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Abstract

Microbial specialized metabolites are an important source of and inspiration for many pharmaceuticals, biotechnological products and
play key roles in ecological processes. Untargeted metabolomics using liquid chromatography coupled with tandem mass spectrome-
try is an efficient technique to access metabolites from fractions and even environmental crude extracts. Nevertheless, metabolomics
is limited in predicting structures or bioactivities for cryptic metabolites. Efficiently linking the biosynthetic potential inferred from
(meta)genomics to the specialized metabolome would accelerate drug discovery programs by allowing metabolomics to make use
of genetic predictions. Here, we present a k-nearest neighbor classifier to systematically connect mass spectrometry fragmentation
spectra to their corresponding biosynthetic gene clusters (independent of their chemical class). Our new pattern-based genome min-
ing pipeline links biosynthetic genes to metabolites that they encode for, as detected via mass spectrometry from bacterial cultures
or environmental microbiomes. Using paired datasets that include validated genes-mass spectral links from the Paired Omics Data
Platform, we demonstrate this approach by automatically linking 18 previously known mass spectra (17 for which the biosynthesis
gene clusters can be found at the MIBiG database plus palmyramide A) to their corresponding previously experimentally validated
biosynthetic genes (e.g., via nuclear magnetic resonance or genetic engineering). We illustrated a computational example of how to
use our Natural Products Mixed Omics (NPOmix) tool for siderophore mining that can be reproduced by the users. We conclude that
NPOmix minimizes the need for culturing (it worked well on microbiomes) and facilitates specialized metabolite prioritization based
on integrative omics mining.

Keywords: genomics, mass spectrometry, machine learning, specialized metabolites, biosynthetic gene clusters

Significance Statement:

The pace of natural product discovery has remained relatively constant over the last two decades. At the same time, there is
an urgent need to find new therapeutics to fight antibiotic-resistant bacteria, cancer, tropical parasites, pathogenic viruses, and
other severe diseases. Here, we introduce a new k-nearest neighbor algorithm that can efficiently connect metabolites to their
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biosynthetic genes. Linking metabolites with the Natural Products Mixed Omics tool allows to make genetic predictions to prioritize
relevant products and facilitate their structural elucidation. Our approach can be applied to biosynthetic genes from bacteria (used
in this study), fungi, algae, and plants where (meta)genomes are paired with corresponding mass spectometry fragmentation data.

Introduction
Microbial specialized metabolites are often made by biosynthetic
genes that are physically grouped into clusters known as biosyn-
thetic gene clusters (BGCs). Liquid chromatography coupled with
tandem mass spectrometry (LC-MS/MS) is an efficient technique
to access metabolites from fractions and even environmental
samples; however, the metabolomic diversity tends to not rep-
resent the full biosynthetic potential of a given microbe (not all
BGCs are expressed in certain conditions). The great majority
of metabolomics approaches rely on culturing and/or chromato-
graphic isolation for bioactivity assays and structure elucidation.
Combining metabolomics analyzes with genome mining would
allow making in-silico predictions about: (i) the structure, the bioin-
formatics tool antiSMASH (1) can make accurate structure predic-
tion for some cases, especially for peptides; (ii) the bioactivity, a
BGC can be used to predict antibiotic activity via the presence of
specific genes or database dereplication; and (iii) the novelty of a
given unknown metabolite, via gene networking or beta-diversity.
These unknown metabolites can be from microbial cultures or
even environmental microbiomes. For example, the random forest
classifiers by Walker and Clardy (2) use only the BGC sequences
to predict if a BGC will produce an anticancer, antifungal, or an-
tibacterial metabolite (with a maximum accuracy of 80% and each
bioactivity required the construction of a classifier to predict if a
new entry was bioactive or not). The antimicrobial activity predic-
tion from this tool can be combined with the Antibiotic Resistance
Target Seeker (ARTS 2) (3), which annotates antibiotic-resistance
genes. Coelichelin was isolated using an in-silico structure predic-
tion that indicated the peptide was a siderophore (4). This was
confirmed by culturing the producer in an iron-deficient media
and isolating the induced (and overexpressed) metabolite. BiG-
SLICE (5) was used to predict the connections between more than
1 million BGCs, providing clues to the most diverse/novel BGCs
in thousands of samples. These predictions are made using ge-
nomics, but metabolomics can access these genomic predictions
when metabolites are connected to their BGCs.

However, one of the challenges in the genome mining field is
connecting microbial metabolites to their BGCs with confidence.
Even the genome of Streptomyces coelicolor A3(2), one of the first
sequenced microbial genomes, still contains a large number of
cryptic BGCs—BGCs without known associated metabolites (6). In
2011, antiSMASH improved the identification and annotation of
BGCs based on automated genome mining. Moreover, since 2018,
BiG-SCAPE (7) can reliably calculate the similarity between pairs
of BGCs, grouping them into gene cluster families (GCFs). Recently,
some approaches and tools have been created to connect spe-
cialized metabolites (known and cryptic MS/MS spectra) to their
biosynthetic gene clusters, such as pattern-based Genome Min-
ing (8, 9), MetaMiner (10), DeepRiPP (11), NRPquest (12), NRPminer
(13), GNP (14), and NPLinker (15), recently reviewed by Van der
Hooft et al., 2020 (16). Pattern-based Genome Mining is based on
the idea that the distribution of a given natural product should
be comparable to the distribution of the BGCs responsible for
their production. Nerpa (17) and GARLIC (18) can connect struc-
tures to BGCs; structures are normally represented in the SMILES
(Simplified Molecular-Input Line-Entry System) format, a type of

computer-readable annotation language for chemical structures.
However, most of these tools are neither high throughput nor ef-
ficient, or can only be used for a particular class of BGC (e.g., pep-
tides or BGCs homologous to known BGCs).

These aforementioned tools fall into two main categories: (i)
feature-based approaches (like GNP, MetaMiner, DeepRiPP, NRPminer,
NRPquest, GARLIC, and Nerpa) that use substructure predictions
as a link between biosynthetic genes and metabolites (for ex-
ample, amino acid predictions from biosynthetic adenylation do-
mains or precursor peptides compared to amino acids predicted
from known structures or peaks in the MS/MS fragmentation
spectra); and (ii) correlation-based approaches (like pattern-based
Genome Mining and the standardized Metcalf score, e.g., available
within NPLinker)(15, 19) that use the distribution of metabolites
(via similarity scores that can be obtained based on mass spec-
tral GNPS molecular networking) in the dataset and they com-
pare to the distribution of BGCs (also using similarity scores as
calculated by tools like BiG-SCAPE or BiG-SLICE) to create pos-
sible BGC-MS/MS links. Of note, NPLinker combines a correlation-
based approach (via gene and molecular networking) with a feature-
based approach (Input–Output Kernel Regression method). While
our new approach uses unique fingerprints and a k-nearest neigh-
bor’s algorithm for connecting metabolites to BGCs, it can be con-
sidered a type of pattern-based Genome Mining, which was pre-
viously reported by Doroghazi et al. and Duncan et al. (8, 9, 19).
Similarly to NPLinker, the addition of substructures as features to
our method allows for combining a correlation-based approach with
a feature-based approach.

Another important resource made available recently is the
Paired Omics Data Platform (PoDP) (20), which contains paired
data (genome and metabolome data of the same samples), as
well as validated links between BGCs and MS/MS spectra and an-
notated structures, which all can be used for the creation and
improvement of the aforementioned multi-omics tools and the
development of the new approach described in this manuscript.
Currently, of over 2,500 paired genomes in the PoDP database,
half are metagenomes (mostly feces, human gut, and mouse
gut) and the other half are genomes (mostly of bacterial iso-
lates); the 4900 unique metabolomics linked samples (with sev-
eral genomes having metabolomics data obtained under multi-
ple conditions) were all analyzed via LC-MS/MS, about 90% of the
LC-MS/MS runs are from positive mode and the most common
extraction solvents used were methanol (39% of the extractions)
and ethyl acetate (36% of the extractions). Additionally, most of
the BGCs (known and unknown) that we were able to obtain from
the PoDP database have biosynthetic components from nonribo-
somal peptide-synthetases (NRPSs, 31.6% of the BGCs), polyke-
tide synthases (PKSs, 22%) or ribosomally synthesized and post-
translationally modified peptides (RiPPs, 19.3%).

