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ABSTRACT OF THE DISSERTATION

On Nilpotence and Algebraicity in Algebras Over Uncountable Fields
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Doctor of Philosophy in Mathematics
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Professor Lance Small, Chair

This thesis is primarily concerned with properties of nilpotence and algebraicity

in algebras over fields. We study properties of certain non-commutative polyno-

mials, which are called the order-symmetric polynomials. We give an alternative

proof to Amitsur’s theorem that algebraic algebras over uncountable fields have

locally bounded degree. We also prove that the associated graded algebra of a

filtered algebraic algebra over an uncountable field is nil.
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Chapter 1

Introduction

We begin by introducing some basic definitions and notations. We will deal

primarily with a noncommutative associative algebra, typically denoted A, over a

field k. Although some of our discussion can be applied to rings which are not

algebras over fields, we usually restrict our attention to algebras. We do not, in

general, assume that our rings and algebras are unital.

We will use the following notation. If S ⊆ A is any subset, then (S)A will

denote the ideal generated by S, i.e. (S)A = ASA. We denote by k〈S〉A the

k-subalgebra of A generated by S. Equivalently, k〈S〉A is the smallest subalgebra

of A that contains S. Without a subscript A, the expression k〈X〉 will stand for

the free k-algebra on X, which we describe next. We will generally “abuse” these

notations by omitting the set-notation for finite sets. For example, (a, b)A will

mean ({a, b})A.

1.1 The Free Algebra and Polynomials

The free associative (noncommutative) unital k-algebra on a (finite or infinite)

set X of generators is denoted k〈X〉. This algebra can be considered as the algebra

1
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of polynomials f(x1, . . . , xm), with coefficients in k, in indeterminates

x1, . . . , xm ∈ X, which commute with the elements of k but not with each other.

For any such polynomial we can write

f(x1, . . . , xm) =

γ1xi1,1xi1,2 · · ·xi1,d1
+ γ2xi2,1xi2,2 · · ·xi2,d2

+ . . .+ γnxin,1xin,2 · · ·xin,dn
, (1.1)

where is,t ∈ {1, . . . ,m}, γi ∈ k, and

r 6= s⇒ (ir,1, . . . , ir,dr) 6= (is,1, . . . , is,ds).

The words {x1 . . . xm | m ≥ 0, xi ∈ X} form a basis for k〈X〉 over k (when m = 0

or dr = 0 we have the empty word which is by convention 1). In particular, the

representation (1.1) is unique (up to the order of the summands). The monomials

γjxij,1
· · ·xij,dj

, are called the terms of f . A polynomial of the form (1.1) is said to

be homogeneous in xi if each of its terms has the same number of occurrences of

xi. It is said to be homogeneous in total degree, if all of its terms have the same

total degree, i.e. if all dj are equal.

Remark 1.1. Note that there is an ambiguity in using the terms “degree” and

“homogeneous”. We use the term “homogeneous” to describe the polynomials in

k〈X〉, as well as elements of the homogeneous components of a graded algebra. We

use the term “degree” in the context of polynomials, graded algebras, and algebraic

elements. To avoid confusion we use “total degree” for polynomials in k〈X〉 as

above, and specify “homogeneous element of degree” or “degree of algebraicity” to

distinguish between the latter two contexts.

Similarly to k〈X〉, we define k+〈X〉 to be the free associative non-unital k-

algebra on generators X. This is the algebra of noncommutative polynomials

f(x1, . . . , xm) with coefficients in k and zero constant term.
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By the standard universal property, any unital k-algebra A can be presented

as

A =
k〈X〉
J

, (1.2)

where X is a set of generators, and J = ({fρ}ρ∈I)k〈X〉 is the ideal generated in

k〈X〉 by the polynomials fρ, which are called the the relations of A. Similarly, any

non-unital k-algebra A can be presented as

A =
k+〈X〉
J

. (1.3)

Note that k+〈X〉 is an ideal in k〈X〉, but not a homomorphic image of k〈X〉.

In this way the elements of A can also be thought of as polynomials,

inheriting from (1.1) the representation

f(a1, . . . , am) = γ1ai1,1ai1,2 · · · ai1,d1
+ . . .+ γnain,1ain,2 · · · ain,dn

, (1.4)

where ai = xi + J . Thus the set X + J = {x+ J | x ∈ X} ⊆ A generates A as an

algebra. Note that the representation (1.4) is no longer unique. In the discussion

below, we will generally denote elements of a free algebra by x (or xi, etc.), and

elements of a general algebra by a (ai, etc.).

1.2 Filtered and Graded Algebras

We define a filtered algebra as follows.

Definition 1.2. Let A be k-algebra and let (Fn)n≥0 be a sequence of subspaces of

A. We say that (Fn)n≥0 is a filtration of A (or that A is filtered by (Fn)n≥0), if

Fi ⊆ Fi+1 for all i ≥ 0, (1.5)

∞⋃
n=0

Fn = A, (1.6)

and

FiFj ⊆ Fi+j for all i, j ≥ 0. (1.7)
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For example, the free unital algebra k〈X〉 is filtered by the filtration

Fn = {polynomials in X of total degree ≤ n}

= spank{x1 · · ·xr | 0 ≤ r ≤ n;xi ∈ X}. (1.8)

Note that since r = 0 gives the empty product 1, we have F0 = k.

The filtration 1.2 is called the standard filtration with respect to the set of

generators X. In fact, any k-algebra can be given the standard filtration. Let

k〈X〉
J

be an arbitrary unital k-algebra. Then A inherits the standard filtration

from k〈X〉 as follows:

Fn = spank{a1 · · · ar | 0 ≤ r ≤ n; ai ∈ X + J}. (1.9)

Here the empty product stands for 1 + J , which is the unit element of A.

In a similar manner to (1.2), the free nonunital algebra k+〈X〉 is filtered by

F0 = {0}, and

Fn = spank{x1 · · ·xr | 1 ≤ r ≤ n;xi ∈ X}, for n ≥ 1. (1.10)

It follows similarly that any nonunital algebra also inherits this filtration. In

general, if (Fn)n≥0 is any filtration if A, then F0 is a subalgebra of A, and k ⊆ F0

if and only if A is unital.

Remark 1.3. This type of adjustment from unital to nonunital algebras is neces-

sary in many parts of our discussion below. However, it is usually obvious how to

make these adjustments and hence we will often omit this.

In Chapter 3 we discuss some properties of filtered algebras. We will not need

to assume the filtration is the standard one.

A notion related to filtered algebras is that of graded algebras.
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Definition 1.4. Let A be a k-algebra and let (An)n≥0 be a sequence of subspaces

of A. We say that (An)n≥0 is an N-grading of A (or that A is N-graded), if

A =
∞⊕

n=0

An, (1.11)

with

AiAj ⊆ Ai+j for all i, j ≥ 0. (1.12)

The Ai are called the homogeneous components of A, and any a ∈ Ai is said to be

a homogeneous element of component degree i.

In our context all graded algebras are N-graded and we will refer to such alge-

bras simply as “graded algebras”. Note that the condition

Ai ∩ Aj = {0} for all i 6= j (1.13)

is implied from 1.11 in the definition. This allows us to “compare homogeneous

components” in any equation in a graded algebra.

The free unital algebra k〈X〉 is an example of a graded algebra, with the

homogeneous components

(k〈X〉)n

= {homogeneous polynomials in X of total degree n}

= spank{x1 · · ·xn | xi ∈ X}. (1.14)

Consider now an arbitrary unital algebra A =
k〈X〉
J

, with J = ({fρ}ρ∈I)k〈X〉.

