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Abstract

Survival from in-hospital cardiac arrest (IHCA) due to pulseless electrical activity (PEA)/asystole 

remains poor. We aimed to evaluate whether electrocardiographic changes provide predictive 

information for risk of IHCA from PEA/asystole. We conducted a retrospective case-control study, 

utilizing continuous electrocardiographic data from case and control patients. We selected three 

consecutive 3-hour blocks (block 3, 2, 1 in that order); block 1 immediately preceded cardiac 

arrest in cases, whereas block 1 was chosen at random in controls. In each block, we measured 

dominant positive and negative trends in electrocardiographic parameters, evaluated for 

arrhythmias, and compared these between consecutive blocks. We created random forest and 

logistic regression models, and tested them on differentiating case vs. control patients (case block 

1 vs. control block 1), and temporal relationship to cardiac arrest (case block 2 vs. case block 1). 

Ninety-one cases (age 63.0±17.6, 58% male) and 1783 control patients (age 63.5±14.8, 67% male) 

were evaluated. We found significant differences in electrocardiographic trends between case and 

control block 1, particularly in QRS duration, QTc, RR, and ST. New episodes of atrial fibrillation 

and bradyarrhythmias were more common before IHCA. The optimal model was the random 

forest, achieving an AUC of 0.829, 63.2% sensitivity, 94.6% specificity at differentiating case vs. 

control block 1 on a validation set, and AUC 0.954, 91.2% sensitivity, 83.5% specificity at 

differentiating case block 1 vs. case block 2. In conclusion, trends in electrocardiographic 

parameters during the 3-hour window immediately preceding in-hospital cardiac arrest differ 

significantly from other time periods, and provide robust predictive information.
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Background

In-hospital cardiac arrests (IHCA) remain a major health care problem, affecting over 

250,000 patients in the United States annually, with fewer than 30% surviving to discharge. 

Over the past decade, there has been considerable interest in early intervention, but 

significant limitations remain in identifying at-risk patients where early intervention may be 

beneficial1–4. Electrocardiographic (ECG)/telemetry data is continuously acquired for many 

hospitalized patients and reflects various physiologic changes due to stressors. Many intra-

patient ECG changes including PR and QRS prolongation, ST changes, and 

bradyarrhythmias are seen in the 24 hours and particularly the one hour period before 

IHCA5–7. However, it remains unknown whether these findings are predictive of IHCA. In 

this study, we evaluate whether the measurement of trends in ECG parameters, particularly 

in comparison to a patient’s baseline physiologic variations and detection of new 

arrhythmias, provides predictive information for IHCA from pulseless electrical activity 

(PEA) or asystole.

Methods

We conducted a retrospective case-control study at the University of California, Los Angeles 

Ronald Reagan Medical Center, a 520-bed tertiary care hospital. Telemetry data was 

obtained by General Electric (GE) monitoring systems (GE Healthcare, Waukesha, WI), and 

pooled on a remote data server via Bedmaster (Excel Medical Electronics, Jupiter, FL). 

Signals were sampled at 240 Hz with 12-bit representation. Continuous electrocardiographic 

data was obtained using a standard 5 electrode configuration providing 6 ECG limb leads 

and a precordial lead usually in the VI/V2 position. A total of 200 beds, including all 130 

adult intensive care unit (ICU) beds, and 70 medical-surgical unit beds were monitored with 

the Bedmaster system. This study received approval from the institutional review board.

We evaluated all ‘code blues’ (hospital calls for emergency resuscitation team) between 

April 2010 and August 2014, and included IHCA cases due to PEA or asystole in patients 

age ≥18 years with at least 6 consecutive hours of telemetry data prior to and including the 

onset of IHCA. We excluded cases where cardiac arrest (defined as lack of central pulse, 

apnea, and unresponsiveness) did not occur, patients with a do-not-resuscitate order, 

primarily ventricular-paced rhythm, out-of-hospital cardiac arrest leading to current 

admission, IHCA in a procedural unit or operating room, and IHCA within the first 24 hours 

of a trauma admission. Only the first IHCA in any patient was included. The time of IHCA 

was determined by review of ECG data and marked at onset of asystole or initiation of chest 

compressions in cases of PEA.

Control patients were selected at random from the same units where ‘code blue’ patients 

(not specifically patients who met all inclusion/exclusion criteria) were located and 

temporally spread across the study period. Criteria for selecting control patients included 
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survival to discharge, no unplanned ICU transfers or ‘code blues’ during the admission. Case 

patients who had another admission which met those criteria were excluded as controls. For 

each control patient, we extracted the first 24 hours of telemetry data available, since this 

was likely to be the period of greatest instability.