It has been challenging to create a systematic tool that can
work at the repository scale to connect genotypes (BGCs) with
their phenotypes (for example, fragmentation spectra, MS/MS
spectra, from untargeted liquid chromatography coupled with
mass spectrometry profiles, e.g., LC-MS/MS datasets). This diffi-
culty results from the fact that some metabolites differ in the way
that they are biosynthesized and finding a systematic approach
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Fig. 1. Schematic of how NPOmix works including inputs, transformations, processing tools, outputs, and the idea of combining the outputs with other
tools. BGC = biosynthetic gene cluster; MS = mass fragmentation spectrum; KNN = k-nearest neighbor; BiG-SCAPE = software to calculate pairwise
BGC–BGC similarity; GCF = gene cluster family (group of similar BGCs); GNPS = tool to calculate the modified cosine score indicating the pairwise
spectrum–spectrum similarity; BGC-MS links = links between metabolites and BGCs produced by the KNN classifier; Dereplicator+, MassQL = other
downstream analyses tools that can be combined with NPOmix to validate outputs or improve NPOmix predictions.

relies on identifying common patterns in their biosynthetic
pathways. Another challenge is processing the paired data, since
it requires combining two types of data that are different in nature
(genomics versus metabolomics) and paired datasets are large,
being computationally difficult to process. As a result, a large
disparity exists between the number of known metabolites from
an organism versus the number of BGCs with known metabo-
lite products. For example, the recently designated cyanobacterial
genus Moorena has already yielded over 200 metabolites, yet only a
dozen of validated BGCs are currently deposited for this genus in
the expert-annotated Minimum Information about a Biosynthetic
Gene cluster (MIBiG) database (21). Connecting metabolites to
their biosynthetic genes would also facilitate research concerning
the ecological role and functions of the specialized metabolome
by studying the regulation of the expression of their biosynthetic
gene clusters.

To better address the gap between genomics and metabolomics
in drug discovery, we deployed a K-Nearest Neighbor (KNN) algo-
rithm that uses similarity BGC fingerprints and analogously sim-
ilarity MS/MS fingerprints to classify gene cluster family (GCF, a
group of similar BGCs) candidates for each MS/MS spectrum. A
fingerprint is a group of features measured across the dataset
samples for a particular BGC or MS/MS spectrum (for example, the
similarity scores between a given BGC and all other BGCs in the
dataset, resulting in features that represent each maximum score
per genome). We used antiSMASH to annotate all BGCs in this
study and BiG-SCAPE to calculate the similarity between anno-
tated BGCs. AntiSMASH annotates BGCs by searching them with
profile hidden Markov models of domains from gene/protein se-
quences known to biosynthesize metabolites and these models
are specific to a certain class of BGC. For annotating the similar-

ity between MS/MS spectra, we used the modified cosine score
from GNPS (14, 22). We showed that the addition of biosynthetic
class and substructure features improves the performance of our
Natural Products Mixed Omics tool (NPOmix, available at https:
//www.tfleao.com/npomix1). We would like to acknowledge that
NPOmix and the pattern-based Genome Mining approaches are
limited to organisms that have BGCs (not all organisms have BGCs
as well-defined as bacteria and fungi, for example, higher plants
and animals typically have less well-structured clusters of biosyn-
thetic genes) and to BGCs that are somewhat similar to at least
one of the reference BGCs in the PoDP datasets.

Of note, in this study, six of the 11 BGC-metabolite links used
for validation (not counting analogs) were previously fully char-
acterized via knockouts, heterologous expression, and/or isola-
tion, and unambiguous NMR structure elucidation as recorded
at the PoDP database. The number of genomes, metabolomes,
BGCs, GCFs, GNPS metabolites, metabolites with MIBiG BGC, and
BGC-metabolite links (with and without filtering) are listed in Ta-
ble S1. The major limitation of the evaluation of our method
was the lack of available test data for structures that are linked
to their MS/MS spectra and biosynthetic gene clusters—a bot-
tleneck that the application of NPOmix can help solve and
we discuss in more detail in the “Supplementary Material and
Background” section. We believe that NPOmix will assist with
the discovery of novel metabolites as well as known metabo-
lites with new biosynthesis (more details in the “Supplemen-
tary Material and Background” section). We exemplify a com-
putational method combining NPOmix and MassQL (23) for pri-
oritizing siderophores from thousands of metabolome profiles
and this method can be reproduced by the users with their own
samples.

https://www.tfleao.com/npomix1
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Results
Our proposed solution: the NPOmix approach
To enable in-silico predictions of molecular novelty, bioactivity, and
chemical structure, metabolites need to be connected to their cor-
responding BGCs, which is, as aforementioned, a major challenge
in the metabolite discovery field. Therefore, we present a KNN
classifier named NPOmix that can use just DNA sequences and
unlabeled mass fragmentation profiles to accurately create links
between metabolites and their corresponding biosynthetic gene
cluster, helping to prioritize metabolites by also making use of in-
silico genomic predictions.

To use the NPOmix approach (schematic in Fig. 1 and more de-
tails in Fig. S1), it is required to have a paired dataset with ge-
nomic and MS/MS information as inputs. Fig. 1 shows a concep-
tual example using only a few samples and only using similar-
ity as a feature (same for Fig. S1). The genomic information can
be either that of a genome or metagenome and the MS/MS spec-
tra should be obtained via untargeted LC-MS/MS. Paired datasets
have become available at the PoDP database (20), one of the
first initiatives to gather paired genomic and MS/MS informa-
tion. Our analysis contained 3,331 BGCs (used for training) that
were present in 1,040 networked genomes/metagenomes with
paired LC-MS/MS data that could be downloaded from the PoDP
database.

We first grouped known and cryptic BGCs in GCFs based on
domain similarity using BiG-SCAPE (7) to obtain labels that can
be used for supervised learning (BGC networking section in Fig. 1
or Fig. S1A). Regarding this training set, out of the 3,331 BGCs
annotated by antiSMASH in the (meta)genomes from the PoDP
database and networked by BiG-SCAPE, 260 BGCs (7.8%) were
dereplicated by similarity to the MIBiG database (in other words,
BGCs from families containing at least one known MIBiG BGC). To
create a BGC fingerprint (training features section in Fig. 1 or Fig.
S1C), we identified the similarity between the individual BGC and
each of the BGCs in each genome in the training dataset (simi-
larity scores are computed as “1 minus the raw distance”). The
BGC fingerprint that emerges is a series of columns for each com-
pared genome, the column value of which represents the simi-
larity score between the individual BGC and the BGC to which it
is maximally similar in each genome (column). Similarity scores
range from 0.0 to 1.0; identical BGCs have perfect similarity and
are scored as 1.0 whereas a score of 0.8 would indicate that a ho-
mologous BGC is present in the genome. A score below the (user-
defined) similarity cutoff of 0.7 indicates that the queried BGC is
likely absent in the genome. We selected the cutoff as 0.7 because
it is the same cutoff used for BiG-SCAPE (7) similarity (a value
that was determined using a cutoff calibration with the MIBiG
database) (24). An analogous process is used to create MS/MS fin-
gerprints (testing features section in Fig. 1 or Fig. S1B and S1D);
an individual MS/MS spectrum is compared to all of the MS/MS
spectra in the testing set using the GNPS modified cosine score
(14, 22) and the maximum similarity cosine score between the in-
dividual MS/MS spectrum and the spectra in a given metabolome
is incorporated as part of the MS/MS fingerprint. Furthermore, we
add the presence/absence of biosynthetic classes and substruc-
tures to the BGC and MS/MS fingerprints (for more details, refer
to the “Methods” section). We then use the BGC fingerprint in the
training together with the generated family labels. In more detail,
the BGC fingerprints form a training matrix (training features sec-
tion in Fig. 1 or Fig. S1E, where each column is a genome and each
value is the maximum similarity between the individual BGC and
the BGCs in this given genome) and, in this case, the matrix con-

tains 1,040 columns due to the 1,040 sets of paired experimental
samples plus the columns corresponding to the biosynthetic class
and annotated substructures.

The trained KNN classifier takes as input the same kind of fea-
tures (MS/MS fingerprint, Fig. S1D, and the testing matrix is ex-
emplified in Fig. S1F or testing features section in Fig. 1), where
the similarity is now represented by the modified cosine score
but these features are annotated from individual mass fragmen-
tation profiles (known or cryptic metabolites). The aim of NPOmix
is then to label these MS/MS fingerprints with the proper gene
cluster family, thus accurately linking fragmented metabolites to
their corresponding BGCs. The testing MS/MS spectrum used as a
query could be either a reference spectrum from the Global Nat-
ural Products Social Molecular Networking database (GNPS) (14,
22) or a cryptic MS/MS spectrum from a new sample that con-
tains a sequenced genome and experimental MS/MS spectra. In
more detail, the KNN algorithm links BGCs to fragmented metabo-
lites (represented by their MS/MS spectra) by plotting the BGC fin-
gerprints in the KNN feature space (NPOmix step in Fig. 1 or Fig.
S1G). The KNN feature space is exemplified by only two dimen-
sions since a 1,040-dimensional space is not feasible to compre-
hensively visualize (one dimension per sample). We would like to
emphasize that the actual KNN prediction is made in many di-
mensions (equivalent to the number of features), and we only de-
picted these multidimensional fingerprints in 2D in Fig. S1G (as a
schematic, we did not perform dimensionality reduction). More
details of how this multidimensional plotting occurs are illus-
trated in Fig. S2, where the samples correspond to the 3D axes and
the similarity scores are the coordinates. Each testing MS/MS fin-
gerprint (a row in the testing metabolomic matrix and columns
are the experimental MS/MS spectra per sample) is plotted into
the same KNN feature space (NPOmix step in Fig. 1 or Fig. S1G) so
the algorithm can obtain the GCF labels for the nearest neighbors
to the testing MS/MS fingerprint (e.g., for three most similar BGC
neighbors, k = 3). We note that GCF labels can be present more
than once in the returned list if two or more BGC nearest neigh-
bors belong to the same GCF. Given that many related BGCs are
part of the same GCF, this repetition of the GCF classification is
a common behavior of our KNN approach. The BGC-MS/MS links
generated as outputs by NPOmix can be combined with the out-
puts of other tools like Dereplicator+, MassQL, and so on; as ex-
emplified (later in this manuscript) for the case of brasilicardin A
and new putative siderophores.