We can attempt to apply the same grading to A, namely An = (k〈X〉)n + J . The

condition 1.12 is then automatically inherited from the grading of k〈X〉. However,

the condition 1.13 holds if and only if (Ai +J)∩(Aj +J) = J . This is equivalent to

the condition that if ai + aj ∈ J , with ai ∈ Ai, aj ∈ Aj, then ai, aj ∈ J . It follows

that graded algebras are precisely those algebras that can be written in the form
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A =
k〈X〉
J

with J = ({fρ}ρ∈I)k〈X〉, where all fρ are homogeneous polynomials in

X. This situation is similar for nonunital algebras.

For any graded algebra A, we use the notation

A≤n =
n⊕

n′=0

An′ (1.15)

and

A≥n =
∞⊕

n′=n

An′ . (1.16)

Note that if A =
∞⊕

n=0

An is a graded algebra, then we have a filtration

(Fn)n≥0 on A, where

Fn = A≤n. (1.17)

This is known as the filtration induced by the grading (An)n≥0. In the other

direction, if A is filtered then it is not necessarily graded. However, for any filtered

algebra we can define the following graded algebra.

Definition 1.5. Suppose that A is a k-algebra filtered by (Fn)n≥0. We define the

associated graded algebra of A (with respect to this filtration) to be

gr(A) = F0 ⊕
F1

F0

⊕ F2

F1

⊕ . . . , (1.18)

with multiplication defined as follows. For p, q ≥ 0, if ap + Fp−1 and

aq + Fq−1, with ap ∈ Fp and aq ∈ Fq, are arbitrary homogeneous elements of

gr(A) (taking F−1 = {0}) then we set

(ap + Fp−1)(aq + Fq−1) = apaq + Fp+q−1. (1.19)

This multiplication is well-defined by (1.5) and (1.7) of Definition 1.2. We extend

the multiplication linearly to arbitrary elements of gr(A).
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Note that from (1.19) it follows (by induction) that if ap1 , . . . , apn satisfy

api
∈ Fpi

for all 1 ≤ i ≤ n then

(ap1 + Fp1−1)(ap2 + Fp2−1) · · · (apn + Fpn−1) = ap1ap2 · · · apn + Fp1+...+pn−1. (1.20)

Remark 1.6. In the special case where A is already a graded algebra, then the

associated graded algebra gr(A), with respect to the induced filtration 1.17, satisfies

gr(A) ∼= A (1.21)

as graded algebras (that is, there exists an algebra isomorphism between them that

maps (gr(A))n to An).

In the general case, the algebra A and its associated graded algebra gr(A) share

some properties, but may be quite different in general (see eg. [12, 1.6.6-1.6.9]).

In Chapter 3 we present a result that relates the properties of nilpotence and

algebraicity in A and gr(A).

A related construction that we will use is the Rees algebra.

Definition 1.7. Let A be a filtered k-algebra with the filtration (Fn)n≥0. Let

A[z] be the algebra of polynomials in a central indeterminate z with coeffcients

in A. The Rees algebra R ⊆ A[z] (with respect to this filtration) is defined as

R =
∞⊕

n=0

Fnz
n.

Property (1.7) of Definition 1.2 ensures that this is indeed a subalgebra of A[z].

We note the following relation between the associated graded algebra and the Rees

algebra.

Proposition 1.8. Let A be a filtered k-algebra with the filtration (Fn)n≥0, let

B = gr(A) be its associated graded algebra, and let R ⊆ A[z] be the Rees algebra.

Then

B ∼=
R

zR
. (1.22)
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Proof. Define a homomorphism ψ : R→ B by

ψ(a0 + a1z + . . .+ anz
n) = a0 + (a1 + F0) + . . . (an + Fn−1). (1.23)

Then ψ is surjective, and

kerψ = {a0 + a1z + . . .+ anz
n | a0 + (a1 + F0) + . . . (an + Fn−1) = 0B}

= {a0 + a1z + . . .+ anz
n | a0 = 0, ai ∈ Fi−1 ∀i ≥ 1}

= {z(a1 + a2z + . . .+ anz
n−1) | ai ∈ Fi−1 ∀i ≥ 1} = zR.

This proves the stated isomorphism.

1.3 Nilpotence

We next shift our attention to nilpotent and algebraic elements in algebras. We

begin by discussing nilpotence. This notion is relevant in any ring, and therefore

in this section (and only here) we refer to general rings.

Definition 1.9. Let R be a ring. We say that a ∈ R is nilpotent if there exists

n ∈ N such that an = 0. Given a ∈ R, the minimal such n is called the index of

nilpotence of a (or just “the index” of a).

A natural question to ask is whether the sum of two nilpotent elements in a

ring is necessarily also nilpotent. For example, this is true in commutative rings.

In general, however, this is not the case, as seen from the following example.

Example 1.10. Let

a =

 0 1

0 0


and

b =

 0 0

1 0


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Then a and b are both nilpotent since a2 = b2 = 0. However,

a+ b =

 0 1

1 0


is not nilpotent, as (a+ b)2 is the identity matrix. Note that this counter-example

works in rings of matrices over any ring with 0 6= 1.

Thus, in general, the sum of nilpotent elements in not nilpotent. However, a

related property holds in any ring. We use the following standard definition.

Definition 1.11. We say that a subset S ⊆ R of a ring R is nil if every s ∈ S is

nilpotent.

Thus we may consider nil rings and algebras, as well as nil ideals and subspaces.

Note that this notion is different from the that of a nilpotent subset of a ring, which

is conventionally defined as a set in which there is a bound on the length of any

nonzero word.

Proposition 1.12. If I and J are nil two-sided ideals in a ring R then I + J is

also nil.

Proof. Let a ∈ I and b ∈ J . Since I is nil, a is nilpotent, say of degree n. Then

(a+ b)n = an + c = c, (1.24)

where c is the sum of all the terms other than an. All of these terms include b as a

factor, and hence (since J is a two-sided ideal containing b), we have c ∈ J . Thus

(a + b)n ∈ J . Since J is nil, this means (a + b)n is nilpotent, and hence (a + b) is

nilpotent. Thus the sum of nil 2-sided ideals is a nil 2-sided ideal as well.

Note that we have only used only the fact that J is a 2-sided ideal. Therefore

we actually have
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Proposition 1.13. If I is a nil subset of R and J is a nil 2-sided ideal of R then

I + J is nil.

These propositions raise the question of whether the same conclusion would be

true if both I and J were only assumed to be nil right ideals. This is precisely the

Köthe conjecture [9], proposed in 1930. This conjecture is still open, and in fact is

often considered to be one of the most important open problems in noncommutative

ring theory.

An equivalent formulation of the conjecture states that if a ring has no nonzero

nil two-sided ideals, then it has no nonzero nil right ideals. Another important

equivalent formulation, due to Krempa [10] is that if a ring R is nil, then so is any

matrix ring Mn(R) (the ring of n-by-n matrices with entries in R).

While it is still open in general, the Köthe conjecture has been proved to be

true for certain classes of algebras. One of those, as we shall see in section 1.6, is

the class of algebras over uncountable fields.

1.4 Algebraicity

The notion of algebraicity is a generalization of nilpotence. We give the follow-

ing definition.

Definition 1.14. Let A be an algebra over a field k. We say that a ∈ A is algebraic

(over k) if it satisfies some nonzero polynomial with coefficients in k. That is, there

exists a polynomial 0 6= p(x) ∈ k〈x〉 such that p(a) = 0 in A. The minimal degree

of such a polynomial is called the degree of algebraicity of a (or simply the degree

of a).

Note that if a is algebraic of degree d, then there exists a minimal polynomial

m(x) of degree d with the property that any polynomial f(x) ∈ k〈x〉 satisfies
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f(a) = 0 in A if and only if m(x) divides f(x). If a is nilpotent, this implies that

the minimal polynomial is of the form m(x) = xd. Thus we have

Remark 1.15. If a is a nilpotent element of index d in a k-algebra, then a is also

algebraic of degree d.

We note the following equivalent definition to algebraicity.

Proposition 1.16. Let A be a k-algebra. The element a ∈ A is algebraic over k

if and only if dimk k〈a〉A <∞.

We make the following definition in analogy to Definition 1.11.

