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Diastereoselective Reactions of Imines with Anhydrides and their Derivatives 

and Mechanistic Investigation of the Multicomponent Castagnoli-Cushman 

Reaction 

 

ABSTRACT OF DISSERTATION 

 

This dissertation describes four synthetic organic chemistry projects and two 

computational organic chemistry efforts centered on the Castagnoli-Cushman reaction 

(CCR) of imines with anhydrides and their derivatives. Chapter one includes a literature 

review and detailed background on the current state of the CCR, including mechanistic 

hypotheses and recent catalytic examples. Chapter two details the development of 

conjugate addition reactions of imines with cyclic enolizable anhydrides to afford b-

enaminoketone products. Chapter three describes efforts toward an acid-catalyzed 

Mukaiyama-type CCR reaction of 2,5-bis(trimethylsilyloxy) furan, including a 

stereochemical proof by computational NMR. Chapter four describes progress toward the 

synthesis of the elusive bis-g-lactam natural product bisavenanthramide B-1 by way of 

the Mukaiyama CCR. Finally, chapter five discusses the mechanistic investigation of the 

multicomponent variants of the CCR, leading to a new mechanistic proposal for reactions 

of these type.
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Chapter 1: Introduction 

1.1 Background of the Castagnoli-Cushman Reaction 

The Castagnoli-Cushman reaction (CCR) and its related three- and four-component 

reactions (3CR, 4CR) are powerful methods for the synthesis of densely substituted 

lactams. Lactams are commonly found in natural products and other biologically relevant 

molecules, many of which have been synthesized using the CCR.1-4 The CCR was first 

discovered in 1969 by Neal Castagnoli, wherein N-benzylidene methylamine and succinic 

anhydride were combined under refluxing conditions to form g-lactam 3 as a mixture of 

diastereomers (Figure 1.1).5 In the following years, Castagnoli and his graduate student 

Mark Cushman expanded the scope of this reaction to a variety of N-alkyl and N-aryl 

imines for the synthesis of natural products.6-9 Cushman later independently discovered 

that the reaction of homophthalic anhydride with imines can occur at room temperature 

to afford cis dihydroisoquinolone products 5.10 Shortly before Cushman’s report, Haimova 

and coworkers developed a similar method, which included a basic workup, to afford 

exclusively trans dihydroisoquinolone products.11 The general reaction of imines and 

cyclic enolizable anhydrides has aptly been named the Castagnoli-Cushman reaction to 

honor the initial discoverers.12 

 

Figure 1.1 Initial development of the Castagnoli-Cushman reaction. 

N
CH3

H

O O
O

N

O

CO2H
PhPh

Δ

Castagnoli (1969)

H3C

benzene

N

H

O

O

O

N

O

CO2H
R2R2

R1

Cushman (1977)

rt
+ +

R1

1a 2 3 1 4 5

CHCl3



 2 

1.1.1 Reactivity of Cyclic Anhydrides in the Castagnoli-Cushman Reaction 

A number of cyclic anhydrides have been used in the CCR since Castagnoli’s initial 

discovery (Figure 1.2A). Reactions with unsubstituted succinic (6, R = H) and glutaric 

anhydrides (7, R = H) typically require refluxing conditions and proceed with modest yields 

and diastereoselectivities.6, 7, 13-16 On the other hand, reactions of homophthalic anhydride 

4 can occur rapidly at or below room temperature, affording the kinetically favored cis 

diastereomer (Figure 1.2B). Reactions of homophthalic anhydride heated in xylenes 

affords exclusively the thermodynamically favored trans diastereomer.10 The kinetic cis 

products can be fully epimerized to the trans diastereomers under acidic, basic, or thermal 

conditions.10, 11 The substituents present on the anhydrides have been shown to have an 

influence on their reactivity. Specifically, in his study of the mechanism of the CCR, 

Cushman showed that phenylsuccinic anhydride had reactivity in between that of succinic 

and homophthalic anhydride (Figure 1.2C).17 Reactions of phenylsuccinic anhydride 

Figure 1.2 A. Anhydrides used in the CCR B. Results of the reaction of N-benzylidene methylamine 

with homophthalic anhydride at different temperatures. C. Reaction of phenylsuccinic anhydride with 

N-benzylidene methylamine.  
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performed in chloroform can be accelerated upon heating to 90 °C but can also proceed 

at room temperature for 24–36 hours. Moreover, when the phenyl substituent is replaced 

with a thioaryl group, similar reaction outcomes are observed.18 

Additional advancements of the CCR involved newly synthesized and more reactive 

anhydrides. CCRs of cyano- and sulfonyl-substituted succinic (14, 22) and glutaric 

anhydrides (18, 24) react at room temperature to yield lactam products, demonstrating 

similar reactivity to homophthalic anhydride (Figure 1.3A, 1.3C, 1.3E, 1.3F).19 CCRs using 

chiral disubstituted cyano-succinic anhydrides 16 lead to densely substituted lactam 

products in high yields and proceed with high diastereoselectivity for a single, major 

diastereomer (Figure 1.3B).20 Reactions with 3-cyanoglutaric anhydride (18) also proceed 

at room temperature in THF with modest to high diastereoselectivity, resulting in 

predominantly the cis diastereomer (Figure 1.3C).21 Higher diastereoselectivity is 

observed in reactions with cyano-substituted anhydrides bearing a substituent at the b-

position (20), preferentially yielding one of four possible diastereomers (Figure 1.3D). 

Products of the CCR with sulfonyl-substituted anhydrides lead to lactam products 23 and 

25, which have the propensity for decarboxylation when subjected to magnesium in 

methanol or heat (Figure 1.3E, 1.3F ).22  
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Figure 1.3 Reactions of cyano and sulfonyl-substituted succinic and glutaric anhydrides. 
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Figure 1.4 Heteroglutaric anhydrides 34–36 and their resulting product outcomes. 

More recently, seven-membered ring analogues of homophthalic anhydride have 

been used in CCRs.35-38 The use of unsubstituted adipic anhydride was unsuccessful in 

the CCR, leading exclusively to its polymerized form 31, amide-acid 32, or diamide 33 
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Figure 1.5 A. Unsuccessful reaction of adipic anhydride B. Successful reactions of phenyl diacetic 

acid anhydride 34 leading to e-lactams. 
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methods to form cis dihydroisoquinolones were developed, mediated by 

KAl(SO4)2•H2O,40, 41 Yt(OTf)3,42 silica sulfuric acid,43 iodine,44 sulfonic acid functionalized 

silica,45 ZnCl2/AlCl3-SiO2,46 L-proline,47 or aspartic acid.48 More recently, a new modified 

CCR was developed utilizing the diacid of homophthalic anhydride (39), amines, and 

aldehydes under dehydrating conditions.49 In this case, it was hypothesized that both the 

anhydride and imine were being formed in situ, which then undergo the classic CCR 

reaction (Figure 1.6). Heating the reaction favors full epimerization to the trans 

diastereomer 11.  

 

Figure 1.6 Three component reaction outcomes with either homophthalic anhydride 4 or its diacid 

precursor (15). 
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establish the first 4CR using amines, aldehydes, thiols, and maleic anhydride. We 

observed that heating all four of the components (37a, 38a, 40, 41) for 24 hours provided 

the lactam product in similar yield and diastereoselectivity, which obviated the need for 

pre-synthesizing imine or anhydride. 

 

Figure 1.7 The reaction of thioaryl succinic anhydrides and the four-component reaction afford product 

40 in comparable yields and diastereoselectivity. 

1.2 The Mechanism of the Castagnoli-Cushman Reaction 
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imino-Diels Alder mechanism through the enol tautomer of homophthalic anhydride 4a 

could be operative (Figure 1.8A). Alternatively, it was hypothesized that the reaction 

proceeds through an iminolysis pathway, forming N-acyl iminium ion 44 through acylation 

of the imine nitrogen (Figure 1.8B). Subsequent intramolecular Mannich addition through 

the carboxylic acid enolate 44b leads to 43. Finally, the mechanism could also be 

analogous to that of the mechanism of the Perkin reaction. In this case, the reaction could 
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proceed through Mannich addition of the anhydride enolate 45, followed by N-acylation 

of intermediate 47 to form lactam 43 (Figure 1.8C).  

 

Figure 1.8 A. The imino Diels-Alder mechanism B. Cushman’s proposed iminolysis pathway for the 

CCR. C. The Perkin-type mechanism beginning with Mannich addition, followed by intramolecular 

acylation. 
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reactivity of aldehydes versus imines, however he also noted that this argument hinged 

on the hypothesis that the neutral imine is reacting in the CCR. Based on these 

observations, Cushman concluded that the iminolysis mechanism was the most likely for 

the CCR. 

 

Figure 1.9 A. CCR reaction conditions leading to dihydroisoquinolone 46. B. Forcing conditions 

required for Diels-Alder reaction of homophthalic anhydride with alkynes. C. Competition experiment 

of N-benzylidene methylamine and benzaldehyde with homophthalic anhydride, leading exclusively to 

dihydroisoquinolone product. 
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course of three days with indolenines (60) and diglycolic anhydride (59), leading 

exclusively to the 61 and 64, respectively with no evidence of the CCR product (Scheme 

1.10B, Figure 1.10C).3, 26 It is possible that the zwitterionic intermediate 62 can be 

accessed with poor CCR substrates wherein Mannich addition is comparably high in 

energy. The Mannich-like mechanism for the reactions of cyano-succinic anhydride and 

imines and also explained the reaction outcomes of Castagnoli and Cushman.  The 

stereochemical outcome of our original thiophenylsuccinic anhydride reaction and the 

reactions of cyano-glutaric anhydrides were also explained from the Mannich-like 

mechanism.18, 21 This mechanistic picture was also consistent with a proposal made by 

Connon for the lactone forming reaction of homophthalic anhydride and aldehydes.53  

 

Figure 1.10 A. Mannich-like mechanism observed in computational studies. B.  N,O-acetal product 

resulting from cyclopentane fused maleic anhydride 59. C. N,O-acetal product observed in the reaction 

of glyoxylic anhydride with indolenines. 
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1.3 Development of the Base-Mediated Castagnoli-Cushman Reaction 

Having determined that the mechanism of the CCR proceeds through Mannich 

addition, our group sought to use this mechanistic understanding to develop a base 

mediated CCR. Our group developed the first base-mediated variant of the CCR in 2016, 

which was applied to the synthesis of bisavenanthramide B-6 (see chapter 3).1 Due to the 

high-reactivity of homophthalic anhydride, CCRs with N-alkyl or N-aryl imines typically 

proceeds with a high background rate. To enable a base catalyzed variant of the CCR, 

the less basic N-sulfonyl imines 66 were used, which simultaneously mimic the reactivity 

of an iminium ion and eliminate the background rate of the CCR (Figure 1.11A). We 

proposed that the mechanism of the reaction would begin with deprotonation of the 

anhydride to form the anhydride enolate (48) (Figure 1.11B). The enolate could then 

undergo a Mannich addition on the imine 66 leading to intermediate 69. Subsequent 

intramolecular acylation affords lactam carboxylate 71, which can be protonated to 

generate product 72 and regenerate the base catalyst. The scope of this work was 

expanded by our group in 2017 to reactions of a series of N-sulfonyl imines, as well as a-

chiral N-sulfonyl imines (Scheme 1.11C).54 In this reaction, either tetramethyl guanidine 

(TMG) in acetonitrile, or Hünig’s base in dichloromethane afforded dihydroisoquinolone 

products 68 in good yields and excellent diastereoselectivity for the trans diastereomer. 

Notably, the reactions with a-chiral N-sulfonyl imines resulted in anti-Felkin products 

despite the absence of a chelatable Lewis acid.  



 12 

 

Figure 1.11 A. Imines bearing an electron withdrawing group eliminate the background rate of the 

CCR.  B. Proposed mechanism for the base-mediated CCR. C. Optimized base-mediated CCR 

conditions and reaction outcomes. 
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a series of less basic imines containing electron withdrawing N-substituents. Connon also 

utilized N-sulfonyl imines in the CCR and found that the suppressed basicity allowed for 

the addition of a squaramide base catalyst. However, they also found that larger N-

substituents had a negative effect on enantioselectivity. To circumvent this, methane 

sulfonyl imines were employed. Additionally, a catalyst screen demonstrated that chiral 

quinine-derived catalysts improved enantioselectivity over the squaramide catalysts 72 

used for the synthesis of lactones. Specifically, urea catalyst 73 showed the best 

enantioselectivity without eroding diastereoselectivity, albeit leading to variable 

enantiomer ratios (52:48 to 94:6) for a single diastereomer.  

 

Figure 1.12 Selected example of Connon’s the catalytic enantioselective CCR. 
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imine to deprotonate the anhydride to form an iminium ion that forms an ion pair with the 

catalyst-enolate complex. This dual functional catalyst allows for enantioselective 

synthesis of 75 ranging from 83:17 to 95:5 enantiomer ratios (Figure 1.13). N-alkyl, N-

aryl, a,b-unsaturated and aliphatic aldehyde-derived imines were all tolerated in the 

reaction, expanding the substrate scope and obviating the need for N-sulfonyl substrates. 

The resulting product, 75, was isolated as the kinetic cis isomer in good yields. The cis 

lactams are epimerized with diazobicycloundecane (DBU) to a single enantiomer of the 

thermodynamically stable trans product.  

 

Figure 1.13 Selected example of Seidel's chiral thiourea catalyzed asymmetric CCR. 

1.5 Conclusion 
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Chapter 2: Conjugate Addition Reactions of Anhydrides and a,b-

Unsaturated N-Tosyl Ketimines1 

2.1 Introduction  

The reaction of imines with cyclic enolizable anhydrides has been used extensively 

to form lactams through formal [4+2] cycloadditions.2-9 Recently our group has developed 

the first base-mediated variant of the CCR by utilizing N-sulfonyl imines, which eliminate 

the background rate of the CCR and allow for the addition of an exogenous base.7, 9 Base-

mediated CCR reactions proceed favorably with a variety of imines, however, a byproduct 

was observed in reactions with a,b-unsaturated imines. We hypothesized that this 

byproduct was the result of conjugate addition to form products similar to those formed in 

the Tamura reaction.10-13 To select for these conjugate addition products, we 

hypothesized that using ketone derived imines would afford products 3. Thus, we 

developed a novel reaction of cyclic anhydrides with electron-deficient unsaturated imines 

which proceed to b-enamino ketone products 3 in high diastereoselectivity (Figure 2.1).  

 

Figure 2.1  The aza-Tamura reaction leading to cis-b-enamino ketone products  
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2.1.1 Introduction to the Tamura Reaction 

 

The Tamura reaction is known as the reaction of homophthalic anhydride with alkenes 

or alkynes to form highly substituted naphthalene products.10, 11 The reaction was first 

developed in 1981, when homophthalic anhydride was heated with a variety of activated 

alkynes or alkenes to afford a single regioisomer of products 5 or 9 after decarboxylation 

(Figure 2.2). Notably, alkenes or alkynes must be significantly activated in order to 

achieve optimal reaction outcomes.14 In 1984, Tamura and coworkers discovered that the 

addition of a strong base such as lithium diisopropylamide or sodium hydride improved 

reaction yields and lowered reaction temperatures.12, 13 This new method was also the 

basis for the synthesis of a series of anthracyclinone natural products 10–13.12, 13  

 

Figure 2.2: (Left) The Tamura reaction leading to substituted naphthalene products. (Right) 

Substituted anthracyclinone natural products synthesized using the Tamura reaction. 

 It was hypothesized that the Tamura reaction could proceed through three possible 

reaction mechanisms.11 First, a Diels-Alder reaction resulting from the enol form of 

homophthalic anhydride could lead to intermediate 14a, which after spontaneous 

decarboxylation affords shared intermediate 16 (Figure 2.3A, Mechanism i). Alternatively, 

Michael addition of the anhydride enol 14b on the alkene could afford intermediate 17, 

followed by decarboxylation to afford 16 (Figure 2.3A, Mechanism ii). Finally, spontaneous 
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decarboxylation to form benzocyclobuteneone 18 could open to form ortho-xylylene 19. 

Compound 19 could then undergo a Diels-Alder reaction with the dienophile 13 to afford 

16 (Figure 2.3A, Mechanism iii). Air mediated oxidation then yields Tamura products 5. 

Several control experiments were performed that support either the first Diels-Alder 

mechanism through enol 14a or the Michael addition mechanism. For one, heating 

homophthalic anhydride in dichlorobenzene for an extended period of time did not result 

in the formation of benzocyclobuteneone 18 (Figure 2.3B). Additionally, a double Diels-

Alder reaction occurred to afford 21 when 2 was employed in the reaction with N-phenyl 

maleimide 20 (Figure 2.3C). These results suggest the mechanism proceeds through 

either the Diels-Alder mechanism or the Michael-type reaction, rather than the 

benzocyclobutene (Mechanism iii) Diels-Alder mechanism. The highly regioselective 

nature of this reaction can be attributed to the enolate attacking at the more electrophilic 

terminus of the dienophile carbon. 
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Figure 2.3 Possible mechanisms of the Tamura reaction. Experimental evidence supporting the enol-

Diels-Alder mechanism. 
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also observed in the reaction mixture.  A solvent and temperature screen demonstrated 

that the cis isomer 24 converted to the trans isomer 25 at higher temperatures or over the 

course of longer reaction times.  

 

Figure 2.4 Product outcomes of Haimova's reaction of homophthalic anhydride with a,b-unsaturated 

imines 
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Figure 2.5 A. Reaction of dienone 29 leads to Tamura product with stereogenic centers. B. Connon's 

asymmetric Tamura reaction *The diastereomer ratio corresponds to 32a:32b:32c wherein an 

additional diastereomer 32c was detected in the reaction mixture in minute quantities. C. Tamura 

reactions of a-methyl nitrostyrenes with homophthalic anhydride 
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aldimines have been well-studied, the reactions of enolizable anhydrides and a,b-

unsaturated ketimines are relatively underexplored. As a result, we sought to develop a 

method to selectively form products 38 in a reaction that we refer to as the aza-Tamura 

reaction. 

 

Figure 2.6 CCR reaction of cinnamaldehyde derived N-Tosyl imine to afford lactam 37 and byproduct 

38. 
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Figure 2.7 Possible mechanism for the formation of enamine and lactam products through the aza-

Tamura reaction 
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2.2.2 Synthesis of Chalcone Derived Imines 

Initial study of the aza-Tamura reaction began by synthesizing chalcone-derived 

imine substrates. Chalcone-derived substrates were chosen for their ease of synthesis 

and the breadth of commercially available reaction partners that allow for a broad 

substrate scope. Chalcones were either bought (44a, 44k) or synthesized by aldol 

condensation using acetophenone and benzaldehyde derivatives with either NaOH or 

KOH (Figure 2.8). We were interested in investigating electronic effects of different para-

substituents on either aryl group of the chalcone. Para-substituted chalcones would 

ultimately provide electronic influence on the imine without introducing the steric effect of 

an ortho-substituent. To test substitution on either ring, para-substituted benzaldehyde 

derivatives were condensed with acetophenone to yield 44b and 44h. Conversely, para-

substituted acetophenone derivatives were condensed with benzaldehyde to yield 44c, 

44e, and 44i. To expand the scope of the reaction to heterocyclic substrates, similar 

reactions were performed to yield 44d, 44e, 44f, and 44g (Figure 2.8).  

  

Figure 2.8 Scope of chalcones through aldol condensations. 
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ketones were investigated to ultimately afford enolizable imines. Initially, the synthesis of 

ketone 44j was attempted using a Friedel-Crafts acylation of crotonoyl chloride (46) and 

benzene (Figure 2.9A). Crotonoyl chloride (46) was synthesized by chlorinating crotonic 

acid (45) with oxalyl chloride and was subsequently employed in the Friedel-Crafts 

acylation. Based on the 1H NMR spectrum and mass spectrometry of the unpurified 

reaction mixture, the observed product was a Friedel-Crafts derivative of the desired 

acylation product.17 After the acylation, the product continued to react with the excess 

benzene to produce 47 (Figure 2.9A). A Pd-catalyzed rearrangement was also attempted 

to produce ketone 44j.18 The starting material, 50, was synthesized in one step18 and 

subjected to the Pd-catalyzed reaction—however no product was formed (Figure 2.9B). 

Due to the failure of the palladium catalyzed rearrangement, the synthesis of a different 

enolizable ketone, 44l, was attempted. Acetophenone was employed in the aldol 

condensation with propionaldehyde, but the 1H NMR of the unpurified reaction mixture 

revealed exclusively acetophenone (Figure 2.9C). Finally, Noah Burlow found an 

alternative procedure for the Friedel-Crafts reaction and successfully synthesized 44j.  

Figure 2.9 A. Friedel Crafts reaction used in the attempted synthesis of 44j. B. Palladium catalyzed 

reaction toward the synthesis of 44j.  C. Attempt at aldol condensation to afford 44l. 
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The synthesized a,b-unsaturated ketone products and trans-chalcone were then 

condensed with p-toluene sulfonamide in the presence of TiCl4 to yield a,b-unsaturated 

imines 51 (Figure 2.10). Most reactions led to good, albeit incomplete conversion to imine 

products. As a result, the excess p-toluene sulfonamide present during flash column 

chromatography rendered the imine products difficult to isolate independently, leading to 

lower yields. To our delight, synthesis of enolizable imine product 1j was successful. 

Finally, a cyclohexeneone derived imine was synthesized from modified literature 

procedure involving both TiCl4 and Ti(OEt)4, affording imine 1k in modest yield (Scheme 

2.10).19 

 

Figure 2.10 Synthesis of a,b-unsaturated ketimines to test in the aza-Tamura reaction. 
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spectroscopy and mass spectrometry (Figure 2.11A). An additional condensation 

procedure from literature involving ketone 44m and p-toluene sulfonamide with Ti(Oi-Pr)4 

and ZnCl2 also failed, resulting exclusively in recovered starting material.20 A new 

procedure was attempted by condensing p-toluene sulfinamide 53 with ketone 44m using 

Ti(OEt)4 in toluene, followed by oxidation with mCPBA (Figure 2.11B).21 Sulfinamide 53 

was synthesized successfully, however condensation conversion was low. Despite the 

slow conversion, the unpurified material was subjected to mCPBA, yet no product was 

visible in the 1H NMR spectrum. After searching through literature, a similar N-benzene 

sulfonyl imine was found to have been made from the rearrangement of an oxime with 

benezenesulfinyl chloride.22 Synthesis of the analogous p-toluene sulfinyl chloride 57 

proved difficult due to rapid decomposition at room temperature, however, synthesis of 

57 was successful after an additional attempt: condensation of ammonium hydroxide with 

ketone 44m afforded 55 in 76% yield. Sulfinyl chloride 57 and oxime 55 were subjected 

to triethylamine in carbon tetrachloride in hopes of forming rearrangement product 1m, 

however no conversion to product was observed.22 After numerous attempts at the 

synthesis of 1m, a final publication was found that stated that due to the enolizable nature 

of imine 1m, it could not be synthesized. As a result, substrate 1m was discarded.23 
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Figure 2.11 A. Attempted synthesis of 1m through condensation of p-toluene sulfonamide. B. Two 

alternative routes toward the synthesis of 1m. 
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to the acidity of the N-tosyl vinylogous amide proton, resulting in product inhibition. 

Conditions utilizing 1.2 equivalents of anhydride using stoichiometric Hünig’s base 

provided excellent conversion and diastereoselectivity for product 3c. Notably, the 

reaction proceeds to exclusively b-enamino ketone products, with no evidence of the CCR 

or Perkin-like products found in Haimova’s studies. 

Table 2.1 Optimization of the aza-Tamura reaction 
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kinetic product (Figure 2.13). Over the course of 24 hours, the lactam product converts to 

the imine product, which tautomerizes to the b-enamino ketone product 3c as the reaction 

progresses. The structure of the kinetic product was assigned based on comparison of 

1H NMR signals with analogous molecules synthesized by Smith and coworkers.24  

 

Figure 2.12 Lactam 41 converts back to enamine 3 over 24 hours at rt. 

 

Figure 2.13 1HNMR experiment showing conversion from lactam to enamine product. 
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2.2.5 Effect of Imine Substituents on Diastereoselectivity  

With optimized conditions in hand, N-sulfonyl ketimines 1 were subjected to the aza- 

Tamura reaction (Figure 2.14). Interestingly, the electronics of the substituent on the aryl 

ring of R1 had a significant impact on diastereoselectivity. In particular, excellent 

diastereoselectivity for the cis enamine was observed for products containing electron 

donating groups on the aryl ring at R1 (3c). On the other hand, electron withdrawing 

groups in the same position eroded selectivity (3i)—likely due to the faster rate of base-

catalyzed epimerization to the trans diastereomer. The diastereomer ratio was less 

noticeably affected for products from imines with electron donating and withdrawing 

groups on the aryl ring at the R2 position (3b, 3d, 3f, 3g, 3h). Enolizable imines (1j and 

1k) were also tolerated in the reaction yielding products 3j and 3k with moderate 

diastereoselectivity. The relative stereochemistry of the major product of 3k was 

determined by computational NMR performed by Dr. Carla Saunders of the Tantillo group.  

 

Figure 2.14 Substrate scope leading to cis b-enamino ketones 
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2.2.6 Conversion to Methyl Esters and Substrate Epimerization  

b-enaminoketone products were then esterified to their corresponding methyl esters 

by treatment with TMS-diazomethane. Following conversion to the methyl ester, the cis 

products could be epimerized to the trans diastereomer using 1,8-

diazobicyclo(5.4.0)undec-7-ene (DBU) in good yields over the two-step sequence (Figure 

2.15).  Though epimerization proved facile for majority of substrates, cyclohexenone 

derived product 4k did not fully epimerize even after resubjecting to an additional 

equivalent of DBU. We hypothesized based on JH-H values that the initial products of the 

chalcone derive substrates were the kinetic cis diastereomers 3, and the epimerized 
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Figure 2.15 Esterification of aza-Tamura products 3a-k yielding products 4a-k in good yields and 

excellent diastereoselectivity. (Bottom) Transition state drawing leading to kinetic cis product through 

a syn-clinal transition state structure. 
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product was the thermodynamic trans diastereomers 4. Additionally, transition state 

drawings suggest that the formation of the cis diastereomer would be preferred over 

formation of the trans diastereomer, consistent with the kinetic product (Figure 2.15 

bottom). Though the trans diastereomer does contain two pseudo-axial substituents, due 

to the presence of four sp2 hybridized centers in products 4c, there are essentially no 1,3 

diaxial interactions present which supports the assignment of the thermodynamic trans 

diastereomer.  

 To confirm the relative stereochemistry, Noah initially hydrolyzed the ester 4c to acid 

using LiOH. Hydrolysis resulted in no changes to the JH-H of the adjacent protons, 

indicating that no epimerization had occurred (Figure 2.16). He then attempted to perform 

an amidation reaction with POCl3 and p-methoxybenzylamine. Interestingly, the resulting 

product was less polar than expected, and lacked protons corresponding to the amide in 

the 1H NMR spectrum.25 We hypothesized the resulting product was the nitrile derivative 

58, which occurs through a von Braun-like mechanism proceeding through cleavage of 

the PMB amide.26 An X-ray crystal structure was acquired which confirmed this 

hypothesis, and also confirmed relative stereochemistry to be trans. 

 

Figure 2.16 X-ray crystal structure of the nitrile derivative 58 confirms trans stereochemistry of aza-

Tamura products. 
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2.3  Conclusion 

We have developed a base-mediated reaction between a,b-unsaturated N-tosyl 

ketimines and cyclic enolizable anhydrides to form b-enamino ketone products. Reactions 

with TMG provided low diastereoselectivity, while stoichiometric Hünig’s base afforded 

products in both higher yields and diastereoselectivity. b-enamino ketone products were 

converted to methyl esters for ease of purification. In all but one case, the resulting esters 

were then fully epimerization to the trans-diastereomer upon treatment with DBU.  

 

2.4  Experimental Section 

 

I. Materials and Instrumentation:  

Unless otherwise specified, all commercially available reagents were used as received. 

All reactions using dried solvents were carried out under an atmosphere of argon in flame-

dried glassware with magnetic stirring. Dry solvent was dispensed from a solvent 

purification system that passes solvent through two columns of dry neutral alumina. 1H 

NMR spectra and proton decoupled 13C NMR spectra were obtained on a 400 MHz Bruker 

or 600 MHz Varian NMR spectrometer. 1H Chemical shifts (δ) are reported in parts per 

million (ppm) relative to TMS (s, δ 0). Multiplicities are given as: s (singlet), d (doublet), t 

(triplet), q (quartet), p (pentet), h (hextet), and m (multiplet). Complex splitting will be 

described by a combination of these abbreviations, i.e. dd (doublet of doublets). 13C NMR 

chemical shifts are reported relative to CDCl3 (t, δ 77.4) unless otherwise noted. Accurate 

mass measurements were recorded on positive ESI mode in methanol. Chromatographic 
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purifications were performed by flash chromatography with silica gel (Fisher, 40–63 μm) 

packed in glass columns.  

 

II. Experimental Data: 

 

 

(E)-3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one (44b): Following a literature 

procedure27: to a solution of acetophenone (1.03 g, 8.56 mmol) in CH3OH (8.6 mL), was 

added p-methoxybenzaldehyde (1.04 mL, 8.56 mmol) and 20% KOH solution (0.856 mL). 

The reaction mixture was stirred overnight at rt. After completion of reaction, reaction was 

added to 30 mL of water, acidified with 1 M HCl, filtered, and recrystallized in hot ethanol 

to yield 44b as a white solid (0.99 g, 49%): 1H NMR (400 MHz, CDCl3) δ 8.04 – 7.99 (m, 

2H), 7.79 (d, J = 15.7 Hz, 1H), 7.64 – 7.54 (m, 3H), 7.53 – 7.47 (m, 2H), 7.42 (d, J = 15.6 

Hz, 1H), 6.97 – 6.91 (m, 2H), 3.86 (s, 3H). 1H NMR shifts match literature values.28 

 

(E)-1-(4-methoxyphenyl)-3-phenylprop-2-en-1-one (44c): p-methoxyacetophenone 

(1.0 g, 6.65 mmol) was dissolved in CH3OH (6.5 mL, 1 M). Benzaldehyde was added 

(0.68 mL, 6.65 mmol), followed by KOH (0.67 mL, 20% solution in H2O) and the reaction 

was stirred overnight. The reaction was diluted with of H2O (15 mL) and acidified with 1M 

O

OCH3

O

H3CO
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HCl. The solid was filtered and recrystallized in ethanol to afford 44c as a white solid (1.0 

g, 66%). 1H NMR (600 MHz, CDCl3) δ 8.08 – 8.02 (m, 2H), 7.81 (d, J = 15.7 Hz, 1H), 7.65 

(dd, J = 7.1, 2.4 Hz, 2H), 7.55 (dd, J = 15.7, 1.4 Hz, 1H), 7.47 – 7.39 (m, 3H), 7.02 – 6.96 

(m, 2H), 3.90 (s, 3H). 

 

 

(E)-3-(furan-2-yl)-1-phenylprop-2-en-1-one (44d): Following a modified literature 

procedure29: To a stirred solution of acetophenone (0.49 mL, 4.16 mmol) in CH3OH (2.08 

mL, 2M) was added dropwise a solution of NaOH (0.22 g, 5.14 mmol)  in methanol (4.16 

mL, 1.3 M) and stirred. After 15 minutes, 2-furaldehyde (0.35 mL, 4.16 mmol) was added, 

and the reaction mixture was stirred at rt overnight. Following completion of reaction, 

solvent was removed in vacuo. Resulting residue was treated with water (20 mL) and 

extracted with EtOAc (3x 30 mL), dried over Na2SO4 and concentrated in vacuo. Crude 

material was purified by flash column chromatography (70:30 hexanes/EtOAc) to yield 

44d as an orange oil (0.48 g, 58%): 1H NMR (400 MHz, CDCl3) δ 8.06 – 8.01 (m, 2H), 

7.63 – 7.43 (m, 6H), 6.72 (d, J = 3.4 Hz, 1H), 6.52 (dd, J = 3.4, 1.8 Hz, 1H). 1H NMR shifts 

match literature values.30 

 

(E)-1-(furan-2-yl)-3-phenylprop-2-en-1-one (44e) Following a modified literature 

procedure:31 2-acetyl furan (0.166 mL, 1.66 mmol) and benzaldehyde (0.15 mL, 1.5 

O
O

O
O
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mmol)were dissolved in CH3OH (8.0 mL, 0.18 M). A solution of NaOH (2.36 mL, 1M) was 

added and the reaction was stirred overnight. The product was acidified with HCl (1M). 

EtOAc was added, extracted 3x with EtOAc (10 mL), and dried over Na2SO4. The reaction 

mixture was purified by flash column chromatography (70:30 Hexanes/EtOAc) to yield 

44c (0.228 g, 70%).1H NMR (600 MHz, CDCl3) δ 7.89 (d, J = 15.8 Hz, 1H), 7.66 (td, J = 

5.9, 3.0 Hz, 3H), 7.49 – 7.41 (m, 4H), 7.34 (d, J = 3.6 Hz, 1H), 6.60 (dd, J = 3.6, 1.7 Hz, 

1H). 

 

 

(E)-3-(furan-3-yl)-1-phenylprop-2-en-1-one (44f): Following a modified literature 

procedure32: Acetophenone (0.36 mL, 4.16 mmol) was added to a solution of MeOH (10 

mL) and water (2 mL) and finely ground KOH (0.467 g, 8.32 mmol). The solution was 

allowed to stir at rt for 10 min, then 3-furaldehyde (0.36 mL, 4.16 mmol) was added 

dropwise over 5 min. The dark brown solution was allowed to stir at rt. After 3 h, water 

(12 mL) and saturated NH4Cl solution (8 mL) were added, and the mixture was extracted 

with ether (3x 30 mL), washed with brine, dried over Na2SO4 and concentrated in vacuo. 