In principle, our approach is suitable for bacterial (exemplified
here), fungal, algal, and plant genomes, and MS/MS spectra ob-
tained from the same organism (if these organisms contain BGCs).
Metagenomes and metagenome-assembled genomes (MAGs) can
also be used instead of genomes; however, complete genomes are
preferred in the training set primarily due to the expected data
quality. This KNN approach also supports LC-MS/MS from frac-
tions or different culture conditions; multiple LC-MS/MS files for
the same genome were merged into a single set of experimental
MS/MS spectra.

Validation and multi-omics dereplication: linking
known metabolites to known BGCs, validated
links from the PoDP database, and BGCs from the
MIBiG database
To validate NPOmix, we used 36 out of 71 meta-datasets from
the PoDP database (from February 2021, meta-datasets listed
at Dataset S1, sheet one). We were not able to download
all meta-datasets due to data issues (such as lack of access
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to some genomes and incorrect links/IDs) that we believe
will be fixed in the future. There are currently 75 datasets
in the PoDP database. We selected genomic samples that
contained a valid Genome ID or BioSample ID to aid their
downloading from the National Center for Biotechnology In-
formation database and totaling 732 genomes/MAGs obtained
from these 36 meta-datasets. In addition to these genomes/
MAGs, the 36 meta-datasets also contained paired data
for metagenomes. Hence, we selected and assembled 1,034
metagenomes and these metagenomes were concentrated on two
major meta-datasets: (1) MSV000082969 and PoDP ID cd327ceb-
f92b-4cd3-a545-39d29c602b6b.1–556 cheetah fecal samples and
environmental samples (25); and (2) MSV000080179 and PoDP
ID 50f9540c-9c9c-44e6-956c-87eabc960d7b.3–The American Gut
Project (26) that contains fecal samples from 481 human subjects.
These (meta)genomes were downloaded with the code shared at
the GitHub repository https://github.com/tiagolbiotech/NPOmix,
notebook 1. The LC-MS/MS files can be downloaded using “FTP”
from links recorded in Dataset 1, sheet two. We were able to net-
work 1,040 (meta)genomes that contained 3,331 BGCs (including
260 BGCs from the MIBiG database) distributed into 997 GCFs. In
the untargeted metabolomics data, we matched 3,248 LC-MS/MS
files to 22 GNPS (14, 22) reference library MS/MS spectra and one
spectrum not available at GNPS (brasilicardin A, obtained from
the microbial metabolome) to create the MS/MS fingerprints for
testing the KNN classification (one fingerprint per spectrum). We
envision creating a more balanced, diverse, and less sparse train-
ing dataset in ongoing efforts. To maximize precision rates in the
future, we plan to purchase cultures from collections that have
well-assembled genomes so we can obtain the paired LC-MS/MS.
However, the current dataset produced highly supportive results
by testing validated links from the PoDP and semimanually
connected links used in the NPLinker publication, all of which
will be reused for posterior benchmarking of BGC-MS/MS linking
algorithms. We attempted to test all 242 BGC-metabolite links
used as training data for the Rosetta scoring method in NPLinker
(totaling 2,069 unique MS/MS spectra, Dataset S1, sheet two) plus
109 manually added MS/MS links (connected to BGCs, annotated
by experts at the PoDP database, Dataset S1, sheet three). How-
ever, most of these validated MS/MS spectra were not present in
the 1,040 paired (meta)genomes-MS/MS samples from the PoDP,
or their BGC scores did not co-occur with their MS/MS scores
because they were not present in the nearly exact same samples.
To further illustrate this, 178 MIBiG BGCs networked with PoDP
BGCs, and 50 GNPS-annotated metabolites were reported at PoDP.
The intersection of these two resulted in 22 BGC-metabolite links
including analogs. We obtained the largest validation dataset of
metabolites linked to BGCs possible (that also contained genomes
and metabolomes). We note that we used all links available in
the PoDP database that could be annotated in the downloaded
paired data, thereby not on purpose biasing this validation set
toward metabolites that would be better classified using NPOmix,
but we acknowledge that we are dependent on the availability of
validated BGC-MS/MS links. You can see these and other metrics
in Table S1.

Hence, our validation dataset was limited to 11 validated
links (22 with analogs) from the MIBiG and PoDP databases and
found in the paired (meta)genomes-MS/MS samples (barbamides,
antimycin, pyocyanines, 2,4-diacetylphloroglucinol, brasilicardin
A, orfamides, albicidins, bafilomycin B1, nevaltophin D, ja-
maicamides, and cryptomaldamide, totaling 22 references MS/MS
spectra that were present in the GNPS database). We only included
analogs for which the MIBiG BGC was present in our paired sam-

ples downloaded from the PoDP; hence, we included orfamide A
to C but not orfamide E, F, and so on (because they are not re-
ported as products from the MIBiG orfamide BGCs). We stress that
a larger training dataset with more complete genomes is likely to
increase the size of the validation set by adding more valid BGCs
into the analysis. We were also able to combine NPOmix with
in-silico metabolomics tools like Dereplicator+ (21) to make new
links between MS/MS spectra, BGCs, and molecular structures,
as we will exemplify by brasilicardin A. This was accomplished
by annotating cryptic MS/MS spectra (without a GNPS library hit
and therefore not present in the GNPS database) to known BGCs
(found in the MIBiG database). Such new links could be confirmed
experimentally to improve the size of the validation set, as well
as to expand MS/MS databases by adding these cryptic spectra to
them.

A 2D comparison of both types of fingerprints (BGC and MS/MS)
can be a proxy for distinguishing some true positives from false
positives. As observed in Fig. S3, we can visualize a mismatch be-
tween the BGC fingerprints (one GCF) and the MS/MS fingerprint in
the “reduced” KNN-space (represented schematically in only two
dimensions, we did not perform actual dimensionality reduction),
indicative of a possible false positive link. This GCF is dereplicated
as the known metabolite, pyocyanin, and it was incorrectly asso-
ciated with the metabolite 2,4-diacetylphloroglucinol, confirming
the false positive (at k = 3). In contrast, Fig. 2 illustrates that five
metabolites, albicidin (structure in Fig. 2A and MS/MS spectra in
Fig. 2B) and four albicidin analogs, could be correctly assigned
to their corresponding GCF that contains two BGCs (one from
the MIBiG database and another from Xanthomonas albilineans GPE
PC73, GenBank ID GCA_000,087,965.1). In this case, the BGC finger-
prints match the MS/MS fingerprints (Fig. 2C and D). This observa-
tion of “co-occurrence” between the strains in the BGC fingerprint
and MS/MS fingerprints can be quantified by the Jaccard index (a
score ranging from zero to one and calculated by the intersec-
tion of the presence/absence between the strains in fingerprints
over the total number of strains). The Jaccard index is a measure-
ment between the number of features (similarities, biosynthetic
classes, and substructure predictions) that are present or absent
while comparing two fingerprints (one BGC and one MS/MS fin-
gerprint). In other words, the Jaccard index is a proxy of how good
an NPOmix link is between a given metabolite and the connected
BGC and it can be interpreted as a confidence score or used as a
filter on the results.