Definition 1.17. We say that a subset S ⊆ A of a k-algebra A is algebraic if every

s ∈ S is algebraic.

Note that this is not the same as the notion of an “algebraic set” as it is defined

in [1] (we will refer to that as an “algebraic subvariety”).

In analogy to the Köthe conjecture, we may ask whether the “algebraic Köthe

conjecture” holds. That is, it may be asked whether the sum of two algebraic

right-ideals also algebraic. As with the ordinary Köthe conjecture, this is true in

some special cases, including algebras over uncountable fields.

We note a logical connection between the conjectures. We will use the following

standard definition.

Definition 1.18. Let A be an algebra. The Jacobson radical of A, denoted Jac(A),

is the intersection of all maximal right ideals of A.

The following properties of the Jacobson radical are well known (see e.g., [7, p.

19]).

Proposition 1.19. Let A be an algebra and Jac(A) its Jacobson Radical. Then
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1. Jac(A) is a 2-sided ideal of A.

2. Jac(A) contains every nil right-ideal of A.

3. If a ∈ Jac(A) is algebraic, then it is nilpotent.

With these properties, we can prove the following connection between the “al-

gebraic” and the original Köthe conjectures.

Proposition 1.20. The “algebraic Köthe conjecture” implies the Köthe conjecture.

Proof. Suppose that the “algebraic” conjecture holds. Let I and J be nil right

ideals of A. By Proposition 1.19-2 we know that I, J ⊆ Jac(A). Hence by Propo-

sition 1.19-1, we have I + J ⊆ Jac(A). Now let a ∈ I + J . By assumption, a is

algebraic, hence by Proposition 1.19-3 it is nilpotent. Thus I + J is nil.

1.5 The Kurosh Problem and the Golod-Shafarevich

Algebra

The Kurosh problem [11], proposed in 1941, was another famous question re-

garding algebraicity in an algebra. The problem (in one form) asks whether every

finitely generated algebraic algebra is finite dimensional. This question intrigued

many mathematicians for over two decades, and several important special cases

and related results were proved. One of those was the case where the degrees of

algebraicity of the elements of the algebra are bounded (see e.g., [8]). However,

the question was finally solved in the negative by Golod and Shafarevich in 1964.

Golod and Shafarevich [6, 5] disproved Kurosh’s conjecture by constructing

an infinite dimensional, finitely generated nil algebra A (in fact, a family of such

algebras) over any field k. The construction puts

A =
k+〈x1, . . . , xm〉

({fi}i≥0)k+〈x1,...,xm〉
, (1.25)
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where {fi}i≥0 is an infinite set of homogeneous polynomials of k+〈x1, . . . , xm〉.

Thus A is a graded algebra. The elements fi are chosen in a way that they satisfy

two conditions. On the one hand, there are “enough” of them that the algebra

is nil. On the other hand, there are “few enough” of them that the algebra is

infinite dimensional (we discuss this further in section 2.2). More precisely, they

satisfy the hypothesis of the Golod-Shafarevich theorem. The theorem states that

if the total degrees di of the fi grow rapidly enough, then the dimensions of the

homogeneous components An are exponentially increasing with n. In particular,

this means that A is infinite dimensional. Thus the Kurosh conjecture was shown

to be false - over any field, there exists an algebraic (in fact, nil) finitely generated

algebra which is infinite dimensional.

1.6 Amitsur’s LBI and LBD Results

In 1955 Amitsur [1] proved several important results related to the questions

discussed above, for algebras over uncountable fields. One of these states that if

A is a finitely generated algebra over an uncountable field, the Jacobson radical

Jac(A) is nil. From this, Amitsur obtained that these algebras satisfy the Köthe

conjecture, as well as the “algebraic Köthe conjecture”. As a consequence, if A

is a nil algebra over an uncountable field then so is any algebra of matrices with

entries in A. Similarly, if A is an algebraic algebra over an uncountable field then

so is any matrix algebra

over A.

Another result of [1] is related to the Kurosh problem. Although Kurosh’s

conjecture is generally false, even for algebras over uncountable fields (as [5, 6]

would later show), Amitsur found that these algebras satisfy related properties,

namely the LBI and LBD properties. We define these properties and outline
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Amitsur’s proof.

Definition 1.21. If A is a nil k-algebra, we say that A is locally of bounded index

(LBI) over k if the elements of every finite dimensional k-subspace of A have

bounded index of nilpotence.

If A is an algebraic k-algebra, we say that A is locally of bounded degree (LBD)

over k if the elements of every finite dimensional k-subspace of A have bounded

degree of algebraicity.

Theorem 1.22 ([1, Theorem 5]). Let k be an uncountable field and let A be a

k-algebra. If A is nil then it is LBI. If A is algebraic then it is LBD.

In fact, Amitsur proved the following stronger statements:

Theorem 1.23 ([1, Corollary 7]). Let k be an uncountable field and let A be a k-

algebra. Then any nil subspace of A has bounded index, and any algebraic subspace

of A has bounded degree.

We outline Amitsur’s proof. Let A be an algebra over an uncountable field k,

and let ka1 + . . .+ kam be an arbitrary finite dimensional subspace of A. The first

observation is that, for any d ≥ 0, the sets

{(β1, . . . , βm) ∈ km | β1a1 + . . .+ βmam is nilpotent of index ≤ d} and

{(β1, . . . , βm) ∈ km | β1a1 + . . .+ βmam is algebraic of degree ≤ d}

are algebraic subvarieties. That is, each of these sets can be described as the set of

zeroes of a collection of polynomials in m indeterminates. Next, it is shown that

if k is uncountable, then a countable union of proper algebraic subvarieties of km

must be a proper subset of km. It follows that every algebraic subspace must have

bounded degree.

Remark 1.24. Note that in fact the second statement of Theorem 1.22 implies

the first statement. That is, if every algebraic subspace has bounded degree of
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algebraicity, then every nil subspace, being algebraic, has bounded degree of alge-

braicity. Therefore by Remark 1.15 it has bounded index of nilpotence.

Amitsur also proved that the LBI and LBD properties are stable under field

extension. That is,

Lemma 1.25 ([1, Lemma 6]). Let k be an infinite field and let A be a k-algebra.

Let H ⊃ k be a field extension and let AH = A⊗k H be the extension algebra.

1. If A is LBI, then so is AH .

2. If A is LBD over k then AH is LBD over H.

As a consequence, we have the following corollary.

Corollary 1.26. If k is uncountable then the following hold.

1. If A is nil then so is AH .

2. If A is algebraic over k then AH is algebraic over H.

Of particular interest is the case where the extension field H is the field k(x),

that is, the field of rational functions over k in x. Note that in this case, A[x] is a

subalgebra of AH . This gives us the following corollaries.

Corollary 1.27. Let k be an infinite field and let A be a k-algebra.

1. If A is LBI, then so is A[x].

2. If A is LBD over k then A⊗k k(x) is LBD over k(x).

Corollary 1.28. Let k be an uncountable field and let A be a k-algebra.

1. If A is nil then so is A[x].

2. If A is algebraic over k then A⊗k k(x) is algebraic over k(x).
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In [14], Smoktunowicz constructed a nil algebra A over any countable field,

such that A[x] is not nil. Thus the assumption that k is uncountable is indeed

necessary.

In Section 2.3 we give a different proof of Amitsur’s results 1.22 and 1.26, using

the order-symmetric polynomials.



Chapter 2

The Order-Symmetric

Polynomials

In this chapter we introduce the order-symmetric polynomials and prove some

of their properties. These properties are useful in studying the questions mentioned

above. We make use of the definitions from Section 1.1.

2.1 Definitions and Basic Properties

We begin with the definition of the order-symmetric polynomials in the free

unital algebra A = k〈X〉 (see Remark 1.3).

