate different mediators
to execute the DNA repair, cell cycle arrest, or apoptosis processes [192]. In cases where the
DNA repair mechanisms fail, the antiproliferative responses (apoptotic pathway or senes-
cence program) are activated to eliminate cells carrying potentially dangerous mutations
that could lead to cancer [193].

Senescence is a state of irreversible growth arrest but leaves cells metabolically active,
serving as a vital defense mechanism against tumor formation [188]. In contrast, apoptosis
is a form of programmed cell death that may be used to get rid of damaged cells [194].
If these safeguards fail, the cells may continue replicating and potentially develop into a
lesion [195]. At this stage, apoptotic or senescence programs can be reactivated, as shown
in Figure 6 [195]. However, if these protective measures fail, the lesion can grow and
accumulate genetic and epigenetic abnormalities, ultimately leading to the development
of a malignant tumor [196]. It is important to note that despite the induction of cellular
senescence or apoptosis, cells can sometimes bypass these processes and transform into
malignant cells [197].
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can become apoptotic, enter senescence, or continue replicating. If these antiproliferative responses
are absent or fail, a cancerous lesion may be formed, further proliferating to form malignant cells.

Cellular senescence is widely recognized as a key factor in the aging process, and it
can be activated by factors such as oxidative stress, telomere shortening, and oncogene
expression [198]. It is important to notice that the two most crucial cellular senescence
genes, TP53 and P16INK4a, are also tumor-suppressor genes [199]. The TP53 gene produces
the P53 protein, which activates the CDK inhibitor P21, ultimately inhibiting CDK4/6
activity [200,201]. Similarly, the P16INK4a gene, part of the CDKN2a/INK4a/ARF locus,
generates two protein products, one of which regulates P53 stability, while the other, the
P16INK4a protein, inhibits CDK4/6 [202]. Both P53 and P16INK4a prevent the activation
of CDK4/6, leading to the inhibition of retinoblastoma protein (pRB) phosphorylation and
subsequent cell cycle arrest in the G1 phase [203].

Cellular senescence is a critical process for normal development and maintaining
tissue balance [159]. However, it can have adverse effects as cells age [204]. In a mouse
experiment, researchers found that mice with an activated TP53 gene exhibited both
increased tumor resistance and early aging traits, indicating the complex role of TP53 in
cellular function [205]. Moreover, the study reinforced the importance of P53 in eliminating
telomere-damaged cells and its impact on aging [206]. Similarly, knocking out P16INK4a in
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mice led to increased cancer development and reduced survival, highlighting the protective
role of this gene [207]. Additionally, elephants’ enhanced tumor resistance due to their
extra copies of the TP53 gene further emphasizes the cancer-protective role of TP53 [208].

8. The Decision of a Cell’s Fate as Senescence or Apoptosis

During the course of the aging process, cells acquire pre-neoplastic lesions via free
radicals as the products of metabolic reactions or as the byproducts of various cellular
processes [209]. Cells that have acquired a pre-neoplastic lesion may undergo senescence
or apoptosis, as shown in Figure 7. Although the final outcomes of these two processes
are the same, if senescence begins, it ensures that the lesion is efficiently removed via
immunosurveillance, whereas, if apoptosis begins, it destroys the damaged cells without
initiating an immune response [195]. In contrast, if the pre-neoplastic lesion dose does not
initiate either senescence or apoptosis, these cells continue to grow and form a malignant
phenotype [195]. Theoretically, the senescence process entails the complications of fueling
inflammation and disrupting the tissue’s structure and function; why do biological systems
not rely on apoptosis alone? Many senescence-inducing stressors are linked to oncogenic
factors, indicating that senescence and apoptosis may have evolved in tandem to inhibit
tumor development [210]. There may be an evolutionary pressure to protect cells that
are exposed to mutation-causing influences. Senescence induction may be a favorable
process for responding to a mutagenic stress that stops cell growth (and the resulting cancer
threat) and remaining alive. It has been observed that normal skin melanocytes produce
significant levels of the anti-apoptotic protein BCL2, which plays a crucial role in promoting
melanocyte survival [211,212]. Additionally, senescent fibroblasts exhibit a resistance to
apoptosis by expressing high levels of BCL2 [213]. Notably, mouse lymphomas expressing
BCL2 undergo drug-induced senescence, highlighting the potential significance of BCL2 in
this process [214].
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in the absence of these antiproliferative responses, pre-neoplastic cells continue to grow and acquire
additional oncogenic mutations. At this step, senescence can be reactivated, or it can progress toward
malignant transformation.
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As no biological processes have been identified that reverse senescence growth arrest,
this process is considered irreversible [215]. Although cellular senescence during embryo-
genesis is a transient growth arrest and programmed process that plays a role in tissue
remodeling, in adult tissue, senescence is considered a permanent growth arrest [204].
These in vitro findings sparked speculation about potential in vivo correlates that could
protect against cancer. However, it is ironic that senescent cells can actually fuel malignant
phenotypes and tumor growth [216]. It is worth noting that senescent cells, particularly
those that become senescent in response to DNA-damaging agents (like radiation and
chemotherapeutic agents), release substances that have the potential to protect neighboring
tumor cells from being targeted and eliminated by the same chemotherapeutic agents [217].