The resulting solid was recrystallized in hot ethanol to yield 44f as a light brown solid 

(0.68 g, 82%): 1H NMR (400 MHz, CDCl3) δ 8.03 – 7.96 (m, 2H), 7.76 – 7.69 (m, 2H), 

7.61 – 7.54 (m, 1H), 7.53 – 7.46 (m, 3H), 7.25 (d, J = 15.5 Hz, 1H), 6.71 (d, J = 1.9 Hz, 

1H). 1H NMR shifts match literature values.32 

O

O
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(E)-1-phenyl-3-(pyridin-3-yl)prop-2-en-1-one (44g): Following modified literature 

procedure33, acetophenone (0.49 mL, 4.2 mmol,) was added dropwise under cooling (0 

°C) to a stirred solution of 4-pyridinecarboxaldehyde (0.79 mL 8.4 mmol,) in methanol (1 

mL) and 10% aq. NaOH (1.7 mL). After addition, the reaction mixture was stirred for 2h 

keeping temperature below 10 °C. The resulting suspension was diluted with water, 

filtered, washed with water, dried, and recrystallized in a hot ethanol/water mixture to yield 

44g as pale yellow crystals (0.50 g, 57%): 1H NMR (400 MHz, CDCl3) δ 8.87 (d, J = 2.2 

Hz, 1H), 8.64 (dd, J = 4.8, 1.6 Hz, 1H), 8.07 – 8.00 (m, 2H), 7.96 (dt, J = 8.0, 2.0 Hz, 1H), 

7.80 (d, J = 15.8 Hz, 1H), 7.64 – 7.58 (m, 2H), 7.53 (dd, J = 8.4, 6.9 Hz, 2H), 7.37 (dd, J 

= 8.0, 4.8 Hz, 1H). 1H NMR shifts match literature values.33 

 

(E)-4-(3-oxo-3-phenylprop-1-en-1-yl)benzonitrile (44h):  Following a modified literature 

procedure27: to a solution of acetophenone (1.03 g, 8.56 mmol) in MeOH (8.6 mL), was 

added 4-formylbenzonitrile (1.04 mL, 8.56 mmol ) and 20% KOH solution (0.86 mL). The 

reaction mixture was stirred overnight at rt. After completion of reaction, reaction was 

added to 30 mL of water, acidified with 1 M HCl, filtered, and recrystallized in hot ethanol 

to yield 44h as a white solid (1.78 g, 89%): 1H NMR (400 MHz, CDCl3) δ 8.03 (d, J = 8.0 

Hz, 2H), 7.81 – 7.69 (m, 5H), 7.66 – 7.58 (m, 2H), 7.53 (t, J = 7.5 Hz, 2H). 1H NMR shifts 

match literature values.34  

O

N

O

CN



 42 

 

4-cinnamoylbenzonitrile (44i): Following a modified literature procedure35: to a solution 

of EtOH (20 mL), water (20 mL), and NaOH (10 mmol) was added 4-acetylbenzonitrile 

(1.00 g, 6.9 mmol). After 15 minutes, benzaldehyde (0.7 mL, 6.9 mmol) was added. The 

reaction mixture was stirred overnight at rt. After completion of the reaction, reaction was 

filtered, and the solid recrystallized in hot ethanol to yield 44i as a white solid (0.59 g, 

36%): 1H NMR (400 MHz, CDCl3) δ 8.11 – 8.06 (m, 2H), 7.87 – 7.79 (m, 3H), 7.67 – 7.63 

(m, 2H), 7.50 – 7.41 (m, 4H). 1H NMR shifts match literature values.36 

 

General Procedure A for N-Tosyl Imines 

Following a modified literature procedure,23 to a 0 °C solution of chalcone (1 equiv) and 

p-toluenesulfonamide (1 equiv) in CH2Cl2 (0.165 M) was added triethylamine (2 equiv). 

After 5 min, TiCl4 (1 equiv, 1M in CH2Cl2) was added. The reaction was brought to reflux 

and stirred for 12 h, then quenched with 50 mL water. The aqueous layer was extracted 

CH2Cl2 (3x 30 mL). The combined organic layers were dried over Na2SO4, and solvent 

was concentrated in vacuo. The crude mixture was purified by flash column 

chromatography (70:30 hexanes/EtOAc) to yield the imine product as an amorphous 

solid.  

 

 

 

O

NC
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General Procedure B for N-Tosyl Imines 

Following a modified literature procedure,23 to a 0 °C solution of chalcone (1 equiv) and 

p-toluenesulfonamide (1 equiv) in CH2Cl2 (0.08 M) was added triethylamine (2.2 equiv). 

After 5 min, TiCl4 (1.1 equiv, 1M in CH2Cl2) was added. The reaction was brought to reflux 

and stirred for 12 h, then quenched with 50 mL water. The aqueous layer was extracted 

CH2Cl2 (3x 30 mL). The combined organic layers were dried over Na2SO4, and solvent 

was concentrated in vacuo. The crude mixture was purified by flash column 

chromatography (70:30 hexanes/EtOAc) to yield imine product as an amorphous solid.  

 

N-((1E,2E)-1,3-diphenylallylidene)-4-methylbenzenesulfonamide (1a): The title 

compound was synthesized according to general procedure A with trans-chalcone, (2.88 

mmol, 0.600 g) to yield 1a as a yellow amorphous solid (0.422 mg, 48%). 1H NMR (400 

MHz, CDCl3) δ 8.23 – 7.80 (m, 3H), 7.65 (s, 2H), 7.59 – 7.51 (m, 3H), 7.42 (tdd, J = 8.9, 

6.1, 2.8 Hz, 5H), 7.31 (d, J = 8.1 Hz, 2H), 7.06 (d, J = 16.1 Hz, 1H), 2.42 (s, 3H). 1H NMR 

spectrum is consistent with published data.23 

 

N-((1E,2E)-3-(4-methoxyphenyl)-1-phenylallylidene)-4-methylbenzenesulfonamide 

(1b): The title compound was synthesized according to general procedure A with (E)-3-

(4-methoxyphenyl)-1-phenylprop-2-en-1-one (2.1 mmol, 0.50 g) to yield 1b as a yellow 

N
Ts

N
Ts

OCH3
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amorphous solid (1.88 g, 89%). 1H NMR (400 MHz, CDCl3) δ 7.94 (d, J = 8.2 Hz, 3H), 

7.64 (s, 2H), 7.55 (tq, J = 5.6, 1.5 Hz, 3H), 7.45 (dd, J = 8.3, 6.9 Hz, 2H), 7.33 (d, J = 8.0 

Hz, 2H), 7.06 (d, J = 16.0 Hz, 1H), 6.98 – 6.91 (m, 2H), 3.88 (s, 3H), 2.44 (s, 3H). 1H NMR 

spectrum is consistent with published data.23 

 

 

N-((1E,2E)-1-(4-methoxyphenyl)-3-phenylallylidene)-4-methylbenzenesulfonamide 

(1c): The title compound was synthesized according to general procedure A with (E)-1-

(4-methoxyphenyl)-3-phenylprop-2-en-1-one (0.25 g, 1.05 mmol) to yield 1c as a yellow 

solid (0.295 g, 72%). 1H NMR (600 MHz, CDCl3) δ 8.01 – 7.87 (m, 3H), 7.70 (d, J = 8.4 

Hz, 2H), 7.58 (d, J = 5.9 Hz, 2H), 7.44 – 7.40 (m, 3H), 7.30 (d, J = 8.1 Hz, 2H), 7.09 – 

7.02 (m, 1H), 6.93 (t, J = 6.0 Hz, 2H), 3.87 (d, J = 3.6 Hz, 3H), 2.42 (s, 3H). 1H NMR 

spectrum is consistent with published data.23 

 

N-((1E,2E)-3-(furan-2-yl)-1-phenylallylidene)-4-methylbenzenesulfonamide (1d): 

The title compound was synthesized according to general procedure B with (E)-3-(furan-

2-yl)-1-phenylprop-2-en-1-one (1.01 mmol, 0.200 g), to yield crude 1d as a brown 

amorphous solid (0.230 g, 64%): 1H NMR (400 MHz, CDCl3) δ 7.92 (d, J = 7.9 Hz, 2H), 

7.63 – 7.49 (m, 4H), 7.46 – 7.39 (m, 2H), 7.31 (dd, J = 8.0, 4.7 Hz, 3H), 6.83 (d, J = 15.7 

N
Ts

H3CO

N
Ts
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Hz, 1H), 6.68 (d, J = 3.5 Hz, 1H), 6.51 (dd, J = 3.5, 1.8 Hz, 1H), 2.42 (s, 3H). 1H NMR 

spectrum is consistent with published data.23 

 

 

N-((1E,2E)-1-(furan-2-yl)-3-phenylallylidene)-4-methylbenzenesulfonamide (1e): 

The title compound was synthesized according to general procedure B with (E)-1-(furan-

2-yl)-3-phenylprop-2-en-1-one (0.403 mmol, 0.080 mg), which produced crude 1e as a 

brown amorphous solid (0.013 g, 90%) The crude product was recrystallized in EtOH for 

characterization. Spectroscopic data was acquired at 110 °C: mp: 170-173 °C. 1H NMR 

(500 MHz, DMSO-d6) δ 8.09 – 8.01 (m, 1H), 7.84 (d, J = 8.0 Hz, 2H), 7.72 – 7.59 (m, 3H), 

7.59 – 7.44 (m, 5H), 7.40 (d, J = 8.0 Hz, 2H), 6.78 (d, J = 3.7 Hz, 1H), 2.40 (s, 3H).13C 

NMR (126 MHz, DMSO-d6) δ 162.0, 149.5, 148.8, 144.1, 142.6, 138.6, 134.3, 130.1, 

128.9, 128.4, 127.7, 125.9, 121.9, 120.7, 112.8, 20.3. AMM (ESI-TOF) m/z calcd for 

C21H18N2O2S+ [M+H]+ 352.1002, found 352.1010.  

 

 

N-((1E,2E)-3-(furan-3-yl)-1-phenylallylidene)-4-methylbenzenesulfonamide (1f): The 

title compound was synthesized according to general procedure B with (E)-3-(furan-3-yl)-

1-phenylprop-2-en-1-one (2.02 mmol, 0.40 g), which produced 1f as a brown amorphous 

N
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O

N
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solid (0.450 g, 64%): 1H NMR (400 MHz, CDCl3) δ 7.91 (d, J = 7.8 Hz, 2H), 7.65 – 7.39 

(m, 8H), 7.31 (d, J = 7.9 Hz, 2H), 6.98 (d, J = 15.7 Hz, 1H), 6.78 (s, 1H), 2.42 (d, J = 3.1 

Hz, 3H).1H NMR spectrum is consistent with published data.23 

 

4-methyl-N-((1E,2E)-1-phenyl-3-(pyridin-3-yl)allylidene)benzenesulfonamide (1g): 

The title compound was synthesized according to general procedure B with (E)-1-phenyl-

3-(pyridin-3-yl)prop-2-en-1-one (0.250 g, 1.19 mmol), which produced 1g as a brown 

amorphous solid (0.182 g, 42%). The crude product was recrystallized in EtOH for 

characterization. Spectroscopic data was acquired at 108 °C. mp: 139.4 °C. 1H NMR (500 

MHz, DMSO-d6) δ 8.78 (d, J = 2.3 Hz, 1H), 8.62 (d, J = 4.7 Hz, 1H), 8.07 (d, J = 8.1, 2.1 

Hz, 1H), 7.87 – 7.77 (m, 3H), 7.70 (d, J = 7.8 Hz, 2H), 7.64 (t, J = 7.4 Hz, 1H), 7.53 (t, J 

= 7.5 Hz, 2H), 7.48 (dd, J = 8.1, 4.8 Hz, 1H), 7.41 (d, J = 7.9 Hz, 2H), 7.15 (d, J = 16.3 

Hz, 1H), 2.40 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 176.0, 150.5, 149.0, 142.8, 142.7, 

138.1, 135.7, 133.9, 131.4, 129.8, 128.9, 128.9, 127.8, 126.0, 124.8, 123.2, 20.2. AMM 

(ESI-TOF) m/z calcd for C21H19N2O2S+ [M+H]+ 363.1162, found 363.1167. 

 

 

N-((1E,2E)-3-(4-cyanophenyl)-1-phenylallylidene)-4-methylbenzenesulfonamide 

(1h): The title compound was synthesized according to general procedure A with (E)-4-
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N
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(3-oxo-3-phenylprop-1-en-1-yl)benzonitrile (2.14 mmol, 0.50 g), to yield 1h as a pale 

yellow amorphous solid (0.51 g, 61%): 1H NMR (600 MHz, CDCl3) δ 8.14 (d, J = 15.9 Hz, 

1H), 7.97 – 7.87 (m, 2H), 7.75 – 7.62 (m, 6H), 7.60 – 7.54 (m, 1H), 7.49 – 7.43 (m, 2H), 

7.33 (d, J = 7.9 Hz, 2H), 7.03 (d, J = 16.1 Hz, 1H), 2.43 (s, 3H).; 13C NMR (151 MHz, 

CDCl3) δ 176.3, 144.8, 143.79, 138.8, 138.2, 136.7, 132.7, 132.5, 130.3, 129.5, 128.8, 

128.6, 127.2, 125.7, 118.3, 113.8, 21.6.; AMM (ESI-TOF) m/z calcd for C23H19N2O2S+ 

[M+H]+ 387.1162, found 387.1166. 

 

 

N-((1E,2E)-1-(4-cyanophenyl)-3-phenylallylidene)-4-methylbenzenesulfonamide 

(1i): The title compound was synthesized according to general procedure A with 4-

cinnamoylbenzonitrile (1.28 mmol, 0.30 g), to yield 1i as a yellow amorphous solid (0.30 

g, 60%): 1H NMR (600 MHz, CDCl3) δ 8.12 (d, J = 16.2 Hz, 1H), 7.98 – 7.85 (m, 2H), 7.81 

– 7.69 (m, 4H), 7.66 – 7.52 (m, 2H), 7.50 – 7.39 (m, 3H), 7.34 (d, J = 7.9 Hz, 2H), 7.01 

(d, J = 15.9 Hz, 1H), 2.44 (s, 3H).; 13C NMR (151 MHz, CDCl3) δ 175.3, 149.6, 144.0, 

141.4, 138.1, 134.0, 132.1, 131.7, 130.6, 129.6, 129.2, 128.9, 127.3, 121.8, 118.0, 115.2, 

21.6.; IR:1612, 2204, 2229, 2852, 2921, 3061 cm-1; AMM (ESI-TOF) m/z calcd for 

C23H19N2O2S+ [M+H]+ 387.1162, found 387.1170. 
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4-methyl-N-((1E,2E)-1-phenylbut-2-en-1-ylidene)benzenesulfonamide (1j) 

The title compound was synthesized according to general procedure A with (E)-1-

phenylbut-2-en-1-one, (0.343 g, 2.34 mmol) to yield 1j as a red oil (0.12 g, 17%): 1H NMR 

(600 MHz, CDCl3) δ 7.98 – 7.84 (m, 2H), 7.64 – 7.53 (m, 2H), 7.49 (t, J = 7.5 Hz, 1H), 

7.39 (t, J = 7.9 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 6.43 (d, J = 13.8 Hz, 1H), 2.43 (s, 3H), 

2.05 (d, J = 6.9 Hz, 3H). 1H NMR spectrum is consistent with published data.23 

 

 

(Z)-N-(cyclohex-2-en-1-ylidene)-4-methylbenzenesulfonamide (1k): Following a 

modified literature procedure:19 To a solution of TiCl4 and Ti(OEt)4 in toluene was added 

NEt3. The resulting mixture was stirred for 5 min at rt before TsNH2 was added, and the 

reaction mixture was stirred for 15 min under reflux. A solution of cyclohexenone in 

toluene was added dropwise over 15 min to the refluxing solution and was stirred for 4 

hours. The reaction mixture was poured into a stirred and precooled (0 °C) suspension of 

NaHCO3 in acetone/water (200 mL 100:1), diluted with hexanes (100 mL), dried 

(MgSO4), and filtered. The filtrate was concentrated under in vacuo, and the crude 

product was purified by flash chromatography (70:30 Hexanes/EtOAc) to yield 1k as an 

off white solid (0.35 g, 15%): 1H NMR (400 MHz, CDCl3) δ 7.86 (dd, J = 8.4, 2.1 Hz, 2H), 

CH3
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7.35 – 7.28 (m, 2H), 6.94 (ddt, J = 12.2, 9.9, 4.1 Hz, 1H), 6.15 (dt, J = 10.0, 2.0 Hz, 1H), 

3.22 – 3.13 (m, 1H), 2.57 – 2.51 (m, 1H), 2.43 (s, 3H), 2.36 (dddd, J = 14.3, 6.2, 4.2, 2.1 

Hz, 2H), 1.96 (h, J = 6.4 Hz, 2H). 1H NMR spectrum is consistent with published data.19 

 

Imine Scope: 

Due to restricted rotation of nearby aromatic rings, the aromatic region of the NMR of the 

aza-Tamura products does not have defined peaks in CDCl3 at room temperature. A 

proton NMR experiment was run on product 4a in DMSO at 80 °C, which gave defined 

product peaks. We expect that this example demonstrates the restricted rotation, and it 

can be extrapolated that the other products would provide the same result. 

 

 

methyl (1R,2S,Z)-3-(((4-methylphenyl)sulfonamido)(phenyl)methylene)-4-oxo-2-

phenyl-1,2,3,4-tetrahydronaphthalene-1-carboxylate (4a): To a solution of imine 1a 

(0.05 g, 0.14 mmol) and homophthalic anhydride (28 mg, 0.17 mmol) in dry CH2Cl2 (1.4 

mL, 0.1 M) was added i-Pr2NEt (0.024 mL, 0.14 mmol). The reaction mixture was stirred 

for 18 h at 25 °C and then quenched with 2 mL of 1 M HCl solution. The aqueous layer 

was extracted with CH2Cl2 (3 x 2 mL). The combined organic layers were dried over 

Na2SO4 and solvent was concentrated in vacuo. The resulting crude carboxylic acid was 

dissolved in dry CH2Cl2 (1.4 mL, 0.1 M) and CH3OH (1 mL), and TMSCHN2 solution (0.17 
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mL, 2M in hexanes) was added dropwise. The reaction was stirred at 25 °C for 1 h and 

then DBU solution (0.14 mL, 1M in CH2Cl2) was added. The reaction was stirred at 25 °C 

for 22 h and then quenched with 10 µL of AcOH. The volatiles were concentrated in vacuo, 

and the crude mixture was purified by flash chromatography (75:25 hexanes/EtOAc) to 

yield 4a as a pale yellow amorphous solid (0.070 g, 94%): 1H NMR (500 MHz, DMSO-d6) 

δ 13.61 (s, 1H), 8.06 – 8.00 (m, 1H), 7.46 (dtd, J = 24.6, 7.5, 1.5 Hz, 2H), 7.40 – 7.27 (m, 

5H), 7.23 – 7.15 (m, 3H), 7.10 – 7.00 (m, 3H), 6.79 – 6.73 (m, 2H), 6.70 (d, J = 7.5 Hz, 

2H), 4.22 (s, 1H), 4.10 (d, J = 2.2 Hz, 1H), 3.58 (s, 3H), 2.38 (s, 3H).13C NMR (151 MHz, 

CDCl3) δ 189.3, 171.9, 155.2, 143.9, 142.7, 137.6, 136.0, 134.1, 133.7, 130.9, 130.0, 

129.4, 129.4, 129.1, 128.6, 128.4, 127.8, 127.7, 127.6, 127.5, 126.7, 111.3, 52.6, 52.1, 

43.8, 21.7. AMM (ESI-TOF) m/z calcd for C32H28NO5S + [M+H]+ 538.1683, found 

538.1670. 

 

 

methyl (1R,2S,Z)-2-(4-methoxyphenyl)-3-(((4-methylphenyl)sulfonamido)(phenyl) 

methylene)-4-oxo-1,2,3,4-tetrahydronaphthalene-1-carboxylate (4b): To a solution of 

imine 1b (0.050 g, 0.128 mmol) and homophthalic anhydride (0.026 g, 0.154 mmol) in dry 

CH2Cl2 (1.28 mL, 0.1 M) was added i-Pr2NEt (0.022 mL, 0.128 mmol). The reaction 

mixture was stirred for 18 h at 25 °C and then quenched with 2 mL of 1 M HCl solution. 

The aqueous layer was extracted with CH2Cl2 (3 x 2 mL). The combined organic layers 
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were dried over Na2SO4 and solvent was concentrated in vacuo. The resulting crude 

carboxylic acid was dissolved in dry CH2Cl2 (1.28 mL, 0.1 M) and CH3OH (1 mL), and 

TMSCHN2 solution (0.128 mL, 2M in hexanes) was added dropwise. The reaction was 

stirred at 25 °C for 1 h and then DBU solution (0.128 mL, 1M in CH2Cl2) was added. The 

reaction was stirred at 25 °C for 22 h and then quenched with 10 µL of AcOH. The volatiles 

were concentrated in vacuo, and the crude mixture was purified by flash chromatography 

(70:30 hexanes/EtOAc) to yield 4b as a pale yellow amorphous solid (0.067 g, 92%): 1H 

NMR (600 MHz, CDCl3) δ 13.86 (s, 1H), 8.19 – 8.13 (m, 1H), 7.45 – 7.37 (m, 2H), 7.34 – 

7.27 (m, 4H), 7.14 – 7.08 (m, 3H), 7.07 – 7.02 (m, 2H), 6.61 – 6.52 (m, 5H), 4.03 (d, J = 

2.1 Hz, 1H), 3.82 (d, J = 2.2 Hz, 1H), 3.67 (s, 3H), 3.59 (s, 3H), 2.37 (s, 3H).; 13C NMR 

(151 MHz, CDCl3) δ 189.2, 171.8, 158.0, 154.9, 143.7, 137.4, 136.0, 134.6, 134.0, 133.6, 

130.8, 129.8, 129.3, 129.2, 128.9, 128.4, 128.3, 127.6, 127.6, 127.4, 113.5, 111.5, 55.0, 

52.4, 52.1, 42.9, 21.6.; AMM (ESI-TOF) m/z calcd for C33H30NO6S + [M+H]+ 568.1788, 

found 568.1782. 

 

 

methyl (1R,2S,Z)-3-((4-methoxyphenyl)((4-methylphenyl)sulfonamido)methylene)-

4-oxo-2-phenyl-1,2,3,4-tetrahydronaphthalene-1-carboxylate (4c): To a solution of 

imine 1c (0.05 g, 0.128 mmol) and homophthalic anhydride (0.025 g, 0.154 mmol) in dry 

CH2Cl2 (1.28 mL, 0.1 M) was added i-Pr2NEt (0.022 mL, 0.128 mmol). The reaction 

O

Ph
CO2CH3

NH

H3CO

Ts



 52 

mixture was stirred for 18 h at 25 °C and then quenched with 2 mL of 1 M HCl solution. 

The aqueous layer was extracted with CH2Cl2 (3 x 2 mL). The combined organic layers 

were dried over Na2SO4 and solvent was concentrated in vacuo. The resulting crude 

carboxylic acid was dissolved in dry CH2Cl2 (1.28 mL, 0.1 M) and CH3OH (1 mL), and 

TMSCHN2 solution (0.128 mL, 2M in hexanes) was added dropwise. The reaction was 

stirred at 25 °C for 1 h and then DBU solution (0.128 mL, 1M in CH2Cl2) was added. The 

reaction was stirred at 25 °C for 22 h and then quenched with 10 µL of AcOH. The volatiles 

were concentrated in vacuo, and the crude mixture was purified by flash chromatography 

(75:25 hexanes/EtOAc) to yield 4c as a pale yellow amorphous solid (0.067 g, 92%): 1H 

NMR (600 MHz, CDCl3) δ 13.80 (s, 1H), 8.18 – 8.11 (m, 1H), 7.42 – 7.36 (m, 2H), 7.34 

(d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.1 Hz, 2H), 7.06 – 6.98 (m, 4H), 6.73 – 6.50 (m, 6H), 

4.17 (d, J = 2.1 Hz, 1H), 3.88 (d, J = 2.0 Hz, 1H), 3.79 (s, 3H), 3.59 (s, 3H), 2.37 (s, 3H).; 

13C NMR (151 MHz, CDCl3) δ 189.1, 171.7, 160.3, 155.1, 143.6, 142.6, 137.3, 135.8, 

134.0, 133.5, 130.5, 129.7, 129.2, 128.4, 128.2, 127.6, 127.6, 127.3, 126.5, 123.1, 112.8, 

111.6, 55.2, 52.4, 52.0, 43.6, 21.5. AMM (ESI-TOF) m/z calcd for C33H30NO6S+ [M+H]+ 

568.1788, found 568.1781.  

 

 

methyl (1R,Z)-2-(furan-2-yl)-3-(((4-methylphenyl)sulfonamido)(phenyl)methylene)-

4-oxo-1,2,3,4-tetrahydronaphthalene-1-carboxylate (4d): To a solution of imine 1d 
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(0.05 g, 0.142 mmol) and homophthalic anhydride (0.028 g, 0.171 mmol) in dry CH2Cl2 

(1.42 mL, 0.1 M) was added i-Pr2NEt (0.025 mL, 0.142 mmol). The reaction mixture was 

stirred for 18 h at 25 °C and then quenched with 2 mL of 1 M HCl solution. The aqueous 

layer was extracted with CH2Cl2 (3 x 2 mL). The combined organic layers were dried over 

Na2SO4 and solvent was concentrated in vacuo. The resulting crude carboxylic acid was 

dissolved in dry CH2Cl2 (1.42 mL, 0.1 M) and CH3OH (1 mL), and TMSCHN2 solution 

(0.142 mL, 2M in hexanes) was added dropwise. The reaction was stirred at 25 °C for 1 

h and then DBU solution (0.142 mL, 1M in CH2Cl2) was added. The reaction was stirred 

at 25 °C for 22 h and then quenched with 10 µL of AcOH. The volatiles were concentrated 

in vacuo, and the crude mixture was purified by flash chromatography (80:20 

hexanes/EtOAc) to yield 4d as a pale yellow amorphous solid (0.062 g, 84%): 1H NMR 

(600 MHz, CDCl3) δ 13.71 (d, J = 2.2 Hz, 1H), 8.10 (d, J = 7.8 Hz, 1H), 7.42 (dt, J = 33.8, 

7.5 Hz, 2H), 7.37 – 7.30 (m, 3H), 7.24 – 7.11 (m, 5H), 7.07 (s, 1H), 6.97 (d, J = 41.0 Hz, 

2H), 6.02 (d, J = 2.6 Hz, 1H), 5.64 (d, J = 2.8 Hz, 1H), 4.17 (d, J = 2.4 Hz, 1H), 4.10 (s, 

1H), 3.59 (d, J = 2.1 Hz, 3H), 2.39 (d, J = 2.0 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 

188.6, 171.1, 154.9, 154.5, 143.8, 141.6, 137.4, 136.1, 133.5, 133.4, 130.4, 129.6, 129.5, 

129.3, 129.0, 128.4, 127.7, 127.6, 127.5, 110.0, 109.5, 107.7, 52.4, 48.2, 38.3, 21.6.; 

AMM (ESI-TOF) m/z calcd for C30H26NO6S+ [M+H]+ 528.1475, found  528.1473. 
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methyl (1R,2S,Z)-3-(furan-2-yl((4-methylphenyl)sulfonamido)methylene)-4-oxo-2-

phenyl-1,2,3,4-tetrahydronaphthalene-1-carboxylate (4e): To a solution of imine 1e 

(0.05 g, 0.142 mmol) and homophthalic anhydride (0.028 g, 0.171 mmol) in dry CH2Cl2 

(1.42 mL, 0.1 M) was added i-Pr2NEt (0.025 mL, 0.142 mmol). The reaction mixture was 

stirred for 18 h at 25 °C and then quenched with 2 mL of 1 M HCl solution. The aqueous 

layer was extracted with CH2Cl2 (3 x 2 mL). The combined organic layers were dried over 

Na2SO4 and solvent was concentrated in vacuo. The resulting crude carboxylic acid was 

dissolved in dry CH2Cl2 (1.42 mL, 0.1 M) and CH3OH (1 mL), and TMSCHN2 solution 

(0.142 mL, 2M in hexanes) was added dropwise. The reaction was stirred at 25 °C for 1 

h and then DBU solution (0.142 mL, 1M in CH2Cl2) was added. The reaction was stirred 

at 25 °C for 22 h and then quenched with 10 µL of AcOH. The volatiles were concentrated 

in vacuo, and the crude mixture was purified by flash chromatography (80:20 

hexanes/EtOAc) to yield 4e as a pale yellow amorphous solid (0.058 mg, 68%): 1H NMR 

(400 MHz, CDCl3) δ 13.64 (s, 1H), 8.13 (dd, J = 7.5, 1.7 Hz, 1H), 7.51 – 7.39 (m, 2H), 

7.39 – 7.29 (m, 3H), 7.25 – 6.99 (m, 7H), 6.62 (s, 1H), 5.72 (s, 1H), 3.99 (d, J = 2.2 Hz, 

1H), 3.82 (d, J = 2.2 Hz, 1H), 3.59 (s, 3H), 2.38 (s, 3H).;13C NMR (151 MHz, CD3CN) δ 

191.0, 172.6, 146.2, 145.6, 144.8, 143.3, 143.0, 137.5, 137.2, 135.0, 134.9, 130.7, 130.6, 

129.5, 129.5, 128.2, 128.2, 128.1, 127.7, 117.1, 116.3, 112.4, 53.1, 52.0, 44.6, 21.6. AMM 

(ESI-TOF) m/z calcd for C30H26NO6S+ [M+H]+  528.1475, found 528.1481. 
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methyl (1R,2S,Z)-2-(furan-3-yl)-3-(((4-methylphenyl)sulfonamido)(phenyl)methy-

lene)-4-oxo-1,2,3,4-tetrahydronaphthalene-1-carboxylate (4f): To a solution of imine 

1f (0.05 g, 0.142 mmol) and homophthalic anhydride (0.028 g, 0.171 mmol) in dry CH2Cl2 

(1.42 mL, 0.1 M) was added i-Pr2NEt (0.025 mL, 0.142 mmol). The reaction mixture was 

stirred for 18 h at 25 °C and then quenched with 2 mL of 1 M HCl solution. The aqueous 

layer was extracted with CH2Cl2 (3 x 2 mL). The combined organic layers were dried over 

Na2SO4 and solvent was concentrated in vacuo. The resulting crude carboxylic acid was 

dissolved in dry CH2Cl2 (1.42 mL, 0.1 M) and CH3OH (1 mL), and TMSCHN2 solution 

(0.142 mL, 2M in hexanes) was added dropwise. The reaction was stirred at 25 °C for 1 

h and then DBU solution (0.142 mL, 1M in CH2Cl2) was added. The reaction was stirred 

at 25 °C for 22 h and then quenched with 10 µL of AcOH. The volatiles were concentrated 

in vacuo, and the crude mixture was purified by flash chromatography (80:20 

hexanes/EtOAc) to yield 4f as a pale yellow amorphous solid (0.062 g, 84%): 1H NMR 

(600 MHz, CDCl3) δ 13.64 (d, J = 2.3 Hz, 1H), 8.13 (d, J = 7.8 Hz, 1H), 7.50 – 7.40 (m, 

2H), 7.37 (t, J = 7.6 Hz, 1H), 7.32 (dd, J = 8.3, 2.2 Hz, 2H), 7.23 (d, J = 11.5 Hz, 4H), 7.07 

(s, 1H), 7.00 – 6.72 (m, 2H), 6.62 (s, 1H), 5.72 (s, 1H), 3.99 (s, 1H), 3.83 (s, 1H), 3.59 (d, 

J = 2.2 Hz, 3H), 2.38 (d, J = 2.1 Hz, 3H).; 13C NMR (151 MHz, CDCl3) δ 188.7, 171.3, 

154.0, 143.8, 142.9, 139.8, 137.4, 136.4, 133.6, 133.6, 130.6, 129.8, 129.5, 129.3, 129.2, 
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128.5, 127.8, 127.6, 127.5, 126.8, 111.7, 109.3, 52.4, 50.5, 35.5, 21.6.; AMM (ESI-TOF) 

m/z calcd for C30H26NO6S+ [M+H]+ 528.1475, found 528.1464. 

 

 

methyl (1R,2S,Z)-3-(((4-methylphenyl)sulfonamido)(phenyl)methylene)-4-oxo-2-

(pyridin-3-yl)-1,2,3,4-tetrahydronaphthalene-1-carboxylate (4g): To a solution of 

imine 1g (0.05 g, 0.138 mmol) and homophthalic anhydride (0.027 g, 0.166 mmol) in dry 

CH2Cl2 (1.42 mL, 0.1 M) was added i-Pr2NEt (0.025 mL, 0.142 mmol). The reaction 

mixture was stirred for 18 h at 25 °C and then quenched with 2 mL of 1 M HCl solution. 

The aqueous layer was extracted with CH2Cl2 (3 x 2 mL), followed by EtOAc (3x5 mL). 

The combined organic layers were dried over Na2SO4 and solvent was concentrated in 

vacuo. The resulting crude carboxylic acid was dissolved in dry CH2Cl2 (1.38 mL, 0.1 M) 

and CH3OH (2 mL), and TMSCHN2 solution (0.138 mL, 2M in hexanes) was added 

dropwise. The reaction was stirred at 25 °C for 1 h and then DBU solution (0.138 mL, 1M 

in CH2Cl2) was added. The reaction was stirred at 25 °C for 22 h and then quenched with 

10 µL of AcOH. The volatiles were concentrated in vacuo, and the crude mixture was 

purified by flash chromatography (80:20 hexanes/EtOAc) to yield 4g as a pale yellow 

amorphous solid (0.041 g, 55%): 1H NMR (600 MHz, CDCl3) δ 13.95 (s, 1H), 8.29 (t, J = 

3.1 Hz, 1H), 8.20 – 8.15 (m, 1H), 7.90 (s, 1H), 7.48 – 7.41 (m, 2H), 7.33 (t, J = 7.4 Hz, 

2H), 7.28 (d, J = 8.0 Hz, 2H), 7.13 – 7.05 (m, 4H), 6.95 (d, J = 3.4 Hz, 3H), 4.15 (s, 1H), 
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3.78 (s, 1H), 3.63 (s, 3H), 2.37 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 188.7, 171.4, 156.1, 

149.1, 148.2, 144.1, 138.2, 137.4, 135.3, 134.8, 134.0, 133.9, 130.5, 130.1, 129.7, 129.4, 

129.0, 129.0, 128.0, 127.8, 127.7, 123.2, 109.9, 52.8, 51.7, 41.6, 21.7. AMM (ESI-TOF) 

m/z calcd for C30H26NO6S+ [M+H]+ 539.1635, found 539.1626. 

 

methyl (1R,2S,Z)-2-(4-cyanophenyl)-3-(((4-methylphenyl)sulfonamido)(phenyl) me-

thyl-ene)-4-oxo-1,2,3,4-tetrahydronaphthalene-1-carboxylate (4h): To a solution of 

imine 1j (0.05 g, 0.129 mmol) and homophthalic anhydride (0.025 g, 0.155 mmol) in dry 

CH2Cl2 (1.29 mL, 0.1 M) was added i-Pr2NEt (0.032 mL, 0.129 mmol). The reaction 

mixture was stirred for 18 h at 25 °C and then quenched with 2 mL of 1 M HCl solution. 