Definition 2.1. Let

f(x1, . . . , xm) = γ1xi1,1xi1,2 · · ·xi1,d
+ . . .+ γnxin,1xin,2 · · ·xin,d

(2.1)

be a polynomial which is homogeneous in total degree d. We say that f is order-

symmetric if it is invariant to applying any permutation to all of its terms, i.e.,

if

f(x1, . . . , xm) = γ1xi1,σ(1)
xi1,σ(2)

· · ·xi1,σ(d)
+ . . .+ γnxin,σ(1)

xin,σ(2)
· · ·xin,σ(d)

(2.2)

17
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for any permutation σ ∈ Sd.

Consider the following polynomials in k〈x1, . . . , xm〉.

Definition 2.2. For any i1, . . . , im ∈ N, we denote

pi1,...,im(x1, . . . , xm) =
∑

(t1,...,ts)∈S

xt1 · · ·xts , (2.3)

where s = i1 + . . .+ im and

S =
{

(t1, . . . , ts) ∈ Ns
∣∣∣ |{r | tr = j}| = ij ∀j ∈ {1, . . . ,m}

}
. (2.4)

That is, pi1,...,im(x1, . . . , xm) is the sum of all the
(i1 + . . .+ im)!

i1! · · · im!
different words

consisting of exactly ij occurrences of xj for each j. We take p0,...,0(x1, . . . , xm) = 1.

It is readily seen that each pi1,...,im is order-symmetric. In fact, we now show

that any order-symmetric polynomial can be written using these polynomials.

Proposition 2.3. Let f(x1, . . . , xm) be a polynomial which is homogeneous of de-

gree ij in each of the xj. If f is order-symmetric then

f(x1, . . . , xm) = γpi1,...,im(x1, . . . , xm) (2.5)

for some γ ∈ k. In particular, every order-symmetric polynomial is a linear com-

bination of polynomials of the form pi1,...,im(x1, . . . , xm).

Proof. The uniqueness of the representation (2.1) implies that in order for

f(x1, . . . , xm) to be order-symmetric, the γi must all be equal. That is,

f(x1, . . . , xm) = γ(w1(x1, . . . , xm) + . . .+ wn(x1, . . . , xm)), (2.6)

where the wi(x1, . . . , xm) are different words of the same length d, each consisting

of exactly ij occurrences of xj for all j ∈ {1, . . . ,m}.

It remains to show that all possible such wi(x1, . . . , xm) must be included in

(2.6). Suppose this is not the case, and suppose that the word w0(x1, . . . , xm) has
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ij occurrences of xj for all j, but w0 does not appear in (2.6). Let σ ∈ Sd be

any permutation that takes the monomial w0 to w1. Applying this permutation to

(2.6), we arrive at

w1(x1, . . . , xm)+. . .+wn(x1, . . . , xm) = v1(x1, . . . , xm)+. . .+vn(x1, . . . , xm), (2.7)

where vi is the monomial obtained from applying the permutation σ to wi. Now,

since by assumption the left-hand side of (2.7) does not include w0, the right-

hand side will not include w1. But the left-hand side does include w1, so we have

reached a contradiction. Thus f(x1, . . . , xm) can be written as a constant times

pi1,...,im(x1, . . . , xm). The last statement folllows from the fact that every polyno-

mial which is homogeneous in total degree can be written as a sum of polynomials

which are homogeneous in all of the xi.

Example 2.4. Consider the case m = 2. Let A = k〈x, y〉. Then some order-

symmetric polynomials are

p1,1(x, y) = xy + yx, (2.8)

p2,1(x, y) = x2y + xyx+ yx2, (2.9)

and for any n ≥ 0,

pn,0(x, y) = xn, p0,n(x, y) = yn. (2.10)

We consider some basic properties of the order-symmetric polynomials. Note

that if ij = 0 for some j, then we can omit the variable xj. For example,

pi1,...,im−1,0(x1, . . . , xm) = pi1,...,im−1(x1, . . . , xm−1). (2.11)

Thus we can express any pi1,...,im as an order-symmetric polynomial of the same

form, in which all ij ≥ 1. We prove the following recurrence relation.
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Proposition 2.5. Suppose ij ≥ 1 for all j. Then for any r ∈ {0, . . . ,m},

pi1,...,im(x1, . . . , xm) =

m∑
r=1

xrpi1,...,ir−1,ir−1,ir+1,...,im(x1, . . . , xm). (2.12)

Proof. Let w be a word containing exactly ij occurrences of xj for all j. Then

we can write w = xrw
′ for some r ∈ {1, . . . ,m}, where w′ contains exactly ir − 1

occurrences of xr and ij occurrences of xj for j 6= r. Conversely, every such xrw
′

can be written as such w, and the relation follows.

The span of all order-symmetric polynomials pi1,...,im(x1, . . . , xm) for which i1 +

. . . + im = n, will play an important role below, making the following definitions

useful.

Definition 2.6. For any n ≥ 0, any field k and any x1, . . . , xm we denote

Pn;k(x1, . . . , xm) = spank{pi1,...,im(x1, . . . , xm) | i1 + . . .+ im = n}. (2.13)

When there is no danger of confusion, we omit the subscript k.

We also define

P≤n(x1, . . . , xm) = spank{pi1,...,im(x1, . . . , xm) | i1 + . . .+ im ≤ n}

=
n⊕

n′=0

Pn′(x1, . . . , xm) (2.14)

and

P≥n(x1, . . . , xm) = spank{pi1,...,im(x1, . . . , xm) | i1 + . . .+ im ≥ n}

=
∞⊕

n′=n

Pn′(x1, . . . , xm). (2.15)

We note that

dimk Pn(x1, . . . , xm) =
∣∣∣{pi1,...,im(x1, . . . , xm) | i1 + . . .+ im = n}

∣∣∣ =

(
m+ n− 1

m− 1

)
(2.16)
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and

dimk P≤n(x1, . . . , xm) =
n∑

j=0

dimk Pj =
n∑

j=0

(
j+m−1
m−1

)
=

(
n+m

m

)
. (2.17)

At this point we extend our discussion from the free algebra k〈X〉 to an arbi-

trary unital algebra A =
k〈X〉
J

with J = ({fρ}ρ∈I)k〈X〉. The algebra A “inherits”

the order-symmetric polynomials from k〈X〉 in the following way. If a1, . . . , am ∈ A

are the images in A of some x1, . . . , xm ∈ k〈X〉, then pi1,...,im(a1, . . . , am) is the im-

age of pi1,...,im(x1, . . . , xm), and we refer to such elements as order-symmetric poly-

nomials in A. Of course, since the uniqueness property of k〈X〉 is not inherited,

the image of an order-symmetric polynomial may also be an image of a polynomial

which is not order-symmetric. Also, we may have pi1,...,im(a1, . . . , am) = 0.

The spaces Pn(a1, . . . , am) ⊆ A are similarly obtained. The definitions (2.14)

give us

P≤n(a1, . . . , am) = spank{pi1,...,im(a1, . . . , am) | i1 + . . .+ im ≤ n}

=
n∑

n′=0

Pn′(a1, . . . , am) (2.18)

and

P≥n(a1, . . . , am) = spank{pi1,...,im(a1, . . . , am) | i1 + . . .+ im ≥ n}

=
∞∑

n′=n

Pn′(a1, . . . , am). (2.19)

In place of equations 2.16 and 2.17 we have the inequalities

dimk Pn(a1, . . . , am) ≤
(
m+ n− 1

m− 1

)
(2.20)

and

dimk P≤n(a1, . . . , am) ≤
(
n+m

m

)
. (2.21)

Using this notation, we conclude from Proposition 2.5 that

Pn(x1, . . . , xm) ⊆ (Pn−1(x1, . . . , xm))k〈X〉. (2.22)

In A, this implies the following.
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Proposition 2.7. If Pn(a1, . . . , am) = 0 then P≥n(a1, . . . , am) = 0.

2.2 Relation to Nilpotence and Algebraicity

The connection between the order-symmetric polynomials and the properties

of nilpotence and algebraicity can be seen from the following equation, which is a

noncommutative generalization of the binomial formula.

