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RESEARCH ARTICLE Open Access

Ultrasensitive Responses and Specificity in Cell
Signaling
Seth Haney1, Lee Bardwell2,3,4*, Qing Nie1,3,4*

Abstract

Background: Interconnected cell signaling pathways are able to efficiently and accurately transmit a multitude of
different signals, despite an inherent potential for undesirable levels of cross-talk. To ensure that an appropriate
response is produced, biological systems have evolved network-level mechanisms that insulate pathways from
crosstalk and prevent ‘leaking’ or ‘spillover’ between pathways. Many signaling pathways have been shown to
respond in an ultrasensitive (switch-like) fashion to graded input, and this behavior may influence specificity. The
relationship of ultrasensitivity to signaling specificity has not been extensively explored.

Results: We studied the behavior of simple mathematical models of signaling networks composed of two
interconnected pathways that share an intermediate component, asking if the two pathways in the network could
exhibit both output specificity (preferentially activate their own output) and input fidelity (preferentially respond to
their own input). Previous results with weakly-activated pathways indicated that neither mutual specificity nor
mutual fidelity were obtainable in the absence of an insulating mechanism, such as cross-pathway inhibition,
combinatorial signaling or scaffolding/compartmentalization. Here we found that mutual specificity is obtainable
for hyperbolic or ultrasensitive pathways, even in the absence of an insulating mechanism. However, mutual fidelity
is impossible at steady-state, even if pathways are hyperbolic or ultrasensitive. Nevertheless, ultrasensitivity does
provide advantages in attaining specificity and fidelity to networks that contain an insulating mechanism. For
networks featuring cross-pathway inhibition or combinatorial signaling, ultrasensitive activation can increase
specificity in a limited way, and can only be utilized by one of the two pathways. In contrast, for networks
featuring scaffolding/compartmentalization, ultrasensitive activation of both pathways can dramatically improve
network specificity.

Conclusions: There are constraints to obtaining performance objectives associated with signaling specificity; such
constraints may have influenced the evolution of signal transduction networks. Notably, input fidelity (preferential
response to an authentic input) is a more difficult objective to achieve than output specificity (preferential
targeting to an authentic output). Indeed, mutual fidelity is impossible in the absence of an insulating mechanism,
even if pathways are ultrasensitive. Ultrasensitivity does, however, significantly enhance the performance of several
insulating mechanisms. In particular, the ultrasensitive activation of both pathways can provide substantial
improvement to networks containing scaffolding/compartmentalization.

Background
To survive, and to function as a part of a whole organ-
ism, cells must sense and respond both to their environ-
ment and to other cells. Cells sense a variety of
chemical and physical signals, that are then transmitted

and interpreted in a signal-specific fashion. These sig-
nals include hormones such as insulin and adrenaline,
growth factors such as EGF (epidermal growth factor)
and NGF (nerve growth factor), and physical signals
such as mechanical stress, osmotic pressure, light, pH,
etc.
For particular signals to elicit appropriate responses (e.

g. turn on certain genes), the news that a signal has
been detected must be accurately relayed to the intracel-
lular machinery necessary to evoke the response (e.g.
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transcription factors). Signal transmission (also called
signal transduction) is generally initiated by the activa-
tion of a cell surface or intracellular receptor. The
receptor then typically activates a cascade of intracellu-
lar kinases, which then regulate various downstream
effectors. It is commonplace, however, for these intracel-
lular kinases to be involved in more than one signaling
cascade. The need to respond to a multitude of different
signals, combined with a high promiscuity of kinases,
creates a complicated and interconnected network of
signaling components [1-4]. This interconnectedness
leads to the potential for crosstalk and cross regulation,
where the signals from one pathway intersect with
another. Cross regulation can be beneficial or even
necessary when cells must integrate their response to
multiple signals simultaneously [5]. On the other hand,
many signals necessitate a unique and decisive response,
and a densely interconnected network may make such
signal-exclusivity a difficult but vital objective to obtain
[6-8]. Indeed, mutations that disrupt signaling specificity
may play a role in the pathogenesis of cancer and other
diseases [9,10].
Issues of signaling specificity feature prominently in

mitogen-activated protein kinase (MAPK) cascade-
mediated signaling [10-16]. A textbook example is the
mammalian Ras/MAPK cascade, as exemplified using
rat PC12 cells as a model system. This cascade is a cen-
tral component of the response to both EGF and NGF;
however, EGF causes the cells to proliferate, whereas
NGF causes them to differentiate and sprout neuron-
like projections [15,17-21]. Another textbook example is

found in bakers/brewers yeast (Saccharomyces cerevi-
siae), where a set of overlapping MAPK cascades regu-
late mating, filamentous invasive growth, and stress-
responses. In this case, elements of the same MAPK
pathway are involved in transmitting at least three dis-
tinct signals: mating pheromone, nutrient limitation, and
osmotic stress [13,21]. Even so, there is specificity from
signal to cellular response: application of pheromone eli-
cits mating (but not filamentation or stress response),
nutrient limitation elicits filamentation (but not mating
or stress response), and osmotic stress elicits only a
stress response.
How can the concept of signaling specificity be

approached, modeled and quantified? Theoretical studies
of signaling specificity have advanced our understanding
in important ways. For instance, it was argued in [22]
that the biological notion of ‘signaling specificity’ corre-
sponds to two related yet distinct metrics: (1) the ability
of pathways to preferentially activate their own output
(output specificity); (2) the ability of pathways to prefer-
entially respond to their own input (input fidelity).
Within this framework, using the simplest possible
architecture of an interconnected signaling network
(denoted the “basic architecture, see Fig. 1A), and mak-
ing the assumption that pathways are weakly-activated
(which means that they can be modeled as linear sys-
tems [23,24]), it was shown that it is impossible for both
pathways in the network to exhibit either input specifi-
city or output fidelity [22,25].
How then do real signaling networks achieve specifi-