Recent findings suggest that cellular senescence has beneficial effects on tumors. In ad-
dition to arrested growth, senescent cells were found to secret numerous pro-inflammatory
cytokines, chemokines, growth factors, and proteases (known as senescence-associated
secretory phenotype or SASP) [218]. It is interesting to identify that certain SASP com-
ponents can apparently act in an autocrine fashion to block tumor growth [219]. Specific
SASP components like IL-6, IL-8, and IGFBP7 in human cells strengthen the growth arrest
of senescence caused by oncogenic forms of RAS and BRAF [216]. Similarly, GROα, a
SASP component induced by oncogenic RAS, encourages the senescence of normal human
ovarian fibroblasts [216]. For instance, only a small number of moles, which are benign
tumors of cutaneous melanocytes and contain oncogenic mutations, grow larger than 1 cm,
and fewer than 1 in 1000 of these progress to melanoma [220]. Additional work will be
required to reveal the contribution of other factors to the cessation of neoplastic progression
in such lesions.

9. Conclusions

It is a long-standing question in oncology as to why cancer develops later in life. One
potential explanation is that metabolic impairment, epigenetic changes, and oncogenic mu-
tations during the aging process drive the formation of tumors [221]. One study indicates
that both copies of the autosomal tumor suppressor gene must be inactivated to form a
tumor, and metabolite changes during aging play a significant role in this process [222].
Another report also suggests that even a transient epigenetic event can lead to tumorigene-
sis without additional stimuli, potentially inducing tumors without driver mutations [223].
While current data in support of the above hypothesis are limited, further studies may es-
tablish such a connection. Cellular functions are known to be tightly regulated by metabolic
processes [224]. Embracing a systems biology approach, rather than focusing solely on
individual genes or metabolic pathways independently, holds immense potential [225].
This approach offers a promising avenue for future research to uncover the critical interplay
between 1C metabolite levels, metabolic enzymes, subcellular localization, and changes in
the chromatin landscape.
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Abbreviations

1C one-carbon
OXPHOS oxidative phosphorylation
ROS reactive oxygen species
THF tetrahydrofolate
NADH nicotinamide adenine dinucleotide
NADPH nicotinamide adenine dinucleotide phosphate
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SHMT serine hydroxymethyltransferase
PSPH phosphoserine phosphatase
PSAT1 phosphoserine aminotransferase 1
PHGDH phosphoglycerate dehydrogenase
DHF dihydrofolic acid
PET positron emission tomography
Hcy homocysteine
HHcy hyperhomocysteinemia
GSSG glutathione disulfide
ATM ataxia-telangiectasia-mutated
ATR ataxia-telangictasia-Rad3-related
CDK cyclin-dependent kinases
Bcl-2 B-cell leukemia/lymphoma 2
IL interleukin
IGFBP7 insulin-like growth factor binding protein 7
SASP senescence-associated secretory phenotype
TYMS thymidylate synthase
PPP pentose phosphate pathway
dUMP deoxyuridine monophosphate
dTMP deoxythymidine monophosphate
GCS glycine cleavage system
ATF4 activating transcription factor 4
AMPK AMP-activated kinase
3-PG 3-phosphoglycerate
CSE cystathionine γ-lyase
GSH glutathione
PSAT phosphoserine aminotransferase
MTHF 5-methyltetrahydrofolate
B12 vitamin B12
B6 vitamin B6
BHMT betaine–homocysteine S-methyltransferase
CBS cystathionine β-synthase
dcSAM decarboxylated SAM
DMG dimethylglycine
E1 enolase-phosphatase 1
G/AT glutamine or asparagine transaminase
GNMT/DNMT1 glycine N-methyltransferase or DNA methyltransferase 1
MTA methylthioadenosine
ERRα estrogen-related receptor alpha
PGC-1α peroxisome proliferator-activated receptor gamma coactivator 1-alpha
MAT methionine adenosine transferase
MTAP methylthioadenosine phosphorylase
MTOB methylthiooxobutyrate
MTR methionine synthase
MTRR methionine synthase reductase
MTRD methylthioribulose dehydratase
MTNA methylthioribose isomerase
ODC ornithine decarboxylase
SAH S-adenosylhomocysteine
SAHH SAH hydroxylase
SAM S-adenosylmethionine
SAMDC SAM decarboxylase
SMS spermine synthase
SRM spermidine synthase
ATF4 activating transcription factor 4
AMPK AMP-activated protein kinase
E2F1 2F transcription factor 1
FOXM1 forkhead box M1
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LKB1 liver kinase B1
lincNMR long intergenic noncoding RNA-nucleotide metabolism regulator
mTORC1 mechanistic target of rapamycin complex 1
NF-κB nuclear factor–kappa B
YBX1 Y-box binding protein 1
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