(ξ1x1 + . . .+ ξmxm)n =
∑

i1+......+im=n

ξi1
1 · · · ξim

m pi1,...,im(x1, . . . , xm). (2.23)

A key observation which relates the order-symmetric polynomials with proper-

ties of nilpotence is the following.

Proposition 2.8. Let A be an algebra over an infinite field k, and let a1, . . . , am ∈

A. Then the subspace ka1 + . . .+ kam ⊆ A is nil of bounded index ≤ d if and only

if Pd(a1, . . . , am) = {0}.

Kaplansky [8] used this fact in studying nil algebras of bounded degree. We

follow his method (see [8, Lemma 1]) of using a Vandermonde matrix below.

Golod and Shafarevich [5, 6] also used this in constructing their counterexam-

ple. They used the forward implication of the proposition to ensure that their

algebra is indeed nil, (by including in the relations order-symmetric polynomials

of progressively larger sets (a1, . . . , am)). They also counted these polynomials (as

in (2.16)) to show that few enough of these polynomials are needed, and therefore

the Golod-Shafarevich Theorem applies.

The order-symmetric polynomials are also related to algebraicity in an algebra,

through the following observation, which is a generalization of Proposition 1.16.
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Proposition 2.9 ([3, Lemma 16(i)]). Let A be an algebra over an infinite field k,

and let a1, . . . , am ∈ A. Then ka1 + . . .+ kam is algebraic of bounded degree if and

only if dimk P≥0(a1, . . . , am) <∞.

These results will follow from Corollary 2.18 below. In preparation for proving

this lemma, we begin with the following standard result. Note that the settings

of Lemma 2.10 and the subsequent results are vector spaces in general, and not

necessarily algebras.

Lemma 2.10. Let V be a vector space over a field k, let v0, . . . , vd ∈ V . Assume

|k| ≥ d+ 1 and let ξ0, . . . , ξd ∈ k be d+ 1 distinct field elements. If

d∑
i=0

ξi
jvi = 0 (2.24)

for all j ∈ {0, . . . , d}, then vi = 0 for all i ∈ {0, . . . , n}.

Proof. We write the equations 2.24 in matrix form as follows:
1 ξ0 · · · ξd

0

1 ξ1 · · · ξd
1

1
...

. . .
...

1 ξd · · · ξd
d




v0

v1

...

vd


=


0

0

...

0


The multiplying matrix is a Vandermonde matrix, known to be invertible when

the ξi are distinct. Multiplying by the inverse matrix, we obtain vi = 0 for all

i ∈ {0, . . . , d}.

We note the following generalization of Lemma 2.10.

Lemma 2.11. Let V be a vector space over a field k, let v0, . . . , vd ∈ V and let

ξ0, . . . , ξd ∈ k be d+ 1 distinct field elements. Let W be a subspace of V . If

d∑
i=0

ξi
jvi ∈ W (2.25)

for all j ∈ {0, . . . , d}, then vi ∈ W for all i ∈ {0, . . . , d}.



24

Proof. This follows by applying Lemma 2.10 to v0 +W, . . . , vd +W ∈ V/W .

The next generalization is to replace the d + 1 distinct field elements ξj with

(d + 1) + (d + 1)2 + . . . + (d + 1)m field elements ξi1 , ξi1,i2 , . . . , ξi1,...,im , which are

not necessarily all distinct but satisfy the following condition.

Definition 2.12. Let ξi1 , ξi1,i2 , . . . , ξi1,...,im ∈ k for all i1, . . . , im ∈ {0, . . . , d}. We

say that ξi1 , ξi1,i2 , . . . , ξi1,...,im are stepwise-distinct if all ξi1 are distinct and (for

m ≥ 2)

ξi1,...,ir−1,i = ξi1,...,ir−1,j ⇒ i = j (2.26)

for all i, j ∈ {1, . . . ,m}, r ∈ {2, . . . ,m} and i1, . . . , ir−1 ∈ {0, . . . , d}.

We use this Definition 2.12 for the purpose of stating Lemma 2.14 in the most

generality. The following specific choice will actually often be sufficient.

Remark 2.13. If ξ0, . . . , ξd ∈ k are distinct and ξi1,...,ir = ξir for each

r ∈ {1, . . . ,m} and i1, . . . , ir ∈ {0, . . . , d} then ξi1 , ξi1,i2 , . . . , ξi1,...,im are stepwise-

distinct. In particular, it is always possible to choose stepwise-distinct

ξi1 , ξi1,i2 , . . . , ξi1,...,im ∈ k, with i1, . . . , im ∈ {0, . . . , d}, as long as k has at least d+1

elements.

Lemma 2.14. Let V be a vector space over a field k, with |k| ≥ d + 1. Let

vn1,...,nm ∈ V for all n1, . . . , nm ∈ {0, . . . , d}. Let ξi1 , ξi1,i2 , . . . , ξi1,...,im ∈ k for all

i1, . . . , im ∈ {0, . . . , d}, and assume ξi1 , ξi1,i2 , . . . , ξi1,...,im are stepwise-distinct. Let

W be a subspace of V . If

d∑
n1=0

· · ·
d∑

nm=0

ξn1
i1
ξn2
i1,i2

· · · ξnm
i1,...,im

vn1,...,nm ∈ W (2.27)

for all i1, . . . , im ∈ {0, . . . , d}, then vn1,...,nm ∈ W for all n1, . . . , nm ∈ {0, . . . , d}.

Proof. The proof is by induction on m. The case m = 1 is just Lemma 2.11. Now

suppose m ≥ 2 and the assertion holds for m− 1.
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Let i1, . . . , im−1 ∈ {0, . . . , d}. Then for all i ∈ {0, . . . , d},
d∑

nm=0

ξnm
i1,...,im−1,i(

d∑
n1=0

· · ·
d∑

nm−1=0

ξn1
i1
ξn2
i1,i2

· · · ξnm−1

i1,...,im−1
vn1,...,nm) ∈ W. (2.28)

By the stepwise-distinctness assumption, the ξi1,...,im−1,i are distinct for

i ∈ {0, . . . , d}. Thus by Lemma 2.11,

d∑
n1=0

· · ·
d∑

nm−1=0

ξn1
i1
ξn2
i1,i2

· · · ξnm−1

i1,...,im−1
vn1,...,nm ∈ W (2.29)

for all nm and for all i1, . . . , im−1 ∈ {0, . . . , d}. The result now follows by induction.

Note the following immediate corollary.

Corollary 2.15. Let V be a vector space over a field k with |k| ≥ d + 1. Let

vn1,...,nm ∈ V for all n1, . . . , nm ∈ {0, . . . , d}. Let W be a subspace of V . If

d∑
n1=0

· · ·
d∑

nm=0

ξn1
1 ξn2

2 · · · ξnm
m vn1,...,nm ∈ W (2.30)

for all ξ1, . . . , ξm ∈ k, then vn1,...,nm ∈ W for all n1, . . . , nm ∈ {0, . . . , d}.

Proof. In view of Remark 2.13, this statement is an immediate consequence of

Lemma 2.14.

The following corollary will be useful in applying the results of Lemma 2.14 to

the order-symmetric polynomials.

Corollary 2.16. Let V be a vector space over a field k, with |k| ≥ d + 1. Let

un1,...,nm ∈ V for all n1, . . . , nm ∈ {0, . . . , d} with n1 + . . .+ nm = d. Let

ξi1 , ξi1,i2 , . . . , ξi1,...,im ∈ k for all i1, . . . , im ∈ {0, . . . , d}, and assume

ξi1 , ξi1,i2 , . . . , ξi1,...,im are stepwise-distinct. Let W be a subspace of V . If

∑
n1+...+nm=d

ξn1
i1
ξn2
i1,i2

· · · ξnm
i1,...,im

un1,...,nm ∈ W (2.31)

for all i1, . . . , im ∈ {0, . . . , d}, then un1,...,nm ∈ W for all n1, . . . , nm ∈ {0, . . . , d}

with n1 + . . .+ nm = d.
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Proof. Set vn1,...,nm = un1,...,nm when n1 + . . .+ nm = d and vn1,...,nm = 0 otherwise,

and apply Lemma 2.14.