Using the PoDP dataset, a Jaccard index cutoff of 0.7, and sim-
ilarity plus biosynthetic class as features for the k-nearest neigh-
bor model, we obtained a precision of 92.9% as 13 out of 14 ref-
erence MS/MS spectra were correctly labeled when top-n = 3 (k
equal to 3, metabolites and their predicted GCFs listed in Table 1).
Precision is the ratio between the true positive links over all the
tested positives (true positives plus false positives). Top-n repre-
sents how often the correct GCF label was found among the top-n
labels classified by the KNN approach. We have determined that
the use of three neighbors is the optimal performance (also us-
ing the co-occurrence threshold), providing a good balance be-
tween precision and the number of links to validate (very high
precision and randomness equal to 0, as detailed in Table S2).
Randomness is observed by shuffling the testing columns, exper-
imental MS/MS names, and counting how many correct links are
present between the top-n GCF candidates. Lastly, we regard our
NPOmix approach as multi-omics enabled dereplication because
the 13 MS/MS spectra were automatically assigned to a known
GCF that confirmed their metabolite labels, thereby minimizing
the need for purchasing standards, performing isolation and NMR

https://github.com/tiagolbiotech/NPOmix
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Fig. 2. Multi-omics enabled the dereplication of albicidin by automatically predicting a true BGC-metabolite link. Structure of the dereplicated
metabolite with highlighted observed fragments (A) and its corresponding representative MS/MS spectrum (B, spectrum example from GNPS ID
CCMSLIB00000579285, m/z of 843.2620, and ppm error of 3.55), obtained via Metabolite Spectrum Resolver (27). The two BGC fingerprints (1,130 and
1,131) are represented in a 2D plot (C) and they match the 2D plot for the five MS/MS fingerprints obtained from GNPS for albicidin and its analogs (D).
m/z = mass over charge calculated via mass spectrometry; exp. m/z = experimental m/z; theor. m/z = theoretical m/z.

characterization, gene knockout, or heterologous expression. This
kind of multi-omics analysis allows us to dereplicate more
metabolites than genomics or metabolomics separately and it
helps researchers to focus on novel structures that can also
present novel bioactivities.

We expect that our approach will improve with a larger training
set and with further improvement of the features in the BGC and
MS/MS fingerprints (e.g., by adding BGC regulation and predicted
bioactivity). We confirmed that all 13 correct GCF predictions re-
ported here were found in the original producer of the identi-
fied metabolites; they matched the reported masses and most of
these BGC-metabolite links were reported at the PoDP database
as validated via knockouts, heterologous expression, and/or iso-
lation, and NMR structure elucidation. NPLinker (15), another re-
cently published paired-omics tool, also uses validated links from
the PoDP to assess linking precision scores. With 50 known GCF-

MS/MS links that were present in the 1,040 samples with paired
data (some metabolites have multiple MS/MS spectra), the anno-
tation rate was reasonably good (around 28%, 14 out of 50 links
were retained after the Jaccard co-occurrence threshold, a thresh-
old to keep only the metabolites that are found among the same
samples that contain the candidate BGCs). Table S1 provides an
overview of the various numbers of genomes, metabolomes, BGCs,
metabolites, etc.

Dereplicating a new analogous MS/MS spectrum
(with a library hit from GNPS but not found at
the PoDP database) to a known BGC
In addition to dereplicating known metabolites (from the GNPS
and/or the PoDP database), NPOmix can also dereplicate new pu-
tative analogs (orfamides marked by asterisks in Table 1). For
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Table 1. Fourteen links between GNPS MS/MS spectra (with metabolite ID) and networked gene cluster family (true GCF that contained
a known MIBiG BGC and passed the co-occurrence threshold).

Metabolite ID True GCF Predicted GCFs for k = 3 Annotation

CCMSLIB00004679298 GCF450 GCF360, GCF450, GCF360 Orfamide A∗
CCMSLIB00004679299 GCF450 GCF360, GCF450, GCF360 Orfamide B∗
CCMSLIB00004679300 GCF450 GCF360, GCF450, GCF360 Orfamide C∗
CCMSLIB00000001573 GCF468 GCF468, GCF468, GCF235 Barbamide
CCMSLIB00000001575 GCF468 GCF468, GCF468, GCF235 Barbamide
CCMSLIB00000001706 GCF471 GCF471, GCF498, GCF550 Jamaicamide A
CCMSLIB00000001708 GCF471 GCF471, GCF498, GCF550 Jamaicamide C
CCMSLIB00000579285 GCF476 GCF476, GCF219, GCF235 Albicidin
CCMSLIB00004681475 GCF476 GCF476, GCF219, GCF235 Propionyl-albicidin
CCMSLIB00004681481 GCF476 GCF476, GCF219, GCF235 Beta-methoxy-albicidin
CCMSLIB00004681486 GCF476 GCF476, GCF219, GCF235 Carbamoyl-ß-methoxy-albicidin
CCMSLIB00004681487 GCF476 GCF476, GCF219, GCF235 Carbamoyl-ß-methoxy-asn-albicidin
CCMSLIB00000840594 GCF488 GCF740, GCF740, GCF739 Nevaltophin D
CCMSLIB00005724004 GCF498 GCF471, GCF498, GCF550 Cryptomaldamide

The table also includes their KNN predictions (k = 3); the predicted GCFs are ordered according to the value for k, from 1 (nearest) to 3 (furthest), and the first correct
family is marked in bold font. GCF labels can be repeated because multiple BGCs from the same GCF can be predicted as the nearest neighbors. Classification is
considered correct if the true GCF is among the top-3 candidates. Annotations are according to each MIBiG BGC(s) found in the true GCFs. GNPS = Global Natural
Products Social Molecular Networking database; KNN = K-nearest neighbor; MS/MS spectra = fragmentation spectra; BGC = biosynthetic gene cluster; GCF = gene
cluster family; MIBiG = Minimum Information about a Biosynthetic Gene cluster database; ∗ = new analogous MS/MS spectra that were automatically connected
to validated BGCs.

example, the BGC for the metabolite orfamide C (genes 1 to 6 in
Fig. S4, MIBiG ID BGC0000399) was automatically connected by
our KNN approach (both using only similarity as a training/testing
feature or by adding the biosynthetic class) to a GNPS metabo-
lite labeled “putative orfamide C” (CCMSLIB00004679300). This
MS/MS spectrum was also found in the same strain where the
BGC was first identified (Pseudomonas protegens Pf-5, Genbank ID
GCA_000,012,265) (28). The nine amino acid (AA) predictions for
this BGC, based on the specificity of adenylation domains, match
the structure of orfamide C in the correct order: leu, asp, thr,
ile, leu, ser, leu, leu, and ser. AntiSMASH was not able to pre-
dict the tenth and last AA in the biosynthetic series, although,
the mass difference between the partial structure and the exper-
imentally observed m/z pointed that the last AA was indeed va-
line. Of note, NPOmix does not make structure predictions and
the orfamide C structure was predicted semimanually (we relied
on antiSMASH to make most of the genome-based predictions,
whereas we predicted the last amino acid using a mass difference
between the antiSMASH structure and the observed ion via mass
spectrometry). The matching between the predicted structures
(via dereplication versus de novo prediction using the NPOmix
link) confirmed the multi-omics enabled dereplication of this “pu-
tative orfamide C” (using k = 3, BGC predictions and predicted
metabolite structure are represented in Fig. S4), annotating this
metabolite without the need for isolation. We would like to stress
that this version of the KNN GCF predictions did not use struc-
tures/substructures for linking MS/MS spectra to BGCs; hence, as
demonstrated in Fig. S4, substructure predictions can be an ex-
tra dimension for selecting links that are true positives over false
positives.

Connecting a cryptic/new MS/MS spectrum (not
present in the GNPS database) to a known BGC
(validated link from the PoDP database)
We used a combination of MS/MS fingerprints (notebook 2 from
https://github.com/tiagolbiotech/NPOmix), BGC fingerprints
(notebook 3), Mzmine (29), and Dereplicator+ (30) to link and
dereplicate brasilicardin A. After selecting 300 MS/MS spectra
from the 16 most diverse genomes in the dataset (diversity

estimated using GCF presence/absence) of 1,040 samples,
Dereplicator+ had three in-silico metabolomics predictions and
one of them was the unique tricyclic glycosylated terpene
brasilicardin A. The observed m/z matches the value previously
reported in the literature (31), identifying an MS/MS spectrum
that is currently absent from the GNPS database. NPOmix con-
nected the MS/MS spectrum (predicted to be brasilicardin A by
Dereplicator+; please note that this information was not used
during the NPOmix training) with the correct BGC (brasilicardin A
MIBiG ID BGC0000632 from the strain Nocardia terpenica IFM 0406,
GenBank ID GCA_001,625,105) (32), highlighting how NPOmix
can connect cryptic metabolites without library matches (absent
from MS/MS databases like GNPS) to their corresponding BGCs.
Predicted fragmentation (Fig. S5) strongly suggested that the
query MS/MS spectrum is corresponding to the planar structure
of brasilicardin A (all deltas between fragmented exact m/z and
observed m/z were extremely low, below 0.001, more informa-
tion in Dataset S1, sheet four). Thus, NPOmix can provide links
between cryptic MS/MS spectra and known/cryptic BGCs from
the most diverse strains and potentially new BGCs that can
be explored experimentally (e.g., BGC knock-out, heterologous
expression, or isolation, and NMR structure elucidation), espe-
cially if coupled to SMART-NMR analysis (33) to confirm their
novelty. We would like to emphasize that NPOmix used the sim-
ilarity scores (in other words, the distribution of the metabolite
among the training samples) to connect the so far cryptic MS/MS
spectrum (brasilicardin A) to its correct BGC. The biosynthetic
class, substructure predictions, annotation of the spectrum, and
comparison to existing spectra libraries were not used as inputs
for NPOmix to make this correct link. We did use this information
to validate the link: for example, the MIBiG annotation matched
the Dereplicator+ annotation of brasilicardin A. Since we initially
selected the PoDP metabolites that were dereplicated by GNPS
to be part of the validation set, we overlooked brasilicardin A
(which was absent in the GNPS database). After this analysis
combining NPOmix, MZmine, and Dereplicator+ that correctly
linked the metabolite brasilicardin A to its BGC, we returned to
the PoDP database and found an entry corresponding to this
link that was already validated (via “knockouts, heterologous
expression, or other gene cluster manipulation,” information

https://github.com/tiagolbiotech/NPOmix
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at the dataset 1b0dccac-5212–4dfd-a9f2-6fa953ab16bd.5). This
entry had the same m/z, LC-MS/MS metabolome, and retention
time of brasilicardin A that we observed for the previously cryptic
metabolite.