city? Biochemical regulatory motifs knows as insulating
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Figure 1 Networks and insulating mechanisms. (A) Schematic of a network with crosstalk. This network has no insulating mechanisms.
However the connections between x1 and x2 and between x1 and y2 are allowed to be hyperbolic or ultrasensitive, denoted by . (B-E)
Networks embellished with various insulating mechanisms (B) Cross Pathway Inhibition (CPI) from x2 to y2. (C) Combinatorial Signaling (CS) in
the X pathway. (D) Scaffolding. (E) Compartmentalization.
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mechanisms are thought to have evolved to maintain
specificity by limiting ‘leaking’ or ‘spillover’ or ‘bleed-
through’ between pathways. The fundamental insulating
mechanism in cell regulation is specific protein-protein
interactions [9,26,27], but this cannot account for speci-
ficity in networks containing pathways that share com-
ponents. Insulating mechanisms that can buffer against
spillover despite component sharing include combina-
torial signaling, cross-pathway inhibition, compartmen-
talization, scaffolding, and kinetic insulation
[22,25,28-30]. Some of the best experimental evidence
for the existence and importance of these types of insu-
lating mechanisms comes from the yeast MAPK net-
work. In this system, multiple mutations that disrupt
insulating mechanism function have been identified, and
shown to result in increased levels of inappropriate sig-
nal crossover, often with adverse physiological conse-
quences [29,31-37]. Theoretical and modeling studies
have supported the idea that insulating mechanisms can
provide varying degrees of output specificity and input
fidelity to interconnected signaling networks
[22,25,38-42].
Another performance objective often attributed to net-

work-level properties of cell signaling pathways is the
ability to respond to input in a switch-like manner
[43-45]. This behavior is thought to endow certain path-
ways with the ability both to filter out input levels that
are below some threshold value (such as might be
caused by noise) and to respond dramatically to levels
of input that have surpassed this threshold (see for
example the solid blue line in Fig. 2A in comparison to
the green line in the same figure). The term ultrasensi-
tive refers to a situation where it takes a relatively small
increase in input to cause a significant change in output
[43,44]. This contrasts to hyperbolic or Michaelian
input/output relationships, which require an 81-fold
change in input to increase output from 10% to 90%
maximal [43,44]. Hyperbolic relationships arise naturally
from standard enzyme and binding kinetics, but
mechanisms such as binding cooperativity and multisite
phosphorylation can endow pathways with ultrasensitiv-
ity [45].
How do ultrasensitive (or hyperbolic) responses affect

signaling specificity? Can ultrasensitivity provide signal-
ing specificity to an interconnected network devoid of
any insulating mechanisms? If not, does ultrasensitivity
influence the performance of certain insulating mechan-
isms? These questions are challenging to address experi-
mentally, so an approach using theory and modeling
would seem a good starting point. Here we focus on
simple phenomenological models of overlapping cas-
cades that explicitly display various degrees of ultrasen-
sitivity. The tractability of our approach allows us to
derive analytic results that give a general insight into the

effects of ultrasensitivity in achieving specificity. We find
that ultrasensitivity cannot, by itself, provide specificity
to an interconnected network, but that it can signifi-
cantly enhance the performance of certain insulating
mechanisms.

Results and Discussion
1. Definitions of Mutual Specificity and Mutual Fidelity
As in previous treatments, [22,25], we consider a net-
work consisting of two pathways, the X pathway and the
Y pathway (Fig. 1A). Each pathway has a receptor/sig-
naling component, x0 and y0, and a reporter/target com-
ponent, x2 and y2. Notably, the two pathways share a
common intermediate component, x1. Note that one
component may be taken to represent the conglomera-
tion of many chemical species. For example x0 may
represent an entire G-protein-coupled receptor complex
and several other steps upstream of a shared cascade x1.
Hence, the network shown in Fig. 1A represents the
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fidelity. (A) Pictorial representation of a network employing only
ultrasensitive activation achieving Mutual Specificity (MS). (B)
Pictorial representation of a network without cross regulation that
cannot attain Mutual Fidelity (MF). (C) A network with cross-
pathway inhibition that attains MF.
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simplest idealized “basic architecture” of a network in
which two pathways share components. The input to
each pathway will be given by specifying the levels of x0
and y0, and the output of each pathway will be mea-
sured by x2 and y2.
Let us denote the total output of pathway X when the

cell is exposed to an × input signal (x0 > 0, y0 = 0) as
Xout|Xin, read as ‘X output given X input’, or simply ‘X
given X’. In a similar fashion we define Yout|Yin, the
value of y2 given that the Y pathway is activated (x0 = 0,
y0 > 0). We also define the crosstalk terms Xout|Yin (the
value of x2 given that Y is activated) and Yout|Xin. In this
paper, we will use steady-state analysis so as to derive
maximal analytical insight, so the outputs defined above
refer to steady-state values.
These measures of output under different pathways

inputs are used to express the metrics specificity and
fidelity [22,25]. A pathway is said to have output specifi-
city if that pathway’s input activates its own output
more than it does the output of any interconnected
pathway. A pathway is said to have input fidelity if the
output is greater when it receives its own signal than it
is when it receives an interconnected pathway’s signal.
These two concepts can be quantified as:

S
Xout Xin
Yout Xin

S
Yout Yin
Xout Yin

F
Xout Xin
Xout Yin

F
Yout

X Y X Y= = = =
YYin

Yout Xin
(1:1)

where SX denotes the output specificity in the X path-
way and FY denotes the input fidelity in the Y pathway,
etc.
In order to escape obvious logical contradictions and

function effectively, a signaling network needs to posses
output specificity and input fidelity all its pathways
simultaneously. To account for this in the context of a
two-pathway network, we define three composite indica-
tors, the degree of Mutual Fidelity (MF), Mutual Specifi-
city (MS) and Mutual Fidelity & Mutual Specificity
(MFMS):

MS S S MF F F MFMS MF MSX Y X Y= = =min{ , } min{ , } min{ , } (1:2)

MFMS greater than 1 indicates that each of SX, SY, FX
and FY are simultaneously (meaning they are evaluated
using the same parameters including input levels and
connection strengths) greater than 1, and hence the cell
signaling network faithfully communicates through both
pathways. Note that these definitions may be readily
generalized to include more than two intersecting sig-
naling pathways.
In the rest of this paper we explore methods utilized

by biological systems to obtain MFMS greater than 1.