The aqueous layer was extracted with CH2Cl2 (3 x 2 mL). The combined organic layers 

were dried over Na2SO4, and solvent was concentrated in vacuo. The resulting crude 

carboxylic acid was dissolved in dry CH2Cl2 (1.29 mL, 0.1 M) and CH3OH (2 mL), and 

TMSCHN2 solution (0.129 mL, 2M in hexanes) was added dropwise. The reaction was 

stirred at 25 °C for 1 h and then DBU solution (0.129 mL, 1M in CH2Cl2) was added. The 

reaction was stirred at 25 °C for 22 h and then quenched with 10 µL of AcOH. The volatiles 

were concentrated in vacuo, and the crude mixture was purified by flash chromatography 

(75:25 hexanes/EtOAc) to yield 4h as a pale yellow amorphous solid (0.065 mg, 89%): 

1H NMR (600 MHz, CDCl3) δ 13.77 (s, 1H), 8.19 – 8.11 (m, 1H), 7.49 – 7.37 (m, 3H), 7.36 

– 7.25 (m, 3H), 7.17 (d, J = 8.0 Hz, 2H), 7.09 – 7.01 (m, 4H), 6.66 – 6.63 (m, 2H), 3.97 
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(d, J = 1.8 Hz, 1H), 3.85 (d, J = 1.8 Hz, 1H), 3.60 (d, J = 1.1 Hz, 3H), 2.40 (s, 3H).; 13C 

NMR (151 MHz, CDCl3) δ 189.1, 171.6, 152.2, 144.3, 142.0, 137.2, 135.7, 135.5, 134.0, 

133.5, 131.2, 130.1, 129.9, 129.5, 128.7, 128.5, 127.7, 127.4, 127.2, 126.9, 118.2, 113.2, 

111.8, 52.6, 51.8, 43.5, 21.6.; AMM (ESI-TOF) m/z calcd for C33H27N2O5S+ [M+H]+ 

563.1633, found 563.1633. 

 

methyl (1R,2S,Z)-3-((4-cyanophenyl)((4-methylphenyl)sulfonamido)methylene)-4-

oxo-2-phenyl-1,2,3,4-tetrahydronaphthalene-1-carboxylate (4i): To a solution of imine 

1k (0.050 g, 0.129 mmol) and homophthalic anhydride (0.025 g, 0.155 mmol) in dry 

CH2Cl2 (1.29 mL, 0.1 M) was added i-Pr2NEt (0.032 mL, 0.129 mmol). The reaction 

mixture was stirred for 18 h at 25 °C and then quenched with 2 mL of 1 M HCl solution. 

The aqueous layer was extracted with CH2Cl2 (3 x 2 mL). The combined organic layers 

were dried over Na2SO4 and solvent was concentrated in vacuo. The resulting crude 

carboxylic acid was dissolved in dry CH2Cl2 (1.29 mL, 0.1 M) and CH3OH (2 mL), and 

TMSCHN2 solution (0.129 mL, 2M in hexanes) was added dropwise. The reaction was 

stirred at 25 °C for 1 h and then DBU solution (0.129 mL, 1M in CH2Cl2) was added. The 

reaction was stirred at 25 °C for 22 h and then quenched with 10 µL of AcOH. The volatiles 

were concentrated in vacuo, and the crude mixture was purified by flash chromatography 

(70:30 hexanes/EtOAc) to yield 4i as a pale yellow amorphous solid (0.062 g, 85%): 1H 

NMR (600 MHz, CDCl3) δ 13.77 (s, 1H), 8.18 – 8.14 (m, 1H), 7.45 – 7.41 (m, 2H), 7.34 
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(d, J = 7.9 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 7.10 – 7.02 (m, 5H), 6.65 (d, J = 7.3 Hz, 2H), 

3.97 (s, 1H), 3.85 (s, 1H), 3.60 (s, 3H), 2.40 (s, 3H).;13C NMR (151 MHz, CDCl3) δ 189.1, 

171.6, 152.2, 144.3, 141.9, 137.3, 135.7, 135.5, 134.0, 133.5, 131.2, 130.1, 129.9, 129.5, 

128.7, 128.5, 127.7, 127.4, 127.2, 126.9, 118.2, 113.2, 111.8, 52.6, 51.8, 43.5, 21.6.; IR: 

1576,1611, 2228, 2852, 3061 cm-1; AMM (ESI-TOF) m/z calcd for C33H27N2O5S+ [M+H]+ 

563.1635, found 563.1622. 

 

 

methyl (1R,2R,Z)-2-methyl-3-(((4-methylphenyl)sulfonamido)(phenyl)methylene)-4-

oxo-1,2,3,4-tetrahydronaphthalene-1-carboxylate (4j): To a solution of imine 1h (0.05 

g, 0.167 mmol) and homophthalic anhydride (0.032 g, 0.200 mmol) in dry CH2Cl2 (1.67 

mL, 0.1 M) was added i-Pr2NEt (0.029 mL, 0.167 mmol). The reaction mixture was stirred 

for 18 h at 25 °C and then quenched with 2 mL of 1 M HCl solution. The aqueous layer 

was extracted with CH2Cl2 (3 x 2 mL). The combined organic layers were dried over 

Na2SO4 and solvent was concentrated in vacuo. The resulting crude carboxylic acid was 

dissolved in dry CH2Cl2 (1.67 mL, 0.1 M) and CH3OH (1 mL), and TMSCHN2 solution 

(0.167 mL, 2M in hexanes) was added dropwise. The reaction was stirred at 25 °C for 1 

h and then DBU solution (0.167 mL, 1M in CH2Cl2) was added. The reaction was stirred 

at 25 °C for 22 h and then quenched with 10 µL of AcOH. The volatiles were concentrated 

in vacuo, and the crude mixture was purified by flash chromatography (85:15 
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hexanes/EtOAc) to yield 4j as a pale yellow amorphous solid (0.045 mg, 57%):1H NMR 

(600 MHz, CDCl3) δ 13.64 (s, 1H), 8.15 (dd, J = 7.8, 1.5 Hz, 1H), 7.52 (td, J = 7.5, 1.5 Hz, 

1H), 7.45 (td, J = 7.6, 1.3 Hz, 1H), 7.41 – 7.36 (m, 1H), 7.32 – 7.29 (m, 2H), 7.28 – 7.26 

(m, 1H), 7.24 – 7.22 (m, 1H), 7.13 (d, J = 8.1 Hz, 2H), 6.97 (s, 1H), 3.55 (s, 3H), 3.51 (d, 

J = 2.1 Hz, 1H), 2.99 (qd, J = 7.1, 2.1 Hz, 1H), 2.38 (s, 3H), 0.82 (d, J = 7.1 Hz, 3H).; 13C 

NMR (151 MHz, CDCl3) δ 188.7, 172.0, 152.6, 143.6, 137.6, 136.6, 133.5, 133.2, 130.9, 

130.0, 129.2, 129.2, 129.2, 128.3, 128.0, 127.6, 127.5, 114.3, 52.2, 51.0, 33.2, 21.5, 21.3; 

AMM (ESI-TOF) m/z calcd for C27H26NO5S+ [M+H]+ 476.1526, found 476.1547. 

 

 

methyl 4-((4-methylphenyl)sulfonamido)-10-oxo-1,2,3,9,9a,10-hexahydroanthrace-

ne-9-carboxylate (4k): To a solution of imine 1i (0.05 g, 0.201 mmol)  and homophthalic 

anhydride (0.039 g, 0.241 mmol) in dry CH2Cl2 (2.01 mL, 0.1 M) was added i-Pr2NEt 

(0.035 mL, 0.142 mmol). The reaction mixture was stirred for 18 h at 25 °C and then 

quenched with 2 mL of 1 M HCl solution. The aqueous layer was extracted with CH2Cl2 

(3 x 2 mL). The combined organic layers were dried over Na2SO4 and solvent was 

concentrated in vacuo. The resulting crude carboxylic acid was dissolved in dry CH2Cl2 

(2.01 mL, 0.1 M) and CH3OH (1 mL), and TMSCHN2 solution (0.201 mL, 2M in hexanes) 

was added dropwise. The reaction was stirred at 25 °C for 1 h and then DBU solution 

(0.201 mL, 1M in CH2Cl2) was added. The reaction was stirred at 25 °C for 22 h and then 
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quenched with 10 µL of AcOH. The volatiles were concentrated in vacuo, and the crude 

mixture was purified by flash chromatography (80:20 hexanes/EtOAc) to yield 4k as a 

pale yellow amorphous solid (0.045 g, 55%).1H NMR (600 MHz, CDCl3) δ 14.08 (s, 1H), 

8.09 – 8.03 (m, 1H), 7.83 – 7.77 (m, 2H), 7.51 – 7.40 (m, 2H), 7.33 (d, J = 8.0 Hz, 2H), 

6.99 (d, J = 7.7 Hz, 1H), 3.85 (s, 3H), 3.62 (d, J = 12.4 Hz, 1H), 3.07 – 2.96 (m, 1H), 2.80 

(d, J = 19.7 Hz, 1H), 2.57 – 2.47 (m, 1H), 2.43 (s, 3H), 1.89 – 1.81 (m, 2H), 1.50 – 1.39 

(m, 1H), 1.31 – 1.24 (m, 1H). 13C NMR (151 MHz, CDCl3) δ 188.0, 173.5, 154.7, 144.2, 

139.0, 137.7, 133.4, 133.0, 130.0, 128.1, 128.0, 127.3, 125.6, 109.5, 52.2, 52.2, 37.3, 

27.5, 26.7, 21.6, 20.0.; AMM (ESI-TOF) m/z calcd for C23H24NO5S+ [M+H]+ 426.1370, 

found 426.1358. 
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Chapter 3: Development of the Mukaiyama Castagnoli-Cushman 

Reaction1 

3.1 Introduction  

The Shaw group has been interested in the synthesis of d- and g-lactams through 

the Castagnoli-Cushman reaction (CCR) since our seminal publication on the 4-

component variant in 2007.2-13 In 2013, we discovered that the mechanism of the CCR 

proceeds through a Mannich addition of an anhydride enolate on an iminium ion, or 

through a hydrogen bonding pair, followed by intramolecular acylation (for a detailed 

mechanistic discussion see chapter 1 and 4).7, 14 Based on our new mechanistic 

understanding, we recognized the possibility of developing catalytic variants of the CCR. 

To date, several catalytic examples of the CCR have been developed, however, catalytic 

reactions have exclusively used readily enolizable homophthalic anhydride (Figure 3.1, 

left).11, 15, 16 Our group was interested in developing an acid-catalyzed variant of the CCR 

using 2,5-bis(trimethylsilyloxy) furan as a synthon for succinic anhydride, which would 

enable the facile synthesis of g-lactam structures (Figure 3.1, right).13 

 

Figure 3.1 Previous catalytic examples of the CCR (left). Acid catalyzed Mukaiyama Mannich reaction 

(right). 
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3.1.1 Review of Acid-Catalyzed Mukaiyama Mannich Reactions  

The first acid-mediated reaction of silyl ketene acetals with imines was reported by 

Ojima and coworkers in 1981.17 In association with the Mukaiyama aldol reaction of silyl 

enol ethers and ketene acetals with carbonyls, the reactions of silyl ketene acetals with 

imines have been referred to as the Mukaiyama Mannich reaction. Due to their 

prevalence in antibiotics like penicillin, Ojima and coworkers sought to synthesize b-

lactams through Mannich reactions of silyl ketene acetals mediated by TiCl4 (Figure 3.2). 

Nucleophilic addition and subsequent hydrolysis of the Lewis acid led to the b-amino 

esters 10, which could be cyclized to b-lactams 11 with LDA.17 Although both  b-amino 

esters 10 and b-lactams 11 were achieved in excellent yields, product inhibition 

necessitated the use of stoichiometric Lewis acid promoters. 

 

Figure 3.2 Ojima’s synthesis of b-lactams through Mukaiyama Mannich-like reaction 

In 1985, Morimoto and coworkers developed an a-formylation reaction of silyl 

ketene acetals 12 and N-tert-butylformimidoyl cyanide 13 catalyzed by trimethylsilyl 

triflate.18 Notably, the use of trimethyl silyl triflate allowed for the first catalytic variant of 

the Mukaiyama Mannich reaction. Compound 14 is formed after Mukaiyama Mannich 

addition, which after b-elimination of either trimethylsilyl cyanide or hydrogen cyanide 

provides imines 15. Imine products 15 can then be hydrolyzed to the desired formylation 

products 16 (Figure 3.3).18 The success of this catalytic variant provided precedent for 

the development of catalytic enantioselective Mukaiyama Mannich reactions.  
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Figure 3.3 First catalytic Mukiayama Mannich reaction leading to formylated products 16. 

Mukaiyama’s initial work on the acid-catalyzed Mannich reaction involved a 

catalytic reaction of silyl ketene acetals with diphosphonium salt catalysts.19 In a previous 

report, Mukaiyama had shown disphosphonium salts could catalyze aldol-type reactions 

with aldehydes and silyl nucleophiles.20 Later, similar reactions were reported with imines 

in a Mannich-like reaction promoted by the same catalysts.19 The reaction of N-

benzylidene aniline with the silyl ketene acetal of methyl isobutyrate proceeds with 

excellent yields to the b-amino ester 10 (Figure 3.4).19 Mukaiyama notes that the reaction 

of trimethyl silyl ketene acetals were more reactive than t-butyldimethyl silyl (TBS) ketene 

acetals, which suggests that the silicon substituents have an impact on reactivity. He 

proposed that the mechanism involved initial coordination of the imine with the catalyst to 

form an iminium ion, which could then be attacked by the silyl ketene acetal to form 

products 10.  

 

Figure 3.4 Mukaiyama Mannich reactions catalyzed by diphosphonium salts. 
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reaction.21 The reaction of the trimethylsilyl ketene acetal (18) with a single enantiomer of 

imine 17 was shown to lead to Mannich products 19 with high diastereoselectivity. The 

reaction was then expanded to racemic imines to afford highly enantioenriched products 

19 in modest yields and with increased enantioselectivity when bulky N-substituted imines 

were used (Figure 3.5). Notably, like Ojima’s initial report, stoichiometric quantities of the 

Brønsted acid were required to induce asymmetry in this reaction. 

 

Figure 3.5 First enantioselective Mukaiyama Mannich type reaction to afford b-amino esters. 

Kobayashi and coworkers reported the first catalytic enantioselective Mukaiyama 

Mannich reaction utilizing chiral zirconium complexes.22 In this work, substoichiometric 

quantities of a zirconium catalyst promoted reaction of silyl ketene acetal 22 and 2-

aminophenol derived imines 21 to afford b-amino ketones 23 in good yields and moderate 

enantioselectivities (Figure 3.6). Modification of the catalyst backbone as well as addition 

of N-methyl imidazole ultimately improved enantioselectivity. They hypothesize that the 

mechanism of this reaction involves bidentate chelation which explains the requirement 

for an ortho phenol N-substituent on the imine substrates.  

 

Figure 3.6 First catalytic enantioselective reaction of silyl ketene acetals and imines. 
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 Akiyama also developed a chiral Brønsted acid catalyzed reaction using 

phosphoric acid catalysts derived from boronic acids.23 Catalyst structure was modulated 

by using Suzuki coupling reactions to incorporate the aryl groups on the (R)-BINOL 

scaffold. The introduction of electron-withdrawing nitro groups on the catalyst improved 

enantioselectivity and accelerated the reaction rate. The reaction was optimized to afford 

high diastereo- and enantioselectivities and excellent yields for the syn products (26a) 

(Figure 3.7). In analogy to Kobayashi’s method, the ortho hydroxyl group on the aniline 

portion of the imine was required to impart enantioselectivity.  

 

Figure 3.7 Improved enantioselective reaction of imines with silyl ketene acetals and a chiral 

phosphoric acid catalyst.  
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counterions had previously been used in organic transformations to yield enantioselective 

reaction outcomes, albeit with only moderate success.25-28 List showed the initial utility of 

ACDC in 2006 by developing an asymmetric reduction of a,b-unsaturated aldehydes to 

their saturated counterparts.24 In this report, he utilized a chiral phosphoric acid catalyst 

derived from BINOL to afford saturated aldehydes 31 (Figure 3.8). 

 

Figure 3.8 Enantioselective reduction of a,b-unsaturated aldehydes to show proof of concept for 

ACDC. 
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acidic moiety is buried deeper in the pocket in the disulfonimide. This 3D conformation 

was hypothesized to be responsible for imparting a higher level of enantioselectivity. They 

discovered that disulfonimide 36 was an excellent catalyst for the Mukaiyama aldol 

reaction, leading to the synthesis of a variety of substrates in good yields and 

enantioselectivities (Figure 3.9).  

 

Figure 3.9 List’s Mukaiyama aldol reaction catalyzed by sulfonimide catalyst 36 

List hypothesized that two different mechanistic pathways were possible for this 
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Figure 3.10 Proposed mechanism of the Mukaiyama Aldol reaction 

3.1.3 Synthesis and Reactivity of 2,5-(bistrimethyl)silyloxy furan and Related 
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furans (6a-e) were shown to react with singly activated dienophile such as ethyl acrylate, 

rendering it more reactive than furan in Diels Alder reactions.  

 

Figure 3.11 A. Synthesis of a series of 2,5-bis(trimethylsilyloxy) furan products. B. Synthesis of p-

quinones and hydroquinones from 6. 

Simchen and coworkers also synthesized a variety of analogs of 2,5-

bis(trimethylsilyloxy) furan 6 using trimethylsilyltriflate and triethylamine which obviated 

the use of zinc chloride in the reaction (Figure 3.12).33 Using their novel method, a variety 

of anhydride derivatives (6a-c, 51) were synthesized, as well as thiophenes derived from 

thioanhydrides 49a-b. Additionally, it was found that purification by vacuum distillation 

afforded more consistently pure products.  

 

Figure 3.12 Novel reaction conditions for the synthesis of 2,5-bis(trimethylsilyloxy)furans, 2,5-

bis(trimethylsilyloxy)thiophenes, and 2,6-bis(trimethylsilyloxy)pyran. 
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A follow-up paper by Chan and Brownbridge utilized these bis-(trimethylsilyloxy) 

furans in a novel synthesis of bis-lactones 54 from carbonyl compounds (Figure 3.13A).31 

Although bis-lactone substrates 54 have previously been synthesized by performing an 

oxidative coupling of cinnamic acid,34, 35 Chan and Brownbridge developed a facile Lewis 

acid mediated synthesis using 2,5-bis(trimethylsilyloxy) furan 6a and readily available 
carbonyl compounds (Figure 3.13A). 6a was shown to react with two equivalents of 

acetone and two equivalents of titanium tetrachloride to afford all cis-bis-lactone 54, the 

relative stereochemistry of which was assigned by JH-H values. Interestingly, in the case 

of benzaldehyde, the moles of TiCl4 used in the reaction influenced the ratio of 

diastereomers isolated in the reaction mixture. When two moles of TiCl4 are used, the all 

cis-diastereomer 54a is formed, whereas the use of one mole affords a mixture of 54a 

and unsymmetrical diastereomer 54b (Figure 3.13B). They hypothesized that the extra 

mole of titanium tetrachloride either impacts the structure of the intermediate formed, or 

perhaps the presence of excess TiCl4 causes isomerization from the unsymmetrical 

diastereomer to the symmetrical diastereomer. A small series of bis-lactones 54 were 

synthesized using this methodology in modest yields.  

 

Figure 3.13 Chan and Brownbridge’s synthesis of bis-lactones from 2,5-(bistrimethylsilyloxy) furan 
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Chan and Brownbridge’s final report on the reactivity of 2,5-bis(trimethylsilyloxy) 

furans showed that more highly substituted silyloxy furans (6b, 6c, 6e) afford g-

hydroxybutenolides 57 (Figure 3.14A) when reacted with TiCl4 and ketones or 

aldehydes.32 When 2,5-bis(trimethylsilyloxy) furan 6a was reacted with methyl vinyl 

ketone and titanium tetrachloride at –78 °C, product 59 is formed exclusively (Figure 

3.14B). This result was surprising due to the fact that 6a had been shown to undergo 

Diels Alder reactions with a,b-unsaturated esters (Scheme 3.11B). When more 

substituted silyloxy furans (6b, 6c, 6e) were reacted with methyl vinyl ketone, g-

hydroxybutenolides 60 resulting from Michael addition are observed (Figure 3.14C).32 

 

Figure 3.14 A. Reaction of 6b with benzaldehyde to afford a mixture of bislactone and g-

hydroxybutenolides. B. 59 is formed exclusively when 6a is reacted with methyl viny ketone, C. 

Reaction outcomes from more substitued silyl ketene acetals 6b, 6c, 6e. 

More recently in 2007, Pohmakotr showed that 2,5-bis(trimethylsilyloxy) furan 6a 

can undergo Lewis acid-catalyzed Mukaiyama Mannich type reactions with N-phenyl and 

N-benzyl imines to afford lactams 8 with high diastereoselectivity (Figure 3.15).36 
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Pohmakotr screened a variety of Lewis acids and found that Sc(OTf)3 provided the best 

diastereoselectivity and conversion to the trans lactam product. The diastereoselective 

outcome was hypothesized to arise from a staggered acyclic transition state, wherein 

Sc(OTf)3 coordinates to the nitrogen atom. This coordination forces 6a to orient itself over 

the N-substituent and the imine hydrogen in order to generate the least sterically 

encumbered transition state, which leads to a high degree of trans diastereoselectivity 

(61). Notably, no alkyl-substituted imines were tested in the reaction.  

 

Figure 3.15 (Left) Lewis acid catalyzed Mukiayama Manich reaction of 2,5-(bistrimethylsilyloxy) furan. 

(Right) Transition state drawing leading to diastereoselective outcome. 
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determined spectra. Tantillo and coworkers have even developed a chemical shift 

repository CHESHIRE CCAT (CHEmical SHIft REpository with Coupling Constants 

Added Too) in order to make the calculation of NMR shifts and JH-H values accessible to 

organic chemists who are unfamiliar with computational chemistry.38 

The general workflow for computing the chemical shift or JH-H values of a particular 

compound begins with performing a conformer search to find the most reasonable 

conformer for the molecule of interest. (Figure 3.16).37 Typically, conformer searches are 

performed using a program such as Spartan or Avogadro. Once the lowest energy 

conformer is found, a geometry optimization is performed to ensure the conformer has 

the correct geometry about each bond, including bond angles and bond lengths. The 

geometry optimized conformer is then employed in the NMR calculation. It is important to 

note that performing calculations on a single conformer can introduce error into the 

calculation, as experimental NMR spectroscopy occurs on a timescale that allows 

compounds conformational mobility.37 NMR experiments correspond to multiple 

conformers, and the resulting NMR spectra are based on the Boltzmann weighted 

averages of conformations accessible at the experimental temperature.37 It should be 

noted that all accessible conformations may not have a significant impact on the entire 

1H NMR spectrum, and reasonable results can be obtained without averaging results from 

different conformers. 37 

Once the conformer of choice has been identified, NMR calculations can be 

performed using Gaussian. Typically, quantum chemical methods are used for such 

purposes, specifically density functional theory (DFT).37, 39 For chemical shift calculations, 
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NMR isotropic shielding constants are computed. When calculating these values, the 

isotropic shielding constants of related nuclei are typically averaged.37 The computed 

isotropic shielding values can then be converted to chemical shift values analogous to 

how it is done in experimental NMR—isotropic shielding constants are subtracted from a 

reference compound, typically tetramethylsilane.37 

Larger basis sets are necessary for the calculation of JH-H values, and special basis 

sets have been developed.40 Bally and Rablen detailed the theoretical background and 

methods for the calculation of JH-H values.39. When calculating JH-H values, the specific 

value computed are the Fermi contact (FC) terms, which are one of three terms that 

contribute to JH-H values.39 Bally and Rablen found that FC alone provide accurate 

predictions of JH-H values. FC terms are then extracted and multiplied by calculated 

scaling factors to afford the true JH-H values, 

 

 

Figure 3.16 Workflow of computational NMR calculations. 
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interest and provide evidence for relative stereochemistry. However, NOE experiments 

are typically only reliable in more rigid structures. For more definitive evidence for relative 

stereochemistry, X-Ray crystal structures may be acquired. This method relies on the 

ability of the molecule of interest to produce suitable crystals. Should this not be the case, 

synthetic chemists may attempt to perform computational NMR calculations to assign the 

relative stereochemistry of their molecule of interest. 

3.2 Results and Discussion 

A detailed description of the Mukaiyama CCR can be found in Dr. Stephen Law’s 

dissertation.41 Specifically, Dr. Laws described his attempts at developing an 

enantioselective acid-catalyzed Mukaiyama CCR and delved deeper into the optimization 

of reaction outcomes in the Mukaiyama CCR. Here, I will summarize the development of 

the single and double addition reactions leading to mono and bis-g-lactams, respectively, 

as well as my contribution to the scope of the Mukaiyama CCR.  

With Pohmakotr’s work as precedent,36 we sought to develop a disulfonimide 

catalyzed synthesis of g-lactams by a Mukaiyama Mannich-type reaction. We envisioned 

a strategy for catalyzing this reaction in analogy to the Mukaiyama aldol reaction using 

ACDC. Specifically, we were interested in developing an enantioselective acid-catalyzed 

Mukaiyama CCR reaction which would allow for non-readily enolizable anhydrides like 

succinic anhydrides to form CCR products under mild conditions. We hypothesized that 

the mechanism would be analogous to the mechanism described by List for the 

asymmetric Mukaiyama aldol reaction (Figure 3.17).29 First the furan 6a can undergo in 

situ silyl group exchange from a small quantity of substrate to form the active Lewis acid 
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catalyst (62) and activate the imine (1) to form iminium ion 63. In theory, the conjugate 

base of the Brønsted acid catalyst (5, 65, 66, or 67) can then form a tight ion pair to impart 

enantioselectivity in the following step. Then, the furan (6a) can undergo a Mukaiyama 

Mannich addition with the iminium ion pair (63) to form 64. Upon acid work up, 64 reforms 

the anhydride, which undergoes an intramolecular N-acylation to form g-lactam products 

(8). 

 

Figure 3.17 Proposed mechanism for the Mukaiyama CCR reaction, including possible acid catalysts 

3.2.1  Synthesis of N-Aryl and N-Alkyl Imines 

In order to test the limits of a Mukaiyama Mannich type CCR, we were required to 
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which would allow for further derivatization of our desired lactam products. While the N-

Boc (1a)42 and N-CBz (1b)43 imines had been synthesized previously, in our hands, 

reaction outcomes were low yielding and inconsistent (Figure 3.18). Instead, Dr. Laws 

was able to synthesize imine 1c from the condensation of p-anisidine (69) with 

benzaldehyde (54).  
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Figure 3.18 Initial synthesis of cleavable N-substituted aldimines. 

A visiting undergraduate, Shuyu Meng, and then visiting graduate student Dr. 

Raquel Mato worked to synthesize a series of simple N-aryl imines 1d-r through the 

condensation of a variety of primary amines 69 with various aromatic aldehydes 33 

(Scheme 3.19). N-alkyl imines were synthesized similarly, providing products in good 

yields. Most imines were used without further purification, however some led to 

incomplete conversion to products, requiring purification. Recrystallization conditions 

proved effective and afforded pure imine products.  

 

Figure 3.19 Imine scope used in the Mukaiyama CCR. 
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were inseparable from their enamine tautomer 70 and aldehyde precursor 33s through 

either recrystallization or flash column chromatography (Figure 3.20). Ultimately, the 

synthesis of these types of imines was not optimized, but the development of a 

multicomponent variant of the Mukaiyama AMR allowed for the synthesis of the desired 

lactam substrates and will be discussed later in section 3.2.5. 

 

Figure 3.20 Attempted synthesis of isobutyraldehyde derived imine 

3.2.2 Synthesis of 2,5-bis(trimethylsilyloxy) Furan 

The synthesis of 2,5-bis(trimethylsilyloxy) furan 6a had a significant impact on the 

development of the Mukaiyama CCR (Figure 3.21). Dr. Laws optimized the synthesis of 

this reaction by combining the reaction protocol of Chan and Brownbridge30 and the 

vacuum distillation purification protocol reported by Simchen33. As described previously, 

6a is highly air and water sensitive, and required rapid usage in order to generate 

consistent results. Fortunately, Dr. Laws found that 6a remained viable for up to one week 

as a 0.4 M solution in THF at room temperature after purification. On the other hand, the 

unpurified reaction mixture reaction mixture could remain stirring under inert atmosphere 

indefinitely prior to purification. As a result, 6a was synthesized on multi-gram scale and 

purified weekly for the duration of this project.  

 

Figure 3.21 Optimized synthesis of 2,5-(bistrimethylsilyloxy) furan 
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3.2.3 Optimization of Diastereoselective Acid-Catalyzed Mukaiyama Castagnoli-

Cushman Reaction  

Considering Chan and Brownbridge’s synthesis of bis-lactones and Pohmakotr’s 

synthesis of mono-lactams, we imagined that eight product outcomes were possible in 

the Mukaiyama CCR. First, we envision two diastereomers of mono-lactam product are 

possible resulting from mono-addition (71a-b). Additionally, we hypothesized that a 

double addition reaction would be possible to form bis-g-lactam products 72-77. Based 

on the formation of four stereogenic centers and the highly symmetrical nature of the bis-

g-lactam, we determined that there are six possible diastereomers of bis-g-lactams, four 

symmetrical and two unsymmetrical (72-77) (Figure 3.22).  

 

Figure 3.22 Possible reaction outcomes for the Mukiayama CCR. 

Optimization of the acid-catalyzed Mukaiyama CCR was performed by Dr. Laws. Initial 

screens of simple achiral acids with various N-substituted imines and 6a were performed. 
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Attempts at obtaining 8a through reaction with N-Boc imine proved unsuccessful, marked 

by polymerization of the reaction solvent, THF. However, generation of imine 1a in situ  
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1). Analogous reactions of the N-Boc and N-Cbz amidosulfones catalyzed by triflimide 

(65) and o-BDSI provided lactams 8a and 8b with high conversion and 

diastereoselectivity (Table 3.1, entries 2-5). Unfortunately, the resulting products were 

challenging to isolate, and we turned our attention to N-aryl imines, which provided easily 

isolable products with slightly diminished conversion.  

Table 3.1 Achiral Acid Screen for the Mukiayama CCR 

Effect of Acid Catalyst on Product Outcome 

Interestingly, the Brønsted acid used in the reaction had a significant impact on product 

outcomes. In particular, when triflic acid 5 used in the reaction of N-PMP imine 1c with 

6a, the 1H NMR spectrum of the unpurified reaction mixture showed consumption of 

starting materials but showed only 7% conversion to mono lactam 8c. Instead, significant 

conversion to two diastereomers of bis-g-lactam 4 were observed (Table 3.1, entry 6). 

The triflimide catalyzed reaction of 1c and 6a led to a 50:50 ratio of monolactam 8c and 

two diastereomeric bis-lactams 4 (Table 3.1, entry 7). The use of ditoluenesulfonimide 67 
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entry 8). These reaction outcomes led us to optimized mono-addition conditions using 

two equivalents of furan, increased catalyst loading of ditoluenesulfonimide, and 48-hour 

reaction times. 

3.2.4 Scope of the Mukaiyama Castagnoli-Cushman Reaction  

With optimized conditions in hand, Dr. Mato and I worked on expanding the scope 

of the mono addition products. A variety of N-aryl imines were screened in the reaction 

affording lactam products 8 with good yields and always isolated as the trans 

diastereomer (Figure 3.23). N-alkyl imines were also tolerated in the reaction, albeit with 

lower yields due to difficult purification conditions. While meta-substituted N-aryl imines 

led to the desired products, ortho-substituted N-aryl imines were not tolerated in the 

reaction, suggesting a steric influence on reaction outcomes. The resulting products were 

isolated as either the carboxylic acid or methyl ester, the latter of which allowed for more 

facile purification conditions. To prove relative stereochemistry a crystal structure was 

acquired was acquired of product 8h. 
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Figure 3.23 Reaction scope of the Mukiayama CCR. 

After expanding the scope of the Mukaiyama Mannich-type CCR, we sought to 

further functionalize lactam 8c (Scheme 3.24). First, it was shown that lactam 8c can be 

coupled to p-anisidine to afford amidated lactam 78. Next, Dr. Mato showed that 

esterification of the carboxylic acid moiety can be achieved in high yield and CAN-

mediated PMP-cleavage of esterified lactam 79a provides N-H lactam 80 in good yield. 

 

Figure 3.24 Derivatization of lactam 8c. 
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3.2.5  Development of the Multicomponent Mukaiyama Castagnoli-Cushman 

Reaction 

In hopes of expanding our reaction scope, we turned our attention to the synthesis 

of imines derived from aliphatic aldehydes. As discussed previously, the attempted 

synthesis of aliphatic aldehyde derived imines proved unsuccessful. To overcome this 

setback, we recognized that the Mukaiyama CCR was slow, necessitating 48-hour 

reaction times to afford good conversion. On the other hand, imine formation is typically 

quite fast. With that in mind, we began to screen the multicomponent assembly of γ-

lactams by reaction of aldehydes, amines, and furan in the presence of desiccants. This 

allowed us to access the previously unobserved aliphatic aldehyde-derived lactams in fair 

to excellent yield as a single trans diastereomer (Figure 3.25). Additionally, the N-PMP 

lactam 79a previously isolated in 74% was formed in the three-component reaction as a 

single diastereomer in 92% yield following esterification. 

 

Figure 3.25 Scope of the multicomponent Mukaiyama Mannich CCR 
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3.2.6 Further Optimization of the Double Mukaiyama Castagnoli-Cushman 

Reaction 

Next, we turned our attention to the scope of the double addition reaction. We 

hypothesize that these products (4) may be formed via two successive Mukaiyama 

Mannich reactions to afford intermediate 81. Addition of ammonium chloride promotes 

protodesilylation followed by intramolecular acylation and amidation to yield 4. We were 

pleased to observe only two of the six possible diastereomers in our reaction mixtures 

and were able to isolate two diastereomers by flash column chromatography (Figure 

3.26). Based on the 1H NMR of the unpurified reaction mixture, we determined that the 

reaction led to one symmetrical and one unsymmetrical diastereomer. 

 

Figure 3.26 Proposed mechanism of the double Mukaiyama CCR 
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reaction outcomes suggest that the catalytic activity of triflic acid in this reaction is the 

result of Lewis, not Brønsted, acid activity, similar to experimental observations in the 

Mukiayama aldol reaction. Though we imagined that triflic acid would react similarly to 

the disulfonimide catalysts, it became apparent that the Lewis acidity of TMS triflate must 

allow for two sequential Mannich additions (Table 3.2, entries 12-13). Finally, in an 

attempt to increase diastereoselectivity, the reaction temperature was lowered to –20 °C 

and –78 °C (Table .2, entries 14-15). These changes in temperature had minimal effect 

on diastereomer ratio and significantly lowered reaction conversion. Having completed 

our screens, we concluded that the stereochemical outcome of the reaction was 

unaffected by changes in reaction conditions, and we accepted the diastereoselectivity 

as a limitation to this method. 