Comparing the three different kinds of features
for linking metabolites to BGCs using NPOmix
In order to increase the precision of our NPOmix algo-
rithm, we added to the BGC and MS/MS similarity finger-
prints the presence/absence of biosynthetic classes (polyke-
tide synthases, nonribosomal peptide-synthetases, terpenes,
siderophores, RiPPs, phosphonates, oligosaccharides, phenolic
metabolites, others/unknowns, other minor classes, and combi-
nations of more than one class) and substructures (tyrosine, pro-
line, amine, malonyl-CoA, and so on—all 85 predicted substruc-
tures can be found at Dataset S1, sheet five). A comparison of
the various models is provided in Fig. 3, with Fig. 3A without
using the co-occurrence threshold, and Fig. 3B with use of the
co-occurrence threshold. Of note, since all testing BGC-MS/MS
links (in the validation set) are present in the MIBiG database,
we used the information from this database to infer the biosyn-
thetic class and substructure predictions in this particular analy-
sis. However, the biosynthetic class can be predicted for unknown
metabolites using MolNetEnhancer (34) and/or CANOPUS (35) and
the substructure predictions for unknown metabolites can be ob-
tained using tools like MS2LDA (36), MassQL (23), and/or CSI: Fin-
gerID/SIRIUS 4 (37). To obtain genomics-inferred substructure fea-
tures for large paired omics datasets in the future, we envision
that the recently proposed iPRESTO approach (38) could be ap-
plied to discover commonly occurring patterns of biosynthesis
genes that together likely produce a substructure of a specialized
metabolite.

The comparison of the different features for running NPOmix
is exhibited in Fig. 3, using the same set of samples previously
described (1,040 paired samples and 22 validated BGC-metabolite
links). As observed in the figure, the Jaccard co-occurrence thresh-
old (a threshold to ensure that the query metabolite is connected
to BGCs in the genome of the same microbial producer) substan-
tially improved the precision scores, but it dropped the number of
validated links from 22 to around 14 (these links are listed in Ta-
ble 1). However, we obtained high precision scores even without
threshold (Fig. 3A), for example, 81.8% for k = 5 using the three
kinds of features (similarity, biosynthetic class, and substructure
prediction) or just similarity and substructure features. Interest-
ingly, we observed a slightly higher precision for k = 1 when only
the substructures and similarity features are used in opposed to
using all three kinds of features (without threshold); this is be-
cause the biosynthetic class for pyocyanines at MIBiG (used for
manual annotation of the MS/MS spectrum) are annotated as
“other” but antiSMASH automatically annotates its corresponding
BGCs as “minor” and in some cases as both “minor” and “NRPS,”
creating a mismatch between the biosynthetic classes. Addition-
ally, we summarized KS domains and PKS substrates in only two
columns (one for each) but we obtained the same precision scores.
We elected the best precision score as 92.9% (red dot in Fig. 3B,
score with co-occurrence threshold) because this very high value
was obtained using only the similarity and the biosynthetic class
features and three nearest neighbors, a good number of candi-
dates for genome mining. Moreover, the use of just the similarity
and biosynthetic class is very appealing because these kinds of
features can be well predicted for metabolites with known or un-
known metabolites, for example, by using GNPS for similarity and

CANOPUS and/or MolNetEnhancer for biosynthetic class predic-
tions, as demonstrated by NPClassScore (39). It is much more chal-
lenging to predict substructures for unknown/cryptic metabolites,
which is a topic of ongoing research by our group and others.

In Fig. 3C, if a given BGC is a hybrid polyketide synthase (PKS)
and nonribosomal peptide-synthetase (NRPS), it was annotated
as 1 in the PKS and NRPS columns, and with a 0 in the remain-
ing classes (additional columns). Analogously to the biosynthetic
classes, each substructure prediction represented a new column
in the BGC fingerprint or MS/MS fingerprints, and the columns
were filled with 1 (if the substructure was present) and 0 (if the
substructure was absent). For the MS/MS fingerprints in the test-
ing set, we manually annotated these biosynthetic class features
based on the known structures and MIBiG information. In cases
where the structure is unknown, tools like CANOPUS (35) and Mol-
NetEnhancer (34) can provide a similar biosynthetic class predic-
tion relying on NPClassifier (40). For the substructure features in
the MS/MS testing set, we made use of genomics-inferred infor-
mation provided by antiSMASH to annotate substructures for a
BGC from the same GCF as the validated MIBiG BGC. In cases
where the BGC is unknown, these predictions can be obtained:
manually (by checking the known structure for common sub-
structures); via unsupervised tools like MS2LDA (36,41); or via su-
pervised tools like MassQL (based on specific MS/MS fragments
found in the spectra) (23) or CSI: FingerID/SIRIUS 4 (37). For exam-
ple, we manually annotated the substructures predicted from the
palmyramide A structure and we were able to correctly link the
validated MS/MS spectrum with the corresponding palmyramide
A BGC. This BGC is not yet published at MIBiG, but the biosynthetic
gene cluster was previously annotated and reported in Moorena
producens PAL (42), and in this study, the same genome, LC-MS/MS
metabolome, and MS/MS spectral data were used to obtain this
BGC-metabolite correlation. Lastly, we observed the distribution
(Fig. S6) and the variance of the training dataframe (including all
three kinds of features) used for this comparative analysis. The
average variance of the columns was the same as rows (about
0.008), the maximum variance for the columns was 0.213, and for
the rows was 0.068. The distribution (Fig. S6) is very sparse (many
zeros) and it also explains why the average variance is relatively
small since all nonzero scores ranged from 0.7 to 1.0. Addition-
ally, the latter score was the most common score in the training
dataframe since every self-hit had a perfect score of 1.0 and the
biosynthetic classes/substructure predictions were binary (either
0 or 1.0).

Comparing the performance of NPOmix with
other published tools
We used the same previously described dataset of 1,040 paired
samples that includes 22 validated BGCs-metabolites links to
compare precision scores (same links used in the calculation of
the precision scores in Fig. 3) to other eight multi-omics (tools
and their websites are listed in Table S3). Precision is the ratio
between the true positive links over all the tested positives (true
positives plus false positives), and this metric was calculated us-
ing only the best candidate (top-1) from the tools’ outputs. For the
tools that do not have a training step, we selected from the 1,040
paired samples only the ones that contained at least one of the 22
BGCs-metabolites validated links, a total of nine paired samples.
We compared NPOmix to NRPminer (13) and NPLinker (15), the
other currently available tools that create links between MS/MS
data and BGCs. NPLinker includes the correlation scores first de-
veloped in the pattern-based Genome Mining publications (8, 9)
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Fig. 3. (A) Precision curves without the Jaccard co-occurrence threshold for different features: similarity only (blue), biosynthetic class and similarity
(green), substructure predictions and similarity (brown), and using both biosynthetic class, substructure predictions, and similarity (pink). Precision is
the ratio between the true positive links over all the tested positives (true positives plus false positives). (B) Precision curves for the same cases using
the co-occurrence threshold. Random (yellow) was calculated by using similarity only and shuffling the testing columns. The red dot indicates the best
precision of 92.9% (using biosynthetic class and similarity as features, co-occurrence threshold, and k = 3). K represents the number of nearest
neighbors. (C) We illustrate the modifications made in the training matrix with the addition of biosynthetic class and substructure prediction. For this
work, we used 1,040 samples, therefore, 1,040 similarity columns plus 12 biosynthetic classes and 82 predicted substructures.

and derivatives thereof. GNP (14) and NRPquest (12) seem to be
discontinued (see Table S3 for further details).