2. A Model with Ultrasensitivity
The scheme depicted in Fig. 1A can be modeled as a
system of ordinary differential equations:

x a x b y d x1 1 0 1 0 1 1= + − (2:1)

x a f x d xX x
2 2 1 2 2= −( ) (2:2)

y b f x d yY y
2 2 1 2 2= −( ) (2:3)

These equations describe the formation of active sig-
naling species x1, x2 and y2, and do not explicitly con-
sider the inactive precursors from which they are
converted. The parameters a1 and a2 are activation
rate coefficients; a2 is proportional to the rate at which
component x1 activates target x2. Similarly, d x

1 and
d x

2 are deactivation (or decay) rate constants, and can
be thought of as representing phosphatase activity or
protein degradation, for example. The term x1 is a
shorthand notation for dx

dt
1 , the rate of change of com-

ponent x1 at a particular moment in time. The func-
tions fX and fY are activation functions that describe
how the rate of change with respect to time of x2 and
y2 vary as a function of the concentration of active x1.
For weakly-activated signaling pathways (i.e. pathways
in which, at physiological levels of input, only a small
fraction of any given component becomes activated),
the production of x2 and y2 is a linear function of x1

f x f x xX Y( ) ( )1 1 1= =

In contrast, for hyperbolic pathways, and for ultrasen-
sitive pathways, the activation functions fX and fY can
often be reasonably approximated by Hill functions:

f x
x n

x n
X

n
f x

x m

x m
Y

m
X Y( )

( )

( ) ( )
( )

( )

( ) ( )
1 1

1

1

1

1
=

+
=

+ 
 (2:4)

where the Hill exponents, n and m, quantify the
degree of ultrasensitivity. For hyperbolic pathways,
the Hill exponent is equal to 1, whereas for ultrasen-
sitive pathways, the Hill exponent is greater than 1.
Indeed, the greater the Hill exponent, the more
switch-like the response. For a Hill number of 1, it an
81-fold change in input to increase output from 10%
to 90% maximal. In contrast, for Hill numbers of
2 and 4, it takes a 9-fold and 3-fold change,
respectively.
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3. Hyperbolic or ultrasensitive signaling pathways can
achieve Mutual Specificity
We will use the notation x X

1 to refer to the steady state
value of x1 given that pathway X is on (that is, activated)
and Y is off; we could also have written x1|Xin. Similarly,
xY

1 refers to the steady state value of x1 when X is off
and Y is on. As stated above, for weakly-activated path-
ways, activation kinetics are linear [23,24], and so
f x xX X( )1 1= , and f x xY Y( )1 1= . If we define the quan-
tities  ≡ a d x

2 2/ and  ≡ b d y
2 2/ (where a measures

the connection strength from x1 to x2, and b from x1 to
y2), we can then express the values of SX and SY for the
weakly-activated system simply as

S SX Y= =( / ), ( / )   

Hence, it is clear that any effort to increase SX will
result in a reciprocal decrease of SY, so that both SX and
SY cannot be simultaneously greater than one. Neither
mutual specificity nor mutual fidelity is possible with
the basic architecture and weak activation; thus, some
sort of insulating mechanism is required to obtain
MFMS for weakly-activated pathways [22].
When pathways are hyperbolic or ultrasensitive,

mutual specificity becomes possible, even in the basic
architecture. In these cases, the equations for SX and SY
are:

S
x X

X
n x X

X
n

Y x X m

x X
X

n
S

xY
Y

X Y=
+

+
=


  






( / ) ( / ) ( / )

( / )
,

( / )1 1 1

1 1
1

mm xY
Y

m
X xY n

xY
Y

m
+

+

( / ) ( / )

( / )
1 1

1 1

 


(3:1)

For hyperbolic but not ultrasensitive pathways, n = m
= 1, and eqs. (3.1) reduce to

S
x X

X Y X

x X
X

S
xY

Y X Y

xYX Y=
+

+
=

+


  






  ( / ) ( / )

( / )
,

( / ) ( / )

( /
1

1 1
1

1 Y )+1
(3:2)

SX can be made large by setting a/b > > 1 and letting
( / )x X

X1  → ∞ , whereas SY can be made large by set-
ting (εX / εY) > > 1 and letting ( / )xY

Y1 0 → . In this
case SX ® a/b and SY ® (b · εX)/(a · εY), which will
both be greater than one so long as

1 > >( / ) ( / ).   x Y

With a careful selection of parameters mutual specifi-
city of any degree can be obtained (see Additional file 1
section 1a). For ultrasensitive pathways, we have already
seen that mutual specificity can be obtained, since
hyperbolic pathways are a sub-case of ultrasensitive
pathways. So, while both hyperbolic pathways and ultra-
sensitive pathways can achieve mutual specificity of any
degree, ultrasensitive pathways impose less stringent
requirements on parameters. For a detailed discussion

of the advantages provided by ultrasensitivity see Addi-
tional file 1 section 1b.
A pictorial representation of a pathway with no cross-

regulation obtaining mutual specificity is given in Fig.
2A. To reiterate, mutual specificity is possible in net-
works containing hyperbolic or ultrasensitive pathways,
even when the topology of such networks is simply the
basic architecture without any added insulating mechan-
ism. However, as we show next, it is still impossible to
attain mutual fidelity without adding some kind of insu-
lating mechanism to the basic architecture.

4. Mutual Fidelity cannot be obtained by the basic
architecture
If we assume that the activation functions fX and fY are
monotonic, but make no other assumptions as to their
specific form, we can readily prove that mutual fidelity
is impossible at steady state in the absence of an insu-
lating mechanism. Let us consider the steady state of
the system (see Fig. 2B and 2C for an illustration of
the analysis below). Clearly x1 must take on different
values given either X input or Y input, otherwise
neither X nor Y fidelity would be possible at steady
state. Suppose that x xX Y

1 1> . As the functions fX and
fY are activation functions, they are assumed to be
monotonic and increasing, therefore more x1 gives
more x2 and more y2. (We are assuming no other
structure on the activation functions other than the
fact that they are monotonic, therefore this result
holds regardless of whether the functions are linear,
Hill-like, or any other always-increasing function.). So
if x xX Y

1 1> , then it must be that the steady state value
of x2 given X input, Xout|Xin, must be greater than x2
given Y input, that is Xout|Xin >Xout|Yin. This is, in
fact, the definition of fidelity in the X pathway

F
Xout Xin
Xout Yin

X = > 1 (4:1)

Thus, fidelity in the X pathway is guaranteed. How-
ever, this same argument also implies that Yout|Xin

>Yout|Yin. This is exactly the statement that fidelity in
the Y pathway

F
Yout Yin
Yout Xin

Y = < 1 (4:2)

is impossible.
It should be noted that the specification that this be

evaluated at steady state is crucial to this conclusion.
There are certain conceivable ways to utilize a time-
dependent signal to allow for mutual fidelity and mutual
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specificity with certain types of activation functions
without imposing added regulation.
Note that if we had instead assumed that x xX Y

1 1> ,
then we would have concluded that fidelity in the Y
pathway is guaranteed, whereas fidelity in the X pathway
is impossible. Therefore, we cannot have both X and Y
fidelity, i.e. mutual fidelity, regardless of the form of the
monotonic activation functions, fX and fY. In order to
have mutual fidelity, one of the activation functions
must be non-monotonic, that is, decreasing somewhere.
This cannot be achieved by the basic architecture; it
requires some type of added regulation.