Table 3.2 Optimization of the Double Addition Reaction 

 

N
PMP

Ph H solvent, 24 h

N
PMP

O

Ph

O
OTMS

TMSO

NH

H
Ph

O
PMP

catalyst (x mol %) N
PMP

O

Ph NH

H
Ph

O
PMP

72 76

entry
1
2
3
4
5
6
7
8
9
10
11
12b

13b

14b

15b

16
17b

% conv. Aa

44
14
31
19
<5
38
41
40
40
41
41
40
35
43
28
41
39

catalyst
2 mol %
2 mol %
2 mol %
2 mol %
2 mol %
2 mol %
20 mol %
20 mol % 
20 mol %
20 mol %
20 mol %
20 mol %
20 mol %
20 mol %
20 mol %
20 mol %
20 mol %

solvent

THF
Et2O
CH2Cl2
toluene
n-hexane
CH3CN
CH3CN
CH3CN
CH3CN
CH3CN
CH3CN
CH3CN
THF
THF
THF
THF
THF

temp (°C)

23
23
23
23
23
23
23
23
23
23
23
23
23

-20
-78
23
23

% conv. Ba

36
31
38
39
<5
24
40
38
44
36
44
48
58
42
18
40
26

aAs determined by 1H NMR spectroscopy of the unpurified reaction mixture
bTwo equivalents of imine added.

N
PMP

O

Ph NH

H
Ph

O
PMP

72
symmetrical

cis-ring fusion

N
PMP

O

Ph NH

H
Ph

O
PMP

74
symmetrical

cis-ring fusion

N
PMP

O

Ph NH

H
Ph

O
PMP

75
symmetrical

trans-ring fusion

N
PMP

O

Ph NH

H
Ph

O
PMP

73
symmetrical

trans-ring fusion

N
PMP

O

Ph NH

H
Ph

O
PMP

76
unsymmetrical
cis-ring fusion

N
PMP

O

Ph NH

H
Ph

O
PMP

77
unsymmetrical

trans-ring fusion

1c 6a

TfOH
TfOH
TfOH
TfOH
TfOH
TfOH
TfOH
TfOH, 2,6-(t-Bu)2Py
2,6-(t-Bu)2Py·TfOH
TMSOTf
Py·TfOH
TfOH
TfOH
TfOH
TfOH
Py·TfOH
Py·TfOH

X mol %
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3.2.7 Scope of the Double Mukaiyama Castagnoli-Cushman Reaction   

After significant attempts at reaction optimization, Dr. Laws and I worked on the 

scope of the double addition reaction. Double addition reaction conditions were modified 

by utilizing two equivalents of imine, the addition of anhydrous sodium sulfate, as well as 

an increase in catalyst loading. With optimized conditions in hand, a small series of bis-

g-lactams were synthesized in modest yields and effectively 50:50:0:0:0:0 

diastereoselectivity (Figure 3.27). Based on the 1H NMR spectrum of the unpurified 

reaction mixture and the hypotheses of Chan and Brownbridge, we believed that the 

observed diastereomers were the symmetrical all-cis product (72) and the unsymmetrical 

product (76) (Table 3.2, right). X-ray crystallographic data confirmed the identity of the 

all-cis symmetrical diastereomer (72). However, the structure of the unsymmetrical 

diastereomer remained inconclusive, and as we were unable to grow suitable crystals to 

prove relative stereochemistry conclusively.  

 

Figure 3.27 Scope of the double Mukaiyama Mannich CCR 

3.2.8 Stereochemical Proof by Computational NMR  

In order to determine the relative stereochemistry of the unsymmetrical 

diastereomer, we endeavored to calculate JH-H coupling values using computational 
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NMR. Although we were able to obtain a crystal structure that matched the 

stereochemistry of diastereomer 76, this crystal structure was unsuitable for publication. 

As a result, with the help of Prof. Dean Tantillo, Dr. Carla Saunders, and Amy Bellinghiere, 

I used computational NMR to calculate the coupling constants of the two possible 

unsymmetrical diastereomers 76 and 77 to provide further evidence for the identity of the 

observed diastereomer. 

Of the six diastereomers that could potentially form in the double addition reaction, 

only two were observed by 1H NMR. One of these products clearly had no symmetry 

elements, indicating that it was one of the two possible unsymmetrical diastereomers. 

Computational 1H NMR was then used to determine which of the two unsymmetrical 

diastereomers had formed. It seemed unlikely that a trans ring fusion would be present in 

the bis-g-lactam, suggesting that the observed diastereomer was 76 (Figure 3.28). To 

assign the relative stereochemistry of the observed product, JH-H values between H1:H2, 

H2:H3, H3:H4 were computed and compared to the experimentally observed JH-H values 

 

Figure 3.28 The JH-H coupling values of the two unsymmetrical diastereomers to be computed 

The geometry of both diastereomers were optimized using Gaussian 16,48 at the 

B3LYP/6-31G(d) level of theory in the gas phase. Then, two sets of GIAO NMR 

calculations were performed. First, the GIAO NMR calculation was performed at the 

B3LYP/6-31g(d,p) level of theory, following a literature procedure.49 The final coupling 
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constants were determined by extracting the Fermi constant contribution to JH-H (Hz) and 

scaling them by 0.9117 to produce coupling constants for each diastereomer (Table 3.3 

and Table 3.4). As expected, the computed JH-H values for 76 matched the experimental 

values much more consistently than diastereomer 77.  

Table 3.3 Computed JH-H values for diastereomer 76 from calculation 1. 

Diastereomer 76 Fermi Constant Scaled (Hz) Experimental JH-H (Hz) Deviation (Hz) 

H1-H2 10.45 9.53 8.82 0.71 

H2-H3 11.7 10.68 9.75 0.93 

H3-H4 7.37 6.72 2.92 3.80 

 

Table 3.4 Computed JH-H values for diastereomer 77 from calculation 1. 

Diastereomer 77 Fermi Constant Scaled (Hz) Experimental J (Hz) Deviation (Hz) 

H1-H2 6.36 5.80 8.82 3.02 

H2-H3 17.62 16.06 9.75 6.31 

H3-H4 10.36 9.45 2.92 6.53 

 

Additionally, a second GIAO NMR calculation was run using B3LYP/631G (d,p) following 

the instructions on the cheshirenmr.info website.37, 39, 50-52 The final coupling constants 

were determined by extracting the proton-proton Fermi constant contribution to the JH-H 

(Hz) and scaling them by 0.9155 to produce coupling constants (Table 3.5 and Table 3.6). 

These results also support our hypothesis that 76 is in fact our observed diastereomer. 

In addition to the JH-H coupling values, the computed energy of diastereomer 76 was lower 

than that of diastereomer 77, further confirming the identity of the observed diastereomer.  
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Table 3.5 Computed JH-H values for diastereomer 76 from calculation 2. 

Diastereomer 76 Fermi Constant Scaled (Hz) Experimental J (Hz) Deviation (Hz) 

H1-H2 8.79 8.05 8.82 0.77 

H2-H3 10.07 9.22 9.75 0.53 

H3-H4 6.10 5.59 2.92 2.67 

 

Table 3.6 Computed JH-H values for diastereomer 77 from calculation 2. 

Diastereomer 77 Fermi Constant Scaled (Hz) Experimental JH-H (Hz) Deviation (Hz) 

H1-H2 5.39 4.94 8.82 3.88 

H2-H3 15.09 13.81 9.75 4.06 

H3-H4 8.61 7.88 2.92 4.96 

 

3.3 Conclusion 

In summary, an acid catalyzed Mukaiyama-CCR reaction has been developed. A 

series of g-lactam products were synthesized in high yields and diastereoselectivity, 

allowing for the first synthesis of N-alkyl lactams in this type of reaction. Additionally, 

multicomponent assembly of aliphatic aldehyde derived lactam products allow access to 

previously elusive products. Finally, subtle changes in reaction stoichiometry as well as 

varying the catalyst had a significant impact on reaction outcomes, allowing for the 

selective synthesis of either mono- or bis-g-lactams. 
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3.4 Experimental Section 

 

(E)-1-(4-Isopropoxy-3-methoxyphenyl)-N-(4-isopropoxyphenyl)methanimine (1o). 

Imine 2c was synthesized by condensation of 4-isopropoxy-3-methoxybenzaldehyde 

(15.0 mmol) and 4-isopropoxyaniline (15.0 mmol) in EtOH (30 mL). After stirring at room 

temperature overnight, the reaction mixture was filtered, and solvent was removed in 

vacuo to yield the corresponding imine 1o as a brown solid in 87% yield (3.36 g, 10 mmol). 

mp 112-113 °C. 1H NMR (600 MHz, CDCl3) δ 8.37 (s, 1H), 7.59 (d, J = 1.8 Hz, 1H), 7.30 

– 7.23 (m, 1H), 7.21 – 7.16 (m, 2H), 6.96 – 6.85 (m, 3H), 4.63 (hept, J = 6.1 Hz, 1H), 4.54 

(hept, J = 12.1, 6.0 Hz, 1H), 3.95 (s, 3H), 1.41 (d, J = 6.1 Hz, 6H), 1.35 (d, J = 6.1 Hz, 

6H). 13C NMR (150 MHz, CDCl3) δ 158.0, 156.2, 150.4, 150.1, 145.1, 129.7, 123.8, 122.1, 

116.4, 113.9, 109.4, 71.2, 70.2, 56.0, 22.1, 22.0. IR 2972.8, 2923.2, 1596.6, 1572.0, 

1466.8 cm-1; AMM (ESI-TOF) m/z calcd for C20H26NO3+ [M+H]+ 328.1907, found 

328.1907. 

General procedure A for the synthesis of lactam carboxylic acids: 

Imine (1.0 equiv.) and NHTs2 catalyst (0.05 equiv.) were placed in a flame-dried vial under 

argon atmosphere and a 0.4 M THF solution of 2,5-bis(trimethylsilyloxy)furan (2.0 equiv.) 

was added. The reaction mixture was allowed to stir at room temperature for 48 h, then 

1.00 mL of sat. NH4Cl aq. solution was added and the reaction mixture was stirred at 

H

N

O-i-Pr

i-PrO
OCH3
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room temperature for 1 h. The biphasic mixture was extracted three times with EtOAc, 

the combined organic layers were dried over Na2SO4, and solvent was evaporated in 

vacuo. 

General procedure B for the synthesis of lactam methyl esters: 

Imine (1.0 equiv.) and NHTs2 catalyst (0.05 equiv.) were placed in a flame-dried vial under 

argon atmosphere and a 0.4 M THF solution of 2,5-bis(trimethylsilyloxy)furan (2.0 equiv.) 

was added. The reaction mixture was allowed to stir at room temperature for 48 h, then 

1.00 mL of sat. NH4Cl aq. solution was added and the reaction mixture was stirred at 

room temperature for 1 h. The biphasic mixture was extracted three times with EtOAc, 

the combined organic layers were dried over Na2SO4, and solvent was evaporated in 

vacuo. The unpurified reaction mixture was dissolved in CH3OH (0.2 M), cooled to 0 °C 

and thionyl chloride (1.1 equiv.) was added dropwise. Reaction mixture was allowed to 

reach room temperature and stirred overnight. Solvent was removed in vacuo and the 

resulting concentrate was diluted in CH2Cl2 and water. The aqueous phase was extracted 

with CH2Cl2 (2 x 10 mL), and the combined organic layers were dried over Na2SO4, 

filtered, and concentrated in vacuo. 

 

General procedure C for the synthesis of lactam methyl esters: 

p-Anisidine (1 equiv.), 4 Å mol sieves (2 equiv.), NHTs2 catalyst (0.05 equiv.) were placed 

in a flame-dried vial under argon atmosphere, then a 0.4 M THF solution of 2,5-

bis(trimethylsilyloxy)furan (2 equiv.) was added. Benzaldehyde (1 equiv.) was then 

added, and reaction mixture was allowed to stir at room temperature for 48 h. Then, 1.00 
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mL of sat. NH4Cl aq. solution was added, and the reaction mixture was stirred at room 

temperature for 1 h. The biphasic mixture was extracted three times with EtOAc, and the 

combined organic layers were dried over Na2SO4, filtered, and concentrated in vacuo. 

The unpurified reaction mixture was dissolved in CH3OH (3 mL), cooled to 0° C and 

thionyl chloride (1.1 equiv.) was added in a dropwise manner. The reaction mixture was 

allowed to reach room temperature and stirred overnight. Solvent was removed in vacuo, 

and the concentrated was diluted in CH2Cl2 and water. The aqueous phase was extracted 

three times with CH2Cl2, then twice with EtOAc and the combined organic layers were 

dried over Na2SO4, filtered, and concentrated in vacuo. 

 

 

Methyl trans-2-(4-isopropoxy-3-methoxyphenyl)-1-(4-isopropoxyphenyl)-5-oxopy 

rrolidine-3-carboxylate (8o). Prepared according to general procedure B. The unpurified 

reaction mixture was purified by flash column chromatography (40-100% 

EtOAc/hexanes) to afford lactam 8o (111.0 mg, 63%), a single diastereomer, as a yellow 

oil: 1H NMR (400 MHz, CDCl3) δ 7.24 – 7.18 (m, 2H), 6.81 – 6.72 (m, 4H), 6.69 (s, 1H), 

5.36 (d, J = 5.0 Hz, 1H), 4.55 – 4.37 (m, 2H), 3.77 (t, J = 1.5 Hz, 6H), 3.19 – 3.10 (m, 1H), 

3.06 – 2.85 (m, 2H), 1.33 (d, J = 6.1 Hz, 6H), 1.27 (d, J = 6.1 Hz, 6H); 13C NMR (100 

MHz, CDCl3) δ 172.9, 171.9, 155.6, 150.6, 147.2, 132.2, 130.2, 124.8, 118.8, 115.9, 

N

O

CO2CH3

i-PrO

H3CO

i-PrO
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115.2, 109.8, 71.2, 70.0, 66.1, 56.0, 52.6, 46.4, 34.4, 22.1, 22.0; AMM (ESI-TOF) m/z 

calcd for C25H32NO6+ [M+H]+: 442.2224, found: 442.2239. 

 

 

Methyl trans-1-methyl-5-oxo-2-phenylpyrrolidine-3-carboxylate (8p). Prepared 

according to general procedure B. The unpurified reaction mixture was purified by flash 

column chromatography (30-100% EtOAc/hexanes) to afford lactam 8p (47.0 mg, 50%), 

a single diastereomer, as a yellow oil: 1H NMR (400 MHz, CDCl3) δ 7.48 – 7.32 (m, 3H), 

7.29 – 7.19 (m, 2H), 4.79 (d, J = 5.8 Hz, 1H), 3.73 (s, 3H), 3.06 (ddd, J = 9.8, 7.7, 5.8 Hz, 

1H), 2.95 – 2.73 (m, 2H), 2.68 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 172.9, 172.8, 139.4, 

129.3, 128.7, 126.7, 66.5, 52.6, 46.2, 33.8, 28.4; AMM (ESI-TOF) m/z calcd for 

C13H16NO3+ [M+H]+: 234.1125, found: 234.1131. 

 

 

Methyl trans-5-oxo-2-phenyl-1-propylpyrrolidine-3-carboxylate (8q). Prepared 

according to general procedure B. The unpurified reaction mixture was purified by flash 

column chromatography (30-100% EtOAc/hexanes) to afford lactam 8q (75.0 mg, 75%), 

a single diastereomer, as a yellow oil: 1H NMR (400 MHz, CDCl3) δ 7.47 – 7.30 (m, 3H), 

7.23 (d, J = 7.3 Hz, 2H), 4.90 (d, J = 5.4 Hz, 1H), 3.73 (d, J = 1.5 Hz, 2H), 3.72 – 3.58 (m, 

N
H3C

O

Ph
CO2CH3

N
n-Pr

O
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2H), 3.05 (ddd, J = 14.0, 7.8, 3.9 Hz, 1H), 2.93 – 2.72 (m, 2H), 2.64 – 2.48 (m, 1H), 1.52 

– 1.38 (m, 2H), 0.82 (t, J = 7.3 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 173.0, 172.6, 139.4, 

129.1, 128.5, 126.7, 64.1, 52.5, 46.1, 42.4, 33.7, 20.0, 11.2; AMM (ESI-TOF) m/z calcd 

for C15H20NO3+ [M+H]+: 262.1438, found: 262.1444. 

 

 

Methyl trans-1-isopropyl-5-oxo-2-phenylpyrrolidine-3-carboxylate (8r). Prepared 

according to general procedure B. The unpurified reaction mixture was purified by flash 

column chromatography (30-100% EtOAc/hexanes) to afford lactam 8r (54.1 mg, 58%), 

a single diastereomer, as a yellow oil: 1H NMR (400 MHz, CDCl3) δ 7.42 – 7.30 (m, 3H), 

7.29 (d, J = 6.8 Hz, 2H), 4.96 (d, J = 3.8 Hz, 1H), 4.06 (hept, J = 7.1 Hz, 1H), 3.73 (s, 3H), 

3.04 – 2.83 (m, 2H), 2.79 – 2.62 (m, 1H), 1.23 (d, J = 6.9 Hz, 3H), 0.91 (d, J = 6.9 Hz, 

3H); 13C NMR (100 MHz, CDCl3) δ 173.1, 172.8, 141.7, 129.0, 128.4, 126.5, 63.2, 52.5, 

46.6, 45.3, 33.8, 20.6, 19.8; AMM (ESI-TOF) m/z calcd for C15H20NO3+ [M+H]+: 262.1438, 

found: 262.1444. 

 

 

 

N
i-Pr

O

Ph
CO2CH3



 99 

 

Methyl trans-2-isopropyl-1-(4-methoxyphenyl)-5-oxopyrrolidine-3-carboxylate 

(79b). Prepared according to general procedure C. The unpurified reaction mixture was 

purified by flash column chromatography (50-60% EtOAc/hexanes) to afford lactam 79b 

(109.0 mg, 94%), a single diastereomer, as a yellow oil: 1H NMR (400 MHz, CDCl3) δ 

7.26 (d, J = 7.4 Hz, 2H), 6.92 (d, J = 7.5 Hz, 2H), 4.37 (t, J = 3.8 Hz, 1H), 3.80 (s, 3H), 

3.79 (s, 3H), 3.00 (td, J = 7.7, 3.8 Hz, 1H), 2.87 – 2.81 (m, 2H), 2.02 (qd, J = 6.5, 3.1 Hz, 

1H), 0.91 (d, J = 7.0 Hz, 3H), 0.80 (d, J = 6.8 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 

174.3, 171.8, 158.0, 129.9, 126.4, 114.5, 67.6, 55.5, 52.6, 36.2, 35.0, 28.7, 18.1, 14.8; 

AMM (ESI-TOF) m/z calcd for C16H22NO4+ [M+H]+: 292.1543, found: 292.1552. 

 

 

Methyl trans-1-(4-methoxyphenyl)-5-oxo-2-propylpyrrolidine-3-carboxylate (79c). 

Prepared according to general procedure C. The unpurified reaction mixture was purified 

by flash column chromatography (50-60% EtOAc/hexanes) to afford lactam 79c (38.0 mg, 

32%), a single diastereomer, as a yellow oil: 1H NMR (600 MHz, CD3CN) δ 7.25 (d, J = 

9.0 Hz, 2H), 6.94 (d, J = 9.0 Hz, 2H), 4.31 (dt, J = 7.9, 3.7 Hz, 1H), 3.78 (s, 3H), 3.72 (s, 

3H), 3.07 – 3.01 (m, 1H), 2.81 – 2.74 (m, 1H), 2.68 – 2.61 (m, 1H), 1.60 – 1.52 (m, 1H), 
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1.46 (dddd, J = 13.5, 10.3, 8.3, 5.1 Hz, 1H), 1.30 – 1.23 (m, 2H), 0.82 (t, J = 7.3 Hz, 3H); 

13C NMR (100 MHz, CDCl3) δ 173.8, 171.7, 158.1, 130.0, 126.5, 114.6, 62.7, 55.6, 52.7, 

41.7, 35.4, 34.7, 17.7, 14.0; AMM (ESI-TOF) m/z calcd for C16H22NO4+ [M+H]+: 292.1543, 

found: 292.1552. 

 

  

Methyl trans-2-cyclohexyl-1-(4-methoxyphenyl)-5-oxopyrrolidine-3-carboxylate 

79d). Prepared according to general procedure C. The unpurified reaction mixture was 

purified by flash column chromatography (50-60% EtOAc/hexanes) to afford lactam 79d 

(128.0 mg, 97%), a single diastereomer, as a yellow oil: 1H NMR (400 MHz, CDCl3) δ 

7.25 (d, J = 8.6 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 4.32 (d, J = 3.5 Hz, 1H), 3.81 (d, J = 1.4 

Hz, 3H), 3.78 (d, J = 1.4 Hz, 3H), 3.05 (td, J = 7.6, 3.3 Hz, 1H), 2.85 – 2.74 (m, 2H), 1.78 

– 1.46 (m, 6H), 1.21 – 0.97 (m, 4H), 1.00 – 0.79 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 

174.4, 172.0, 158.1, 130.1, 126.5, 114.6, 67.6, 55.6, 52.7, 39.4, 37.5, 35.1, 29.0, 26.5, 

26.2, 25.8, 25.8; AMM (ESI-TOF) m/z calcd for C19H26NO4+ [M+H]+: 332.1856, found: 

332.1869. 
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Methyl trans-1-(4-methoxyphenyl)-5-oxo-2-phenethylpyrrolidine-3-carboxylate 

(79e). Prepared according to general procedure C. The unpurified reaction mixture was 

purified by flash column chromatography (50-60% EtOAc/hexanes) to afford lactam 79e 

(63.0 mg, 45%), a single diastereomer, as a yellow oil: 1H NMR (400 MHz, CDCl3) δ 7.25 

– 7.15 (m, 5H), 7.03 (d, J = 7.4 Hz, 2H), 6.90 (d, J = 8.3 Hz, 2H), 4.41 (p, J = 3.6 Hz, 1H), 

3.79 (d, J = 3.1 Hz, 6H), 3.12 – 3.03 (m, 1H), 2.91 – 2.83 (m, 2H), 2.67 – 2.47 (m, 2H), 

2.09 – 1.95 (m, 1H), 1.81 (ddd, J = 15.2, 9.9, 6.0 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 

173.6, 171.6, 158.1, 140.5, 129.7, 128.6, 128.3, 127.8, 126.3, 114.5, 62.1, 55.5, 52.7, 

41.5, 34.7, 34.5, 30.6.; AMM (ESI-TOF) m/z calcd for C21H24NO4+ [M+H]+: 354.1700, 

found: 354.1712. 

 

 

Methyl trans-2-(4-isopropoxy-3-methoxyphenyl)-1-(4-isopropoxyphenyl)-5-

oxopyrrolidine-3-carboxylate (79f). Prepared according to general procedure C. The 

unpurified reaction mixture was purified by flash column chromatography (40-100% 

EtOAc/hexanes) to afford lactam 79f (97.0 mg, 55%), a single diastereomer, as a yellow 
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oil: 1H NMR (400 MHz, CDCl3) δ 7.24 – 7.18 (m, 2H), 6.81 – 6.72 (m, 4H), 6.69 (s, 1H), 

5.36 (d, J = 5.0 Hz, 1H), 4.55 – 4.37 (m, 2H), 3.19 – 3.10 (m, 1H), 3.06 – 2.85 (m, 2H), 

1.33 (d, J = 6.1 Hz, 6H), 1.27 (d, J = 6.1 Hz, 6H). 13C NMR (100 MHz, CDCl3) δ 172.9, 

171.9, 155.6, 150.6, 147.2, 132.2, 130.2, 124.8, 118.8, 115.9, 115.2, 109.8, 71.2, 70.0, 

66.1, 56.0, 52.6, 46.4, 34.4, 22.1, 22.0. AMM (ESI-TOF) m/z calcd for C25H32NO6+ [M+H]+: 

442.2224, found: 442.2239. 

 

 

trans-N,1-Bis(4-methoxyphenyl)-5-oxo-2-phenylpyrrolidine-3-carboxamide (78). 

Lactam 10 was prepared according to modified literature procedure.53 To a flame-dried 

flask under argon atmosphere at 0 °C was added acid 5c (124.0 mg, 0.40 mmol) in CH2Cl2 

(1 mL). HOBt (66.0 mg, 1.2 mmol), p-anisidine (148.0 mg, 1.2 mmol), N-methylmorpholine 

(0.017 mL, 1.6 mmol), and EDC (84.0 mg, 0.44 mmol) were added in succession. The 

reaction mixture was stirred at 0 °C for 2 h, then warmed to room temperature and stirred 

for 16 h. The reaction mixture was diluted with EtOAc, then washed with 3 x 20 mL of 1.2 

N HCl, 3 x 20 mL of sat. NaHCO3, and 30 mL of brine. The combined organic layers were 

dried over Na2SO4, filtered, and concentrated in vacuo. The unpurified reaction mixture 

residue was purified by flash chromatography (60-100% EtOAc/Hexanes) to afford lactam 

10 (116.0 mg, 70%), a single, diastereomer, as a yellow oil. 1H NMR (600 MHz, CDCl3) δ 

7.36 – 7.29 (m, 5H), 7.26 – 7.23 (m, 2H), 7.22 – 7.16 (m, 2H), 6.93 (s, 1H), 6.86 (dd, J = 

N

O

Ph

O

H3CO
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7.4, 4.8 Hz, 2H), 6.80 – 6.74 (m, 2H), 5.41 (d, J = 7.3 Hz, 1H), 3.79 (d, J = 2.5 Hz, 3H), 

3.71 (s, 3H), 3.18 (dd, J = 16.7, 9.0 Hz, 1H), 3.06 – 2.98 (m, 1H), 2.95 (dd, J = 16.7, 9.1 

Hz, 1H).; 13C NMR (100 MHz, CDCl3) δ 172.4, 168.8, 157.3, 156.9, 139.7, 130.2, 130.1, 

129.2, 128.5, 126.8, 125.2, 121.9, 114.2, 114.1, 67.0, 55.5, 55.3, 50.1, 35.1.; AMM (ESI-

TOF) m/z calcd for C25H25N2O4+ [M+H]+: 417.1809, found: 417.1827. 

 

 

Methyl trans-5-oxo-2-phenylpyrrolidine-3-carboxylate (80). To a solution of 

methylated lactam 8a (28.9 mg, 0.089 mmol) in CH3CN/H2O (5:1, 3 mL) at 0 °C was 

added cerium ammonium nitrate (214.0 mg, 0.39 mmol) under argon atmosphere and the 

reaction was allowed to reach room temperature and stirred for 1 h. Reaction mixture was 

diluted in EtOAc and washed with NaHCO3, then with 1 M HCl, and extracted with EtOAc 

(3 x 10 mL). The combined organic layers were washed with brine, dried over Na2SO4, 

and concentrated under vacuum. The unpurified reaction mixture was purified by flash 

column chromatography (50:50 EtOAc/hexanes + 0.25% AcOH) to yield lactam 9 (13.8 

mg, 71%), a single diastereomer, as an amorphous yellow solid; 1H NMR (400 MHz, 

CDCl3) δ 7.43 – 7.31 (m, 5H), 6.24 (s, 1H), 5.00 (d, J = 6.6 Hz, 1H), 3.73 (s, 3H), 3.14 (td, 

J = 9.1, 6.6 Hz, 1H), 2.74 (d, J = 9.1 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 175.4, 172.6, 

140.8, 129.2, 128.6, 126.1, 60.3, 52.6, 49.0, 33.8.; IR 3226, 2924, 1734, 1700 cm-1; AMM 

(ESI-TOF) m/z calcd for C12H14NO3+ [M+H]+: 220.0968, found: 220.0959. 

HN

O

CO2CH3
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General procedure D for the synthesis of bis-lactams 

To a flame-dried vial under argon atmosphere was added imine (2.0 equiv.), Na2SO4, and 

a 0.4 M solution of 2,5-bis(trimethylsilyloxy)furan in THF (1.0 equiv.), followed by TfOH 

(0.2 equiv.). The reaction mixture was allowed to stir at room temperature for 24 h, then 

1.00 mL of sat. NH4Cl aq. solution was added, and the reaction mixture was stirred at 

room temperature for 1 h. The biphasic mixture was extracted three times with EtOAc, 

and the combined organic layers were washed with H2O, then brine. The combined 

organics were dried over Na2SO4, filtered, and concentrated in vacuo. Due to the large 

number of aromatic carbon signals in the 13C NMR spectra of lactams 76, some carbon 

signals were unresolved in spectra obtained with 400 and 600 MHz NMR spectrometer. 

As a representative example demonstrating the correct number of carbons, the 13C NMR 

spectrum of lactam 76c was taken in CD3CN on an 800 MHz spectrometer. 

 

2,3,5,6-Tetraphenylhexahydropyrrolo[3,4-c]pyrrole-1,4-dione (72a, 76a). Prepared 

according to general procedure D. The unpurified reaction mixture was purified by 

recrystallization from EtOAc/hexanes and flash column chromatography (20-40% 

EtOAc/hexanes) to afford lactam 13b and 14b (115.1 mg, 65%), a 43:57 mixture of 

diastereomers, as an off-white solid. 
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72a: mp 215-217 °C; 1H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 8.1 Hz, 4H), 7.31 (dq, J = 

14.4, 7.5 Hz, 14H), 7.17 – 7.07 (m, 2H), 5.75 (s, 2H), 3.38 (s, 2H); 13C NMR (100 MHz, 

CDCl3) δ 172.3, 139.6, 137.6, 129.3, 129.0, 128.3, 125.6, 125.6, 121.9, 65.1, 49.1; AMM 

(ESI-TOF) m/z calcd for C30H25N2O2+ [M+H]+: 445.1911, found: 445.1921. 

 

 

76a: mp 306-311 °C; 1H NMR (400 MHz, CDCl3) δ 7.41 (d, J = 8.1 Hz, 3H), 7.37 – 7.28 

(m, 5H), 7.26 – 7.14 (m, 10H), 7.13 – 6.98 (m, 2H), 5.74 (d, J = 8.8 Hz, 1H), 5.68 – 5.60 

(m, 1H), 3.99 – 3.85 (m, 1H), 3.41 (d, J = 9.6 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 

172.7, 170.0, 140.8, 137.5, 137.2, 135.6, 129.3, 128.7, 128.4, 128.2, 127.5, 125.8, 125.7, 

125.3, 122.9, 122.2, 64.9, 50.0, 44.7, 29.7; IR 3030.8, 2133.8, 1996.6, 1962.4, 1687.04 

cm-1; AMM (ESI-TOF) m/z calcd for C30H25N2O2+ [M+H]+: 445.1911, found: 445.1922. 
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2,5-bis(4-Methoxyphenyl)-3,6-diphenylhexahydropyrrolo[3,4-c]pyrrole-1,4-dione 

(72b, 76b). Prepared according to general procedure D. The unpurified reaction mixture 

was purified by flash column chromatography (30-100% EtOAc/hexanes) to afford lactam 

13a and 14a (110.0 mg, 54%), a 48:52 mixture of diastereomers, as an off-white solid. 

 

 

72b: mp 240-252 °C  1H NMR (800 MHz, CDCl3) δ 7.45 – 7.40 (m, 4H), 7.34 – 7.31 (m, 

5H), 7.31 – 7.27 (m, 5H), 6.83 – 6.79 (m, 4H), 5.68 – 5.64 (m, 2H), 3.74 (s, 6H), 3.38 – 

3.36 (m, 2lH); 13C NMR (150 MHz, CDCl3) δ 172.1, 157.3, 139.7, 130.5, 129.3, 128.3, 

125.7, 123.9, 114.1, 65.6, 55.4, 48.9.; AMM (ESI-TOF) m/z calcd for C32H29N2O4+ [M+H]+: 

505.2122, found: 505.2138. 
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76b: mp 185-190 °C; 1H NMR (400 MHz, CDCl3) δ 7.36 – 7.27 (m, 7H), 7.23 (d, J = 6.6 

Hz, 5H), 7.07 (d, J = 8.6 Hz, 2H), 6.78 (d, J = 8.5 Hz, 2H), 6.72 – 6.63 (m, 2H), 5.66 (d, J 

= 8.8 Hz, 1H), 5.53 (d, J = 2.8 Hz, 1H), 3.90 (s, 1H), 3.72 (s, 3H), 3.69 (s, 3H), 3.41 (dd, 

J = 9.7, 2.7 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 172.8, 170.1, 157.3, 157.2, 141.0, 

135.9, 130.6, 130.4, 129.4, 128.5, 128.4, 127.7, 126.3, 124.6, 124.4, 114.1, 114.1, 65.8, 

65.4, 55.5, 55.4, 50.0, 44.9.; AMM (ESI-TOF) m/z calcd for C32H29N2O4+ [M+H]+: 

505.2122, found: 505.2141. 

 

 

3,6-Di(furan-2-yl)-2,5-bis(4-methoxyphenyl)hexahydropyrrolo[3,4-c]pyrrole-1,4-

dione (72c, 76c). Prepared according to general procedure D. The unpurified reaction 

mixture was purified by recrystallization from EtOAc/hexanes and flash column 

chromatography (30-90% EtOAc/hexanes) to afford lactam 13c and 14c (108.5 mg, 

42%), a 62:38 mixture of diastereomers, as an off-white solid. 
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72c: mp 166-173 °C. 1H NMR (400 MHz, CDCl3) δ 7.37 (s, 2H), 7.21 (d, J = 8.4 Hz, 4H), 

6.83 (d, J = 8.4 Hz, 4H), 6.31 – 6.20 (m, 4H), 5.53 (s, 2H), 3.75 (s, 6H), 3.72 (s, 2H); 13C 

NMR (150 MHz, CDCl3) δ 172.1, 158.2, 151.7, 143.1, 129.9, 125.7, 114.4, 110.6, 108.9, 

60.1, 55.5, 46.6; IR 3116.0, 2948.6, 2838.62, 1679.0, 1609.5 cm-1; AMM (ESI-TOF) m/z 

calcd for C28H25N2O6+ [M+H]+: 485.1707, found: 485.1721. 