MetaMiner (10) and DeepRiPP (11) could not be used in the com-
parison because, unfortunately, there are no RiPPs among the 22
links in our validation set. As far as we can tell, there are only
two validated RiPPs in the entire PoDP database: capistruin C and
polytheonamide A–B. However, neither of the two were available
for our validation test (more details in the “Supplementary Ma-
terial and Results” section). Under these circumstances, we did
not test RiPP BGC-metabolite links, and we could not measure the
performance of MetaMiner and DeepRiPP for this validation set;
however, we tested both for the full metabolomes and genomes
of these nine validation strains. In this test, MetaMiner annotated
zero matches, despite the presence of 49 uncharacterized RiPP
BGCs in the nine genomes. DeepRiPP “failed to load results,” even
though the input data was correctly processed by other tools. On
top of testing tools that connect mass spectrometry fragmenta-
tion data to BGCs, we also tested Nerpa (17) and GARLIC (18) which
can connect structures (SMILES strings) to BGCs.

Fig. 4 is a histogram illustrating the performance of these tools
(nature of each BGC-MS/MS link, precision and recall scores), in-
cluding the two best versions out of eight versions of NPOmix
displayed in Fig. S7 (four with and four without co-occurrence
threshold). Recall is the ratio between the true positives over
the true positives plus the false negatives (links that were sup-
posed to be true or negative positive results but were not clas-

sified as positives, in this case, links without results). Fig. S8 ex-
emplifies how fragmented BGCs can lead to scores below the
threshold. More details on the Figs. S7 and S8 in the “Supple-
mentary Material and Results” section. We note that we did
not observe differences in NPLinker results using the standard-
ized Metcalf score, the Rosetta score or both together. We se-
lected top-1 accuracy to represent the precision scores since
some tools only provide a single BGC candidate per metabolite
tested. In theory, NRPminer and Nerpa should be able to test
four links that are nonribosomal peptides (three orfamides and
nevaltophin D) plus 11 additional hybrids between nonribosomal
peptides and polyketides (two barbamides, five albicidins, two ja-
maicamides, cryptomaldamide, and antimycin). However, NRP-
miner could only generate predictions for four of these peptidic
metabolites in the validated set (one incorrect and three correct
links) and Nerpa only predicted three metabolites that were cor-
rectly linked to their BGCs. GARLIC can test all but four links
(three pyocyanines and brasilicardin A) since it should work for
nonribosomal peptides, polyketides, and hybrids. We were un-
able to compile GRAPE (tool required to use GARLIC) and we
found an unanswered issue on their GitHub page with that same
question, as well as another issue from 2016 that is left unan-
swered, thus it seems that this tool is also no longer supported or
is discontinued.

NPLinker is systematic (it does not depend on the
BGC/metabolite class) and, just like NPOmix without thresh-
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Fig. 4. (A) Histogram displaying the number of correct links (true positives, in black), incorrect links (false positives, in gray), links not tested (due to
limitations of the tool or threshold selected, in blue), and links without results (in yellow) for different currently available multi-omics tools. NPOmix,
NPLinker, and NRPminer can link MS/MS spectra (known or cryptic) to BGCs; GARLIC and Nerpa can link known structures to BGCs. NPOmix has
different versions that yield different precision scores and so does NPLinker, however, in this case, the scores were the same for the different versions.
NPLinker has regular ranks and shared ranks (for example, from the 2nd to the 10th position, if all scores were equal, then all of them would be tied
for second). The precision is the ratio between true positive links over all links that tested positives (true positives plus false positives), and this metric
was calculated using only the best candidate (top-1) from the tools’ outputs. The recall is the ratio between true positives and true positives plus false
negatives (links that were supposed to be true or negative positive results but were not classified as positives, in this case, links without results).
NPOmix (all three features with co-occurrence threshold) had nine links below the threshold and these links were not tested. NRPminer and Nerpa
can only test peptidic metabolites. GARLIC and GNP were discontinued (in pink), and they could not test any of the links. NRPquest was replaced by
NRPminer (hence, also discontinued, in pink). There were no known RiPP metabolites in the validation set for MetaMiner and DeepRiPP to test;
however, these tools did not generate results for the 49 unknown RiPP BGCs found in the genomes from the validation set. W/= with; W/o = without.

old, it can test all links. For all tools, we used standard
settings (commands found in the notebook “NPOmix_SI-
installation_and_running,” GitHub repository https://github.com/
tiagolbiotech/NPOmix); and we note that for these analyses we
did not attempt to optimize settings and scores of the various
tools but used their (recommended) default settings. We also
note that due to the use of a relatively small number of strains
for the NPLinker benchmarking purposes (nine strains), it is likely
that the correct links are part of a longer list of possible matches
based on their co-occurrence score and that several links have
the same score. Hence, the correct match may not be in the top-1
rank if we do not consider a shared rank (for example, from the
2nd to the 100th position, if all scores were equal, then all of
them would be tied for second using their shared rank). The use
of (many) more strains is likely to improve some rankings as
the co-occurrence score is more likely to differentiate between
different links. Comparing NPOmix to the strain-correlation-based
(co-occurrence score) approach used within NPLinker we can see
that: (i) the first tool uses a k-nearest neighbor approach that
requires a training step (that can improve with more training
paired data) while the second one does not need any training; (ii)
the training step for NPOmix can process thousands of samples
(paired genomes and metabolomes) in a scalable manner, while
a strain-correlation-based approach requires much more processing
power to run thousands of samples. The latter is mainly due to
the fact that NPOmix selects which metabolites (MS/MS spectra)
should be targeted for classification in opposition to NPLinker

that attempts to link all metabolites present in the analyzed
metabolomes; (iii) NPOmix is a tool for connecting metabolites
to BGCs, NPLinker is a framework that facilitates integrative
omics analysis, and in the future, NPOmix will likely become
part of the NPLinker framework. We stress that “benchmarking
NPLinker” effectively means benchmarking the (standardized)
Metcalf strain-correlation and Rosetta scoring systems; in the
future, it is likely a combination of various strain-correlation-based
and feature-based scoring systems (such as NPClassScore) (39)
that will enable the most effective integrative omics mining.
Both precisions for top-1, and top-1 shared ranks are provided in
Fig. 4. The complete results list with regular ranking and shared
ranking for NPLinker can be found at Dataset S1, sheet six.

As illustrated in Fig. 4, the maximum number of correct links
is 18 (17 from the MIBiG-GNPS validation set plus palmyramide,
a new link partially validated) and this corresponded to using
NPOmix with substructure and similarity scores without thresh-
old and it presented a recall of 100% (no links were classified as
false negatives). However, the highest precision (92.3%) could be
found using NPOmix with all three features (similarity, substruc-
tures, and biosynthetic classes) with threshold and it also pre-
sented a recall of 100%. This top precision from NPOmix in our
benchmarking experimentation was 34% more precise than the
second-best tool tested, NPLinker with shared rank (Nerpa and
NRPminer did present very high precision scores but their recall
was fairly low because most of the tested links had no results),
and NPOmix was able to correctly predict about 2.5 times more

https://github.com/tiagolbiotech/NPOmix
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BGCs-metabolites links than NPLinker. Of note, the precision of
NPLinker without shared rank was about 40% lower. Another dif-
ference between the most precise NPOmix version and the most
precise NPLinker version was the recall, which NPOmix was 30%
higher (100% versus 70%). As aforementioned, five tools could not
be tested because they were: discontinued like GNP and NRPquest;
generated no results like MetaMiner; had unclear instructions like
GARLIC; or could not read the same input that other tools were
able to process normally like DeepRiPP. We concluded from this
figure that NPOmix not only can predict more links (Fig. 4A) than
most of the other tools but also the ratio of correct links is sig-
nificantly higher than other methodologies (Fig. 4B) and the recall
displayed is optimal (100%, indicating the absence of false neg-
atives). Of note, the prediction power of machine learning tools
like NPOmix can be even higher with more top candidates (for
this comparison we only used top-1) and better features, such as
demonstrated by the implementation of biosynthetic class with
NPClassScore (39) to improve NPLinker links and the use of ex-
tra features other than similarity by NPOmix. Additionally, the
precision of NPOmix can improve with a bigger training set. In
the future, we will compare NPOmix using the biosynthetic class
feature with NPClassScore, since it would require standardizing
and improving the current class predictions (using CANOPUS and
MolNetEnhancer) for unknown/cryptic MS/MS spectra. Of course,
an ideal NPOmix version would not only provide a perfect recall
(100%) with a high precision (e.g. 92.3%), but also work for all links
in the validation set, despite the use of a confidence threshold. We
believe the current NPOmix represents a springboard for further
development and improvements, also through integration with
other mining tools.