5. Insulating mechanisms and cross-regulation
Biological signaling networks that share components are
thought to contain one or more insulating mechanisms
that provide specificity and fidelity [22,25,28-30]. From
the analysis above it is clear that insulating mechanisms
must be added if the basic architecture is to achieve
mutual fidelity and mutual specificity. Here we briefly
review three well-known insulating mechanisms, cross-
pathway inhibition (CPI), combinatorial signaling (CS)
and scaffolding/compartmentalization (SC) [22,25] (Fig.
1. We will then develop the notion of a cross-regulatory
term that facilitates the comparison of different insulat-
ing mechanisms. Then, in subsequent sections, we
address the effects of ultrasensitivity on the performance
of these insulating mechanisms.
Cross-pathway inhibition occurs when one pathway

inhibits another pathway. Here we consider a particular
implementation of this, where both the inhibiting and
inhibited components are downstream of a shared
branchpoint (Fig. 1B). In the yeast MAPK network, both
the MAP kinase Fus3 (an output specific to the mating
pathway) and the transcription factor Tec1 (an output
specific to the filamentation pathway) are downstream
of the shared kinase cascade. Tec1 activation during
mating is prevented, in part, because Fus3 phosphory-
lates Tec1 and thereby targets Tec1 for ubiquitin-
mediated degradation [46-48]. Other likely examples of
this type of cross-pathway inhibition in the yeast MAPK
network include inhibition of Tec1 by the stress-
response kinase Hog1 [49], and inhibition of Hog1 by
the filamentation kinase Kss1 [37]. Following [22,25], we
incorporate insulating mechanisms into the system com-
posed of Eqs. (2.1)(2.2)(2.3). In cross-pathway inhibition,
the equation for y2, (2.3), becomes

y b f x
x g

d yY y
2 2 1 2 2

1
1 2

=
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ −( )

( / )
(5:1)

Here production of y2 is inhibited by x2, with the
amount of inhibition depending on the amount of x2.

The parameter εg is the IC50 (the inhibitory concentra-
tion 50%), which can be interpreted as the amount of x2
that results in 50% inhibition. When there is no x2, the
production of y2 is unchanged; when x2 is much greater
than εg, y2 production is nearly completely shut off.
Note that this insulating mechanism affects only the Y
pathway’s output and has no influence on X output. For
a discussion of bi-directional mechanisms see Additional
file 1 section 3.
In combinatorial signaling, in order for input from the

X pathway to evoke a response, an independent input
from a third receptor (Z) is required (see Fig. 1C). The
component x2 acts a coincidence detector that only
responds if both x1 and Z are active. In this case, the
equation for x2, (2.2), becomes

x a R x f x d xX x
2 2 0 1 2 2= −[ ] ( ) (5:2)

where

R x
if X Y

k if Y kleak le
[ ]

, ( )

, ,0
1

0
≡

≤
   is on and  is off

   is on  aak ≤
⎧
⎨
⎩

⎫
⎬
⎭1

. (5:3)

Here, R[x0] represents the combinatorial input. As tar-
get x2 is a coincidence detector, its activity depends on
two separate inputs, R and x1. If either input is zero,
then x2 is also zero. When pathway X is on (and Y off),
the coefficient R[x0] ≡ 1, and signal propagation through
the network is identical to the basic architecture. When
Y is on, R[x0] ≡ kleak, where kleak, a constant between
zero and one, is the normalized basal level of signal flux
from Z. Hence, Xout|Yin will be reduced by a factor of
kleak compared to the basic architecture. Hence, kleak = 1
has no specificity enhancing effect, whereas kleak = 0
completely eliminates X output given Y input. As with
cross-pathway inhibition, combinatorial signaling only
affects one output, in this case the X pathway output.
Signaling scaffolds are proteins that bind to two or

more consecutively-acting components of a signaling
cascade and, in so doing, facilitate signal transmission
between them, (Fig. 1D). A prototypical example is the
yeast Ste5 scaffold protein, which binds to all three tiers
of the mating MAPK cascade [14]. We refer to this as
the sequestering function of scaffolds, to be distin-
guished from the selective activation function of scaffold
proteins [50], which resembles combinatorial signaling
[25].
The sequestering function of scaffolds is implemented

by expanding the system to include two different states
of the “shared” component: bound to the scaffold
(denoted x N

1 , for aNchored to the scaffold), and free in
the cytosol (denoted xC

1 ). It is presumed that active x2
can only be created by x1 that is bound to the scaffold,
and that x1 bound to scaffold cannot create active y2.
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That is, X pathway output is a function of x N
1 and the

Y pathway output is a function of xC
1 , as shown below:

x a x D x D x d xN N C x N
1 1 0 1 1 1 1= − + −out in (5:4)

x b y D x D x d xC C N y C
1 1 0 1 1 1 1= − + −in out (5:5)

x f x d xX N x
2 1 2 2= −( ) (5:6)

y f x d yY C y
2 1 2 2= −( ) (5:7)

The same set of equations can be used to describe the
insulation mechanism of compartmentalization [22]. In
compartmentalization, the X pathway is presumed to
reside in one cellular compartment (e.g. the nucleus) and
the Y pathway to reside in another (e.g. the cytosol). Leak-
ing between the pathways can occur because the shared
component can move between these two compartments to
some extent. For instance, some portion of the pool of x1
activated in the nucleus ( x N

1 ) may move into the cytosol
(becoming xC

1 ), giving it the opportunity to inappropri-
ately create y2. Thus, we refer to the insulating mechanism
modeled by Eqns (5.4)-(5.7) as scaffolding/compartmenta-
lization (SC). SC works by creating two different states for
the shared component. These states are allowed to freely
transform between one another:

X XN D

D
Cout

in
1 1  

SC becomes increasingly more effective as the
exchange parameters Din, Dout ® 0. At this limit, the X
and Y pathways have no crosstalk, and hence possess
perfect (i.e. infinite) MFMS.
Cross Regulatory Term (CRT)
In the following sections we will compare the effect of
each of the above insulating mechanisms on the signal-
ing pathway’s ability to achieve MFMS, both numerically
and analytically. In many cases one can show that arbi-
trarily high degrees of MFMS can be achieved at steady
state. In other words for any k there is a set of para-
meters so that MFMS >k. However the realization of
increasingly high degrees of MFMS requires more and
more extreme choices of parameters and increasing
cross-regulation. Therefore we need to be able to quan-
tify the degree of additional regulation attributable to
the insulating mechanism. Thus, for each of the differ-
ent insulating mechanisms defined above, we identified
a key dimensionless parameter to quantify the degree of
additional regulation. We call this the Cross Regulatory
Term (CRT); it is defined as follows:

Cross-pathway inhibition CPI  CRT

Combinatorial sign

( ) ≡: /  g

aaling CS  CRT  

Scaffolding/compartmentalization 

( ) ≡: /1 kleak

SSC CRT( ) ≡: /d D1

(5:8)

where for SC we let Din = Dout ≡ D and d d dx y
1 1 1= ≡ .