 

 

76c: mp 140-145 °C. 1H NMR (800 MHz, CD3CN) δ 7.51 – 7.47 (m, 1H), 7.41 – 7.36 (m, 

1H), 7.22 (d, J = 8.6 Hz, 2H), 7.05 (d, J = 8.5 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 6.83 (d, J 

= 8.6 Hz, 2H), 6.39 – 6.33 (m, 2H), 6.30 (d, J = 3.3 Hz, 1H), 6.24 – 6.21 (m, 1H), 5.67 (d, 

J = 9.7 Hz, 1H), 5.55 (d, J = 5.0 Hz, 1H), 3.97 – 3.92 (m, 1H), 3.74 (s, 3H), 3.73 (s, 3H), 

3.62 (dd, J = 10.5, 5.0 Hz, 1H); 13C NMR (200 MHz, CD3CN) δ 172.0, 170.2, 158.1, 158.1, 

151.9, 149.8, 143.4, 142.9, 130.2, 130.1, 126.5, 126.4, 113.9, 113.9, 110.6, 110.5, 110.5, 

109.7, 59.7, 59.1, 55.1, 55.1, 45.9, 43.2; AMM (ESI-TOF) m/z calcd for C28H25N2O6+ 

[M+H]+: 485.1707, found: 485.1725. 
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3,6-Bis(4-chlorophenyl)-2,5-bis(4-methoxyphenyl)hexahydropyrrolo[3,4-c]pyrrole-

1,4-dione (72d, 76d). Prepared according to general procedure D. The unpurified 

reaction mixture was purified by recrystallization from EtOAc/hexanes and flash column 

chromatography (30-100% EtOAc/hexanes) to afford lactam 13d and 14d (135.6 mg, 

59%), a 27:73 mixture of diastereomers, as an off-white solid. 

 

 

72d: mp 200-205 °C; 1H NMR (400 MHz, CDCl3) δ 7.39 (d, J = 8.6 Hz, 2H), 7.30 (d, J = 

8.1 Hz, 2H), 7.22 (d, J = 8.1 Hz, 2H), 6.81 (d, J = 8.5 Hz, 2H), 5.72 – 5.60 (m, 1H), 3.74 

(s, 3H), 3.39 – 3.20 (m, 1H); 13C NMR (150 MHz, CDCl3) δ 171.8, 157.6, 138.2, 134.3, 

130.2, 129.6, 127.3, 124.0, 114.4, 65.1, 55.5, 48.7; AMM (ESI-TOF) m/z calcd for 

C32H27Cl2N2O4+ [M+H]+: 573.1342, found: 573.1349. 
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76d: mp 255-264 °C; 1H NMR (400 MHz, CDCl3) δ 7.34 – 7.29 (m, 2H), 7.22 (dd, J = 13.1, 

5.9 Hz, 6H), 7.11 (d, J = 8.5 Hz, 4H), 6.84 – 6.70 (m, 4H), 5.64 (d, J = 8.7 Hz, 1H), 5.53 

(d, J = 2.4 Hz, 1H), 3.88 (t, J = 9.2 Hz, 1H), 3.74 (s, 3H), 3.71 (s, 3H), 3.36 (dd, J = 9.7, 

2.2 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 172.4, 169.6, 157.4, 157.3, 139.1, 134.2, 

134.1, 131.5, 130.0, 129.7, 129.5, 129.0, 128.7, 127.4, 124.6, 124.2, 114.2, 114.1, 64.9, 

64.6, 55.3, 55.3, 49.6, 44.3; AMM (ESI-TOF) m/z calcd for C32H27Cl2N2O4+ [M+H]+: 

573.1342, found: 573.1363. 

 

 

3,6-Bis(4-isopropoxy-3-methoxyphenyl)-2,5-bis(4-isopropoxyphenyl)hexahydro 

pyrrolo[3,4-c]pyrrole-1,4-dione (72e, 76e). Prepared according to general procedure D. 

The unpurified reaction mixture was purified by flash column chromatography (50-100% 

EtOAc/hexanes) to afford lactam 13e and 14e (568.0 mg, 32%), a 48:52 mixture of 

diastereomers, as an amorphous yellow solid. 
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72e: 1H NMR (600 MHz, CDCl3) δ 7.39 (d, J = 9.0 Hz, 4H), 6.81 – 6.75 (m, 10H), 5.56 (s, 

2H), 4.49 – 4.42 (m, 4H), 3.81 (s, 6H), 3.36 (s, 2H), 1.33 (dd, J = 6.1, 2.4 Hz, 12H), 1.28 

(dd, J = 6.1, 1.9 Hz, 12H); 13C NMR (150 MHz, CDCl3) δ 172.4, 155.8, 150.9, 147.3, 

132.4, 130.5, 124.1, 117.6, 116.1, 115.5, 109.7, 71.4, 70.2, 65.6, 56.2, 49.2, 22.1; AMM 

(ESI-TOF) m/z calcd for C44H53N2O8+ [M+H]+: 737.3796, found: 737.3793 

 

 

76e: 1H NMR (400 MHz, CDCl3) δ 7.32 – 7.22 (m, 2H), 7.01 (d, J = 8.5 Hz, 2H), 6.84 – 

6.73 (m, 7H), 6.70 – 6.60 (m, 3H), 5.56 (d, J = 9.0 Hz, 1H), 5.39 (d, J = 3.3 Hz, 1H), 4.54 

– 4.35 (m, 4H), 3.87 (t, J = 9.4 Hz, 1H), 3.80 (s, 3H), 3.65 (s, 3H), 3.40 (dd, J = 10.1, 3.3 

Hz, 1H), 1.37 – 1.22 (m, 24H); 13C NMR (100 MHz, CDCl3) δ 172.7, 170.3, 155.6, 155.5, 

150.9, 150.1, 147.4, 147.2, 133.7, 130.5, 130.2, 128.6, 124.6, 124.2, 120.1, 118.4, 115.9, 

115.9, 115.7, 114.7, 111.7, 109.7, 71.4, 71.1, 70.1, 70.1, 65.8, 65.4, 56.1, 56.0, 50.0, 

45.1, 22.2, 22.2, 22.1, 22.1, 22.1.; AMM (ESI-TOF) m/z calcd for C44H53N2O8+ [M+H]+: 

737.3796, found: 737.3803. 
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Energies and Coordinates 

 

Calculation 1: Diastereomer 76 

 

HF = -1646.7190602 Hartrees (-1033316.2102755 kcal/mol) 

 

 

 Center     Atomic                  Coordinates (Angstroms) 

 Number     Number                 X           Y           Z 

 -------------------------------------------------------------- 

      1          6            -1.610659   -0.397742    1.319582 

      2          6            -1.268792   -1.634832    0.489654 

      3          1            -2.271029   -0.703385    2.136972 

      4          6            -0.374524    0.355562    1.936120 

      5          7            -2.279697    0.658607    0.539109 

      6          6            -1.136470   -1.584532   -0.902849 

      7          6            -1.068320   -2.857827    1.144358 

      8          6             0.937748   -0.416290    1.913824 

      9          1            -0.609610    0.629099    2.967551 

     10          6            -0.153672    1.555263    1.029212 

     11          6            -1.438958    1.714375    0.226986 

     12          6            -3.636314    0.522101    0.119583 
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     13          6            -0.802387   -2.731743   -1.625171 

     14          1            -1.319893   -0.653786   -1.431674 

     15          1            -1.151668   -2.907107    2.226627 

     16          6            -0.733792   -4.003124    0.423500 

     17          7             1.726011    0.093609    0.894163 

     18          8             1.225310   -1.323547    2.677844 

     19          6             1.108268    1.219713    0.168529 

     20          1             0.025045    2.483291    1.577330 

     21          8            -1.664955    2.635358   -0.544198 

     22          6            -4.323390    1.578367   -0.513122 

     23          6            -4.336322   -0.664219    0.373967 

     24          6            -0.599675   -3.943608   -0.965018 

     25          1            -0.708947   -2.676631   -2.706474 

     26          1            -0.576124   -4.941537    0.947962 

     27          6             2.925290   -0.524376    0.428307 

     28          1             0.786034    0.877011   -0.823405 

     29          6             2.012606    2.429693   -0.010885 

     30          1            -3.803329    2.499118   -0.732590 

     31          6            -5.657673    1.436858   -0.863932 

     32          6            -5.681123   -0.803503    0.020736 

     33          1            -3.843634   -1.511664    0.833671 

     34          1            -0.341342   -4.836472   -1.527828 
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     35          6             3.322630   -0.375467   -0.904347 

     36          6             3.739056   -1.281854    1.291270 

     37          6             1.760215    3.307583   -1.072251 

     38          6             3.037556    2.730973    0.892946 

     39          1            -6.185710    2.251138   -1.350498 

     40          6            -6.354362    0.249447   -0.601762 

     41          1            -6.179870   -1.741709    0.234886 

     42          1             2.730966    0.214158   -1.594609 

     43          6             4.494688   -0.967774   -1.380240 

     44          6             4.899690   -1.876324    0.817169 

     45          1             3.445771   -1.417070    2.322409 

     46          1             0.945115    3.096588   -1.759649 

     47          6             2.523354    4.464593   -1.230651 

     48          6             3.804204    3.885675    0.730707 

     49          1             3.246439    2.054748    1.716502 

     50          8            -7.663613    0.222588   -0.991328 

     51          1             4.768075   -0.823459   -2.419088 

     52          6             5.291546   -1.727573   -0.520073 

     53          1             5.527652   -2.464333    1.479283 

     54          1             2.313795    5.138289   -2.057207 

     55          6             3.550729    4.755258   -0.331396 

     56          1             4.603120    4.102952    1.434778 
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     57          6            -8.406601   -0.960501   -0.750623 

     58          8             6.454708   -2.350363   -0.876436 

     59          1             4.149541    5.653359   -0.457096 

     60          1            -8.465604   -1.190313    0.321889 

     61          1            -7.977497   -1.822506   -1.279119 

     62          1            -9.410780   -0.767657   -1.132823 

     63          6             6.891789   -2.229238   -2.219330 

     64          1             6.161321   -2.651624   -2.922622 

     65          1             7.085580   -1.182289   -2.489376 

     66          1             7.822770   -2.795613   -2.284568 

 -------------------------------------------------------------- 

 

 

 

Calculation 1: Diastereomer 77 

HF = -1646.6992802 Hartrees (-1033303.7983255 kcal/mol) 

 

 Center     Atomic                  Coordinates (Angstroms) 

 Number     Number                 X           Y           Z 

 -------------------------------------------------------------- 

      1          6             1.665058   -1.038586   -0.485679 

      2          1             2.134593   -1.586942   -1.308581 
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      3          6             0.247091   -0.581950   -0.868092 

      4          1             0.310465   -0.229797   -1.911667 

      5          7             2.311272    0.307869   -0.399266 

      6          6             1.387438    1.340475   -0.179457 

      7          8             1.612385    2.537679   -0.140352 

      8          6            -1.341915    1.114717   -0.344386 

      9          7            -2.007267   -0.212286   -0.549305 

     10          6            -1.106085   -1.262351   -0.777269 

     11          8            -1.389145   -2.433275   -0.958906 

     12          6             3.711849    0.467716   -0.601363 

     13          6             4.284935    1.728174   -0.865795 

     14          1             3.656348    2.606391   -0.890216 

     15          6             5.649973    1.844673   -1.083603 

     16          1             6.091987    2.815047   -1.287719 

     17          6             6.487703    0.721488   -1.052230 

     18          8             7.813904    0.955171   -1.285613 

     19          6             5.928598   -0.530939   -0.789424 

     20          1             6.542184   -1.423565   -0.748911 

     21          6             4.554753   -0.650288   -0.563108 

     22          1             4.158340   -1.632636   -0.334955 

     23          6             8.700224   -0.150640   -1.258775 

     24          1             8.443968   -0.893825   -2.026057 
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     25          1             8.708476   -0.639237   -0.274995 

     26          1             9.692315    0.254182   -1.467516 

     27          6             1.744995   -1.875184    0.788687 

     28          6             1.280621   -3.198615    0.748490 

     29          1             0.853096   -3.589562   -0.170366 

     30          6             1.326914   -3.998225    1.889090 

     31          1             0.959114   -5.019776    1.843714 

     32          6             1.839315   -3.489321    3.085194 

     33          1             1.876880   -4.114414    3.973348 

     34          6             2.301858   -2.174821    3.132125 

     35          1             2.704222   -1.769325    4.056612 

     36          6             2.255785   -1.371507    1.989832 

     37          1             2.633002   -0.354286    2.030866 

     38          6            -3.408779   -0.329251   -0.784824 

     39          6            -4.099750   -1.499600   -0.453303 

     40          1            -3.564649   -2.332533   -0.017730 

     41          6            -5.469163   -1.613553   -0.702248 

     42          1            -5.971073   -2.537599   -0.439089 

     43          6            -6.172547   -0.547988   -1.272821 

     44          8            -7.510519   -0.552408   -1.549992 

     45          6            -5.485573    0.630185   -1.594422 

     46          1            -6.039906    1.453521   -2.033544 
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     47          6            -4.121840    0.735946   -1.358914 

     48          1            -3.615406    1.658879   -1.619322 

     49          6            -8.252179   -1.721265   -1.243147 

     50          1            -8.228593   -1.945092   -0.168115 

     51          1            -7.882201   -2.592963   -1.799434 

     52          1            -9.280310   -1.511786   -1.544421 

     53          1            -1.309247    1.665457   -1.296020 

     54          6             0.061541    0.627104    0.019567 

     55          1             0.027796    0.291320    1.066774 

     56          6            -1.980394    1.990615    0.716885 

     57          6            -1.876511    3.381116    0.596643 

     58          6            -2.596894    1.449056    1.850992 

     59          6            -2.383617    4.218338    1.590628 

     60          1            -1.376873    3.808584   -0.269152 

     61          6            -3.109278    2.286416    2.842083 

     62          1            -2.687924    0.371629    1.951968 

     63          6            -3.005091    3.672819    2.714889 

     64          1            -2.292755    5.295992    1.485058 

     65          1            -3.593122    1.853661    3.713677 

     66          1            -3.405979    4.323723    3.487220 

 -------------------------------------------------------------- 
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Calculation 2: Diastereomer 76 

 

HF = -1646.7190602 Hartrees (-1033316.2102755 kcal/mol) 

 

 Center     Atomic                  Coordinates (Angstroms) 

 Number     Number                 X           Y           Z 

 -------------------------------------------------------------- 

      1          6            -1.610659   -0.397742    1.319582 

      2          6            -1.268792   -1.634832    0.489654 

      3          1            -2.271029   -0.703385    2.136972 

      4          6            -0.374524    0.355562    1.936120 

      5          7            -2.279697    0.658607    0.539109 

      6          6            -1.136470   -1.584532   -0.902849 

      7          6            -1.068320   -2.857827    1.144357 

      8          6             0.937748   -0.416290    1.913824 

      9          1            -0.609610    0.629099    2.967551 

     10          6            -0.153672    1.555263    1.029212 

     11          6            -1.438958    1.714375    0.226986 

     12          6            -3.636313    0.522101    0.119583 

     13          6            -0.802387   -2.731742   -1.625171 

     14          1            -1.319893   -0.653786   -1.431673 

     15          1            -1.151668   -2.907107    2.226627 
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     16          6            -0.733792   -4.003123    0.423500 

     17          7             1.726011    0.093609    0.894163 

     18          8             1.225310   -1.323547    2.677844 

     19          6             1.108268    1.219713    0.168529 

     20          1             0.025045    2.483291    1.577330 

     21          8            -1.664955    2.635358   -0.544198 

     22          6            -4.323390    1.578367   -0.513122 

     23          6            -4.336322   -0.664219    0.373967 

     24          6            -0.599675   -3.943608   -0.965018 

     25          1            -0.708947   -2.676631   -2.706473 

     26          1            -0.576124   -4.941537    0.947962 

     27          6             2.925290   -0.524376    0.428307 

     28          1             0.786034    0.877011   -0.823405 

     29          6             2.012606    2.429693   -0.010885 

     30          1            -3.803329    2.499117   -0.732590 

     31          6            -5.657673    1.436858   -0.863932 

     32          6            -5.681122   -0.803503    0.020736 

     33          1            -3.843633   -1.511664    0.833671 

     34          1            -0.341342   -4.836472   -1.527828 

     35          6             3.322630   -0.375467   -0.904347 

     36          6             3.739055   -1.281854    1.291270 

     37          6             1.760215    3.307582   -1.072251 
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     38          6             3.037556    2.730973    0.892946 

     39          1            -6.185710    2.251138   -1.350498 

     40          6            -6.354361    0.249447   -0.601762 

     41          1            -6.179869   -1.741709    0.234886 

     42          1             2.730966    0.214158   -1.594609 

     43          6             4.494687   -0.967774   -1.380240 

     44          6             4.899690   -1.876324    0.817169 

     45          1             3.445771   -1.417070    2.322409 

     46          1             0.945115    3.096588   -1.759649 

     47          6             2.523353    4.464593   -1.230651 

     48          6             3.804204    3.885674    0.730707 

     49          1             3.246439    2.054747    1.716502 

     50          8            -7.663612    0.222588   -0.991328 

     51          1             4.768074   -0.823459   -2.419088 

     52          6             5.291546   -1.727572   -0.520073 

     53          1             5.527652   -2.464333    1.479282 

     54          1             2.313795    5.138289   -2.057207 

     55          6             3.550728    4.755258   -0.331396 

     56          1             4.603120    4.102951    1.434778 

     57          6            -8.406600   -0.960501   -0.750623 

     58          8             6.454707   -2.350363   -0.876436 

     59          1             4.149541    5.653359   -0.457096 



 122 

     60          1            -8.465604   -1.190313    0.321889 

     61          1            -7.977496   -1.822506   -1.279119 

     62          1            -9.410780   -0.767657   -1.132822 

     63          6             6.891789   -2.229238   -2.219330 

     64          1             6.161320   -2.651623   -2.922622 

     65          1             7.085580   -1.182289   -2.489375 

     66          1             7.822769   -2.795613   -2.284568 

 -------------------------------------------------------------- 

 

 

Calculation 2: Diastereomer 77 

 

HF = -1646.6992802 Hartrees (-1033303.7983255 kcal/mol) 

 

 Center     Atomic                  Coordinates (Angstroms) 

 Number     Number                 X           Y           Z 

 -------------------------------------------------------------- 

      1          6             1.665058   -1.038586   -0.485679 

      2          1             2.134592   -1.586941   -1.308581 

      3          6             0.247091   -0.581950   -0.868092 

      4          1             0.310465   -0.229797   -1.911667 

      5          7             2.311272    0.307869   -0.399266 
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      6          6             1.387438    1.340475   -0.179457 

      7          8             1.612385    2.537679   -0.140352 

      8          6            -1.341915    1.114717   -0.344386 

      9          7            -2.007267   -0.212286   -0.549305 

     10          6            -1.106085   -1.262350   -0.777269 

     11          8            -1.389145   -2.433275   -0.958906 

     12          6             3.711849    0.467716   -0.601363 

     13          6             4.284935    1.728174   -0.865795 

     14          1             3.656348    2.606391   -0.890216 

     15          6             5.649973    1.844673   -1.083603 

     16          1             6.091987    2.815046   -1.287719 

     17          6             6.487702    0.721488   -1.052230 

     18          8             7.813903    0.955171   -1.285613 

     19          6             5.928598   -0.530939   -0.789423 

     20          1             6.542184   -1.423565   -0.748911 

     21          6             4.554753   -0.650288   -0.563108 

     22          1             4.158339   -1.632636   -0.334955 

     23          6             8.700224   -0.150640   -1.258775 

     24          1             8.443968   -0.893825   -2.026057 

     25          1             8.708476   -0.639237   -0.274995 

     26          1             9.692314    0.254182   -1.467516 

     27          6             1.744994   -1.875184    0.788687 
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     28          6             1.280621   -3.198615    0.748490 

     29          1             0.853096   -3.589561   -0.170366 

     30          6             1.326914   -3.998225    1.889089 

     31          1             0.959114   -5.019776    1.843714 

     32          6             1.839315   -3.489320    3.085194 

     33          1             1.876880   -4.114414    3.973348 

     34          6             2.301858   -2.174821    3.132125 

     35          1             2.704222   -1.769325    4.056612 

     36          6             2.255785   -1.371507    1.989832 

     37          1             2.633002   -0.354286    2.030866 

     38          6            -3.408779   -0.329251   -0.784824 

     39          6            -4.099749   -1.499600   -0.453303 

     40          1            -3.564649   -2.332533   -0.017730 

     41          6            -5.469163   -1.613553   -0.702248 

     42          1            -5.971072   -2.537599   -0.439089 

     43          6            -6.172546   -0.547988   -1.272821 

     44          8            -7.510519   -0.552408   -1.549992 

     45          6            -5.485572    0.630185   -1.594422 

     46          1            -6.039905    1.453521   -2.033544 

     47          6            -4.121840    0.735946   -1.358914 

     48          1            -3.615406    1.658879   -1.619322 

     49          6            -8.252178   -1.721265   -1.243147 



 125 

     50          1            -8.228592   -1.945092   -0.168115 

     51          1            -7.882201   -2.592962   -1.799433 

     52          1            -9.280310   -1.511786   -1.544421 

     53          1            -1.309247    1.665456   -1.296020 

     54          6             0.061541    0.627104    0.019567 

     55          1             0.027796    0.291320    1.066774 

     56          6            -1.980394    1.990615    0.716885 

     57          6            -1.876511    3.381116    0.596643 

     58          6            -2.596894    1.449056    1.850992 

     59          6            -2.383617    4.218337    1.590627 

     60          1            -1.376873    3.808583   -0.269152 

     61          6            -3.109277    2.286416    2.842083 

     62          1            -2.687924    0.371629    1.951968 

     63          6            -3.005091    3.672819    2.714889 

     64          1            -2.292755    5.295992    1.485058 

     65          1            -3.593121    1.853660    3.713677 

     66          1            -3.405979    4.323723    3.487220 

 -------------------------------------------------------------- 

Full G16 Citation 

Gaussian 16, Revision A.03,  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,  
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Chapter 4: Progress Toward the Synthesis of Bisavenanthramide B-1 

4.1 Introduction 

Plants secrete defensive molecules at sites of pathogenic infection and stress.1-7 

These compounds are typically low molecular weight antimicrobial compounds referred 

to as phytoalexins.5 In oats, avenanthramide B and its dimers have been identified as a 

family of phytoalexins that are bioavailable in mammals and possess antifungal, 

antimicrobial, and antibiotic properties.2-5, 7 One such dimer, bisavenanthramide B-1 (1), 

contains a fused bis-g-lactam core, which can be synthesized using the Mukaiyama-type 

CCR reactions discussed in the previous chapter (Figure 4.1). This method highlights 

the divergent reactivity of 2,5-bis(trimethylsilyloxy)furan (5), which forms both mono (7) 

and bis-g-lactam (2) products in either a single or double Mukaiyama CCR-type 

reaction.8 Our group was interested in demonstrating the utility of our methodology by 

developing the first synthesis of a novel bis-g-lactam natural product bisavenanthramide 

B-1. 

 

Figure 4.1 Synthesis of bisavenanthramide B-1 exploiting divergent reactivity of 2,5-

bis(trimethylsilyloxy) furan 
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4.1.1 Isolation of the Bisavenanthramides and Biosynthetic Hypothesis 

 In oats (Avena sativa L.), the avenanthramides have been identified as a family of 

phytoalexins that inhibit the accumulation of toxic pathogens.9-11 The avenanthramides 

are conjugated amides derived from anthranilic acids with hydroxycinnamic acids (Figure 

4.2).3 Avenanthramides are secreted when oats are exposed elicitors, which are 

described as foreign molecules that provoke a defensive response in plants. Elicitors 

known to promote the production of avenanthramides include phytopathogenic fungi such 

as the crown rust fungus (Puccinia coronate f. sp. avenae),9 as well as leaves of oligo-N-

acetylchitooligosaccharides,2 a host specific toxin victorin C,10 and heavy metal ions12.2 

Similar structures have been found to be secreted as a stress response in other plants.2 

 

Figure 4.2 Avenanthramides are substituted hydrocinnamic acid amides made from anthranilic acid.  
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acid derived from L-phenylalanine.4 In the case of avenanthramide B (9), 4-coumarate 

CoA ligase (4CL) can convert ferulic acid (14) to its hydroxycinnamoyl-CoA thioester (15). 
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Exposure to elicitors induces hydroxyanthranilate hydroxycinnamoyl-CoA N-

hydroxycinnamoyl transferase (HHT) activity, which is said to facilitate the condensation 

of hydroxyanthranilates and hydroxycinnamoyl-CoA thioesters to form the 

avenanthramides (Figure 4.3).2-4  

 

Figure 4.3 Biosynthetic hypothesis for the biosynthesis of avenanthramide B. 

 Bisavenanthramide B-6 (20), a dimer of avenanthramide B, was first isolated in by 

the Ishira group in 2004 (Figure 4.4).5 When oat leaves were treated separately with chitin 

and penta-N-acetylchitopentaose, 20 was isolated by reverse phase HPLC and identified 

as the dehydrodimer of avenanthramide B using ion spray LCMS.5 20 was also found to 

be synthesized from peroxidase extracted from oat leaves in the presence of hydrogen 

peroxide, suggesting a radical mechanism for its biosynthesis (Figure 4.4).5  

 

Figure 4.4 Biosynthetic hypothesis leading to bisavenanthramide B-6 
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metabolic study led to the identification of five additional dimers called the 

bisavenanthramides (Figure 4.5). 6, 7 Due to the presence of the two amide groups and 

having been derived from hydroxycinnamic acid, the bisavenanthramides are classified 

as lignanamides.7  Interestingly, bisavenanthramide B-1 (1) contains a fused bis-g-lactam 

core which has not previously been observed in natural products.7  

 

Figure 4.5 Six dimers of avenanthramide B were identified through studying the metabolism of 

avenanthramide-B. 
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Reaction 
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alkaloids,13-21 protoberberine alkaloids,22-26 and oxopyrrolidine natural products.27, 28 In 

our group, we have developed methods allowing for the synthesis of two structurally 

similar oxopyrrolidine natural products heliotropamide27 and bisavenanthramide B-628. 

The synthesis of bisavenanthramide B-6 highlighted the development of the first anionic 

CCR which utilizes an electron withdrawing N-sulfonyl imine to form the g-lactam core in 

a single step (Figure 4.6). The N-sulfonyl imine electrophile served two purposes—for 

one, the resulting CCR product could be deprotected to afford the free N-H lactam 

allowing for further functionalization. Furthermore, the use of an electron withdrawing 

group maintains similar electrophilicity to an iminium ion and also allows for the addition 

of an exogenous base. To begin the synthesis, a novel anhydride (25) was synthesized 

from a modified Stobbe condensation with vanillin and diethylmaleate (Figure 4.6). The 

anionic CCR reaction of N-(2-(trimethylsilyl)ethanesulfonyl) (SES) imine (24) and 25 with 

LDA afforded the complete core of bisavenanthramide B-6 with correct trans 

stereochemistry and E-alkene geometry. After deprotection of the SES group using 

TBAF, a late-stage double Buchwald N-arylation allowed for the installation of the two 

amide functionalities. Global deprotection ultimately afforded bisavenanthramide B-6 in 

43% yield with a longest linear sequence of 9 steps.  
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Figure 4.6 Nine step synthesis of bisavenanthramide B-6 

4.1.3 Initial Route Toward the Synthesis of Bisavenanthramide B-1  

A detailed discussion of the initial route toward bisavenanthramide B-1 can be found 
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the desired symmetrical diastereomer needed to synthesize 1. Additionally, the 2,5-

bis(trimethylsilyloxy) furan (5) starting material is highly water and air sensitive and 

requires purification by vacuum distillation in low yields (20-70%). The distilled product 

remains viable for up to one week stored as a 0.4 M solution in THF with diminishing 

returns the longer it remains unused. The highly sensitive nature of the furan starting 

material ultimately leads to inconsistent results. Finally, we discovered that ortho-

substituted aniline derived imines were not tolerated in the reaction,8 and our proposed 

three step route to bisavenanthramide B-1 was not feasible. For the duration of this 

chapter, I will describe my attempts at synthesizing bisavenanthramide B-1. 

 

Figure 4.7 Initial retrosynthetic analysis of bisavenanthramide B-1 
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route, 2-cyanoaniline (32) and benzaldehyde (31) were condensed to form imine 33 in 

70% yield (Figure 4.8). As a model system, imine 33 was subjected to the mono-addition 

reaction conditions, with no conversion to the desired product 34. Although it was unlikely 

that the double addition reaction would be successful based on the failure of the mono-

addition, 33 was subjected to double addition reaction conditions. Unfortunately, the THF 

polymerized, which has been identified as the result of an unreactive imine in double 

addition reactions.  

 

Figure 4.8 Unsuccessful synthesis of 2-cyanoaniline containing lactam products. 
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Figure 4.9 Retrosynthetic analysis for the late-stage functionalization strategy. 

4.2.2.1 Attempts at Palladium Catalyzed C–H Functionalization Reaction   

The palladium directed C–H carboxylation reaction to form N-acyl anthranilic acids 

was developed in the Yu group in 2010.30 This work relies on the presence of an acylated 

aniline to direct the insertion of CO ortho to the aniline. The Yu group showed that N-aryl 

lactam substrates could also be carboxylated with good yields. We hoped that we would 

be able to modify the reaction conditions to perform a late-stage double carboxylation 

reaction on bis-g-lactam 36 to afford the penultimate intermediate (42b) to 

bisavenanthramide B-1. To begin this new route, a precedented reaction was repeated 

to ensure that the results could be replicated in my hands utilizing a carbon monoxide 

balloon. First, aniline 39 was synthesized from p-toluidine in 38% yield (Figure 4.10). 39 

was then subjected to the palladium directed carboxylation conditions, which afforded full 

conversion to carboxylated aniline 40 based on the 1H NMR spectrum of the unpurified 

reaction mixture.  

 

Figure 4.10 Proof of concept for the use of carbon monoxide balloon. 
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Satisfied with the modified reaction conditions, the carboxylation reaction was 

tested in the bis-g-lactam system. Initially, the carboxylation reaction was attempted on 

phenyl substituted bis-g-lactam 41 as a model system. (Figure 4.11). After running the 

reaction overnight, the 1H NMR spectrum of the unpurified reaction mixture of 42a was 

inconclusive. Thus, 42a was subjected to TMSCHN2 for ease of isolation and to our 

delight, the resulting 1H NMR spectrum appeared to be consistent with the carboxylated 

product 43a! Next, the reaction was performed on the requisite bis-g-lactam 36, which 

was synthesized as discussed in the previous chapter in 15% yield.31 However, upon 

subjecting to the carboxylation conditions used for the synthesis of 42a, there was no 

conversion to product based on analysis of the 1H NMR spectrum of the unpurified 

reaction mixture. 

 

Figure 4.11 Attempt on unsubstituted bis-g-lactam 43b 

Due to the consistently poor yields of the double-addition reaction, esterified mono-

addition product 44 was used as a model system for reaction optimization.31 Using 44, a 

series of reaction conditions were screened, varying the solvent mixture, additive, and 

reaction temperature based on conditions described by the Yu group (Table 4.1).30 Based 

on the 1H NMR spectra of the unpurified reaction mixtures, the resulting products were 

either the hydrolyzed ester (46) or recovered starting material (44). After consulting with 

Pd(OAc)2, p-TsOH
p-BQ, CO (g)
AcOH, toluene,
60 °C, overnight

N
O

N
O

H

H TMSCHN2

41a: R1 = R2 = H
36: R1 = Oi-Pr, R2 = OCH3

N
O

N
O

H

H

CO2H

HO2C

N
O

N
O

H

H

CO2CH3

H3CO2C
R1

R1

R1

R1

R1

R1

R1

R1

R2

R1

R1

R1

R1

R2 R2 R2R2R2
CH3OH, rt
overnight

42a: R1 = R2 = H
42b: R1 = Oi-Pr, R2 = OCH3

43a: R1 = R2 = H
43b: R1 = Oi-Pr, R2 = OCH3



 141 

Prof. Yu, he suggested that the bulky aryl ring adjacent to the lactam nitrogen might not 

allow for the amide to position itself in a way that to direct the palladium. To circumvent 

this, he suggested increasing the temperature of the reaction. Additionally, he commented 

that the hydrolysis of the ester might be limiting and suggested a bulkier group to protect 

the ester. Because the esterified monolactam was being used as a model system, we 

endeavored to apply Prof. Yu’s advice on the double-addition product 36.  

Table 4.1 Reaction screen of the palladium catalyzed carbonylation reaction 

 

To test the reaction with Prof. Yu’s advice, 36 was subjected to modified reaction 

conditions at 120 °C (Figure 4.12). The reaction was stirred at this temperature for 5 days, 
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to the putative product 48. Due to the unsuccessful attempts at carboxylation, this late-

stage functionalization route was abandoned. 

 

Figure 4.12 Attempted carbonylation resulted in Saegusa-like oxidation followed by oxidative aryl 

cleavage. 
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Figure 4.13 Attempts at an ortho-bromination on the monolactam model system 

Considering the apparent success of the NBS bromination on the monolactam 

substrate, bis-g-lactam 36 was employed in the double-bromination reaction (Figure 

4.14). Interestingly, the products of these reaction conditions were a combination of a 

regioisomer, 52, wherein the bromine was installed on the incorrect aryl rings, as well as 

the undesired product 53 wherein the bromide was installed on both of the incorrect aryl 

rings as well as the two desired aryl rings. While the structures of these products were 

not fully characterized, we were confident that the isolated products were not the desired 

product by comparing the JH-H values to that of bisavenanthramide B-1. It is possible that 

products 52 and 53 were favored due to the more highly activated aryl ring alpha to the 

amide.  

 

Figure 4.14 Attempts at performing a double bromination on the bis-g-lactam 36 
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4.2.2.3 Initial Attempt at the Double CAN Deprotection 

Having failed at a late-stage functionalization reaction, it was necessary to 

restructure our synthetic route. We hypothesized that we could use our method to form a 

bis-g-lactam precursor (55) which could be doubly deprotected to afford N-H bis-g-lactam 

(54). 54 could then undergo a copper-mediated Buchwald bis-arylation to afford the 

penultimate intermediate, analogous to the synthesis of bisavenanthramide B-6 that our 

group reported in 2016 (Figure 4.15).28  

 

Figure 4.15 New retrosynthetic analysis involving a double deprotection to form lactam 51 
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Figure 4.16 (Left) Derivatization of monolactam substrate 56. (Right) Application of CAN deprotection 

to bis-g-lactam 

 Next, we endeavored to apply the CAN deprotection conditions to the desired 

system. Nico Havenner, an undergraduate in the lab, synthesized the requisite imine 60 

for the desired bis-g-lactam 55 in 52% yield (Figure 4.17) The imine was employed in the 

double Mukaiyama CCR which afforded symmetrical bis-g-lactam 55 in 7% yield. 55 was 

subjected to CAN deprotection conditions, and after 24 hours there was no conversion to 

product. Adding another portion of CAN to the reaction mixture and stirring for an 

additional day proved futile, and ultimately the reaction failed. Based on the success of 

the electron neutral lactam (57) and the failure of the reaction to form 54 from the activated 

lactam 55, we hypothesize that the discrepancy might be attributed to the highly electron 

donating aryl ring derived from vanillin. Although it is unclear why an electron donating 

group adjacent to the amide would have an impact on the CAN deprotection, the only 

discernible difference between lactam 59 and 55 is the electronics of the aldehyde derived 

aryl group, supporting this hypothesis.  