Using NPOmix and MassQL to computationally
genome mine for new siderophores
The mining for specific specialized metabolites in a large num-
ber of metabolomics profiles is a challenging task. The available
3,248 LC-MS/MS chromatographic profiles obtained from the PoDP
database would generate over 2.6 million MS/MS fragmentation
spectra (representing measured ions via MS/MS fragmentation)
if each file contains an average 800 spectra (as observed by in-
specting some of these files). Post-dereplication, there are far too
many new metabolites that can be isolated for natural product
discovery. One way to subset spectra is by focusing on a particu-
lar type of activity. For example, siderophores can bind iron and,
in some cases, can serve as an antibiotic by depleting iron levels in
the media. MassQL (20) can detect whether a metabolite is bound
to iron because its isotopic pattern is different from the apo (un-
bound) form and the delta m/z between the apo and the bound is
equivalent to the mass for iron. By using MassQL on these 3,248
LC-MS/MS profiles (MassQL query listed in the “Methods” section),
we detected only 380 putative siderophores (MS/MS fragmenta-
tion spectra, listed at Dataset S1, sheet seven), indicating a low
recall and/or that siderophores are very rare in these samples.
The latter is likely true because only 5.1% of the BGCs obtained
from the PoDP database detected by antiSMASH are annotated
as a siderophore. The putative siderophores identified by MassQL
were filtered to remove redundancies and the final MGF format
MS/MS spectra were used as input for NPOmix (MGF files can be
obtained from the MassQL job listed in the “Methods” section).

NPOmix connected two of these siderophores with 100% Jac-
card similarity (between BGC and MS/MS fingerprints) to BGCs la-
beled as siderophores by antiSMASH. The NPOmix version applied
did not use biosynthetic classes or substructures for training (only

similarity scores as features); given this, connecting metabolites
bound to iron to siderophore BGCs increases the chances of true
positives, since there is a very low probability of NPOmix match-
ing the correct siderophore class randomly. The metabolite of [M-
2H++Fe3+]+ m/z 780.918909 (hereafter m/z 780) was linked to the
only siderophore BGC annotated by antiSMASH in the genome
of the Burkholderiales Achromobacter xylosoxidans NH44784-1996
(GCA_000,967,095), indicating that NPOmix likely made a correct
inference. Only one gene in the BGC linked to the m/z 780 has an-
notation (IucA/IucC family siderophore biosynthesis protein from
the aerobactin BGC); however, aerobactin is not the closest MIBiG
homolog (using a cutoff of 0.7, there is no homolog to this cryp-
tic siderophore BGC). The gene cluster family for this candidate
BGC had only two BGCs and the PoDP database average is six
BGCs per family, highlighting the novelty of these BGCs. GNPS and
Dereplicator+ had no library hits for the metabolite fragmenta-
tion spectra. Unfortunately, this sample was a cystic fibrosis bac-
terial isolate from the clinical laboratory, and it is no longer avail-
able to confirm a NPOmix prediction via isolation and structure
elucidation. This pipeline can be reproduced by the users with
their samples for prioritizing new siderophores out of many un-
known metabolites.

Discussion
In this work, we demonstrated the use of machine learning
(a new k-nearest neighbors algorithm named NPOmix) and
genome mining for processing several thousand LC-MS/MS files
and about a thousand genomes to connect MS/MS spectra to
GCFs. Our approach can systematically connect MS/MS spectra
from known metabolites (links validated experimentally), spectra
from metabolites analogous to known (links with GNPS library
matches, exemplified by orfamide C), and spectra from cryptic
metabolites (links without GNPS library matches and therefore
absent from the MS/MS database, as exemplified by brasilicardin
A). The advantage of using paired data is that the genomic infor-
mation represents the full metabolic potential of an organism,
and hence, we can prioritize the discovery of the most diverse
naturally occurring BGCs via genome mining. In other words, nov-
elty predictions using BGC-metabolite links are likely more com-
prehensive than just using metabolomics and a more accurate
picture of the actual chemical diversity in nature. Additionally,
the use of genetic information can help in the structure eluci-
dation and prediction of bioactivity (2), highlighting the advan-
tage of using the BGC information in the drug discovery pro-
cess. Moreover, predicting linked MS/MS spectra for a promis-
ing BGC can facilitate their heterologous expression as the ex-
pression can be difficult if the target metabolite is not known.
We also show how cryptic MS/MS spectra (absent from MS/MS
databases like GNPS) can be annotated using NPOmix, MZmine
(29), and Dereplicator+ (30), allowing expansion of the current
MS/MS databases. Overall, NPOmix presents a new methodology
to efficiently address the challenging task of connecting metabo-
lites to BGCs and the results illustrated that this new method
could impact future drug discovery pipelines since this kind of
connection allows metabolomics to make use of in-silico predic-
tions made via genomics (e.g., novelty, structures, and bioactivity).

The current focus of the NPOmix use was on finding BGCs
for metabolites represented by their MS/MS spectra; however,
NPOmix could also be used to go vice-versa. Also, despite this
manuscript being centered on how paired data can make better
in-silico predictions than just metabolomics, it could also be fo-
cused on how paired data is better than just genomics and the



12 | PNAS Nexus, 2022, Vol. 1, No. 5

benefits would be very similar. We believe this strategy aims to be
a pipeline that better uses the wealth of available data; therefore,
it could maximize the chances of finding new drug-like metabo-
lites.

We observed very good precision scores of top-1 = 81.8% and
top-10 = 92.9% (both with randomness equal to 0, using the sim-
ilarity and biosynthetic class features and using the Jaccard co-
occurrence threshold). Additionally, we also obtained a good preci-
sion score of 77.3% even without the co-occurrence threshold (for
k = 3 and all three kinds of features including similarity, biosyn-
thetic class, and substructure predictions). We observed an anno-
tation rate of around 28%, as 14 out of 50 MS/MS validated spec-
tra were retained after the co-occurrence threshold. The annota-
tion rate was even higher without the use of the co-occurrence
threshold, 44% (22 out of 50 dereplicated MS/MS validated spec-
tra). Table S1 details the number of genomes, metabolomes, BGCs,
GCFs, and metabolites used in this study. More details on these 22
BGC-MS/MS links can be found in the Supporting Material (see the
“Discussion” section) and Fig. S9.

In fact, compared to the other eight multi-omics tools, NPOmix
seems to be the only available tool that is (i) systematic (suit-
able to many classes of BGCs), (ii) highly efficient (about 34%
higher score in Fig. 4B than other approaches with 100% recall),
(iii) high throughput (we processed around a thousand genomes
and 3× more LC-MS/MS files), and (iv) scalable (requiring low-
processing power, we used 8 MB of RAM and 8 cores). We note
that NPLinker is also systematic, high throughput, and scalable;
however, its precision score during benchmarking was 34% lower
than NPOmix, in part due to the relatively low number of strains
used during NPLinker benchmarking. NPOmix was able to cor-
rectly predict about 2.5 times more BGCs-metabolites links than
other tools. The combination of multiple multi-omics tools (and
other genomics and metabolomics tools) can be a potent genome
mining approach that would enable the visualization of many
kinds of predictions (similarity scores for the links, biosynthetic
classes, complete/partial structures, taxa, and bioactivity) in a sin-
gle “omics network” (work in progress), prioritizing new true pos-
itives. Here, it is also interesting to find out how the use of alter-
native mass spectral similarity scores, such as the recently devel-
oped machine learning-based Spec2Vec and MS2DeepScore (43,
44), will affect the performance of NPOmix. We also illustrated
how combining NPOmix with MassQL can prioritize the discovery
of putatively new siderophores, exemplifying the application of
NPOmix for cryptic metabolites. This siderophore mining method
can be easily reproduced by the NPOmix users if they search for
metabolites bound to iron using the query string provided in the
methods, extracting the MGF files (MS/MS spectra), running the
NPOmix python version using only similarity as a feature and
checking if NPOmix links a putative siderophore metabolite to a
new siderophore BGC.

Of note, new links between metabolites with predicted struc-
ture and known BGCs may not mean that the metabolite fully
corresponds to the predicted structure because mass spectrom-
etry tends to not distinguish isomers and small changes in BGCs
can yield substantial changes in the final structure. Therefore,
NPOmix (a correlation-based approach) does not have the resolution
to distinguish between isomers and regioselectivity of the various
homologs. We would like to emphasize that new links (not exper-
imentally validated links that are, for example, reported in the
PoDP database) require proper elucidation to confirm the metabo-
lite’s planar (2D) and absolute (3D) chemical structure. Hence, in
this study, 6 of the 11 BGC-metabolite links (family of analogs)
used for validation were previously fully elucidated (via knock-

outs, heterologous expression, and/or isolation and NMR struc-
ture elucidation) as recorded in the PoDP database. We want to
emphasize that despite the small size of the validation set (11
BGC-metabolite links plus analogs, a total of 22 MS/MS spectra),
we were able to combine in-silico tools like Mzmine, Dereplicator+,
and NPOmix to create new links that can expand MS/MS mass
spectral reference database as "level bronze" metabolites (new pu-
tatively annotated MS/MS spectra) (14). Interestingly, some of our
in-silico structure predictions (such as for orfamides) were very ac-
curate and they would substantially facilitate NMR structure elu-
cidation of the naturally occurring metabolite.