Each of the CRTs were chosen intuitively as a set of
parameters that quantifies the cross pathway regulation.
For example with combinatorial signaling, the leak rate
is clearly the parameter that quantifies the cross path-
way regulation, as it is the only parameter that differ-
entiates a CS network from the basic architecture. Both
numerical (data not shown) and analytic results (see
below) show that the CRTs as defined are in fact critical
for determining specificity.

6. Ultrasensitivity can improve insulating mechanism
performance
As we have seen, mutual fidelity at steady state is
impossible without some kind of additional regulation.
In this section we derive maximal values for MFMS for
each of the insulating mechanisms, for networks with
both linear and ultrasensitive activation. As stated
above, in many cases one can show that arbitrarily high
degrees of MFMS can be achieved at steady state. Here
we derive bounds based on a fixed CRT. We also
numerically evaluate the steady state values for each
network at different levels of CRT to show that the
bounds we derive are in fact sharp.
Linear Activation
For linear activation, deriving expressions for each of the
specificity indicators has been done previously [25].
Here we shall re-formulate these in terms of the CRT.
For cross-pathway inhibition, mutual fidelity is not

possible; in other words, Y fidelity implies that there is
no X fidelity, and vice versa.
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Upon inspection FY > 1 only when x xY X
1 1> , which

then makes FX < 1. Therefore, regardless of the CRT,
MFMS ≤ 1.
In the case of combinatorial signaling, however, one

can show that MFMS CRT≤ . In this case
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The maximum of this expression over all of the para-
meters occurs when  / /= =x x CRTY X

1 1 , and at
this point MFMS CRT= .
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For scaffolding/compartmentalization (SC), the output
specificity and input fidelity readily are calculated:
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Evaluating these expressions, we find:

x N Xin
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d
D
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x N Yin

a x
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Hence we obtain MFMS ≤ 1 + CRT.
These bounds, (Fig. 3 dashed lines), are sharp, or the

most accurate upper bound, as is apparent from how
they are derived. Below we show that the bounds
derived for networks with ultrasensitive activation
greatly supercede these values.
Ultrasensitivity
In the case of ultrasensitive activation for cross-pathway
inhibition (CPI), we can obtain a simple bound on
MFMS. Due to the fact that MFMS is the minimum of
four quantities the maximum of MFMS is at most as big
as the smallest of SX, SY, FX and FY. In the case of CPI it
is easiest to bound MFMS by FY (In the Additional file 1
we show that this bound for MFMS is sharp: in that
there is a choice of parameters so that the MFMS is
arbitrarily close to it. See section 2 in the Additional file
1 for derivation).

F
f Y xY

f Y x X

CRT f X x X

CRT f X xY

C
Y = =

+ ⋅( )
+ ⋅( ) <

+Y|Y
Y|X
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1

1

1 1

1 1

1 RRT f X x X

CRT f X xY
CRT f x CRTX X

⋅( )
+ ⋅( ) < + ⋅ < +

( )

( )
( )

1

1 1

1 11

Therefore we can assert

MFMS CRT< +1 . (6:1)

Hence, in contrast to the case with weak-activation
and cross-pathway inhibition, where mutual fidelity was
impossible, when ultrasensitive, or even hyperbolic, acti-
vation is added to this architecture, MFMS > 1 can be
obtained.
For combinatorial signaling (CS), the case is much

simpler. Regardless of the parameter choice either
x xX Y

1 1> and therefore f x f xY X Y Y( ) ( )1 1> and thus

F
f Y xY

f Y x XY = <
( )

( )
,1

1

1

or x xY X
1 1> and therefore f x f xX Y X X( ) ( )1 1> and

thus

F
f X x X

f X xY
CRT CRTX = <

( )

( )
.1

1

Thus in any case we have,

MFMS CRT< (6:2)

In both of these cases the degree to which ultrasensi-
tivity helps is hidden. While the bounds for the hyper-
bolic(n = m = 1) and ultrasensitive case are the same,
the speed at which they approach these bounds is much
different. With high Hill exponents the constraints on
the remaining parameters are much less stringent (see
Additional file 1 section 1b). Further high degrees of
ultrasensitivity can drastically decrease one of the
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Figure 3 Maximal values for mutual fidelity & mutual specificity (MFMS). Maximal values for MFMS under cross-pathway inhibition (CPI, A),
combinatorial signaling (CS, B) and scaffolding/compartmentalization (SC, C) are graphed as a function of the cross-regulatory term (CRT).
Networks with linear activation are graphed in dashed lines while networks with ultrasensitive (US) activation are graphed in solid lines. The
bound for the network with ultrasensitive activation and SC is plotted using the formula (6.4) with a = 2 and n = 2. More dramatic results occur
with higher values of n.

Haney et al. BMC Systems Biology 2010, 4:119
http://www.biomedcentral.com/1752-0509/4/119

Page 8 of 14



crossterms Xout|Yin or Yout|Xin, see more on this in the
next section.
For scaffolding/compartmentalization (SC), making a

similar type of bound is less fruitful. Fortunately the
exact formula for each of the specificity indicators can
be derived straightforwardly. In the case of a symmetric
parameter choice, where we let many of the parameters
from the X pathway be the same as those in the Y path-
way, i.e.

a b a n m X Y1 1 1= ≡ = = = =, , , ,    (6:3)

we obtain the bound

MFMS an CRT n CRT n CRT n

an CRT n CRT n CRT= + + + +

+ + +
+( ) ( ) ( )

( ) ( )
(1 1 2

1 2
1~ )) .n (6:4)