We can now apply this corollary in the setting of an algebra, and draw the

desired conclusion on the order-symmetric polynomials.

Corollary 2.17. Let A be a k-algebra with |k| ≥ d+1 and let a1, . . . , am ∈ A. Let

ξi1 , ξi1,i2 , . . . , ξi1,...,im ∈ k for all i1, . . . , im ∈ {0, . . . , d}, and assume

ξi1 , ξi1,i2 , . . . , ξi1,...,im are stepwise-distinct. Let W be a subspace of A. If

(ξi1a1 + ξi1,i2a2 + . . .+ ξi1,...,imam)d ∈ W (2.32)

for all ir ∈ {0, . . . , d} then Pd(a1, . . . , am) ⊆ W .

Proof. This follows from formula 2.23 and from applying Corollary 2.16 with

un1,...,nm = pn1,...,nm(a1, . . . , am).

Corollary 2.18. Let A be a k-algebra with |k| ≥ d+1 and let a1, . . . , am ∈ A. Let

W ⊆ A be a subspace of A. If

(ξ1a1 + . . .+ ξmam)d ∈ W (2.33)

for all ξ1, . . . , ξm ∈ k then Pd(a1, . . . , am) ⊆ W .

Proof. Choose stepwise-distinct ξi1 , . . . , ξi1,...,im ∈ k for all i1, . . . im ∈ {0, . . . , d} as

in Remark 2.13, and apply Corollary 2.17.

We are now in position to readily prove Proposition 2.8 which was stated above.

Proof. Note that ka1 + . . .+ kam is nil of bounded index if and only if there exists

d ≥ 1 such that (ξ1a1 + . . .+ ξmam)d = 0 for all ξ1, . . . , ξm ∈ k. Thus the “if” part

of the proposition follows from formula 2.23, and the reverse assertion is a direct

consequence of Corollary 2.18, with W = {0}.
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Proposition 2.9 will also follow from Corollary 2.18. However we will also need

the following stronger statement.

Lemma 2.19. Let A be a k-algebra with |k| ≥ d+ 1 and let a1, . . . , am ∈ A. Let

ξi1 , ξi1,i2 , . . . , ξi1,...,im ∈ k for all i1, . . . , im ∈ {0, . . . , d}, and assume

ξi1 , ξi1,i2 , . . . , ξi1,...,im are stepwise-distinct. If ξi1a1 + ξi1,i2a2 + . . . + ξi1,...,imam is

algebraic of degree at most d for all i1, . . . , im ∈ {0, . . . , d} then

Pd(a1, . . . , am) ⊆ P≤d−1(a1, . . . , am).

Proof. Suppose that ξi1a1 +ξi1,i2a2 + . . .+ξi1,i2,...,imam is algebraic of degree d′ ≤ d.

Then

(ξi1a1 + ξi1,i2a2 + . . .+ ξi1,...,imam)d′ ∈

spank{(ξi1a1 + ξi1,i2a2 + . . .+ ξi1,...,imam)c | 0 ≤ c ≤ d′ − 1}. (2.34)

Multiplying both sides by (ξi1a1 + ξi1,i2a2 + . . .+ ξi1,...,imam)d−d′ we obtain that

(ξi1a1 + ξi1,i2a2 + . . .+ ξi1,...,imam)d ∈

spank{(ξi1a1 + ξi1,i2a2 + . . .+ ξi1,...,imam)c | 0 ≤ c ≤ d− 1}

⊆ P≤d−1, (2.35)

where in the last containment we have used (2.23). The assertion now follows from

Corollary 2.17, with W = P≤d−1.

We can generalize Lemma 2.19 as follows.

Lemma 2.20. Let D ≥ d. Let A be a k-algebra with |k| ≥ D + 1 and let

a1, . . . , am ∈ A. Let ξi1 , ξi1,i2 , . . . , ξi1,...,im ∈ k for all i1, . . . , im ∈ {0, . . . , D},

and assume ξi1 , ξi1,i2 , . . . , ξi1,...,im are stepwise-distinct. If ξi1a1 + ξi1,i2a2 + . . . +

ξi1,...,imam is algebraic of degree at most d for all i1, . . . , im ∈ {0, . . . , D} then

PD(a1, . . . , am) ⊆ P≤d−1(a1, . . . , am).
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Proof. This follows from repeated application of Lemma 2.19 as follows. We first

apply Lemma 2.19 verbatim, since the hypothesis here is stronger. This gives us

Pd(a1, . . . , am) ⊆ P≤d−1(a1, . . . , am) (2.36)

Next, we apply the lemma with d + 1 replacing d. We can do this since the

hypothesis remains true assuming that D ≥ d+ 1. This gives us

Pd+1(a1, . . . , am) ⊆ P≤d(a1, . . . , am) (2.37)

Combining (2.36) and (2.37) gives

Pd+1(a1, . . . , am) ⊆ P≤d−1(a1, . . . , am) (2.38)

The result follows from continuing this process, i.e. by applying Lemma 2.19 while

replacing d by d+ 2, by d+ 3 and so on up to D.

This gives us the following corollary.

Corollary 2.21. Let A be an algebra over an infinite field k, and let a1, . . . , am ∈

A. If ka1 + . . .+ kam is algebraic of degree at most d then

P≥0(a1, . . . , am) ⊆ P≤d−1(a1, . . . , am) and in particular, dimk P≥0 <∞.

Proof. By Remark 2.13 we can apply Lemma 2.20 for each for each D ≥ d, and

the result follows.

Corollary 2.21 gives us one direction required for Proposition 2.9. The other

direction will follow from the next lemma. We first introduce the notation

Md,m =

(
d+m− 1

m

)
, (2.39)

and recall from (2.17) that

dimk P≤d−1(a1, . . . , am) ≤Md,m. (2.40)
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Lemma 2.22. If P≤Md,m
(a1, . . . , am) ⊆ P≤d−1(a1, . . . , am) for some d ≥ 1 then the

subspace ka1 + . . .+ kam is algebraic of degree at most Md,m.

Proof. Let a = ξ1a1 + . . .+ ξmam ∈ ka1 + . . .+ kam. Then by assumption, for any

0 ≤ n ≤Md,m we have (using (2.23))

an ∈ P≤Md,m
⊆ P≤d−1(a1, . . . , am). (2.41)

Thus

dimk spank{an | 0 ≤ n ≤Md,m} ≤ dimk P≤d−1(a1, . . . , am) ≤Md,m. (2.42)

Therefore the set {an | 0 ≤ n ≤ Md,m} is linearly dependent over k, and hence a

is algebraic of degree at most Md,m.

The following corollaries are immediate.

Corollary 2.23. If P≥0(a1, . . . , am) ⊆ P≤d−1(a1, . . . , am) for some d ≥ 1 then

ka1 + . . .+ kam is algebraic of degree at most Md,m.

Corollary 2.24. If dimk P≥0(a1, . . . , am) <∞ then ka1 + . . .+kam is algebraic of

bounded degree.

We are now able to prove Proposition 2.9, which was stated above. Indeed,

this follows immediately from Corollary 2.21 and Corollary 2.24.

Returning to Corollary 2.23, it may be asked whether the degree bound of Md,m

can be improved, and in particular, whether the converse of Corollary 2.21 holds.

The answer to the latter question is negative, as seen from the following example.

Example 2.25 ([4]). Let k be any field, and let A be a field extension of degree

3 (e.g., k = Q, and A = Q( 3
√

2)). Let a ∈ A be an element of degree 3 (e.g.,

a = 3
√

2)), and let b = a2. Then P≥0(a, b) ⊆ A = spank{1, a, b} = P≤1(a, b) (in

fact equality holds here). However, it is not true that every element of ka + kb is

algebraic of degree 2, i.e., the converse of Corollary 2.21 (with m = d = 2) fails.
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2.3 Alternative proof of Amitsur’s results

We are now ready to use the properties of the order-symmetric polynomials

from Section 2.2 to give another proof of Amitsur’s results which were discussed

in Section 1.6.