Another aspect to mention is that the precision score may
not be reproducible for every dataset, especially if the dataset is
not too similar to the current training set, as they may present
very different features; therefore, NPOmix features might not per-
form as well on a given atypical dataset. For example, by sub-
mitting a fungal species that has no BGC similar to any BGC in
the NPOmix training dataset (obtained from the PoDP database),
the output would contain no answer, since NPOmix requires sim-
ilarity scores for classifying BGCs. Although, the insertion of even
one additional fungal species to the training set that is similar to
the submitted strain would cause the strain’s BGCs to network
with training BGCs and NPOmix would generate outputs. Hence,
by amplifying the training set (e.g., with the natural expansion
of the PoDP database), NPOmix will be able to perform better
for many different kinds of samples, including novel ones that
have some similarity to strains in the training data. Unfortunately,
none of the currents validated metabolites in the PoDP database
belongs to the RiPP class (more details in the “Supplementary
Material and Results” section); hence, we encourage specialized
metabolism researchers to deposit examples of these types of ri-
bosomal peptides (genomic and metabolomic data) to the existing
PoDP database and these examples will be used in future tests.

The use of complete genomes over MAGs and metagenomes
is preferred to create a more “complete” training set; we predict
that this would result in better precision than if the training set is
populated with several fragmented BGCs. It is important to clarify
that some organisms do not have BGCs (e.g., higher plants and ani-
mals) and therefore their metabolites cannot be linked to biosyn-
thetic genes using NPOmix. Regarding lower plants, the annota-
tion of BGCs is now a hot topic; however, there is a current lack
of paired data for plants and the current NPOmix demonstration
is done on the suitable and available data from the PoDP (almost
exclusively from bacteria). On top of that, BGC detection is more
challenging for plants (e.g., more scattered biosynthesis genes).

Another challenging type of samples are microbiomes, such as
nonaxenic cyanobacterial cultures like the example of the mix
between Moorea producens JHB and its 15 detected heterotrophic
genera plus viruses (45). Although, we successfully processed 40
cyanobacterial microbiomes and we linked five metabolites to
their correct BGCs, demonstrating that this tool can also be used
with microbiomes. A major limitation of using microbiomes for
genome mining is that the quality of their metagenomes can hin-
der BGC assembly, leading to a smaller number of BGCs than ex-
pected and many of these BGCs can be fragmented. We plan to
address microbiomes, plants, algae, and fungi samples more com-
prehensively in our future work (other future goals are also high-
lighted in the “Supplementary Material and Discussion” section).

Finally, we would like to stress that all true positive BGC-MS/MS
validated links reported here were found in a known producer
of the metabolites, they matched the reported masses, and 6 of
the 11 BGC-metabolite links used for validation (true and false
positives, including brasilicardin A) were reported at the PoDP
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database as validated via knockouts, heterologous expression,
or isolation and/or NMR structure elucidation. In a similar way,
NPLinker also used such validated links from the PoDP database
to assess the impact of novel BGC-MS/MS linking scores and the
complementary of them. Palmyramide A was also previously val-
idated via isolation and NMR structure elucidation (46) (hence,
making 7 out of 12 validated GCF-MS/MS links), and it will be
soon published at MIBiG and PoDP. The putative orfamides were
not confirmed via structure elucidation or co-elution with stan-
dards (the new metabolite spectra were annotated via GNPS li-
brary matching) but the comparison to a reference from GNPS
and BGC amino acid predictions strongly indicates that they share
the same planar structure as the reference metabolite from GNPS.
Our results highlight the importance of making genomics and
metabolomics data publicly available with curated metadata, be-
cause more available paired data would enable better training of
models, and therefore, better tools for the research community.

Conclusions
We developed a promising tool to search for new specialized
metabolites in paired omics data of natural extracts by using
links between cryptic MS/MS and cryptic biosynthetic gene clus-
ters (BGCs) but also more efficiently dereplicating known BGCs
or known metabolites. This will facilitate the use of genome
mining in drug discovery pipelines. For example, we illustrated
that our tool could integrate multiple kinds of information about
biosynthetic classes, family beta-diversity, dereplication, and the
probability of being a correct link. These bits of information are
very useful for finding novel metabolites from nature (cultures
or metagenomic samples). Thus, we believe that the current ver-
sion of NPOmix will already facilitate access to the so far under-
explored bacterial biosynthetic potential, allowing to bioprospect
a larger portion of this potential.

Of note, we developed NPOmix and we were able to use other
third-party tools like NPLinker (15), CANOPUS (35), NRPminer (13),
Nerpa (17), GNPS molecular networking (14), BiG-SCAPE (7), and
MetaMiner (10); these tools processed data from three databases
(MIBiG, PoDP, and GNPS) (14, 20, 21). Interestingly, the information
from linked BGC-MS/MS data enabled good predictions for partial
structures like cryptomaldamide and even complete planar struc-
tures like orfamide C (including hints of the AA stereochemistry
that can aid in the elucidation of absolute structures). Many of
the links were known antifungal and antibiotic metabolites, there-
fore, reproducing this analysis for new metabolites can be a very
promising methodology for drug discovery (work also in progress,
especially focusing on the discovery of new siderophores, here ex-
emplified by a computational approach including NPOmix and
MassQL that can be reproduced by the users).

To facilitate the use of NPOmix, we are hosting workshops
(in English and Portuguese) and we created video tutorials, both
available at https://www.tfleao.com/npomix1. We will assist the
NPOmix use so the genome mining community can benefit from
its capabilities, especially via GitHub (https://github.com/tiagolb
iotech/NPOmix_python for the python version or https://github.c
om/tiagolbiotech/NPOmix for the Jupyter notebook version).

We anticipate the use of this pipeline for many applications in-
cluding (but not limited to): (1) studying siderophores and iron cy-
cling under nutrient limitation; (2) studying humans, mammals,
plants, marine invertebrates, and other microbiomes and their
relationship with host health; (3) finding new bioactive metabo-
lites for drug development; (4) better understanding metabolite-
mediated cell function of a model organism like E. coli (important

for heterologous expression); (5) learning how plants, corals, and
phytoplankton can be more resilient to global warming and other
anthropogenic impacts. In conclusion, we expect that our tool will
play an important role to form an integrative omics mining com-
munity, and that it will have a range of implications for genomics,
metabolomics, natural products discovery, and other associated
research fields.

Methods
See the “Supplementary Material and Methods” section for details
on obtaining the data, assembly, BGC comparison, the NPOmix
tool itself, and other bioinformatic analyses.

Supplementary Material
Supplementary Material is available at PNAS Nexus online.
(note: please replace in the Supp. Material the following link
"https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=2380
461c4a624c39b7b19a4f955515e7" that is currently broken with
"https://www.tfleao.com/npomix1")
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Code and Data Availability
The code (a collection of Jupyter notebooks) required to repro-
duce this work and to use the NPOmix tool for new samples
can be found on the following GitHub repository page: https:
//github.com/tiagolbiotech/NPOmix. The repository also includes
short video explanations on how the tool works and its impor-
tance for natural product discovery. We also wrapped the code
in a few python scripts found here: https://github.com/tiagolb
iotech/NPOmix_python. This python repository is the most up-
dated version of the code, and it also contains more comments
on each step of the pipeline. This page with the python version
also includes a video explanation of how to prepare inputs and
how to run NPOmix in python. Additionally, we provide a webpage
(https://www.tfleao.com/npomix1) for submitting a limited num-
ber of samples for free processing (maximum of 50 queries MS/MS
fragmentation spectra) and this page also includes workshops on
how to submit samples and interpret results. We are going to pur-
chase a server and allow users to submit many more metabolites
than just 50.

The (meta)genomes used to create the NPOmix training dataset
for validation were downloaded from the PoDP (20) using note-
book 1 from the GitHub repository (Jupyter notebook version). All
BGCs from these training (meta)genomes can be found here for
downloading: https://doi.org/10.5281/zenodo.6637083. The paired
experimental MS/MS files were downloaded using the ftp links
(also from the PoDP) found in Dataset S1, sheet eight. The links
for these MS/MS files can also be found in the “NPOmix_SI-
installation_and_running” notebook for downloading (GitHub
repository https://github.com/tiagolbiotech/NPOmix). The testing
set included MS/MS spectra from the PoDP database, spectra from
the GNPS (14), and also spectra also used in the NPLinker publica-
tion (39). If the potential users find the tool challenging to run,
we have our contact information on the main webpage (https:
//www.tfleao.com/npomix1) to submit samples and we expect
that promising results will lead to fruitful collaborations.
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