 

Figure 4.17 CAN deprotection attempt from imine 60 
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4.2.3 New Retrosynthetic Analysis of Bisavenanthramide B-1 

The limitations of our methods as well as our previous routes drove us to 

reconsider our synthetic strategy once more. While perusing the literature, we found 

precedent for an oxidative phenol deprotection using (bis(trifluoroacetoxy)iodo) benzene, 

PIFA, which would allow for the synthesis of the N-H bis-g-lactam. In order to utilize this 

deprotection, it was necessary to find orthogonal protecting groups for the para-phenol 

substituents on both the aniline and aldehyde-derived aryl rings of the imine precursor 

(62) (Figure 4.18). In addition, the highly-electron donating nature of the benzylic aryl ring  

 

Figure 4.18 Retrosynthetic analysis using a mesylate protecting group on the aryl aldehyde derived 

portion of the bis-g-lactam. Using an electron withdrawing protecting group, the failed CAN 

deprotection (precursor 63) and bromination (62) reactions might be successful. Additionally, the use 

of orthogonal protecting groups (i-Pr and Ms) allows for the use of PIFA deprotection conditions from 

62. 
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had proven to have an effect on both the bromination and the CAN deprotection reaction. 

I hypothesized that it might be possible to remedy these failed results by utilizing a 

protecting group that would mediate the electron donating nature of the aryl aldehyde 

derived portion of the molecule (61, 63). 

4.2.4 Reaction Optimization for Novel Electron Withdrawing Substrates 

To attempt this new route, orthogonal protecting groups on the phenolic oxygen atoms 

were required. Nico Havenner and I began by synthesizing a series of imines to be tested 

in the reaction (Figure 4.19). First, the protecting groups were modified on the vanillin 

portion of the imine to form mesylated vanillin 65 and tert-butyldiphenylsilyl (TBDPS)  

 

Figure 4.19 Synthesis of novel imines for the synthesis of bisavenanthramide B-1 
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protected vanillin 69 in 93 and 80% yield, respectively. 65 was then condensed with p-

anisidine to afford 66 in in 99% yield. 65 was also condensed with isopropyl protected 4-

amino phenol 67 which provided 68 in 80% yield. Next, we worked to modify the protecting 

groups on 4-aminophenol. TBDPS protected imine 74 was formed in 2 steps and isolated 

in 85% yield. Finally, 4-nitrophenol was tosylated and subsequently reduced to the tosyl-

protected 4-aminophenol 77, which led to imine 78 in 73% yield. 

The novel imines were then subjected to the original optimized reaction conditions 

(Table 4.2). Interestingly, the electronics of the N-substituent significantly influenced the 

reactivity of the imine precursor—specifically, electron withdrawing groups para to the 

aniline resulted in 0% conversion to product (Table 4.2, entry 1, 2). We hypothesize this 

is due to the influence of the para substituents on the aniline on the basicity and 

electrophilicity of the imine. As a result, we turned our attention to modifying the protecting 

group from the vanillin component, specifically by using TBDPS and methane sulfonyl 

protecting groups (Table 4.2). Formation of the bis-g-lactam product proved unproductive 

with TBDPS (entries 10 and 11), and the use of the methane sulfonyl protecting group 

significantly decreased the overall conversion to product, resulting in a yield of 8% of our 

desired diastereomer. This initiated my attempt at re-optimizing conditions to increase the 

yield of the symmetrical diastereomer. A variety of conditions were screened, modifying 

the solvent, protecting group, and Lewis acid (Table 4.2). The use of 0.4 equivalents of 

triflic acid in dichloromethane provided 90% conversion and a 25% isolated yield of our 

desired diastereomer (Table 4.2 entry 12). With optimized conditions in hand, we 
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endeavored to use these new bis-g-lactams toward the synthesis of bisavenanthramide 

B-1. 

 

Table 4.2 Reaction Optimization for Imine Substrates Bearing Electron Withdrawing Groups 

 

4.2.5 Additional Bromination Strategy 

Using bis-g-lactam 59, I sought to reconsider the late-stage functionalization strategy. 

Since the previous bromination attempts resulted in the incorrect regioisomer of product, 

we hypothesized that changing the electronics of the aldehyde-derived aryl ring would 

allow for the preferential bromination of our desired aniline-derived aryl ring. Mesylated 
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H

N

R2O

OR1
OTMSO

OTMS

N

N

O

OR2O

OR2
R1O

OR1

Lewis Acid x mol %
Na2SO4

solvent, rt, 24 h

entry R2 Lewis Acid solvent conva,b

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

i-Pr
i-Pr
Ms
Ms
Ms
Ms
Ms
Ms
Ms

TBDPS
TBDPS

Ms
Ms
Ms
Ms
Ms
Ms
Ms
Ms
Ms
Ms

TfOH
TfOH
TfOH

TMSOTf
TfOH
TfOH
TfOH
TfOH

TMSOTf
TfOH
TfOH
TfOH
TfOH

Sc(OTf)3
TiCl4

BF3•OEt2
AlCl3
ZnBr2
TfOH
TfOH
TfOH

0.2
0.2
0.2
0.2
0.2
0.2
0.2
2.0
2.0
0.2
0.2
0.4
1.0
0.2
0.2
0.2
0.2
0.2
0.2
0.4
0.4

eq.
THF
THF
THF
THF

toluene
CH2Cl2
Et2O
THF
THF
THF

CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2

THF

R1

TBDPS
Ts
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
CH3
CH3
CH3

<5
<5
32
35
<5
50
<5
20
<5
<5
<5
90
82
<5
<5
<5
<5
<5
61
45
45

H

H

a Determined by the 1H NMR spectrum of the unpurified reaction mixture
b Conversion to both diastereomers

dra (sym : unsym)
—
—

48:52
32:68

—
36:64

—
20:80

—
—
—

50:50
40:60

—
—
—
—
—

42:58
26:74
42:58

N

N

O

OR2O

OR2
R1O

OR1

H

H

79

5

80 81

H3CO H3CO
OCH3 OCH3

H3CO



 150 

bromination product.34 Interestingly, the reaction yielded a 50:50 mixture of the putative 

doubly brominated product (61) and starting material! Unfortunately, due to the 

simultaneous studies that are discussed in the next two sections and the difficulty in 

obtaining an appreciable quantity of bis-g-lactam product 62, these bromination conditions 

were not attempted further.  

 

Figure 4.20 Final attempt at ortho-directed bromination conditions 

4.2.6 Synthesis of N-H Bis-Lactam Intermediate  

4.2.6.1 CAN Deprotection to N-H Bis-g-lactam  

In the previous attempts to synthesize bisavenanthramide B-1, we found that the CAN 

deprotection was successful on an electronically neutral aryl ring on the aldehyde portion 

of the imine but could not be repeated when the adjacent aryl ring was highly electron 

donating. We hypothesized that these novel electron withdrawing imine substrates might 

circumvent the issue observed in our previous attempt. Thus, the symmetrical bis-g-

lactam diastereomer 60 was isolated in modest yield and subjected to cerium ammonium 

nitrate (CAN) deprotection conditions. The reaction resulted in 90% conversion to the 

desired N-H bis-g-lactam 82 (Figure 4.21)!  However, subsequent attempts to scale up 

the CAN double-deprotection reaction resulted in poor yields in comparison to our final 

H

MsO

N

Oi-Pr

N

N

O

O

i-PrO

MsO
Oi-Pr

OMs

OCH35, 40 mol % TfOH

H

H

H3CO
H3CO

Na2SO4, CH2Cl2, 25%
50:50 dr

N

N

O

OMsO

OMs
i-PrO

Oi-Pr

H

H

Br

Br

DCE, 60 °C, 4 h

TFA, NBS
Co(acac)2, Ag2O

68

62 61

OCH3
H3CO



 151 

route, which will be discussed in the next section and this route was subsequently 

abandoned.  

 

Figure 4.21 Successful synthesis of N-H bis-lactam through CAN deprotection 
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yield (Figure 4.22).  

 

Figure 4.22 Optimized route to N-H bis-g-lactam 82. 
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4.2.7 Failure of the Buchwald Bis-Arylation 

With the N-H lactam finally in hand, my goal was to optimize conditions for a copper-

mediated Buchwald bis-arylation which would install the aryl groups containing ester 

precursors to the necessary ortho-carboxylic acid substituents. Nico Havenner worked to 

synthesize the aryl-iodide (27) coupling agent used in the synthesis of bisavenanthramide 

B-6. To do this, he first performed a Sandmeyer reaction on 2-amino-5-hydroxybenzoic 

acid to afford iodide (85) in modest yield. He then esterified the carboxylic acid moiety 

using acetyl chloride and methanol, yielding phenol 86 in 88% yield (Figure 4.23). 86 was 

then used to synthesize both 27 and the methane sulfonyl protected aryl iodide (87). 

Performing the Buchwald bis-arylation with 87 would allow for a global deprotection of 

both aryl rings, while 27 would be the most comparable to the successful synthesis of 

bisavenanthramide B-6. He was able to obtain the Buchwald coupling agents 86 and 87 

in 24% and 97% yield, respectively 

 

Figure 4.23 Synthesis of aryl iodides 27 and 87 for the Buchwald bis-arylation 

As described previously, one major drawback of the double Mukaiyama CCR is the 

poor yield for the desired symmetrical diastereomer. To compound this, the two 

deprotection steps to afford 82 result in a decrease in mass of the product. Even running 

the double-addition reactions on large scale only provides a few hundred milligrams of 

Oi-Pr

CO2CH3I

OMs

CO2CH3I

OH

CO2HH2N

H2SO4, NaNO2
H2O, 0 °C, 10 min
then KI reflux
overnight, 13%

OH

CO2HI

AcCl, CH3OH
0 °C to reflux
overnight, 88%

OH

CO2CH3I

i-PrBr, K2CO3

DMF,  overnight, 24%

0 °C to rt, 3 h, 97%

MsCl, Et3N, CH2Cl284 85 86

27

87



 153 

material to move forward in the synthesis. In order to obtain an appreciable amount of 

starting material, multiple reactions were performed in parallel and subsequently 

combined to afford bis-g-lactam 62. As a result, after significant optimization of the 

previous five steps, only two attempts were made to perform the double Buchwald 

arylation—one with aryl iodide 27, and one with 87, both of which resulted in 0% 

conversion to the desired product (Figure 4.24). 

 

Figure 4.24 Final attempts at synthesizing bisavenanthramide B-1 through the Buchwald bis-arylation. 
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product, namely with respect to the CAN deprotection and directed bromination. With this 

in mind, it might be possible that the failure of the Buchwald bis-arylation results from 

changing the electronics of the aryl aldehyde-derived ring compared to 

bisavenanthramide B-6.  

Future work will require significant optimization of the Buchwald bis-arylation. 

Additionally, utilizing a different protecting group on the aryl aldehyde derived portion of 

the molecule could improve both the yield and reactivity in the bis-arylation reaction. Our 

modified route relied on the orthogonality of the protecting groups on the bis-g-lactam, 

however it is possible that the PIFA oxidation could occur even on the deprotected 

intermediate 90 (Figure 4.25). Using bis-g-lactam 36, it is possible that a double BCl3 

deprotection followed by double PIFA deprotection could produce bis-g-lactam 91. This 

new intermediate can then be isopropylated to afford intermediate 92, which is more 

electronically similar to the lactam used in the synthesis of bisavenanthramide B-6. 

Optimization of the Buchwald bis-arylation followed by global deprotection could then 

afford bisavenanthramide B-1. 

 

Figure 4.25 Possible route toward the synthesis of bisavenanthramide B-1 
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Additionally, a more thorough optimization of the directed bromination reaction 

might be worth pursuing. Changing the electronics of the aldehyde derived portion of the 

aryl ring resulted in a 50:50 mixture of the doubly brominated product and starting material 

62 (Figure 4.26). Optimizing the reaction conditions to improve conversion to the desired 

brominated product could ultimately lead to the synthesis of bisavenanthramide B-1.  

 

Figure 4.26 Possible optimization of bromination reaction 
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N-(p-tolyl)acetamide (39): Following a modified literature procedure,36 to a flame dried 

round bottom flask under argon was added 4-methylaniline (0.160 g, 1.5 mmol). Acetic 

anhydride (0.142 mL, 1.5 mmol) and glacial acetic acid (0.15 mL, 2.63 mmol) were added, 

and the reaction was heated to reflux for one hour. The reaction was cooled to room 

temperature and poured into 20 mL ice cold H2O and filtered. The unpurified reaction 

mixture was recrystallized in 2:1 H2O:AcOH to afford 39 as a white solid (0.85 mg, 38%). 

1H NMR (400 MHz, CDCl3) δ 7.37 (d, J = 8.2 Hz, 2H), 7.12 (d, J = 8.0 Hz, 2H), 2.31 (s, 

3H), 2.16 (s, 3H). 

 

2-acetamido-5-methylbenzoic acid (40): Following a modified literature procedure,30 to 

a flame dried round bottom flask under argon was added 39 (0.075 g, 0.5 mmol), 

Pd(OAc)2 (0.011 g, 0.05 mmol), p-TsOH (0.048 g, 0.25 mmol), and p-benzoquinone 

(0.054 g, 0.5 mmol). AcOH:toluene (2:1, 1.0 mL) was added, the reaction was sparged 

with a balloon of CO for 10 minutes. An additional balloon of CO was added to the reaction 

and heated to 60 °C. After 7 hours, the reaction was cooled to room temperature and 

concentrated in vacuo. The unpurified reaction mixture was dissolved in NaHCO3 and 

washed 3x with CH2Cl2 (5 mL). The aqueous layer was acidified with 6 N HCl at 0 °C and 
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extracted 5x with EtOAc (2 mL). The organic layer was washed with H2O, dried over 

Na2SO4 and concentrated in vacuo. 1H NMR (400 MHz, CDCl3) δ 10.77 (s, 1H), 8.61 (d, 

J = 8.7 Hz, 1H), 7.91 (d, J = 1.8 Hz, 1H), 7.41 (d, J = 8.8 Hz, 1H), 6.72 (s, 1H), 2.35 (s, 

3H), 2.24 (s, 3H). 

 
dimethyl 2,2'-(1,4-dioxo-3,6-diphenyltetrahydropyrrolo[3,4-c]pyrrole-2,5(1H,3H)-

diyl)dibenzoate (43a)  Following a modified literature procedure,30 to a flame dried round 

bottom flask under argon was added 41a (0.050 g, 0.112 mmol), Pd(OAc)2 (0.005 g, 0.022 

mmol), p-TsOH (0.021 g, 0.112 mmol), and p-benzoquinone (0.024 g, 0.224 mmol). 

AcOH:toluene (2:1, 1.0 mL) was added, the reaction was sparged with a balloon of CO 

for 10 minutes. An additional balloon of CO was added to the reaction and heated to 60 

°C overnight. The reaction was then cooled to room temperature and concentrated in 

vacuo. The unpurified reaction mixture was dissolved in NaHCO3 and washed 3x with 

CH2Cl2 (5 mL). The aqueous layer was acidified with 6 N HCl at 0 °C and extracted 5x 

with EtOAc (2 mL). The organic layer was washed with H2O and dried over Na2SO4 and 

concentrated in vacuo. The unpurified reaction mixture was dissolved in CH3OH (2 mL) 

and TMSCHN2 (0.280 mL, 2M in hexane) was added, and the reaction was stirred at room 

temperature overnight. The reaction was quenched with AcOH (0.050 mL) and 

concentrated in vacuo. The unpurified reaction mixture was purified by flash column 

chromatography (70:30 hexanes:EtOAc) to afford the putative product 41a. 1H NMR (400 
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MHz, CDCl3) δ 7.84 – 7.76 (m, 4H), 7.57 (t, J = 6.5 Hz, 4H), 7.45 (q, J = 7.4 Hz, 6H), 7.33 

(d, J = 4.3 Hz, 4H), 5.12 (s, 2H), 4.61 (s, 2H), 3.35 (s, 6H). 

 

 

3,6-bis(4-isopropoxy-3-methoxyphenyl)-2,5-dimethyl-2,5-dihydropyrrolo[3,4-

c]pyrrole-1,4-dione (48) Following a modified literature procedure,30 to a flame dried 

round bottom flask under argon was added 36 (0.064 g, 0.087mmol), Pd(OAc)2 (0.004 g, 

0.017 mmol), p-TsOH (0.017 g, 0.087 mmol), and p-benzoquinone (0.019 g, 0.174 mmol). 

AcOH:toluene (2:1, 2.0 mL) was added, the reaction was sparged with a balloon of CO 

for 10 minutes. An additional balloon of CO was added to the reaction and heated to 60 

°C overnight. The reaction was then cooled to room temperature. Note: The unpurified 

reaction mixture was not concentrated in vacuo.  Instead, NaHCO3 was added to the 

reaction mixture, which reacted violently, then washed 3x with CH2Cl2 (5 mL). The 

aqueous layer was acidified with 6 N HCl at 0 °C and extracted 5x with EtOAc (2 mL). 

The organic layer was washed with H2O and dried over Na2SO4 and concentrated in 

vacuo. The unpurified reaction mixture was dissolved in CH3OH (2 mL) and TMSCHN2 

(0.280 mL, 2M in hexane) was added, and the reaction was stirred at room temperature 

overnight. The reaction was quenched with AcOH (0.2 mL) and concentrated in vacuo. 

The unpurified reaction mixture was purified by flash column chromatography (70:30 

hexanes:EtOAc) to afford the putative product 48. 1H NMR (400 MHz, CDCl3) δ 7.64 (d, 
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J = 8.4 Hz, 2H), 7.55 (s, 2H), 6.89 (d, J = 8.5 Hz, 2H), 4.65 (p, J = 6.3 Hz, 2H), 3.91 (s, 

6H), 3.89 (d, J = 1.5 Hz, 6H), 1.41 (dd, J = 6.1, 1.4 Hz, 12H). 

 

3,6-bis(4-isopropoxy-3-methoxyphenyl)-2,5-bis(4-methoxyphenyl)hexa-

hydropyrrolo[3,4-c]pyrrole-1,4-dione (55): Na2SO4 (0.474, 3.34 mmol) was flame dried 

in a round bottom flask under argon. Imine 60 (1.0 g, 3.34 mmol) was added followed by 

2,5-bis(trimethylsilyloxy)furan (4.2 mL, 0.4 Min THF). An additional portion of THF was 

added (8.36 mL, 0.2 M). TfOH (0.029 mL, 0.334 mmol) was added, and the reaction was 

sealed with parafilm. After 24 hours at room temperature, NH4Cl was added to the 

reaction using air-free technique. The reaction was then extracted 3x with EtOAc (15 mL) 

dried over Na2SO4 and concentrated in vacuo. The product was purified by flash column 

chromatography 30-100% EtOAc in hexanes to afford 55 31:79 dr (sym:unsym) (0.071 g, 

6%). 1H NMR (600 MHz, CDCl3) δ 7.42 (d, J = 9.1 Hz, 4H), 6.83 – 6.75 (m, 10H), 5.57 (s, 

2H), 4.46 (hept, J = 5.4 Hz, 2H), 3.81 (s, 6H), 3.75 (s, 6H), 3.37 (d, J = 2.1 Hz, 2H), 1.33 

(d, 12H). 

 

3,6-diphenylhexahydropyrrolo[3,4-c]pyrrole-1,4-dione (59). 58 (0.012 g, 0.024 mmol) 

was dissolved in CH3CN at 0 °C. Cerium ammonium nitrate (0.104 mg, 0.190 mmol) was 
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dissolved in H2O at 0 °C and added to the solution and warmed up to room temperature. 

After 18 h, the reaction was cooled to 0 °C and another portion of cerium ammonium 

nitrate was added to the reaction and stirred for another 6 h. NaHCO3 was then added, 

and the reaction was extracted 3x with EtOAc (5 mL). The reaction was acidified, and 

extracted with 3x EtOAc (5 mL), dried over Na2SO4 and concentrated in vacuo. The 

desired product 59 was isolated from the first organic extract. 1H NMR (400 MHz, CDCl3) 

δ 7.38 – 7.28 (m, 10H), 6.85 (s, 2H), 5.09 (s, 2H), 3.16 (s, 2H). 

 

4-formyl-2-methoxyphenyl methanesulfonate (64) Following a modified literature 

procedure:37 To a flame dried round bottom flask was added vanillin (3.0 g, 20 mmol) and 

dissolved in CH2Cl2 (10 mL). Methanesulfonyl chloride (1.5 mL, 20 mmol) was added, 

and the reaction was cooled to 0 °C.  Et3N was added and the reaction was stirred at RT 

for 3 h. The reaction was then quenched with H2O (10 mL), extracted 3x with CH2Cl2 (15 

mL), dried over Na2SO4 and concentrated in vacuo. The unpurified reaction mixture was 

purified by recrystallization in EtOH to afford 64 (4.28 g, 93%) as a white crystalline solid.  

1H NMR (400 MHz, CDCl3) δ 9.97 (d, J = 1.4 Hz, 1H), 7.54 (d, J = 1.6 Hz, 1H), 7.51 – 

7.46 (m, 2H), 3.98 (s, 4H), 3.25 (s, 3H). 
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(E)-2-methoxy-4-(((4-methoxyphenyl)imino)methyl)phenyl methanesulfonate (66) 

p-anisidine (2.5 g, 20 mmol) and aldehyde 65 (4.6 g, 20 mmol) were dissolved in EtOH 

(10 mL, 0.5 M) and stirred overnight. The reaction was filtered and recrystallized in EtOH 

to afford 66 (5.4 g, 91%) as a grey solid. 1H NMR (300 MHz, CDCl3) δ 8.44 (s, 1H), 7.73 

(s, 1H), 7.45 – 7.31 (m, 2H), 7.25 (d, J = 9.4 Hz, 3H), 6.94 (d, J = 8.2 Hz, 1H), 4.00 (s, 

3H), 3.84 (s, 3H), 3.22 (s, 3H). 

 

 

4-(((4-isopropoxyphenyl)imino)methyl)-2-methoxyphenyl methanesulfonate (68) 

Aniline 67 (0.5 g,3.3 mmol) and aldehyde 65 (0.759 g, 3.3 mmol) were dissolved in EtOH 

and stirred overnight. The reaction was filtered and recrystallized in EtOH to afford 68 

(0.787 g, 66%).1H NMR (400 MHz, CDCl3) δ 8.44 (s, 1H), 7.73 (s, 1H), 7.43 – 7.30 (m, 

2H), 7.22 (d, J = 8.4 Hz, 2H), 6.92 (d, J = 8.3 Hz, 2H), 4.56 (p, J = 6.1 Hz, 1H), 4.00 (s, 

3H), 3.22 (s, 3H), 1.36 (d, J = 6.0 Hz, 6H). 
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4-((tert-butyldiphenylsilyl)oxy)-3-methoxybenzaldehyde (69) To a flame dried round 

bottom flask was added vanillin (1.945 g, 12.8 mmol) and dissolved in CH2Cl2 (42 mL, 0.3 

M). Imidazole (1.742 g, 25.6 mmol) was added, and the reaction was stirred for 15 min 

before TBDPSCl (3.3 mL, 12.8 mmol) was added. After 24 h, H2O was added. The 

unpurified reaction was extracted 3x with CH2Cl2 (15 mL), dried over Na2SO4 and 

concentrated in vacuo. The unpurified reaction mixture was purified by gradient flash 

column chromatography 2-40% EtOAc in hexanes to afford 69 (3.4 g, 68%) as a clear oil. 

1H NMR (400 MHz, CDCl3) δ 9.76 (d, J = 1.3 Hz, 1H), 7.79 – 7.64 (m, 4H), 7.51 – 7.24 

(m, 8H), 6.79 (dd, J = 8.2, 1.3 Hz, 1H), 3.63 (d, J = 1.3 Hz, 3H), 1.12 (d, J = 1.3 Hz,9H). 

 

4-((tert-butyldiphenylsilyl)oxy)aniline (72) Following a modified literature procedure:38 

4-aminophenol was added to a flame dried flask under argon. CH2Cl2 (167 mL, 0.09 M) 

was added to the flask using a cannula. Imidazole (1.7 mL, 30.42 mmol) was added, 

followed by TBDPSCl (2.2 mL, 8.4 mmol). Note: an excess of imidazole and 4-

aminophenol were used erroneously. After 24 h, the reaction was concentrated in vacuo. 

The unpurified product was purified by flash column chromatography in CH2Cl2 to afford 

product 72 in quantitative yield (2.9 g, 100%).1H NMR (600 MHz, CDCl3) δ 7.71 (d, J = 

7.3 Hz, 4H), 7.41 – 7.37 (m, 2H), 7.34 (d, J = 15.0 Hz, 4H), 6.58 (d, J = 8.7 Hz, 2H), 6.42 

(d, J = 8.7 Hz, 2H), 3.28 (s, 2H), 1.08 (s, 9H). 1H NMR matches literature values.38 
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(N-(4-((tert-butyldiphenylsilyl)oxy)phenyl)-1-(4-isopropoxy-3-

methoxyphenyl)methanimine (74). Following a modified literature procedure:39 To a 

flame dried round bottom flask was added aniline 72 (1.3 g, 4.0 mmol) and 73 (0.776 g, 

4 mmol) and dissolved in EtOH (20 mL, 0.2 M). The reaction was stirred to reflux and 

stirred overnight. After 24 h, the reaction was cooled and concentrated to afford 74 (1.78 

g, 85%) as a yellow oil. 1H NMR (600 MHz, CDCl3) δ 8.30 (s, 1H), 7.73 (d, J = 7.3 Hz, 

4H), 7.54 (s, 1H), 7.45 – 7.30 (m, 6H), 7.21 (d, J = 6.2 Hz, 1H), 6.99 (d, J = 8.7 Hz, 2H), 

6.91 (d, J = 8.3 Hz, 1H), 6.77 (d, J = 8.7 Hz, 2H), 4.62 (p, J = 6.1 Hz, 1H), 3.93 (s, 3H), 

1.40 (d, J = 6.1 Hz, 6H), 1.11 (d, J = 5.3 Hz, 9H). 

 

4-nitrophenyl 4-methylbenzenesulfonate (75) Following a modified literature 

procedure:40 To a round bottom flask was added 4-nitrophenol (0.948 g, 6.8 mmol) and 

dissolved in THF (4.3 mL, 1.6 M w.r.t 4-nitrophenol). 10% K2CO3 aqueous solution (17 

mL) was added, and the reaction was cooled to 0 °C. p-toluenesulfonyl chloride (1.3 g, 

6.9 mmol) was added to the reaction as a solution in THF (9.54 mL, 0.72 M w.r.t. TsCl) 

over 5 minutes. The reaction was stirred at room temperature and monitored by TLC until 

the reaction was complete. EtOAc (15 mL) was added, and the reaction was washed with 

H2O (15 mL), dried over Na2SO4, concentrated in vacuo and used without further 
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purification (1.92 g, 96%). 1H NMR (400 MHz, CDCl3) δ 8.19 (d, J = 8.7 Hz, 2H), 7.73 (d, 

J = 8.0 Hz, 2H), 7.36 (d, J = 7.9 Hz, 2H), 7.19 (d, J = 8.7 Hz, 2H), 2.47 (s, 3H). 

 

4-aminophenyl 4-methylbenzenesulfonate (76). Following a modified literature 

procedure:41 To a flame dried round bottom flask was added 75 (1.9 g, 6.5 mmol), HFIP 

(6.8 mL, 65 mmol), and Fe (powder) (1.8 g, 32.5 mmol). 2N HCl was added (65 mL) and 

stirred at rt for 30 min. The reaction was neutralized with saturated NaHCO3, extracted 3x 

with EtOAc (15 mL), and washed with brine. The unpurified reaction mixture wad dried 

over Na2SO4 and concentrated. The product was purified by gradient flash column 

chromatography 20-100% EtOAc in hexanes to afford 76 (1.31 g, 76%). 1H NMR (400 

MHz, CDCl3) δ 7.68 (d, J = 7.9 Hz, 2H), 7.29 (d, J = 7.9 Hz, 2H), 6.73 (d, J = 9.1 Hz, 2H), 

6.52 (d, J = 8.7 Hz, 2H), 3.66 (s, 2H), 2.44 (s, 3H). 

 

4-((4-isopropoxy-3-methoxybenzylidene)amino)phenyl 4-methylbenzenesulfonate 

(78) Following a modified literature procedure:42 Aniline 76 (0.40 g,1.5 mmol) and 

aldehyde 64 (0.291 g, 1.5 mmol) were dissolved in EtOH and stirred overnight. The 

reaction was filtered and used without further purification to afford 78 (0.480 g, 73%). 1H 

NMR (400 MHz, CDCl3) δ 8.28 (s, 1H), 7.70 (d, J = 8.1 Hz, 3H), 7.55 (s, 1H), 7.31 (s, 2H), 

H2N

OTs

H

N

OTs

i-PrO

H3CO



 165 

7.08 (d, J = 8.2 Hz, 2H), 6.95 (dd, J = 15.1, 8.3 Hz, 3H), 4.64 (p, J = 6.1 Hz, 1H), 3.92 (s, 

3H), 2.43 (s, 3H), 1.41 (d, J = 6.1 Hz, 6H). 

 

((1S,3aS,4S,6aS)-2,5-bis(4-isopropoxyphenyl)-3,6-dioxooctahydropyrrolo[3,4-

c]pyrrole-1,4-diyl)bis(2-methoxy-4,1-phenylene) dimethanesulfonate (62) Na2SO4 

(0.057, 0.4 mmol) was flame dried in a round bottom flask under argon. Imine 68 (0.132 

g, 0.4 mmol) was dissolved in CH2Cl2 (1.0 mL, 0.2 M). added followed by 2,5-

bis(trimethylsilyloxy)furan (0.050 mL 0.2 mmol). TfOH (0.007 mL, 0.08 mmol) was added, 

and the reaction was sealed with parafilm. After 24 hours at rt, NH4Cl was added to the 

reaction using air-free technique. The reaction was then extracted 3x with EtOAc (15 mL) 

dried over Na2SO4 and concentrated. The product was purified by flash column 

chromatography 30-100% EtOAc in hexanes to afford 62 (0.040 g, 25%) a yellow foam, 

as a 50:50 (sym:unsym) mixture of diastereomers. 1H NMR (400 MHz, CDCl3) δ 7.38 (d, 

J = 8.6 Hz, 4H), 7.25 (s, 2H), 6.94 – 6.79 (m, 8H), 5.64 (s, 2H), 4.55 – 4.42 (m, 2H), 3.87 

(s, 6H), 3.31 (s, 2H), 3.17 (d, J = 1.4 Hz, 6H), 1.29 (dd, J = 6.1, 1.5 Hz, 12H). 
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(2,5-bis(4-methoxyphenyl)-3,6-dioxooctahydropyrrolo[3,4-c]pyrrole-1,4-diyl)bis(2-

methoxy-4,1-phenylene) dimethanesulfonate (63) Na2SO4 (0.113 g, 0.8 mmol) was 

flame dried in a round bottom flask under argon. Imine 66 (0.240 g, 0.8 mmol) was added 

followed by 2,5-bis(trimethylsilyloxy)furan (1 mL, 0.4M in THF). An additional portion of 

THF was added (1 mL). TfOH (0.010 mL, 0.16mmol) was added, and the reaction was 

sealed with parafilm. After 24 hours at rt, NH4Cl was added to the reaction using air-free 

technique. The reaction was then extracted 3x with EtOAc (15 mL) dried over Na2SO4 

and concentrated. The product was purified by flash column chromatography 30-100% 

EtOAc in hexanes to afford 63 (0.174 g, 36%) as a 34:66 (sym:unsym) mixture of 

diastereomers. 1H NMR (600 MHz, CDCl3) δ 7.44 – 7.37 (m, 4H), 7.24 (s, 2H), 6.94 (d, J 

= 2.1 Hz, 2H), 6.88 – 6.80 (m, 6H), 5.65 (d, J = 1.8 Hz, 2H), 3.85 (s, 6H), 3.75 (s, 6H), 

3.34 (d, J = 2.3 Hz, 2H), 3.15 (s, 6H).   

 

(2,5-bis(4-hydroxyphenyl)-3,6-dioxooctahydropyrrolo[3,4-c]pyrrole-1,4-diyl)bis(2-

methoxy-4,1-phenylene) dimethanesulfonate (83).  Following a modified literature 

procedure:28 To a flame dried round bottom flask was added 62 (0.150 g, 0.186 mmol) 

and dissolved in CH2Cl2 (1.55 mL, 0.12 M). The solution was cooled to 0 °C and BCl3 

(2.22 mL, 1M in CH2Cl2) was added dropwise. The reaction was stirred at 0 °C for 1h, 

after which the reaction was warmed to rt and stirred for an additional 2 h. The reaction 
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was quenched with H2O, extracted 3x with EtOAc (5 mL), dried over Na2SO4 and 

concentrated in vacuo. The unpurified reaction mixture was purified by flash column 

chromatography 70-100% EtOAc in hexanes to afford 83 in (0.134 g, 100%). 1H NMR 

(600 MHz, CD3OD) δ 7.26 – 7.21 (m, 6H), 7.11 (s, 2H), 6.96 (d, J = 8.3 Hz, 2H), 6.75 – 

6.70 (m, 4H), 5.56 (s, 2H), 3.86 (d, J = 1.8 Hz, 6H), 3.67 (s, 2H), 3.16 (d, J = 1.8 Hz, 6H). 

 

 

(3,6-dioxooctahydropyrrolo[3,4-c]pyrrole-1,4-diyl)bis(2-methoxy-4,1-phenylene) 

dimethanesulfonate (82) Following a modified literature procedure:43 To a vial was 

added 83 (0.157 g, 0.216 mmol) and dissolved in a 9:1 CH3CN:H2O (2 mL) mixture. The 

solution was cooled to 0 °C and PIFA (0.204 g, 0.476 mmol) was added. The reaction 

was stirred for 2 h and then concentrated. The unpurified reaction mixture was purified by 

flash column chromatography 99:1 CH2Cl2:CH3OH to afford 82 (0.107 g, 92%). 1H NMR 

(600 MHz, CDCl3) δ 7.30 (d, J = 8.2 Hz, 2H), 6.91 (d, J = 14.2 Hz, 4H), 6.12 (s, 2H), 5.08 

(s, 2H), 3.90 (s, 6H), 3.19 (s, 6H), 3.15 (s, 2H). 
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Chapter 5: Mechanistic Investigation of the Multicomponent Variants of 

the Castagnoli-Cushman Reaction 

5.1 Introduction 

Several decades after the first CCR was performed, the first 3- and 4-component 

variants of the CCR were developed with amines, aldehydes, anhydrides (3CR) and thiols 

(4CR) were developed. It was originally hypothesized that the mechanism was analogous 

to Cushman’s initial proposal for the CCR involving an N-acyl iminium ion (see chapter 

1), however insights into the Mannich-like mechanism caused our group to reconsider 

this mechanism. Our group was interested in using this information to probe the 

mechanism of the multicomponent variants of the CCR.  At the time of our initial 

publication, it was found that when the 4CR is performed at room temperature, equimolar 

quantities of amide acids 6a and 6b are formed, which form a single regioisomer and 

diastereomer of lactam product upon heating with aldehyde 1a (Figure 5.1).1 Similar 

amide-acid isomers have been observed in the 3CRs of homophthalic anhydride, amines, 

and aldehydes 9. The formation of amide-acid in the 3- and 4CR prompted our group to 

explore how these intermediates played a role in the overall mechanism of the 

multicomponent CCRs leading to lactam products 5 and 8.  