Let A be a k-algebra, and let a1, . . . , am ∈ A. We first derive a relation which

is a generalization of of [1, Corollary 6].

Lemma 2.26. Let A be a k-algebra with |k| ≥Md,m + 1 and let

a1, . . . , am ∈ A. Let ξi1 , ξi1,i2 , . . . , ξi1,...,im ∈ k for all i1, . . . , im ∈ {0, . . . ,Md,m},

and assume ξi1 , ξi1,i2 , . . . , ξi1,...,im are stepwise-distinct.

If ξi1a1 + ξi1,i2a2 + . . . + ξi1,...,imam is algebraic of degree at most d for any

i1, . . . , im ∈ {0, . . . ,Md,m} then the subspace ka1 + . . .+ kam is algebraic of degree

at most Md,m.

Proof. By Lemma 2.20 (with D = Md,m), we have

P≤Md,m
(a1, . . . , am) ⊆ P≤d−1(a1, . . . , am). (2.43)

Therefore the conclusion follows from Lemma 2.22.

We now prove Amitsur’s Theorem 1.23 that if k is uncountable, then every

algebraic finite dimensional subspace of a k-algebra has bounded degree of alge-

braicity.

Proof. Let ka1 + . . .+kam be a finite dimensional subspace of A. We use induction

on the dimension m. The statement clearly holds when m = 1. Suppose then that

m ≥ 2.

For each integer d ≥ 0 let

Wd =
{
ω ∈ k

∣∣ a1 + ka2 + . . .+ kam−1 + ωam is algebraic of degree ≤ d
}
. (2.44)
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If |Wd| ≤ Md,m for all d ≥ 0, then
⋃
d≥0

Wd is countable, and so
⋃
d≥0

Wd 6= k.

Therefore there exists ω0 ∈ k such that a1 + ka2 . . . + kam−1 + ω0am is algebraic

of unbounded degree. But then k(ω0am + a1) + ka2 . . . + kam−1 is algebraic of

unbounded degree, which is impossible by induction.

Thus |Wd| > Md,m for some d ≥ 0. Let ω0, . . . , ωMd,m
be distinct elements of

Wd. Then by definition of Wd, for each i ∈ {0, . . . ,Md,m} the set

S = a1 + ka2 + . . .+ kam−1am−1 + ωiam (2.45)

is algebraic of degree at most d. We claim that this implies that the entire subspace

ka1+. . .+kam is algebraic of degree at most d. Indeed, if we multiply each element

of S by any µ ∈ k, we obtain that the set

µa1+ka2+. . .+kam−1am−1+µωiam is algebraic of bounded degree at most d. Now

choose any distinct nonzero µ0, . . . , µMd,m
∈ k. Define ξi1 , ξi1,i2 , . . . , ξi1,...,im ∈ k for

all i1, . . . , im ∈ {0, . . . ,Md,m} by ξi1 = µi1 and ξi1,...,ir = µi1ωir for r ≥ 2. Then

ξi1 , . . . , ξi1,...,im satisfy the hypothesis of Lemma 2.26, and thus ka1 + . . . + kam is

algebraic of degree at most Md,m. This completes the proof of Theorem 1.23.

We can also use the results above to prove Lemma 1.25. Let k ⊆ H be infinite

fields and suppose that A is a k-algebra which is LBI. Let S be a finite dimensional

H-subspace of AH . We may assume without loss of generality that

S = H(a1 ⊗ 1) + . . . + H(am ⊗ 1), since every finite-dimensional subspace of AH

is contained in such a subspace. By Proposition 2.8, there exists d such that

Pd;k(a1, . . . , am) = {0}.

It follows that

Pd;H(a1 ⊗ 1, . . . , am ⊗ 1) = {0}. (2.46)

By Proposition 2.8 this implies that S is nil of bounded index. Thus AH is LBI

over H.
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Similarly, suppose A is a k-algebra which is LBD over k. By Proposition 2.9,

dimk P≥0;k(a1, . . . , am) <∞. (2.47)

It follows that

dimH P≥0;H(a1 ⊗ 1, . . . , am ⊗ 1) <∞, (2.48)

and so by Proposition 2.9, AH is LBD over H.



Chapter 3

Application to Filtered and

Graded Algebras

In this chapter we apply the results discussed in the previous chapters to filtered

and graded algebras. We begin by describing the behavior of these algebras in

relation to the nilpotence and algebraicity properties defined in Chapter 1. We

then give an application to filtered algebraic algebras over uncountable fields.

3.1 Nilpotence and Algebraicity in Graded Al-

gebras

We study the properties of nilpotence and algberaicity, introduced in Chapter

1, in filtered and graded algebras (also introduced in Chapter 1).

Let A be a graded k-algebra. Recall the notation A≥1 = A1⊕A2⊕ . . ., the ideal

of elements of A with no scalar component. We first note the following property

of these elements.

Proposition 3.1. In a graded algebra A, an element of A≥1 is algebraic if and

33
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only if it is nilpotent.

Proof. Let a = ap + ap+1 + . . . + aq ∈ A≥1, with 1 ≤ p ≤ q and ai ∈ Ai for all i,

and suppose a is algebraic of degree d. Then aD ∈ spank{ad′ | 0 ≤ d′ ≤ d− 1} for

all D ≥ 0. Let D = d q(d−1)+1
p

e, and consider the equation

(ap+. . .+aq)
D = γd−1(ap+. . .+aq)

d−1+. . .+γ2(ap+. . .+aq)
2+γ1(ap+. . .+aq)+γ0.

(3.1)

Since Dp > q(d− 1), we have (using the notation from (1.15) and (1.16))

aD = (ap + . . .+ aq)
D ∈ A≥Dp

⋂
A≤q(d−1) = {0}. (3.2)

Thus a is nilpotent (note that in fact by Remark 1.15 we have ad = 0).

For graded algebras we can define the following property, which is weaker than

being nil.

Definition 3.2. let A be a graded k-algebra. We say that A is graded-nil if An is

nil for all n ≥ 1.

Clearly, if A≥1 is nil then A is graded-nil. It may be asked whether the converse

is true:

Question 3.3. Let A be a k-algebra. If A is graded-nil, is A≥1 nil?

In 2006 Bartholdi [2] constructed an algebra over a countable field which is

graded-nil but not nil. Since algebras over uncountable fields are known to satisfy

the Köthe conjecture, one may intuitively expect that for algebras over uncount-

able fields, every graded-nil algebra is nil (since we know that in such algebras,

“many” sums of nilpotent elements are nilpotent). However, Smoktunowicz [16]

has recently constructed a graded-nil-but-not-nil algebra over any field.

We can nevertheless give an affirmative answer to Question 3.3 in the special

case we describe next. Here we make use of the associated graded algebra, which
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was defined in Section 1.2. We first note the following property of filtered algebraic

algebras.

Proposition 3.4. Let A be a filtered algebra, with a filtration (Fn)n≥0. Let

B = gr(A) be its associated graded algebra. If A is algebraic then B is graded-nil.

Proof. Let bp = ap + Ap−1, with p ≥ 1 and ap ∈ Ap, be an arbitrary homogeneous

element of B≥1. By assumption, ap is algebraic, say of degree d. Therefore

ad
p = βd−1a

d−1
p + . . .+ β1ap + β0 ∈ Fp(d−1) ⊆ Fpd−1. (3.3)

The definition of multiplication in B now gives

(ap + Fp−1)
d = ad

p + Fpd−1 = 0B. (3.4)

Thus the associated graded algebra gr(A) of an algebraic k-algebra A is graded-

nil. We next prove that if the underlying field k is uncountable, then gr(A) is actu-

ally nil, showing there are no graded-nil-but-not-nil algebras of this type. However,

we first give the following weaker result, since there is some interest in the proof.