In this case, unlike the cases of CPI or CS, the ultra-
sensitivity and CRT contributions to MFMS are inti-
mately connected. This connection creates a super-
linear increase in MFMS due to increasing CRT when
ultrasensitivity is greater than one, in contrast with both
CPI and CS where MFMS increases only linearly in
CRT regardless of the degree of ultrasensitivity. This
means that for networks with scaffolding/compartmen-
talization, even with a low value of the CRT, sufficient
ultrasensitivity can serve to greatly increase MFMS, and
visa versa. Note that in this symmetric case we have not
derived a bound, the MFMS is in fact equal to this

value. This is because the symmetric parameter choice
greatly simplifies the situation by making SX = SY = FX
= FY = MFMS.
Numerical evaluation of the specificity indicators con-

firm the bounds derived for the networks with ultrasen-
sitive activation are also sharp (data not shown). Further
numerical simulation shows that, in the case in which
only symmetric parameters are used, as in (6.3), both
the maxima and distribution of MFMS values are simi-
lar; so the results derived in this case should be repre-
sentative of the more general case.
The bounds are plotted in Fig. 3 for comparison with

those with linear activation. In each case the bounds
with ultrasensitive activation clearly supercede those
with linear activation. In particular, note the steep
increase in MFMS due to the super-linear dependence
on CRT in the case of scaffolding/compartmentalization.
To investigate the case where the degree of ultrasensi-

tivity is the limiting factor on MFMS, we numerically
evaluated the effect of independently increasing the n
and m exponents, while holding the CRT constant and
sufficiently high. For each of the insulating mechanisms,
MFMS was calculated numerically over a large range of
parameters and basic statistics were used. As shown in
Fig. 4A and 4B, only n increases MFMS in the case of
CPI and only m does this for CS, just as derived in the
above bounds. In contrast, for scaffolding/compartmen-
talization, increasing either n or m increased MFMS. In
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Figure 4 Effect of increasing ultrasensitivity on mutual fidelity & mutual specificity. MFMS values for networks with CPI, CS, and SC were
calculated for 10,000 trials over a large range of parameters (See below for parameter ranges). MFMS values at the 90th percentile of the
distribution were then plotted as a function of degree of various Hill exponents. (A) Dependence of each type of network on n, the degree of
ultrasensitivity in the X pathway, where ultrasensitivity in the Y pathway was set to one, m = 1. (B) Dependence on m, the ultrasensitivity of the
Y pathway, where n = 1. (Parameter Ranges):
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the case where only one of the Hill exponents is large
while the other is kept small the SC network does no
better than CPI or CS (data not shown). This is due to
the fact that MFMS is a minimum of the four specificity
indicators, (1.2), and thus is constrained by the smallest
one. However if both n and m are increased simulta-
neously, MFMS for scaffolding/compartmentalization
increases rapidly.
In the case with scaffolding, high degrees of MFMS

are achieved at relatively low levels of ultrasensitivity, n
or m. For scaffolding with n = m = 10, MFMS is well
over 100 (data not shown).

7. Strategies to maximize MFMS using ultrasensitivity
In this section we wish to understand why increasing
only one Hill exponent is beneficial for CPI and CS,
whereas increasing both is beneficial for scaffolding/
compartmentalization as shown in section 6. To explain
these observations we study how responsive the specifi-
city and fidelity indicators are to changes in n and m by
analyzing their partial derivatives.
If ultrasensitivity is helpful to MFMS, then increasing

n and m should increase SX, SY, FX and FY. (See section
4 of Additional file 1 for derivation. This same approach
can be taken on the steady states of x2 and y2 directly
with the same result we derive below). First observe the
result in the case where there are no insulating mechan-
isms. Taking derivatives:
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(7:1)

Combining these conditions gives,

x x xX
Y

Y
X

X
1 1 1< < < <  (7:2)

which is a necessary and sufficient condition for both
n and m to have positive effects on both SX and SY.
When this technique is applied to the fidelity indicators
we derive the same conditions. Clearly, not all these
conditions can be satisfied simultaneously, since either
x xX Y

1 1> or x xX Y
1 1> .

After the addition of insulating mechanisms the exact
derivatives change slightly, but Eqn. (7.2) still holds for
both cross-pathway inhibition (CPI) and combinatorial
signaling (CS). In other words adding either of these
insulating mechanisms, or both simultaneously (see
Additional file 1 section 3) will not change the fact that
the equations in (7.1) cannot be simultaneously satisfied.
In CPI, both Yout|Xin and Yout|Yin are decreased due to

the inhibition by x2, which will allow for SX > 1 and
potentially FY > 1, but CPI does nothing to decrease the

Xout|Yin term. Thus in order to obtain fidelity in the ×
pathway, FX > 1, and hence MFMS > 1 it must be the
case that:  y

y
x

xx x< < <1 1 . Under this parameter
choice, increasing n has only favorable effects, but
increasing m has mixed effects; it increases SY but
decreases SX. In the case of CS the relation is the oppo-
site because CS only effects the Xout|Yin term and has
no effect on the others. So the parameters must satisfy
the relations:  x

x
y

yx x< < <1 1 . Again if this were not
the case we would not attain MFMS > 1, this time
because FY < 1. The consequence of this parameter
choice, however, is that increasing n decreases SY. In
both cases the significance of not satisfying one of the
above conditions is that increasing m, in the case of
CPI, or n, in the case of CS, has detrimental effects on
one of the specificity indicators, or increases one of the
cross-terms Xout|Yin or Yout|Xin. The consequence of
equation (7.2) is that networks with either CPI or CS
can only utilize ultrasensitivity to decrease one of the
crosstalk terms, Xout|Yin or Yout|Xin, at a time where the
other cross-term must be kept small via cross-regula-
tion. These beneficial effects of ultrasensitivity, however,
greatly exceed those in linear or hyperbolic pathways or
even those due to cross-regulation. The cross-terms that
ultrasensitivity is able to decrease show polynomial
decrease (and hence polynomial increase in correspond-
ing specificity indicators) whereas the cross-terms that
cross-regulation decrease, in the cases of CS and CPI,
show only linear decrease (leading to a linear increase in
corresponding specificity indicators). Thus due to the
fact that MFMS is a minimum of the four specificity
indicators (1.1), the bounds for CPI and CS show only
linear increase with CRT.
In marked contrast to the above, scaffolding/compart-

mentalization allows for all four equations to be simulta-
neously satisfied. SC creates two distinct species of the
shared component and therefore the derivatives with
respect to Hill Exponents change to:

∂
∂

> ⇔ > ∂
∂

> ⇔ <

∂
∂

> ⇔ < ∂
∂

>

SX
n

x X
SY
n

x Y

SX
m

x X
SY
m

N
in X

N
in X

C
in Y

0 0

0 0

1 1

1

 

 ⇔⇔ >x YC
in Y1 

(7:3)

Combining these new equations gives:

x Y x X x X x YN
in X

N
in

C
in Y

C
in1 1 1 1< < < < , . (7:4)

This allows for the possibility of both n and m to
increase MFMS. Therefore with scaffolding/compart-
mentalization, ultrasensitivity in both the X and Y path-
ways can simultaneously increase specificity.
Why does SC do so much better? Recall the issue in

achieving mutual fidelity: if Xout and Yout are activated
in a monotone way mutual fidelity is impossible.
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Embellishing the system with insulation mechanisms is a
way around this problem and hence insulation mechan-
isms are responsible for achieving MFMS. However in
every case but SC, the problem remains that one of the
x1 steady states must be lower than the other. For this
reason there is no way to set the parameters so that
increasing the ultrasensitivity simultaneously increases
pathway specific variables, Xout|Xin and Yout|Yin, while
decreasing the crosstalk terms, Xout|Yin and Yout|Xin. In
SC, because the X pathway is only activated by x N

1 and
the Y pathway is only activated by xC

1 one can set the
threshold for x N

1 input such that it is above the steady
state level when given Y input but below the steady
state level when given X input, and visa versa for the
xC

1 threshold. The consequences of this are that in this
case ultrasensitivity can simultaneously decrease both
cross-terms which allows for a polynomial decrease in
both terms and thus a polynomial increase in MFMS as
a whole, as seen in Figure 3C and equation (6.4). For
example for n = 2 SC achieves MFMS at a level an
order of magnitude higher than either CPI or CS.

8. Normalization
Specificity in cell signaling pathways is often easy to
observe. For instance, yeast cells mate when exposed to
mating pheromone and form filaments when starved for
nutrients. However this is an observation of whole cell
behavior that either happens or not. Quantifying specifi-
city is a more difficult task. Typically one measures the
level of pathway specific outputs.
Specificity is defined here as a ratio of two different

variables, X and Y, which represent the output of the X
and Y pathways, respectively. When measuring this out-
put from a real cell a common thing to measure would
be a concentration of an activated kinase or the tran-
script of a pathway-specific gene; let us call this concen-
tration of gene X. However when comparing this to the
output from another pathway, one would be dividing
concentration of gene X by the concentration of gene
(or kinase) Y. But the concentration at which gene X
triggers a physiological endpoint, like mating, may be
very different, potentially by orders of magnitude, than
the concentration at which gene Y triggers a different
output.
To address this issue the two output variables must

be normalized somehow so that the construct Xout|Xin

is not given in units of concentration of a pathway-spe-
cific gene, but given in a unit-less percent of a charac-
teristic concentration for this gene. Two reasonable
choices for a characteristic concentration would be the
basal level of activation of the gene under no input, or
the maximal or steady state level of activation of the
gene under its own input. Each choice of a characteris-
tic level should be specific to the system being studied,

and hence in the analysis above we assume that such a
choice has already been made and the variables are fit-
tingly normalized.
The choice of normalization can have mathematical

consequences that lead to a reinterpretation of data. For
this reason we discuss the consequences of normalizing
by the steady state levels of activation (for a discussion
of normalization using basal levels see [25]).
To do this we use as a characteristic value the steady

state value of Xout|Xin for the X pathway and Yout|Yin

for the Y pathway and we define new normalized vari-
ables, denoted X Xout in
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calculate the output specificity

S
X out Xin

Y out Xin

Xout Xin
Xout Xin

Yout Yin
Yout Xin

Y
X

∧
∧

∧
= = ⋅ =|

|

|
|

|
|

oout Yin
Yout Xin

F Y
|
|

=
∧

and

S
Y out Yin

X out Yin

Yout Yin
Yout Yin

Xout Xin
Xout Yin

X
Y

∧
∧

∧
= = ⋅ =|

|

|
|

|
|

oout Xin
Xout Yin

F X
|
|

.=
∧

So in this case input fidelity in the X pathway is the
same as output specificity in the Y pathway and visa
versa. Further the idea of mutual specificity and mutual
fidelity are one in the same.
How does this reduction effect the conclusions above?

First, clearly mutual specificity is no longer possible
without cross regulation, since mutual specificity and
fidelity are now equated. The reason that this was possi-
ble before and is no longer possible is that attaining MS
without cross regulation requires the maximal output of
one of the pathways to become large, however with the
new normalized species this is impossible as they are
both bounded by one.
Secondly the bounds that we derived on MFMS, or

more simply specificity in this case, still hold. In each
case the degree of MFMS was limited by fidelity, see
above. Recall that with no cross regulation mutual speci-
ficity of any degree is possible (see section 3) and in fact
in this case it is possible to simultaneously maximize SX,
SY and FX but not FY (see section 1a of the Additional
file 1). Hence the reduction of the problem of achieving
MFMS to achieving MF does not make the problem
easier.
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With a normalization such as this we get a great
reduction in the equations to consider. Further the nor-
malized construct makes some intuitive sense. The out-
puts are given in terms of percent of the activation that
occurs when the appropriate input is given. So why not
always express the outputs this way? The terms used to
normalize the outputs, Xout|Yin and Yout|Yin, are depen-
dent on the input strength. So for a small input the vari-
ables are normalized to a smaller number (making them
larger) whereas if a large input is used it is the opposite
case. Also the input strength of each pathway can be
independently varied. So it is possible to choose a strong
input for the × pathway and a weak input for the Y
pathway or visa versa. These choices could then alter
the values of specificity in the system. Again the units of
the input to each system is potentially different and
hence comparing them is inappropriate. So we are again
faced with the problem of normalizing the input based
on some characteristic value.
The simple explanation to these issues is that the pro-

blem of normalization can be complicated and should
be considered on a case-by-case basis. Here we assume
that this has been done and all of the variables are unit-
less.