 173 

 

Figure 5.1 Known amide-acid intermediates 6 leading to tetrasubstituted lactam 5 (left). 3CR of 

homophthalic anhydride, amines and aldehydes leading to dihydroisoquinolone 8 (right). 

5.1.1 Initial Development of the 3-Component Reaction and Proposed Mechanism  

In 2003, the first 3CR using amines, aldehydes and homophthalic anhydride was 

developed by Yadav and coworkers using ionic liquids and InCl3 as a catalyst.2 Soon 

after, a variety of modified 3CRs of homophthalic anhydride, amines, and aldehydes were 

developed with either Lewis acid catalysts or additives.2-12 In 2005, Azizian and coworkers 

described a 3CR using an aluminum based catalyst to afford cis lactams 12 (Figure 5.2). 

In this report, a mechanism was proposed for the formation of the dihydroisoquinolone 

products that was consistent with Cushman’s original zwitterionic proposal. Azizian 

performed 1H NMR spectroscopy experiments which indicated that the initial reaction 

outcome was amide-acid 10, which after four hours led to dihydroisoquinolones 12. It was 

hypothesized that the initial acylation of amine (2) by homophthalic anhydride 7 forms 

amide-acid 10. It was suggested that 10 would then condense with aldehyde 1, which can 

undergo a Mannich addition to form  12.4 Although N-acyl iminium ions (11) have been 

observed as intermediates in other reactions, there is little precedent for their formation 

by the condensation of substituted amides with aldehydes.4 Furthermore, amide acid 10  

is indistinguishable from its regioisomer 9 based on 1H NMR spectroscopy alone. 
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Figure 5.2 Azizian’s proposed mechanism for the 3CR  

In 2018 Mikael Krasavin described a new 3CR utilizing the diacid of homophthalic 

anhydride with amines and aldehydes (Figure 5.3A).13 Krasavin suggested that the actual 

outcome of the 3CR was amide acid 14b, due to the higher electrophilicity of the phenyl 

acetyl carbonyl. To support this hypothesis, Krasavin repeated Azizian’s reaction 

conditions to synthesize the amide-acid intermediate in the 3CR for further 

characterization. The outcome of this reaction was consistent with the 1H NMR 

spectroscopy data provided by Azizian, and X-ray crystallographic analysis showed that 

the amide-acid intermediate was actually 14b (Figure 5.3B).13 Based on this outcome, it 

was suggested that a 3CR wherein amine, aldehyde, and homophthalic anhydride are 

simultaneously combined without additives was not possible, as amide-acid 14b would 

be unproductive for lactam formation by the previously described mechanism. As a result, 

Krasavin utilized the diacid of homophthalic anhydride (13) with amines and aldehydes. 

He suggested that the use of diacid allowed for slow formation of anhydride and imine in 

situ under dehydrating conditions. The slow formation of the anhydride is hypothesized 

to preclude amide-acid formation and allows the reaction to proceed through the classic 

CCR mechanism. However, Krasavin and Azizian’s opposing results made it unclear how 

the previously discovered 3CRs proceed to product if amide-acid 14a is not formed.  
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Figure 5.3 A. Krasavin’s novel 3CR using the diacid of homophthalic anhydride.  B. Azizian’s original 

reaction outcome was consistent with product 14b, which was confirmed by X-ray crystallography. 

5.1.2 Initial Mechanistic Hypothesis of the 4-Component Reaction  

The four-component variant of the CCR was first developed in our group in 2007. 

At the time of discovery, we assumed that the mechanism proceeded via the same 
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resolution involving equilibration of the incorrect regioisomer 15a with free imine (17) and 

anhydride (16) leads to a single regioisomer and diastereomer of product 5. 

 

Figure 5.4 A. Initially Proposed Mechanism of the 4CR. B. Initial mechanistic investigation of the 4CR.  

Mechanistic evidence leading to the acceptance of a Mannich-like mechanism 
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product. Furthermore, in the study of the mechanism of cyano-succinic anhydride, 

Cheong discovered that the zwitterionic intermediates such as 15 are unrealistically high 

in energy to afford CCR products. We endeavored to perform a detailed mechanistic 

investigation in order to understand how the known amide-acid intermediates in the 3- 

and 4CR ultimately lead to CCR products. 
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5.2 Results and Discussion 

Initial efforts to determine the mechanism of the 4CR are detailed in Dr. Mike Di 

Maso’s dissertation. Our computational collaborator, Prof. Paul Cheong at University of 

Oregon, found evidence that the 4CR proceeds through a Mannich-like mechanism, 

wherein the anhydride and imine are formed in situ from amide-acid intermediates 6. To 

support this computed mechanism, kinetic isotope effect (KIE) experiments were 

performed to determine the rate-determining step in the 4CR; however, due to the 

reversible nature of the reactions studied, Dr. Di Maso found that the proposed KIE 

experiments would not be able to support the proposed mechanism. Instead, Dr. Di Maso 

designed experiments that would shed light on how the amide-acid 6a and 6b ultimately 

lead to the imine and anhydride precursors in the reaction (Figure 5.6A). Specifically, he 

performed an amide-exchange experiment with amide-acid 6b and p-chlorobenzylamine, 

as well as a thiol exchange experiment with p-methoxybenzylamine and the same amide-

acid 6b. The unpurified reaction mixtures of these two exchange experiments were 

analyzed by mass spectroscopy and led to the determination that while amide exchange 

was observed, while thiol exchange was not observed (Figure 5.6A). The reaction 

outcomes from the exchange experiments, coupled with the computational evidence 

contributed by the Cheong lab, led us to conclude that amide acid 6b was in equilibrium 

with the thioarylsuccinc anhydride, which, under refluxing conditions in the presence of 

aldehyde, would lead to irreversible formation of lactam 5 (Figure 5.6B). 
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Figure 5.6 A. Amide and thiol-exchange experiments designed to test the reversibility of amine addition and 

thiol addition. B. Proposed intermediates for the 4CR. 
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5.2.1 Mechanistic Investigation of the 4-Component Reaction 

5.2.1.1 Crossover Experiments of the 4-Component Reaction 

After consulting the results of both Dr. Di Maso and Noah, I sought to replicate the 

same amide- and thiol-exchange experiments. In order to adequately analyze the reaction 

outcomes, the possible products from the exchange reactions were synthesized and 

isolated. First, amide-acids 6a and 6b were synthesized by reaction of thioarylsuccinic 

anhydride 16a with benzylamine, followed by esterification in situ to afford two 

regioisomeric amide esters 26a and 26b (Figure 5.7A). p-Methoxybenzyl esters 26a and 

26b were then deprotected with trifluoroacetic acid to afford amide-acids 6a and 6b, 

respectively (Figure 5.7B).  Additionally, the two p-chlorobenzylamine derived amide-acid 

products 28a and 28b, the expected amide-exchange products, were also synthesized in 

the same manner (Figure 5.7A, Figure 5.7B). Finally, the amide-acid regioisomers that 

would result from thiol exchange were also attempted, however under reaction conditions, 

the p-methoxybenzenethiol products spontaneously cyclized to the corresponding imide 

product (29) (Figure 5.7C).  
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Figure 5.7 A. Synthesis of regioisomeric amide-esters. B. Deprotection amide-esters to afford amide-

acid prodcuts. C. Attempted synthesis of imide 29. 
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thiophenol (p-methoxythiophenol), 6a and 6b were observed as expected while negligible 

quantities of the products of thiol exchange (32a and 32b) were observed by 1H NMR 

spectroscopy and LCMS.  

Figure 5.8 A. Results of amide-exchange reactions using a reflux condenser. B. Results of amide-

exchange and thiol-exchange experiments  
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until a catalytic quantity of triethylamine is added, at which point the reaction proceeds at 

room temperature (t1/2=55 min). Finally, it was found that the reaction of 33 with p-tolSH 

proceeds with a more complex kinetic profile than the previous reactions but results in 

50% conversion to amide-acids 6a and 6b after 10 minutes at room temperature. These 

React IR experiments support that 6a and 6b are intermediates of the reaction and lead 

to the final formation of the lactam 4CR product in the presence of benzaldehyde.  

 

Figure 5.9 Relative rates examined by React IR technology in the Hein group. 
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Zimmerman-Traxler Transition State 34 to form the g-lactam 5 as a single regioisomer 

and diastereomer.  

 

Figure 5.10 Proposed mechanism for the formation of lactams 5 through the 4CR. 
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The information gained from the study of the 4-component reaction prompted an 
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Figure 5.11 Proposed mechanism based on the mechanism elucidated in the studies of the 4CR 
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heated in the presence of benzylamine for one hour, a single amide-acid intermediate 

36a was observed, the structure of which was determined by X-ray crystallography 

(Figure 5.12). The same product was observed when the reaction was performed at room 

temperature for 24 h. This product was consistent with the regioisomer (36b) isolated and 

observed by Krasavin in the development of the 3CR of homophthalic diacid, aldehydes, 

and amines. In order to obtain standards for the proposed reaction outcomes from 

crossover experiments, amide-acid 36b was also synthesized with p-chlorobenzylamine 

2c to afford 36b.  

 

Figure 5.12 Synthesis of amide acids 36a and 36b. 
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and 84% yield! Additionally, it was found that mixing homophthalic anhydride, 

benzylamine, and benzaldehyde in refluxing toluene yielded lactam trans-8a in 82% yield. 

 

Figure 5.13 Crossover experiments leading to the development of the novel 3CR.  

5.2.2.3 Revised Mechanism of the 3-Component Reaction 

Based on the results of the crossover experiments, we hypothesize that the 

mechanism of the 3CR proceeds through a similar mechanism as the 4CR. The first step 

of the 3CR involves the initial attack of the amine on the phenylacetyl carbonyl of 

homophthalic anhydride to provide amide-acid 36a, which is in equilibrium with 

homophthalic anhydride 7 and amine 2 (Figure 5.14). In the presence of aldehyde, the 

amine can condense to form imine, which can then proceed through Mannich addition to 

provide the cis product 10. Under refluxing conditions, the cis lactam epimerizes to the 

trans isomer 27 over the course of 24 hours.  

 

Figure 5.14 Proposed mechanism for the 3CR of amines, aldehydes, and homophthalic anhydride to 

yield dihydroisoquinolones 8. 
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5.2.3 Development of Novel Reaction Conditions for the 3-Component Reaction 

5.2.3.1 Reaction Optimization 

Having found that the reaction of homophthalic anhydride, benzylamine, and 

benzaldehyde leads to dihydroisoquinolone 8a, I hoped to expand the scope of this 

modified 3CR. Dehydrating agents were screened, including sodium sulfate and 4 Å mol 

sieves (Figure 5.15). The 3CR was found to proceed with similar reaction outcomes 

regardless of the dehydrating agent used and can proceed in the absence of dehydrating 

agent as well. Notably, the diastereomer ratio was highly dependent on the method of 

heating, the reaction vessel used, and the reaction length. Small scale reactions heated 

at reflux using a reflux condenser consistently dried out over the course of the reaction, 

including when reactions were attempted with a Vigreux column and Dean-Stark trap. To 

alleviate this issue, the reactions were instead performed in sealed microwave vials, 

which resulted in excellent yields and isolation of a single trans diastereomer of product. 

Reaction diastereoselectivity suffered when using baths containing aluminum beads, 

whereas reactions heated with silicone oil baths proceeded with consistently excellent 

diastereoselectivity. Finally, when the reaction was run for a shorter length of 6 hours, a 

mixture of cis and trans diastereomers was observed. Presumably, the kinetic cis 

diastereomer is formed first, and under reaction conditions it can epimerize to the trans 

diastereomer over time. Optimized reaction conditions consisted of equimolar quantities 

of amine, aldehyde, anhydride, and sodium sulfate heated in toluene at reflux for 24 

hours. 
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Figure 5.15 Desiccant screen for the 3CR methodology. 

Following screening, a series of substrates were synthesized using this 3CR 

method in good yields and excellent diastereoselectivity for the trans diastereomer 

(Figure 5.16). Reactions proceeded favorably with both benzyl and aryl amines. The 
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Figure 5.16 Substrate scope for the synthesis of dihydroisoquinolone products 8. 
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proceed through the classic CCR. This mechanistic investigation led to the development 

of a new variant of the 3CR and allowed for the synthesis of a series of d-lactams. 

 

5.4  Experimental Section 

Materials and Instrumentation 

 

Unless otherwise specified, all commercially available reagents were used as received. 

All reactions using dried solvents were carried out under an atmosphere of argon in oven-

dried glassware with magnetic stirring. Dry solvent was dispensed from a solvent 

purification system that passes solvent through two columns of dry neutral alumina. 1H 

NMR spectra and proton- decoupled 13C NMR spectra were obtained on a 400 MHz or 

800 MHz Bruker or 600 MHz Varian NMR spectrometer. 1H Chemical shifts (δ) are 

reported in parts per million (ppm) relative to TMS (s, δ 0). Multiplicities are given as: s 

(singlet), d (doublet), t (triplet), q (quartet), p (pentet), h (hextet), and m (multiplet). 

Complex splitting will be described by a combination of these abbreviations, i.e. dd 

(doublet of doublets). 13C NMR chemical shifts are reported relative to CDCl3 (t, δ 77.4) 

unless otherwise noted. High-resolution mass spectra were recorded on either positive or 

negative ESI mode. Melting points were taken on an EZ-melting apparatus and were 

uncorrected. Infrared spectra were taken on a Mettler Toldedo ReactIR 700 (serial 

number B929971514) with a liquid N2 MCT detector fitted with a DiComp probe (serial 

number B939349478). The system was filled with liquid N2 and allowed to cool for 1 h 

before use. Chromatographic purifications were performed by flash chromatography with 
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silica gel (Fisher, 40–63 μm) packed in glass columns or by use of a Teledyne Isco 

Combi-Flash. The eluting solvent for the purification of each compound was determined 

by thin-layer chromatography (TLC) on glass plates coated with silica gel 60 F254 and 

visualized by ultraviolet light.  

Note: for the three-component reaction, the reaction mixture must be heated to at least 

110 °C in order to fully epimerize from the cis to trans diastereomer. Use of aluminium 

beads resulted in poor diastereoselectivity, whereas silicone oil baths led to excellent 

diastereoselectivity. 

Synthesis of Amide-Acids for Crossover Experiments 

 

 

2-(2-(benzylamino)-2-oxoethyl)benzoic acid (36a) To a flame dried round bottom flask 

was added homophthalic anhydride (0.81 g, 5.0 mmol) and dissolved in CH2Cl2 (10.0 mL, 

0.5 M). Benzylamine (0.54 mL, 5.0 mmol) was added, and the reaction was stirred at rt 

for 24 h. The reaction was concentrated in vacuo and characterized without further 

purification to provide 36a (1.3 g, 96%), a single regioisomer, as an off-white crystalline 

solid: mp range 135.3-140.3 °C; 1H NMR (400 MHz, DMSO-d6) δ 12.87 (s, 1H), 8.38 (t, 

J = 6.0 Hz, 1H), 7.83 (dd, J = 7.7, 1.5 Hz, 1H), 7.48 (td, J = 7.5, 1.5 Hz, 1H), 7.38 – 7.17 

(m, 7H), 4.27 (d, J = 5.9 Hz, 2H), 3.92 (s, 2H).; 13C NMR (101 MHz, DMSO-d6) δ 170.1, 

168.6, 139.6, 137.0, 131.9, 131.5, 131.2, 130.2, 128.2, 127.1, 126.7 (2 carbons), 42.2, 

OH

O
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O
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40.5.; IR: 2961.0 (broad), 2153.4, 1716.5, 1619.0, 1552.3 cm-1; AMM (ESI-TOF) m/z 

calcd for C16H14NO3- [M-H]- 268.0979, found 268.0981. 

 

 

2-(2-((4-chlorobenzyl)amino)-2-oxoethyl)benzoic acid (36b) 

To a flame dried round bottom flask was added homophthalic anhydride (0.081 g, 0.5 

mmol) and dissolved in toluene (1.0 mL, 0.5 M). p-chlorobenzylamine (0.060 mL, 0.5 

mmol) was added, and the reaction was stirred for 30 minutes. The reaction was 

concentrated in vacuo and characterized without further purification to afford 36b, a single 

regioisomer, as a white crystalline solid (0.134 g, 96%): mp range 172.7-173.9 °C; 1H 

NMR (400 MHz, DMSO-d6) δ 8.40 (t, J = 6.1 Hz, 1H), 7.84 (d, J = 7.6 Hz, 1H), 7.48 (t, J 

= 7.5 Hz, 1H), 7.42 – 7.23 (m, 6H), 4.25 (d, J = 6.0 Hz, 2H), 3.92 (s, 2H).; 13C NMR (101 

MHz, DMSO-d6) δ 170.4, 168.7, 138.8, 137.0, 132.1, 131.7, 131.3, 131.2, 130.3, 129.1, 

128.2, 126.9, 41.7, 40.7.; AMM (ESI-TOF) m/z calcd for C16H13ClNO3- [M-H]- 302.0589, 

found 302.0594. 

 

Synthesis of 27a and 27b: To a flame dried round bottom flask was added (1.55 g, 7 

mmol) and p-chlorobenzylamine (0.851 mL, 7 mmol) and dissolved in acetone (70 mL, 

0.1 M). After 10 minutes, K2CO3 (0.967 mg, 7 mmol), KI (1.162 g, 7 mmol), and p-

OH

O

NHO

Cl
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methoxybenzylchloride (1.03 mL, 7 mmol) were added, and the reaction was stirred 

overnight. The crude reaction mixture was concentrated in vacuo, then dissolved in 

EtOAc and H2O, extracted with EtOAc (3x 20 mL), and dried over Na2SO4.  Purification 

by gradient flash column chromatography (20-100% EtOAc:Hexanes) afforded 

regioisomer 27b as an off white amorphous solid (0.393 g, 12%) and 27a (0.080 g, 3%) 

as an off white amorphous solid. 

 

4-methoxybenzyl 4-((4-chlorobenzyl)amino)-4-oxo-2-(p-tolylthio)butanoate (27a) 

The structure of 27a was assigned based on the comparison of J coupling values.1 1H 

NMR (400 MHz, CDCl3) δ 7.30 – 7.09 (m, 8H), 7.02 (d, J = 7.9 Hz, 2H), 6.90 – 6.80 (m, 

2H), 6.12 (t, J = 5.8 Hz, 1H), 5.07 (d, J = 12.0 Hz, 1H), 4.95 (d, J = 11.9 Hz, 1H), 4.39 – 

4.23 (m, 2H), 4.07 (dd, J = 9.3, 5.8 Hz, 1H), 3.79 (s, 3H), 2.73 (dd, J = 15.1, 9.3 Hz, 1H), 

2.58 (dd, J = 15.2, 5.8 Hz, 1H), 2.30 (s, 3H).; 13C NMR (101 MHz, CDCl3) δ 171.5, 169.5, 

159.6, 139.0, 136.6, 134.5, 133.2, 130.1, 129.8, 129.0, 128.7, 127.9, 127.5, 113.8, 66.9, 

55.3, 46.3, 42.8, 38.2, 21.2.; AMM (ESI-TOF) m/z calcd for C26H26ClNO4SNa+ [M+Na]+ 

506.1163, found 506.1173. 
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4-methoxybenzyl 4-((4-chlorobenzyl)amino)-4-oxo-3-(p-tolylthio)butanoate (27b) 4- 

The structure of 27b was assigned based on the comparison of J coupling values.1 1H 

NMR (400 MHz, CDCl3) δ 7.27 (dd, J = 8.4, 6.4 Hz, 4H), 7.23 – 7.18 (m, 2H), 7.14 – 7.02 

(m, 4H), 6.94 – 6.82 (m, 2H), 6.66 (s, 1H), 5.15 – 4.94 (m, 2H), 4.46 – 4.28 (m, 2H), 3.95 

(dd, J = 7.5, 6.3 Hz, 1H), 3.80 (s, 3H), 3.12 (dd, J = 16.9, 7.5 Hz, 1H), 2.78 (dd, J = 16.9, 

6.3 Hz, 1H), 2.32 (s, 3H).; 13C NMR (101 MHz, CDCl3) δ 170.9, 169.9, 159.7, 138.8, 136.4, 

133.3, 133.1, 130.2, 130.1, 129.1, 128.8, 128.5, 127.7, 114.0, 66.7, 55.3, 48.3, 43.3, 36.7, 

21.1.; AMM (ESI-TOF) m/z calcd for C26H26ClNO4SNa+ [M+Na]+ 506.1163, found 

506.1182. 

 

 

 

 

4-((4-chlorobenzyl)amino)-4-oxo-2-(p-tolylthio)butanoic acid (28a) 

To a flame dried round bottom flask was added 27a (0.050 g, 0.103 mmol) and dissolved 

in dichloromethane (5.15 mL, 0.02 M). TFA (0.052 mL, 0.2M) was added and the reaction 

was stirred overnight. The reaction was concentrated in vacuo. Hexanes (10 mL) was 

added, followed by diethyl ether (10 mL) and a white solid precipitated out. The solid was 

filtered and used without further purification (0.023 g, 62%): mp range 130.1-131.9 °C; 1H 

NMR (400 MHz, MeOD) δ 7.41 – 7.36 (m, 2H), 7.32 – 7.23 (m, 4H), 7.15 (d, J = 7.9 Hz, 

N
H

O

Cl

OH
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S
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2H), 4.32 (d, J = 3.2 Hz, 2H), 3.99 (dd, J = 8.8, 6.6 Hz, 1H), 2.79 (dd, J = 15.4, 8.8 Hz, 

1H), 2.63 (dd, J = 15.4, 6.6 Hz, 1H), 2.33 (s, 3H).; 13C NMR (101 MHz, CD3OD) δ 174.7, 

172.4, 140.1, 138.8, 135.3, 133.9, 130.8, 130.1, 130.1, 129.5, 47.9, 43.3, 39.0, 21.2.; 

AMM (ESI-TOF) m/z calcd for C18H17ClNO3S- [M-H]- 362.0623, found 362.0626.  

 

 

 

4-((4-chlorobenzyl)amino)-4-oxo-3-(p-tolylthio)butanoic acid (28b) 

To a flame dried round bottom flask was added 27b (0.384 g, 0.8 mmol) and dissolved in 

dichloromethane (40.0 mL, 0.02 M). TFA (4.0 mL, 0.2M) was added and the reaction was 

stirred overnight. The reaction was concentrated in vacuo. Hexanes (15 mL) was added, 

followed by diethyl ether (15 mL) and a white solid precipitated out. The solid was filtered 

and used without further purification (0.243 g, 83%): mp 123.9-126.6 °C; 1H NMR (600 

MHz, DMSO-d6) δ 8.69 (t, J = 6.1 Hz, 1H), 7.34 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 7.7 Hz, 

2H), 7.23 (d, J = 8.1 Hz, 2H), 7.14 (d, J = 7.8 Hz, 2H), 4.24 (qd, J = 15.5, 6.0 Hz, 2H), 

3.97 (dd, J = 9.5, 5.3 Hz, 1H), 2.76 (dd, J = 16.7, 9.5 Hz, 1H), 2.29 (s, 3H), 1.09 (t, J = 

7.0 Hz, 2H).; 13C NMR (101 MHz, DMSO-d6) δ 172.3, 170.3, 138.7, 138.3, 133.8, 131.7, 

130.1, 129.4, 129.1, 128.5, 46.5, 42.0, 37.0, 21.1.; AMM (ESI-TOF) m/z calcd for 

C18H17ClNO3S- [M-H]- 362.0623, found 362.0628. 
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2-benzylisoquinoline-1,3(2H,4H)-dione (30) 

To a flame dried round bottom flask was added homophthalic anhydride (0.81 mg, 0.5 

mmol) and dissolved in toluene (1.0 mL). Benzylamine (0.054 mL, 5.0 mmol) was added, 

and the reaction was stirred at reflux for 24 h. The reaction was then cooled and 

concentrated in vacuo. Purification by gradient flash column chromatography  (20-100% 

EtOAc:Hexanes) S3 (69.8 mg, 56%), as an off-white amorphous solid:  1H NMR (400 

MHz, CDCl3) δ 8.22 (dd, J = 8.0, 1.4 Hz, 1H), 7.58 (td, J = 7.5, 1.4 Hz, 1H), 7.48 – 7.41 

(m, 3H), 7.32 – 7.26 (m, 3H), 7.26 – 7.22 (m, 1H), 5.19 (s, 2H), 4.07 (s, 2H).; 13C NMR 

(101 MHz, CDCl3) δ 169.9, 164.9, 137.1, 134.1, 133.7, 129.3, 129.0, 128.4, 127.8, 127.5, 

127.1, 125.4, 43.3, 36.5.; AMM (ESI-TOF) m/z calcd for C16H14NO2+ [M+H]+  252.1019, 

found  252.1024. 

Crossover Experimental Procedures 

 

Liquid Chromatography–Mass Spectrometry Experiments 
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Three-component amide-exchange experiment: To a flame dried microwave vial was 

added 36a (0.135 g, 0.5 mmol), p-cholorobenzylamine (0.036 mL, 0.5 mmol), and 

dissolved in toluene (4.5 mL, 0.5 M) and heated to reflux. After 6 h the reaction was cooled 

to room temperature and concentrated in vacuo. The mixture was analyzed using Liquid 

Chromatography–Mass Spectrometry which contained masses corresponding to amides 

36a, and 36b. 

 

  

 

Imide exchange experiment: 

To a flame dried microwave vial was added 30 (0.055 g, 0.22 mmol). 30 was dissolved in 

toluene, (1.0 mL, 0.22 M), then p-cholorobenzylamine (0.027 mL, 0.22 mmol) was added 

and the reaction was heated to reflux. After 24 h, the reaction was cooled to room 

temperature and concentrated in vacuo. The mixture was analyzed using Liquid 

Chromatography–Mass Spectrometry which contained masses corresponding only to 30 

and p-chlorobenzylamine. 
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Four-component amide-exchange experiment: To a flame dried microwave vial was 

added 6b (0.100 g, 0.30 mmol), p-cholorobenzylamine (0.036 mL, 0.30 mmol), and 

dissolved in toluene (4.5 mL, 0.066 M and heated to reflux. After 17 h the reaction was 

cooled to room temperature and concentrated in vacuo. The reaction was cooled to room 

temperature and concentrated in vacuo. The mixture was analyzed using Liquid 

Chromatography–Mass Spectrometry which contained masses corresponding to amides 

6a, 6b, 28a, and 28b. 

 

 

 

Four-component thiol-exchange experiment: To a flame dried microwave vial was 

added 6b (0.100 g, 0.30 mmol), p-methoxythiophenol (0.036 mL, 0.30 mmol), and 

dissolved in toluene (4.5 mL, 0.066M) and heated to reflux. After 17 h the reaction was 

cooled to room temperature and concentrated in vacuo. The mixture was analyzed using 

Liquid Chromatography–Mass Spectrometry, which contained masses corresponding to 

6a, 6b, and negligible quantities of 28a and 28b. 
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General Procedure for the Three-Component Synthesis of 8a-g 

Desiccant Screen for the synthesis of dihydroisoquinolones  

 

 

Figure S1. Desiccant screen for the 3CR 

General procedure for the synthesis of dihydroisoquinolones (8):  Homophthalic 

anhydride (81.0 mg, 0.5 mmol) and Na2SO4 (1 equiv) were added to a flame dried 

microwave vial under argon and dissolved in toluene (1.0 mL, 0.5 M). Aldehyde (0.5 

mmol, 1 equiv) and amine (0.5 mmol, 1 equiv) were added sequentially, and the vial was 

sealed shut.  The vial was then placed in a silicone oil bath and heated to 110 °C. After 

24 h, the reaction was concentrated in vacuo. The crude reaction mixture was purified 

using gradient flash column chromatography (EtOAc:Hexanes).  

 

trans-2-benzyl-1-oxo-3-phenyl-1,2,3,4-tetrahydroisoquinoline-4-carboxylic acid 

(8a) 

Prepared according to the general three component reaction procedure. The crude 

reaction mixture was purified by gradient flash column chromatography (40-100% 

EtOAc:Hexanes) to afford 8a (0.150 g, 84%), a single diastereomer, as a white solid.  
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8a was also prepared on a 1 mmol scale. In this experiment, 8a was purified by sequential 

trituration from hexanes then ether to afford (0.285 g, 80%), a single diastereomer, as a 

white solid. 

 

Finally, 8a was also prepared in two-steps from 36a. 36a (0.134 g, 0.5 mmol) and Na2SO4 

(0.071 g, 0.5 mmol) was added to a flame dried microwave vial under argon and dissolved 

in toluene. Benzaldehyde (0.051 mL, 0.5 mmol) was added to the reaction mixture and 

the vial was sealed shut.  The vial was then placed in a silicone oil bath and heated to 

110 °C. The vial was then placed in a silicone oil bath and heated to 110 °C. After 24 h, 

the reaction was concentrated in vacuo. The crude reaction mixture was purified using 

gradient flash column chromatography (EtOAc:Hexanes) to afford 8a (0.146 g, 82%), a 

single diastereomer, as a white solid: mp 220.2-224.3 °C; 1H NMR (600 MHz, CDCl3) δ 

8.29 (dd, J = 7.6, 1.6 Hz, 1H), 7.46 (dtd, J = 25.4, 7.5, 1.4 Hz, 2H), 7.26 – 7.21 (m, 5H), 

7.18 – 7.12 (m, 3H), 7.11 – 7.06 (m, 1H), 7.06 – 7.02 (m, 2H), 5.66 (d, J = 14.5 Hz, 1H), 

5.11 (s, 1H), 3.87 (s, 1H), 3.70 (d, J = 14.6 Hz, 1H).; 13C NMR (101 MHz, CDCl3) δ 175.1, 

163.8, 138.2, 136.5, 132.3, 131.3, 129.3, 129.1, 128.9 (2 carbons), 128.8, 128.4, 128.3, 

128.1, 127.6, 126.3, 60.1, 50.9, 49.0.; AMM (ESI-TOF) m/z calcd for C23H18NO3- [M-H]- 

356.1292, found 356.1293.  
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trans-2-benzyl-3-(4-methoxyphenyl)-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-

carboxylic acid (8b) 

Prepared according to the general three component reaction procedure. The crude 

reaction mixture was purified by gradient flash column chromatography (20-100% 

EtOAc:Hexanes) to afford 8b (0.142 g, 89%),  a single diastereomer, as a yellow solid: 

mp 102.4-105.3 °C; 1H NMR (600 MHz, CDCl3) δ 8.28 (dd, J = 7.5, 1.6 Hz, 1H), 7.46 (dtd, 

J = 20.9, 7.5, 1.4 Hz, 2H), 7.23 (dd, J = 6.9, 2.7 Hz, 2H), 7.13 (dd, J = 5.3, 1.9 Hz, 3H), 

7.09 (d, J = 7.3 Hz, 1H), 6.95 (d, J = 8.6 Hz, 2H), 6.76 – 6.74 (m, 2H), 5.64 (d, J = 14.7 

Hz, 1H), 5.04 (s, 1H), 3.83 (s, 1H), 3.74 (s, 3H), 3.68 (d, J = 14.6 Hz, 1H).; 13C NMR (101 

MHz, CDCl3) δ 175.3, 163.8, 159.5, 136.7, 132.4, 131.6, 130.3, 129.5, 129.3, 129.0, 

128.9, 128.5, 128.5, 127.7, 127.7, 114.4, 59.8, 55.4, 51.2, 49.0.; AMM (ESI-TOF) m/z 

calcd for C24H20NO4- [M-H]- 386.1398, found 386.1400. 

 

  

trans-3-(4-bromophenyl)-2-(4-methoxyphenyl)-1-oxo-1,2,3,4-

tetrahydroisoquinoline-4-carboxylic acid (8c) 
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Prepared according to the general three component reaction procedure. The crude 

reaction mixture was purified first by trituration with hexanes, followed by gradient flash 

column chromatography (20-100% EtOAc:Hexanes) to afford 8c (0.192, 85%) a single 

diastereomer, as an off-white solid: 1H NMR matches reported literature spectrum13: 1H 

NMR (400 MHz, DMSO-d6) δ 7.98 (d, J = 7.5 Hz, 1H), 7.44 (d, J = 7.8 Hz, 4H), 7.25 (d, 

J = 8.7 Hz, 3H), 7.16 (d, J = 8.3 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 5.62 (s, 1H), 4.19 (s, 

1H), 3.74 (s, 3H). 

 

 

 

trans-2-benzyl-3-(4-cyanophenyl)-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-

carboxylic acid (8d) 

Prepared according to the general three component reaction procedure. The crude 

reaction mixture was purified by gradient flash column chromatography (20-100% 

EtOAc:Hexanes) to afford 8d (0.167 g, 88%), a single diastereomer, as an off-white 

amorphous solid: 1H NMR (400 MHz, CDCl3) δ 8.27 (dd, J = 7.4, 1.8 Hz, 1H), 7.54 – 7.37 

(m, 4H), 7.23 – 7.16 (m, 2H), 7.16 – 7.02 (m, 6H), 5.43 (d, J = 14.5 Hz, 1H), 5.18 (s, 1H), 

3.96 (d, J = 14.5 Hz, 1H), 3.81 (d, J = 1.5 Hz, 1H).; 13C NMR (101 MHz, CDCl3) δ 174.3, 

163.6, 143.7, 135.9, 132.7, 132.7, 130.7, 129.2, 129.2, 129.1, 128.9, 128.6, 128.4, 127.9, 

N

O

CO2HNC
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127.1, 118.1, 112.2, 60.1, 50.7, 49.6.; AMM (ESI-TOF) m/z calcd for C24H17N2O3- [M-H]- 

381.1245, found 381.1246. 