Proposition 3.5. Let A be a filtered k-algebra, with a filtration (Fn)n≥0. Let

B = gr(A) be its associated graded algebra. If A is LBI then so is B. In particular,

the associated graded algebra of a nil filtered algebra over an uncountable field is

nil.

We give two proofs of this proposition. The first uses the Rees algebra (see

Section 1.7), while the second uses the order-symmetric polynomials.

Proof. (1) By Proposition 1.28, the polynomial algebra A[z] is LBI. Therefore the

Rees algebra R ⊂ A[z] is LBI as well. By Proposition 1.8, B ∼=
R

zR
. Thus B is

also LBI. The last statement now follows from Theorem 1.22.
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In preparation for the second proof, we first note the following properties of

the order-symmetric polynomials in graded and filtered algebras. If the k-algebra

A is filtered by (Fn)n≥0 and ap, . . . , aq ∈ A satisfy ai ∈ Fi for all p ≤ i ≤ q, then

pi1,...,im(ap, . . . , aq) ∈ Fi1p+...+imq. (3.5)

Similarly, suppose B is a graded k-algebra. If bp, . . . , bq are m homogeneous

elements with bi ∈ Bi then pi1,...,im(bp, . . . , bq) ∈ Bi1p+...+imq.

Now let A be a k-algebra filtered by (Fn)n≥0 and let B = gr(A) be its associated

graded algebra. Let ap, . . . , aq ∈ A satisfy ai ∈ Fi for each p ≤ i ≤ q, and let

bi = ai + Fi−1 ∈ B. We first note that by (1.20), if p ≤ pj ≤ q for all 1 ≤ j ≤ n

then

bp1 · · · bpn = ap1 · · · apn + Fp1+...+pn−1. (3.6)

Therefore if this product contains exactly ij occurrences of bj for each

p ≤ j ≤ q, then

bp1 · · · bpn = ap1 · · · apn + Fipp+...+iqq−1. (3.7)

Since each pip,...,iq(bp, . . . , bq) is a sum of such products, we have

pip,...,iq(bp, . . . , bq) = pip,...,iq(ap, . . . , aq) + Fpip+...+qiq−1. (3.8)

We now give a second proof of Proposition 3.5.

Proof. (2) Let S be a finite dimensional subspace of B. Without loss of generality

we may assume S = Bp ⊕ . . .⊕ Bq, with 0 ≤ p ≤ q, since every finite dimensional

subspace of B is contained in a subspace of this form. Let b = bp + . . . + bq

be any element of S, where bi ∈
Fi

Fi−1

(we take F−1 = {0}). That is, for each

i ∈ {p, . . . , q}, we have bi = ai + Fi−1, with ai ∈ Fi. By assumption, the subspace

Fp + . . . + Fq ⊆ A is nil of bounded index, say d. Therefore by Proposition 2.8,

we have Pd(ap, . . . , aq) = {0}, i.e. pip,...,iq(ap, . . . , aq) = 0 for ip + . . . + iq = d.
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By (3.8) this gives us that pip,...,iq(bp, . . . , bq) = 0 + Fpip+...+qiq−1 = 0B whenever

ip + . . . + iq = d, i.e. Pd(bp, . . . , bq) = {0B}. Therefore by Proposition 2.8, we

have (bp + . . .+ bq)
d = 0. This shows that S is nil of bounded index d. Thus B is

LBI.

We now prove the following more general theorem.

Theorem 3.6. Let A be a filtered k-algebra, with a filtration (Fn)n≥0. Let

B = gr(A) be its associated graded algebra. If A is LBD, then B≥1 is LBI. In

particular, if k is uncountable and A is a filtered algebraic k-algebra then gr(A)≥1

is nil (and LBI).

Proof. Let S be a finite dimensional subspace of B. We may assume

S = Bp ⊕ . . .⊕Bq, with 1 ≤ p ≤ q, since every finite dimensional subspace of B≥1

is contained in a subspace of this form. Let b = bp + . . .+ bq be any element of S,

where bi ∈
Fi

Fi−1

(we take F−1 = {0}). That is, for each i ∈ {p, . . . , q}, we have

bi = ai +Fi−1, with ai ∈ Fi. By assumption, the subspace Fp + . . .+Fq is algebraic

of bounded degree, say d. Therefore by Corollary 2.21, we have

P≥0(ap, . . . , aq) ⊆ P≤d−1(ap, . . . , aq). (3.9)

By (3.5) this implies

P≥0(ap, . . . , aq) ⊆ F(d−1)q. (3.10)

Now let

N =
⌈(d− 1)q

p
+ 1

⌉
(3.11)

and suppose ip + . . .+ iq ≥ N . Then

pip + . . .+ qiq − 1 ≥ pN − 1 ≥ (d− 1)q. (3.12)

Therefore

pip,...,iq(ap, . . . , aq) ∈ F(d−1)q ⊆ Fpip+...+qiq−1, (3.13)
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and so

pip,...,iq(bp, . . . , bq) = pip,...,iq(ap, . . . , aq) + Fpip+...+qiq−1 = 0B. (3.14)

Thus PN(b1, . . . , bn) = {0B}, and it follows from 2.8 that (bp + . . . + bq)
N = 0.

This shows that S is nil of bounded index N . Thus B is LBI.

Remark 3.7. We can use the bound N of (3.11) to draw the following conclusion

from the proof of Theorem 3.6. If we are given that each Fi is algebraic of bounded

degree at most di, then each
F1

F0

⊕ · · · ⊕ Fr

Fr−1

is nil of bounded index at most

(dr − 1)r + 1 ≤ rdr.

3.2 Some concluding remarks

In the discussion above we used the properties of the subspaces Pn, to draw

conclusions about nilpotence and algebraicity in algebras.

We generalize Definition 2.6 as follows. We use the notation

Mj(x1, . . . , xm) = {y1 · · · yj | yi ∈ {x1, . . . , xm}} (3.15)

and

M≤j(x1, . . . , xm) =
⋃

1≤i≤j

Mi(x1, . . . , xm) (3.16)

Definition 3.8. For any n, j ≥ 0, any field k and any x1, . . . , xm we denote

P
(j)
n;k(x1, . . . , xm) = Pn;k(Mj(x1, . . . , xm)) (3.17)

and

P
(≤j)
n;k (x1, . . . , xm) = Pn;k(M≤j(x1, . . . , xm)) (3.18)

Note that P
(j)
n;k(x1, . . . , xm) is well-defined since Pn;k does not depend on the

order in which the its arguments (here, the elements of Mj(x1. . . . , xn)) are listed.
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For example,

P
(2)
2 (x, y) = P2(x

2, xy, yx, y2) (3.19)

and

P
(≤2)
≥0 (x, y) = P≥0(x, y, x

2, xy, yx, y2). (3.20)

With these notations, the following characterizations follow from Propositions

2.8 and 2.9.

Proposition 3.9. Let k be an infinite field and let A be a k-algebra generated by

a1, . . . , am.

1. Suppose A is graded, and ai are homogeneous elements, all having the same

degree. Then

A is graded-nil, each homgeneous component having bounded index

⇔ for each r ≥ 1 there exists nr ≥ 1 such that P (r)
nr

(a1, . . . , am) = {0}.

2. A is LBI

⇔ for each r ≥ 1 there exists nr ≥ 1 such that P
(≤r)
nr (a1, . . . , am) = {0}.

3. A is LBD ⇔ dimk P
(≤r)
≥0 (a1, . . . , am) <∞ for all r ≥ 0.

It is conceivable that these characterizations may be used to answer questions

regarding nilpotence and algebraicity in algebras. For example, the similarity

between parts 1 and 2 of Proposition 3.9 may be helpful in constructing graded-

nil-but-not-nil algebras or in finding conditions that such algebras must satisfy.
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