Conclusion
Cell signaling is integral to numerous fundamental bio-
logical processes including development, mating, multi-
cellularity, learning and memory, and many others. In
addition, defects in cell-cell communication and signal
transduction are central to the pathogenesis of many
human diseases, such as cancer and diabetes. A quanti-
tative understanding of the properties of cell signaling is
of critical importance both for greater basic understand-
ing and for the development of new clinical paradigms.
A major obstacle to this goal, however, is the challenge
of understanding the design logic underlying the com-
plicated, interconnected networks in which most signal-
ing pathways are embedded.
Here we have focused on mechanisms that provide

specificity to interconnected networks containing dis-
tinct pathways that share components. We combined a
framework for the analysis of specificity in cell signal-
ing with simple mathematical models of intercon-
nected networks. Using this approach, we examined
how the stimulus-response properties of signaling
pathways may influence their specificity. We compared
weakly-activated pathways with hyperbolic or ultrasen-
sitive pathways, asking if they could provide or
enhance specificity, either alone or when combined
with certain insulating mechanisms. We found that
ultrasensitivity could not provide specificity on its
own, but could enhance the performance of certain
insulating mechanisms.

Ultrasensitivity can confer output specificity but not input
fidelity
To measure specificity we focused on two metrics,
mutual output specificity (MS), where both pathways
preferentially activate their own outputs, and mutual
input fidelity (MF), where both pathways preferentially
respond to their own inputs. Examining the network
denoted the “basic architecture”, a generic, idealized net-
work containing two pathways that share a component,
we found that mutual fidelity is impossible at steady-
state. Previously we showed that weakly-activated path-
ways can endow this architecture with neither mutual
specificity nor mutual fidelity [22,25]. Here, we signifi-
cantly extended this finding by showing that, while both
hyperbolic and ultrasensitive pathways can provide
mutual specificity, neither can provide mutual fidelity.
In fact, our analysis applies not only to hyperbolic and
ultrasensitive pathways, but also to any monotonic sti-
mulus-response (input-output) relationship, for reasons
discussed below.
Why is input fidelity more difficult to obtain than out-

put specificity? Consider the input-output functions for
the X and Y pathways. When both input-output func-
tions are straight lines (as they are when both pathways
are weakly activated), they cannot cross; that is, they
intersect at the origin but nowhere else. Therefore, it is
impossible to choose a pair of input levels so that X out-
put is greater than Y at the lower level of input, and Y
output is greater than X at the higher level of input (or
visa versa). In other words, mutual specificity is impossi-
ble. The input-output functions corresponding to hyper-
bolic and ultrasensitive pathways are curves, not straight
lines. Hence, one can pick parameters such that these
curves will cross at some point, and thence it will be
possible to pick a pair of input levels on either side of
the intersection point that will provide mutual specifi-
city. Mutual fidelity, in contrast, can only be obtained if
one of the input-output curves reaches a maximum and
then bends back down (see Fig. 2); that is, this curve
must be non-monotonic. Non-monotonic behavior in
stimulus-response curves generally cannot be achieved
by cascades of enzymes that exhibit standard kinetics
(even if there is cooperativity or multisite phosphoryla-
tion); instead, some sort of negative feedback loop or
cross-inhibition will be needed [51]. In this sense, then,
mutual input fidelity is more difficult to achieve, and
also, perhaps, more difficult to evolve.
Another implication of this result is that, for intercon-

nected networks to exhibit input fidelity (wherein path-
ways respond preferentially to authentic inputs), the
basic network architecture must be embellished with an
insulating mechanism(s). This insulating mechanism
may work, for instance, by transforming one the stimu-
lus-response curves into a non-monotonic function (e.g.
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cross-pathway inhibition), or it may act by splitting the
stimulus (e.g. scaffolding/compartmentalization) or by
splitting a single response curve into two (e.g. combina-
torial signaling). Regardless, we should expect insulating
mechanisms to be found wherever pathways share com-
ponents yet exhibit specificity from signal to cellular
response.

Ultrasensitivity dramatically improves the performance of
insulating mechanisms
Although ultrasensitivity cannot provide mutual fidelity
to the basic architecture by itself, it can significantly
improve the performance of several different insulating
mechanisms. To facilitate comparison, we defined a
term denoted the Cross Regulatory Term (CRT) for
each of the different insulating mechanisms. In every
case this was a non-dimensional term that characterized
the “strength” of the insulating mechanism. This allowed
us to quantify the degree to which mutual specificity
and mutual fidelity (MFMS) increased as a result of
increases in the CRT. We found that, as the CRT was
increased, there was a much sharper increase in MFMS
in those networks featuring ultrasensitive activation than
in those with linear (i.e. weak) or hyperbolic activation.
All the networks that we examined displayed sharper

increases in MFMS with ultrasensitive activation than
with linear or hyperbolic activation. However, for the
networks that utilized combinatorial signaling or cross-
pathway inhibition, it was not possible to utilize ultra-
sensitivity simultaneously in both pathways to the bene-
fit of specificity. In other words, increasing the
ultrasensitivity in one of the pathways was detrimental.
In contrast, networks that combined scaffolding/com-
partmentalization with ultrasensitive activation could
achieve very high levels of MFMS even at low levels of
cross regulation, and ultrasensitivity in both pathways
was beneficial.
To summarize, the hierarchy we have found is as fol-

lows: First, in the absence of an insulating mechanism
and in the presence of linear activation, neither mutual
specificity nor mutual fidelity is possible. Second, the
addition of ultrasensitive activation allows for mutual
specificity; in fact, with a careful selection of parameters,
SX, SY and FX can become unbounded. However, mutual
fidelity still cannot be achieved. Third, the addition of
cross-pathway inhibition or combinatorial signaling to
an ultrasensitive system can achieve mutual fidelity, but
with a linear dependence on the amount of cross-regula-
tion. Finally, ultrasensitive systems utilizing scaffolding/
compartmentalization can realize a super-linear increase
in mutual specificity and mutual fidelity as the extent of
cross-regulation is increased.

Constraints and opportunities
During evolution, as new signaling pathways emerged
from the duplication and divergence of pre-exiting parts,
the issue of specificity must have been paramount. Why
component sharing is a widespread feature of cellular
regulatory networks is a mystery. One possibility is that
some low level of crosstalk between pathways is benefi-
cial, but too much is bad; this would explain the exis-
tence of both crosstalk and insulating mechanisms.
Another possibility is that duplication of part of a path-
way, followed by the imposition of an insulating
mechanism, is an easier evolutionary path to take than
duplication of an entire pathway. Regardless, it seems
possible that some of the constraints (e.g. input fidelity
is hard to achieve) and opportunities (e.g. ultrasensitivity
can help the performance of insulating mechanisms)
identified here may have influenced the evolution of sig-
nal transduction networks.

Methods
See Additional file 1.

Additional material

Additional file 1: Supplementary Materials - Ultrasensitive Reponses
and Specificity in Cell Signaling. Derivation for equations and
supplementary figures.
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