 

trans-2-(4-methoxyphenyl)-1-oxo-3-phenyl-1,2,3,4-tetrahydroisoquinoline-4-

carboxylic acid (8e) 

Prepared according to the general three component reaction procedure. The crude 

reaction mixture was purified by gradient flash column chromatography (20-100% 

EtOAc:Hexanes) to afford 8e (0.144 g, 77%), a single diastereomer, as a brown 

amorphous solid: 1H NMR (400 MHz, CDCl3) δ 8.55 (s, 1H), 8.20 (dd, J = 5.8, 3.4 Hz, 

1H), 7.41 (dd, J = 5.7, 3.3 Hz, 2H), 7.21 – 7.14 (m, 6H), 7.13 – 7.08 (m, 2H), 6.78 – 6.71 

(m, 2H), 5.52 (d, J = 1.4 Hz, 1H), 3.96 (d, J = 1.5 Hz, 1H), 3.70 (s, 3H).; 13C NMR (101 

MHz, CDCl3) δ 174.3, 164.3, 158.5, 139.0, 134.9, 132.7, 132.6, 129.6, 129.3, 128.9, 

128.7, 128.5, 128.2, 128.1, 126.6, 114.4, 65.3, 55.4, 51.7.; AMM (ESI-TOF) m/z calcd for 

C23H18NO4- [M-H]- 372.1241, found 372.1241. 
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trans-2-(4-methoxybenzyl)-3-(4-methoxyphenyl)-1-oxo-1,2,3,4-

tetrahydroisoquinoline-4-carboxylic acid (8f)  

Prepared according to the general three component reaction procedure. The crude 

reaction mixture was purified by gradient flash column chromatography (EtOAc:Hexanes) 

to afford 8f (0.158 g, 76%), a single diastereomer as a yellow amorphous solid: 1H NMR 

(400 MHz, CDCl3) δ 8.27 – 8.21 (m, 1H), 7.43 (qt, J = 7.4, 3.6 Hz, 2H), 7.22 – 7.13 (m, 

2H), 7.08 (dd, J = 6.9, 1.8 Hz, 1H), 6.99 – 6.91 (m, 2H), 6.79 – 6.66 (m, 4H), 5.57 (d, J = 

14.4 Hz, 1H), 5.10 – 5.01 (m, 1H), 3.82 (d, J = 1.5 Hz, 1H), 3.73 (s, 3H), 3.68 (s, 3H), 

3.63 (d, J = 14.5 Hz, 1H).; 13C NMR (101 MHz, CDCl3) δ 175.5, 163.7, 159.3, 159.0, 

132.2, 131.6, 130.3, 130.2, 129.3, 129.1, 128.8, 128.7, 128.3, 127.5, 114.2, 113.7, 59.5, 

55.3, 55.2, 51.2, 48.3.; AMM (ESI-TOF) m/z calcd for C25H22NO5- [M-H]- 416.1503, found 

416.1506. 
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trans-2-(4-chlorobenzyl)-3-(4-methoxyphenyl)-1-oxo-1,2,3,4-tetrahydroiso 

quinoline-4-carboxylic acid (8g) 

Prepared according to the general three component reaction procedure. The crude 

reaction mixture was purified by gradient flash column chromatography (EtOAc:Hexanes) 

to afford 8g (0.200 g, 95%), a single diastereomer, as a white solid: mp range 247.3-

249.3 °C; 1H NMR (400 MHz, DMSO-d6) δ 7.98 (dd, J = 7.2, 2.0 Hz, 1H), 7.49 – 7.37 (m, 

2H), 7.30 (d, J = 2.3 Hz, 4H), 7.23 – 7.17 (m, 1H), 6.94 (d, J = 8.7 Hz, 2H), 6.79 (d, J = 

8.7 Hz, 2H), 5.22 (d, J = 15.1 Hz, 1H), 5.18 (s, 1H), 4.03 (s, 1H), 3.84 (d, J = 15.0 Hz, 

1H), 3.66 (s, 3H).; 13C NMR (101 MHz, DMSO-d6) δ 172.1, 163.5, 158.7, 136.5, 133.9, 

132.1, 131.8, 130.8, 130.0, 129.7, 128.9, 128.2, 128.0, 127.3, 127.0, 114.1, 60.8, 55.1, 

51.0, 48.6.; IR: 2949.0, 2831.6, 1697.8, 1641.5 cm-1; AMM (ESI-TOF) m/z calcd for 

C24H19ClNO4- [M-H]- 420.1008, found 420.1011. 
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Appendix A:  Relative Rates of the Castagnoli-Cushman Reaction 

A.1 Introduction 

A.1.1 Introduction to pKE Calculations  

The enol form of carboxylic acid derivatives has been suggested as an 

intermediate in a variety of organic transformations including the CCR.1-3 The proposed 

enol intermediates have prompted studies to further the understanding of their formation 

and equilibrium concentration in reactions.4-6 The measurement of the -log of the 

equilibrium concentration of a carbonyl versus its enol form is called the pKE value.7 These 

values can be calculated using the equation DG=–RTln(KE) where the KE corresponds to 

the equilibrium constant of keto-enol tautomerization. The DG values of keto-enol 

tautomerization have previously been calculated using density functional theory (DFT) for 

a range of carboxylic acid derivatives including anhydrides, esters, amides, and acyl 

halides.4 It has been suggested that the equilibrium of carboxylic acid derivatives do not 

lie towards the enol form in comparison to other carbonyl systems, due to stabilization of 

the keto-tautomer 2 by resonance structure 3 (Figure A.1).4, 7 Notably, the presence of 

substituents attached to the enol carbon (R) can influence the propensity for enolization, 

leading to lower pKE values.4, 7-10 Specifically, the presence of electron withdrawing 

groups (EWGs) provide resonance stabilization of the negative charge and may form 

hydrogen bonding interactions with the enol, causing stabilization of the enol resonance 

form.4, 11 We initiated a study of the pKE values of anhydrides commonly used in the CCR 

to enable a facile method to predict anhydride reactivity based on a-substituents. 



 207 

 

Figure A.17 Resonance stabilization of the keto form of carboxylic acid derivatives. 

A.1.2 Effect of Electron Withdrawing Anhydride Substituents on Reaction Time in 

the Castagnoli Cushman Reaction 

The reactivity of cyclic anhydrides can be generally correlated to the ability of the a-

substituent to stabilize the enol form of the anhydride. This trend is particularly evident 

when comparing the temperature required for the CCR of anhydrides 4-11 (Figure A.2). 

Reactions of succinic and glutaric anhydrides (10, 11), some of the least enolizable 

anhydrides, require refluxing xylenes and increased reaction times. On the other hand, 

reactions of homophthalic anhydride (4), the most readily enolizable anhydride, occur at 

room temperature over a period of 30 minutes. The reactivity of other anhydrides 

commonly used in the CCR (5-9) typically fall in between these two extremes, ostensibly 

dependent on the stabilizing ability of the substituent at the a-position. 

 

Figure A.18 Anhydrides commonly used in the CCR are performed with ranging reaction temperatures, 

from room temperature to 150 °C. 

The computational evidence for the Mannich-like mechanism for the CCR showed 

that the rate determining step for the major diastereomer of the reaction is Mannich 

addition. The formation of a hydrogen-bonding enol complex 13–14  is found to be an 

X

O

2

R

H
X

O

3

R

H
X

OH

1

R

KEnol X = OH, OCOR, OR, NR2, halogen
R = EWG

O

O

O

O

O

O

O

O

O
CN CN O

O

O

SO2Ph O

O

O

SPh O

O

O

Ph O

O

O

O

O

O

54 6 7 8 9 10 11

increased reaction temperatures



 208 

intermediate on the reaction coordinate prior to Mannich addition with cyano-succinic 

anhydride (Figure A.3).2, 3 An important consideration for the CCR mechanism is the 

difference in the transition state structures of CCRs with more enolizable anhydrides like 

cyanosuccinic anhydride compared to less enolizable anhydrides such as thiosuccinic 

anhydrides. Specifically, reactions with more readily enolizable anhydrides such as 

homophthalic anhydride and cyanosuccinic anhydride are thought to proceed through a 

closed transition states, and reactions of thioarylsuccinic anhydrides and arylsuccinic 

anhydrides are thought to proceed through open transition states such as 18. These 

hypotheses have been supported by the stereochemical outcomes of the CCR with 

varying anhydrides.3, 12 In both of these cases, it is hypothesized that the reaction 

proceeds through similar hydrogen-bonding enol complexes. Although enol formation is 

not the rate determining step of the reaction, it is possible that the rate of the CCR is 

dependent on the ability of an anhydride to enolize.  

 

Figure A.19 Computational evidence has shown that the CCR of cyano-succinic anhydride proceeds 

through a Mannich-like mechanism wherein Mannich addition is the rate-determining step, as well as 

the comparison between the two possible reaction pathways. 
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Due to the COVID-19 pandemic, lab-based research was halted for several 

months. While in quarantine I was interested in both expanding my knowledge of 

computational chemistry and further studying the proposed Mannich-like mechanism. To 

do this, the relative enolizability of anhydrides commonly used in the CCR were calculated 

and compared to the rate of the CCR. We hypothesized that the calculated pKE values 

should be directly correlated to the rate of the CCR, which would allow for a simple, 

efficient way to delineate the reactivity of anhydrides in the CCR based on the a-

substituent. 

A.2 Results and Discussion 

A.1.3 pKE Value Calculations of Anhydrides Commonly used in the Castagnoli 

Cushman Reaction 

Initial investigation involved calculating pKE values of anhydrides 4 and 6–10 (Figure 

A.2). Using the program Avogadro, a conformer search was performed on both the 

anhydride and enol form of the substrates containing rotatable bonds. Next, the 

geometries of the anhydrides (4, 6–10) and their enol tautomers were optimized using 

Gaussian 16 using DFT, specifically B3LYP/631-G** in dichloromethane. To obtain the 

pKE value of the anhydrides, first the DG values were extracted and plugged into the 

equation DG=-RTlnKE to afford KE values (Table 1). Next, pKE values were calculated by 

taking the –Log(KE). As a measure of the validity of these calculations, pKE values were 

correlated to the pKa values of acetophenone derivatives with the same substituents at 

the alpha position.  As expected, a linear relationship between pKa and calculated pKE 
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was observed, indicating that the acidity of the anhydride was directly related to its 

enolizability  

 

Figure A.20 (Top) Calculated DG values of anhydrides commonly used in the CCR. (Bottom) Known 

pKa values of acetophenone derivatives with the same substituents. 
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Table 3: Calculated pKE values of anhydrides 4, and 6-10 

 
Energy in HF Energy in kcal/mol DG =-RTln(KE) pKE 

CH2Cl2  B3LYP/631G**       

10a -380.488706 -238760.0874   
 

10b -380.450056 -238735.8342   
 

DG 0.03865 24.25322285 1.62326E-18 17.8 

8b -1009.655544 -633567.9408     

8a -1009.627588 -633550.3981   
 

DG 0.027956 17.5426416 1.35695E-13 12.9 

9a -611.472063 -383704.2228     

9b -611.441922 -383685.309   
 

DG 0.030141 18.91374877 1.33926E-14 13.9 

6a -472.721981 -296637.2976     

6b -472.70215 -296624.8534   
 

DG 0.019831 12.44413098 7.45237E-10 9.1 

7a -1160.035386 -727932.645     

7b -1160.013842 -727919.126   
 

DG 0.021544 13.5190539 1.21295E-10 9.9 

4a -572.187803 -359052.9961     

4b -572.1705 -359042.1383   
 

DG 0.017303 10.85778823 1.0861E-08 8.0 
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Figure A.21 Comparison of calculated pKE values of compounds 6-10, compared to Known pKa values 

of acetophenone derivatives (21–25). 

  

Next, the rates of the reactions of these anhydrides were to be determined using 
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Figure A.22 React IR experiment of homophthalic anhydride with N-benzylidene methylamine 

 

 

Figure A.23 React IR experiment of phenylsuccinic anhydride and N-benzylidene aniline 
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Finally, several anhydrides that were to be tested by the Hein group using ReactIR 

were synthesized, as well as three uncharacterized CCR products. First, cyanosuccinic 

anhydride was synthesized. Several attempts at the formation of cyanosuccinic anhydride 

(6) from ethylcyanoacetate (29) and ethylbromoacetate (30) proved futile and led 

exclusively to the dialkylated product 32. This synthesis is known to be challenging, and 

instead cyanosuccinic anhydride was synthesized from commercially available diester 33. 

Thiophenyl succinic anhydride (8) was synthesized by conjugate addition reaction of 

thiophenol and maleic anhydride in modest yield. Notably, the bottle of maleic anhydride 

used in the reaction had hydrolyzed to the diacid, leading to inconsistent results in 

previous attempts. Purification of maleic anhydride led to better reaction outcomes. 

Ultimately, g-lactams 35, 36a, and 36b were synthesized using known methods in good 

yields as mixtures of diastereomers.  

 

Figure A.24 A. Failed synthesis of cyanosuccinic anhydride. B. Successful synthesis of cyanosuccinic 

anhydride. C. Synthesis of thiophenylsuccinic anhydride D. Synthesis of uncharacterized lactams 35–

36. 
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A.3 Conclusion 

In conclusion, the pKE values of a variety of anhydrides have been computed using 

DFT in Gaussian16. As expected, anhydrides containing stabilizing groups in the alpha 

position had lower pKE values, and those with less stabilizing substituents had higher pKE 

values. These results suggest that the relative enolizability of an anhydride can be 

determined using DFT calculations. With this knowledge, the pKE values of anhydrides 

less commonly used can be easily computed to determine the reaction conditions 

necessary to successfully perform CCR experiments.  Future work will involve 

collaboration with the Hein group to determine the rates of the reactions of anhydrides 4 

and 6-11 with N-benzylidene aniline and N-benzylidene methylamine using infrared 

spectroscopy in situ (React-IRTM). 

 

A.4 Experimental Section 

General Procedure: To a flame dried microwave vial was added anhydride (0.5 mmol) 

and dissolved in toluene (2.0 M). Imine (1 equiv) was added to the reaction mixture and 

the microwave vial was sealed. The reaction was then heated to reflux in a silicone oil 

bath overnight. The unpurified reaction mixture was cooled to room temperature and 

concentrated in vacuo and purified by flash column chromatography. 

 

 

trans-5-oxo-1,2,3-triphenylpyrrolidine-3-carboxylic acid (35): 

N
Ph

O

Ph
Ph CO2H
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Following the general procedure with phenyl succinic anhydride (0.088 g, 0.5 mmol) N-

benzylidene aniline (0.090 g, 0.5 mmol) in toluene (2.5 mL, 2.0 M), product 35 was 

isolated as an off white amorphous solid (0.128 g, 72%) as a mixture of diastereomers 

(77:23 dr). Major diastereomer: 1H NMR (400 MHz, CDCl3) δ 8.05 (s, 1H), 7.42 (d, J = 

7.9 Hz, 2H), 7.26 – 6.89 (m, 13H), 6.09 (s, 1H), 3.59 (d, J = 16.9 Hz, 1H), 3.42 (d, J = 

16.9 Hz, 1H).; 13C NMR (101 MHz, CDCl3) δ 177.4, 172.0, 137.7, 135.3, 134.7, 128.9, 

128.4, 128.2, 128.0, 128.0, 127.7, 127.1, 125.8, 122.9, 70.3, 58.1, 38.1. AMM (ESI-TOF) 

m/z calcd for C23H20NO3+ [M+H]+ 358.1438, found 358.1436. 

 

trans-1-methyl-5-oxo-2-phenyl-3-(phenylthio)pyrrolidine-3-carboxylic acid (36a): 

Following the general procedure with thiophenyl succinic anhydride (0.104 g, 0.5 mmol) 

N-benzylidene methylamine (0.064 mL, 0.5 mmol) in toluene (2.5 mL, 2.0 M), product 36a 

was isolated as an off-white amorphous solid (0.083 g, 49%) as a mixture of 

diastereomers (93:7 dr). Major diastereomer: 1H NMR (600 MHz, CDCl3) δ 7.45 (d, J = 

5.7 Hz, 3H), 7.33 – 7.25 (m, 5H), 7.21 (t, J = 7.4 Hz, 2H), 5.24 (s, 1H), 3.19 (d, J = 17.4 

Hz, 1H), 2.88 (d, J = 17.4 Hz, 1H), 2.75 (s, 3H).; 13C NMR (151 MHz, CDCl3) δ 175.2, 

173.0, 136.2, 133.8, 129.9, 129.9, 129.5, 129.5, 129.2, 128.8, 70.3, 58.2, 40.6, 

29.1.; AMM (ESI-TOF) m/z calcd for C18H18NO3S+ [M+H]+ 328.1002, found 328.0997. 
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trans-5-oxo-1,2-diphenyl-3-(phenylthio)pyrrolidine-3-carboxylic acid (36b):  

Following the general procedure with thiophenyl succinic anhydride (0.104 g, 0.5 mmol) 

N-benzylidene aniline (0.090 g, 0.5 mmol) in toluene (2.5 mL, 2.0 M), product 36b was 

isolated as an off white amorphous solid (0.144 g, 74%) as a mixture of diastereomers 

(90:10 dr). Major diastereomer: 1H NMR (400 MHz, CDCl3) δ 7.40 (d, J = 4.4 Hz, 8H), 

7.29 (d, J = 8.8 Hz, 2H), 7.21 (td, J = 7.9, 2.9 Hz, 4H), 7.08 (t, J = 7.4 Hz, 1H), 5.82 (s, 

1H), 3.27 (d, J = 17.1 Hz, 1H), 3.03 (d, J = 17.1 Hz, 1H).; 13C NMR (101 MHz, CDCl3) δ 

175.3, 171.1, 137.5, 136.2, 134.5, 130.0, 129.3, 129.3, 129.1, 128.9, 128.8, 128.1, 125.7, 

122.2, 69.7, 58.5, 41.2.; AMM (ESI-TOF) m/z calcd for C23H20NO3S+ [M+H]+ 390.1158, 

found 390.1156. 

Energies and Coordinates 

General Procedure: Conformer searches were performed on both the anhydride and 

enol form of the substrates containing rotatable bonds using Avogadro. Next, the 

geometries were optimized using Gaussian 16 at B3LYP/631-G** level of theory in 

dichloromethane. 

 

Calculated Energy: HF=-572.2798264 Hartrees (-359105.59 kcal/mol) 

--------------------------------------------------------------------- 

N
Ph

O

Ph
PhS CO2H

O

O

O
H



 218 

 Center     Atomic      Atomic             Coordinates (Angstroms) 

 Number     Number       Type             X           Y           Z 

 --------------------------------------------------------------------- 

      1          6           0       -1.596436   -1.616425    0.050462 

      2          6           0       -2.834541   -0.988679   -0.075839 

      3          6           0       -2.919631    0.406661   -0.147082 

      4          6           0       -1.760472    1.170088   -0.093653 

      5          6           0       -0.513544    0.537897    0.028373 

      6          6           0       -0.423723   -0.858299    0.104594 

      7          1           0       -1.538661   -2.699538    0.107141 

      8          1           0       -3.737953   -1.589202   -0.120512 

      9          1           0       -3.885975    0.890129   -0.245686 

     10          1           0       -1.792785    2.252407   -0.149012 

     11          6           0        0.922167   -1.506978    0.283499 

     12          1           0        1.061166   -1.797183    1.335548 

     13          1           0        1.014388   -2.428646   -0.296457 

     14          6           0        2.106697   -0.636325   -0.064570 

     15          6           0        0.699843    1.378485    0.071034 

     16          8           0        1.933315    0.732495   -0.003126 

     17          8           0        3.200635   -1.057862   -0.328892 

     18          8           0        0.715758    2.582053    0.135526 

 --------------------------------------------------------------------- 
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Calculated Energy:  HF=-572.2632254 Hartrees (-359095.17 kcal/mol) 

--------------------------------------------------------------------- 

 Center     Atomic      Atomic             Coordinates (Angstroms) 

 Number     Number       Type             X           Y           Z 

 --------------------------------------------------------------------- 

      1          6           0       -1.581500   -1.658670    0.000236 

      2          6           0       -2.832206   -1.058624    0.000067 

      3          6           0       -2.961895    0.341559   -0.000148 

      4          6           0       -1.823943    1.132773   -0.000161 

      5          6           0       -0.551134    0.536839    0.000023 

      6          6           0       -0.410442   -0.872972    0.000190 

      7          1           0       -1.493269   -2.741740    0.000379 

      8          1           0       -3.723236   -1.680851    0.000085 

      9          1           0       -3.946779    0.798301   -0.000288 

     10          1           0       -1.888101    2.215921   -0.000281 

     11          6           0        0.631028    1.396203    0.000094 

     12          6           0        1.977281   -0.607683    0.000025 

     13          6           0        0.911067   -1.441955    0.000277 

     14          1           0        1.051678   -2.517347    0.000554 

     15          8           0        3.278784   -0.937687   -0.000032 

O

O

HO
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     16          1           0        3.360711   -1.905584    0.000004 

     17          8           0        1.871213    0.736171   -0.000231 

     18          8           0        0.661186    2.604826   -0.000246 

 --------------------------------------------------------------------- 

 

Calculated Energy:  HF=-472.7606923 Hartrees (-296657.33 kcal/mol) 

--------------------------------------------------------------------- 

 Center     Atomic      Atomic             Coordinates (Angstroms) 

 Number     Number       Type             X           Y           Z 

 --------------------------------------------------------------------- 

      1          6           0        0.444450   -1.277727    0.169466 

      2          6           0       -0.687553   -0.306360    0.552170 

      3          6           0       -0.159217    1.068249    0.091025 

      4          6           0        1.633249   -0.366770   -0.075508 

      5          1           0        0.679190   -2.013061    0.940782 

      6          1           0        0.227746   -1.818021   -0.758176 

      7          1           0       -0.785232   -0.242645    1.644465 

      8          8           0        2.785626   -0.644755   -0.214619 

      9          8           0       -0.756158    2.096196   -0.015790 

     10          6           0       -2.002216   -0.615661   -0.004786 

     11          7           0       -3.038095   -0.887185   -0.450052 

O

O

O

CN
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     12          8           0        1.192117    0.957764   -0.153456 

 --------------------------------------------------------------------- 

 

 

Calculated Energy: HF=-472.7421825 Hartrees (-296645.72 kcal/mol) 

--------------------------------------------------------------------- 

 Center     Atomic      Atomic             Coordinates (Angstroms) 

 Number     Number       Type             X           Y           Z 

 --------------------------------------------------------------------- 

      1          6           0       -0.505557   -1.322475    0.000041 

      2          6           0        0.664269   -0.368732   -0.000138 

      3          6           0        0.158722    0.891980   -0.000064 

      4          6           0       -1.693123   -0.371814   -0.000141 

      5          1           0       -0.559360   -1.969297   -0.882874 

      6          1           0       -0.559312   -1.969056    0.883136 

      7          8           0       -1.199452    0.948873   -0.000200 

      8          8           0       -2.867039   -0.586399    0.000297 

      9          8           0        0.719808    2.088269   -0.000090 

     10          1           0        1.686804    2.001633    0.000160 

     11          6           0        2.036284   -0.686342   -0.000183 

     12          7           0        3.177395   -0.932132    0.000348 

 --------------------------------------------------------------------- 

O

O
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CN
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Calculated Energy: HF=-1160.1564453 Hartrees (-727998.17 kcal/mol) 

--------------------------------------------------------------------- 

 Center     Atomic      Atomic             Coordinates (Angstroms) 

 Number     Number       Type             X           Y           Z 

 --------------------------------------------------------------------- 

      1          6           0        2.487592    0.846499   -0.748480 

      2          6           0        1.100889    0.204856   -0.809930 

      3          6           0        3.373504   -0.229822   -0.151634 

      4          1           0        2.541415    1.757796   -0.148462 

      5          1           0        2.862220    1.094022   -1.745982 

      6          6           0        1.346123   -1.261001   -0.472704 

      7          8           0        2.651505   -1.422258   -0.061729 

      8          8           0        4.516836   -0.171117    0.187912 

      9          8           0        0.574747   -2.176160   -0.524676 

     10          6           0       -1.640057    0.298177    0.165493 

     11          6           0       -2.040551   -0.825130    0.892398 

     12          6           0       -2.477240    0.916255   -0.767326 

     13          6           0       -3.746943    0.382540   -0.981494 

     14          6           0       -3.314849   -1.344173    0.667556 

     15          6           0       -4.161758   -0.744822   -0.267582 
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     16          1           0       -4.413618    0.851479   -1.697847 

     17          1           0       -3.645228   -2.214768    1.224472 

     18          1           0       -1.372956   -1.271007    1.619858 

     19          1           0       -5.152604   -1.154640   -0.437162 

     20          1           0       -2.146776    1.804396   -1.294124 

     21         16           0       -0.015303    0.989018    0.454444 

     22          1           0        0.590420    0.300557   -1.769172 

     23          8           0        0.477021    0.543836    1.768611 

     24          8           0       -0.042394    2.419146    0.107323 

 --------------------------------------------------------------------- 

 

 

Calculated Energy: HF=-1160.1369419 Hartrees (-727985.93 kcal/mol) 

--------------------------------------------------------------------- 

 Center     Atomic      Atomic             Coordinates (Angstroms) 

 Number     Number       Type             X           Y           Z 

 --------------------------------------------------------------------- 

      1          6           0        1.615070    1.251135    0.745335 

      2          6           0        1.161585   -0.095309    0.261257 

      3          6           0        2.914046    1.431629   -0.032622 

      4          1           0        1.828495    1.296895    1.819504 

O

O

OH
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      5          1           0        0.938379    2.080173    0.507565 

      6          6           0        2.088275   -0.573455   -0.610777 

      7          8           0        3.126799    0.284999   -0.821046 

      8          8           0        3.690432    2.338711   -0.049127 

      9          8           0        2.173940   -1.699092   -1.275741 

     10         16           0       -0.226939   -1.024725    0.738436 

     11          8           0       -0.105054   -2.297008   -0.036723 

     12          8           0       -0.333890   -1.069353    2.204605 

     13          1           0        1.387102   -2.235675   -0.997076 

     14          6           0       -1.670375   -0.155730    0.119303 

     15          6           0       -2.036488   -0.306459   -1.221206 

     16          6           0       -2.392841    0.662549    0.989968 

     17          6           0       -3.148734    0.385947   -1.695909 

     18          1           0       -1.470755   -0.964339   -1.871692 

     19          6           0       -3.503279    1.351245    0.499861 

     20          1           0       -2.097693    0.739385    2.030295 

     21          6           0       -3.877618    1.215043   -0.838241 

     22          1           0       -3.449353    0.274298   -2.732701 

     23          1           0       -4.077375    1.987754    1.165512 

     24          1           0       -4.743420    1.751490   -1.213937 

 --------------------------------------------------------------------- 
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Calculated Energy: HF=-1009.7714488 Hartrees (-633631.58 kcal/mol) 

--------------------------------------------------------------------- 

 Center     Atomic      Atomic             Coordinates (Angstroms) 

 Number     Number       Type             X           Y           Z 

 --------------------------------------------------------------------- 

      1          6           0       -2.284544   -1.209541   -0.391914 

      2          6           0       -1.070746   -0.288744   -0.221994 

      3          6           0       -3.475338   -0.272745   -0.404745 

      4          1           0       -2.408432   -1.893509    0.455292 

      5          1           0       -2.264429   -1.814522   -1.299629 

      6          6           0       -1.690044    1.050775    0.183192 

      7          8           0       -3.062227    0.997118   -0.006023 

      8          8           0       -4.619222   -0.495734   -0.673656 

      9          8           0       -1.157928    2.048557    0.578927 

     10         16           0        0.168584   -0.943332    0.973474 

     11          6           0        1.729353   -0.358444    0.301805 

     12          6           0        2.725156   -1.308011    0.038076 

     13          6           0        1.986934    1.004650    0.101701 

     14          6           0        3.231380    1.405232   -0.386392 

     15          6           0        3.975490   -0.893414   -0.423290 
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     16          6           0        4.228340    0.461450   -0.643510 

     17          1           0        1.219459    1.737328    0.326559 

     18          1           0        3.425477    2.461058   -0.550403 

     19          1           0        4.745334   -1.632637   -0.623385 

     20          1           0        5.198251    0.780944   -1.012454 

     21          1           0        2.518897   -2.362723    0.189125 

     22          1           0       -0.552764   -0.129417   -1.172248 

 --------------------------------------------------------------------- 
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Calculated Energy: HF=-1009.7411141 Hartrees (-633612.55 kcal/mol) 

--------------------------------------------------------------------- 

 Center     Atomic      Atomic             Coordinates (Angstroms) 

 Number     Number       Type             X           Y           Z 

 --------------------------------------------------------------------- 

      1          6           0        1.603855    0.751676   -1.100521 

      2          6           0        1.100749   -0.458369   -0.350458 

      3          6           0        2.017126   -0.743471    0.594541 

      4          6           0        2.914960    1.066785   -0.400103 

      5          1           0        1.795413    0.566474   -2.164363 

      6          1           0        0.942961    1.624931   -1.042164 

      7          8           0        3.103709    0.110990    0.609731 

      8          8           0        3.718400    1.935175   -0.581271 

      9          8           0        2.054863   -1.720375    1.495358 

     10          1           0        2.868509   -1.643190    2.016547 

     11         16           0       -0.315325   -1.418714   -0.736590 

     12          6           0       -1.693657   -0.386637   -0.204457 

     13          6           0       -1.581008    0.572847    0.806832 

     14          6           0       -2.931405   -0.603806   -0.823808 

     15          6           0       -2.699824    1.315898    1.186875 
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     16          1           0       -0.625216    0.734100    1.295096 

     17          6           0       -4.047830    0.131025   -0.424902 

     18          1           0       -3.019196   -1.340249   -1.617503 

     19          6           0       -3.936509    1.097130    0.577288 

     20          1           0       -2.602998    2.062789    1.969748 

     21          1           0       -5.004019   -0.045076   -0.909077 

     22          1           0       -4.804753    1.674850    0.878884 

 --------------------------------------------------------------------- 

 

Calculated Energy: HF=-611.5895603 Hartrees (-383772.45 kcal/mol) 

--------------------------------------------------------------------- 

 Center     Atomic      Atomic             Coordinates (Angstroms) 

 Number     Number       Type             X           Y           Z 

 --------------------------------------------------------------------- 

      1          6           0       -1.403461    2.010342    0.138738 

      2          6           0       -0.537946    3.106473   -0.510359 

      3          6           0       -2.449432    1.680542   -0.905756 

      4          1           0       -1.882561    2.303902    1.074247 

      5          1           0       -0.824183    1.101805    0.336447 

      6          6           0       -0.920284    3.011901   -1.989848 

      7          8           0       -2.073750    2.244958   -2.120847 
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      8          8           0       -3.451124    1.031777   -0.806472 

      9          8           0       -0.395465    3.508811   -2.943615 

     10          6           0        0.953595    3.039136   -0.252874 

     11          6           0        1.718932    1.966646   -0.732071 

     12          6           0        1.583926    4.038696    0.495106 

     13          6           0        2.951799    3.969141    0.765792 

     14          6           0        3.085107    1.896879   -0.465102 

     15          6           0        3.705245    2.897602    0.286914 

     16          1           0        3.425886    4.753218    1.348415 

     17          1           0        3.666043    1.063072   -0.847445 

     18          1           0        1.251084    1.185155   -1.325903 

     19          1           0       -0.904465    4.089813   -0.189636 

     20          1           0        4.769620    2.842742    0.494131 

     21          1           0        1.002394    4.877579    0.868158 

 --------------------------------------------------------------------- 

 

Calculated Energy: HF=-611.5608487 Hartrees (-383754.43 kcal/mol) 

--------------------------------------------------------------------- 

 Center     Atomic      Atomic             Coordinates (Angstroms) 

 Number     Number       Type             X           Y           Z 

 --------------------------------------------------------------------- 
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      1          6           0       -1.435552   -1.263306    0.187789 

      2          6           0       -0.504975   -0.085136    0.026142 

      3          6           0       -2.815080   -0.628073    0.116842 

      4          1           0       -1.327413   -1.794214    1.141100 

      5          1           0       -1.358128   -2.017860   -0.605521 

      6          6           0       -1.297705    0.991178   -0.160070 

      7          8           0       -2.651395    0.735273   -0.106562 

      8          8           0       -3.905121   -1.118014    0.214757 

      9          8           0       -1.057876    2.281322   -0.417870 

     10          6           0        0.957809   -0.132563    0.039149 

     11          6           0        1.638559   -1.311271   -0.322545 

     12          6           0        1.733590    0.983280    0.418221 

     13          6           0        3.126396    0.932123    0.396550 

     14          6           0        3.030709   -1.362136   -0.332332 

     15          6           0        3.783998   -0.239095    0.017301 

     16          1           0        3.697756    1.805700    0.696669 

     17          1           0        3.529735   -2.283531   -0.618362 

     18          1           0        1.071540   -2.192177   -0.607820 

     19          1           0       -0.121023    2.382153   -0.646848 

     20          1           0        1.247510    1.881812    0.789543 

     21          1           0        4.868663   -0.280545    0.006364 

 --------------------------------------------------------------------- 
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Calculated Energy: HF=-380.5344606 Hartrees (-238785.37 kcal/mol) 

--------------------------------------------------------------------- 

 Center     Atomic      Atomic             Coordinates (Angstroms) 

 Number     Number       Type             X           Y           Z 

 --------------------------------------------------------------------- 

      1          6           0       -0.000000    1.149973    0.214893 

      2          6           0       -0.000548    0.764989   -1.253895 

      3          6           0        0.000548   -0.764989   -1.253895 

      4          6           0       -0.000000   -1.149973    0.214893 

      5          1           0        0.878298    1.207209   -1.729993 

      6          1           0       -0.880834    1.205748   -1.728732 

      7          1           0       -0.878298   -1.207209   -1.729993 

      8          1           0        0.880834   -1.205748   -1.728732 

      9          8           0       -0.000000   -0.000000    0.996783 

     10          8           0        0.000506    2.238950    0.713201 

     11          8           0       -0.000506   -2.238950    0.713201 

 --------------------------------------------------------------------- 
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Calculated Energy: HF=-380.4947587 Hartrees (-238760.46 kcal/mol) 

 

--------------------------------------------------------------------- 

 Center     Atomic      Atomic             Coordinates (Angstroms) 

 Number     Number       Type             X           Y           Z 

 --------------------------------------------------------------------- 

      1          6           0        0.852262    1.256156    0.000036 

      2          6           0       -0.650293    1.280539   -0.000058 

      3          6           0       -1.065627    0.011734   -0.000059 

      4          6           0        1.168334   -0.234094   -0.000034 

      5          1           0        1.320076    1.717162   -0.879348 

      6          1           0        1.319961    1.717075    0.879528 

      7          1           0       -1.281395    2.155086   -0.000087 

      8          8           0       -0.040539   -0.929280    0.000003 

      9          8           0       -2.297968   -0.508449   -0.000082 

     10          8           0        2.219051   -0.812360    0.000171 

     11          1           0       -2.231061   -1.474622   -0.000137 

 --------------------------------------------------------------------- 

Full G16 Citation 
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