Telemetry data was processed using a research ECG analysis program written by coauthor 

DM to obtain: 1) a minute-by-minute time series of ECG parameters (PR interval, QRS 

duration, QRS amplitude averaged over the 4 leads, ST segment height in lead II and V2, 

QTc measured using the tangent method, and RR) derived from a 5-minute signal-averaged 

beat obtained in a rolling window fashion, and 2) a time series of all consecutive RR 

intervals (Supplemental Figure 1).

The averaged beat-derived time series was processed with filters to reduce noise and remove 

non-physiologic data. The RR time series, following removal of data points affected by 

excessive signal artifact, was processed to identify periods of atrial fibrillation, second 

degree heart block (2° HB), and pauses greater than 3 seconds, using modifications of 

methods described by Lian et al8 and Tsipouras et al9 (see Supplemental Methods for 

details).

Three consecutive 3-hour blocks (blocks 3, 2, 1 in that order) were selected for further 

analysis: in case patients, block 1 immediately preceded IHCA whereas in control patients 

block 1 was selected at random. Blocks 3 and 2 were then selected as the two 3-hour blocks 

that immediately preceded block 1 in either case or control patients (Figure 1 A).

For the averaged beat data, in each block of data, we determined the dominant positive and 

negative trend for each ECG parameter (Figure 1B, see Supplemental Methods for details). 

All time series processing was performed using Matlab 2017b (Mathworks, Natick, MA).

The following features, all continuous variables, were calculated from the averaged beat data 

for each ECG parameter in each block:

1. Change in dominant positive and negative trends in block n (Δyn
+, Δyn

−), 

calculated by subtracting the maximal and minimal value for the trend.

2. Slope of the dominant positive and negative trends (Δyn
+/Δxn

+, Δyn
−/Δxn

−), 

calculated by dividing the change over the duration.

3. Difference in dominant positive and negative trend change and slope between a 

patient’s block n and immediately preceding block (n-1). Four values were 

calculated: difference in dominant: 1) positive change (Δyn-(n-1)
+); 2) negative 

change (Δyn-(n-1)
−); 3) positive slope (Δyn

+/Δxn
+ – Δy(n-1)

+/Δx(n-1)
+); and 4) 

negative slope (Δyn
−/Δxn – Δy(n-1)

−/Δx(n-1)
−).

Continuous variables were assessed for normality using the Shapiro-Wilks test. Wilcoxon 

signed-rank test was used for within-group comparisons and Wilcoxon rank-sum test for 

between-group comparisons given non-normality of many variables. For the presence of 

atrial fibrillation, 2° HB, and pauses, we calculated an indicator variable for the presence of 

those arrhythmias in block n, and a second for the presence of those arrhythmias in block n 

but not block (n-1).
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Next, we divided the case and control block 1 into an 80% model development and 20% 

validation set, by stratified random sampling based on case/control status. Using the 

development set, we performed univariate logistic regression analyses, and retained any 

variable with p<0.05 for use in multivariable model development. Missing values were 

imputed using multiple imputations. We created 3 models: logistic regression with backward 

stepwise regression, forward stepwise regression, and random forest with 10,000 trees.

We evaluated each model on the validation set by using the area under the curve (AUC) and 

sensitivity for classifying a block as IHCA while maintaining a low false positive rate (FPR). 

We performed further testing of model robustness by setting a classification threshold where 

FPR on the validation set was approximately 5% and evaluated the sensitivity and specificity 

on case block 1 vs. case block 2 (temporal differentiation of IHCA detection), validation 

case block 1 vs. all control block 2, all case block 2 vs. validation control block 1, all case 

block 2 vs. all control block 2.

A two-sided p<0.05 was considered statistically significant. For univariate analyses, 

adjustment for multiple hypothesis testing was evaluated by calculating q-values to estimate 

the false discovery rate with q<0.05 considered significant10. Statistical analysis was 

performed using R v3.4.4 (R Foundation, Vienna, Austria) with packages pROC, 
RandomForest, qvalue 11–13.

Results

During the study period, 536 “code blues” occurred for IHCA on a ward or ICU bed in 449 

unique patients; of these, 91 cases (mean age 63.0±17.6, 58% male) were PEA/Asystole 

arrests meeting all inclusion/exclusion criteria. The predominant reasons for exclusion were 

the lack of sufficient continuous ECG data available for analysis (225/358, 63%), ventricular 

tachycardia/fibrillation arrest (45/358, 13%) and loss of ECG data at the onset of cardiac 

arrest (27/358, 8%). Asystole was the arrest rhythm in 16 (18%) patients. The primary 

clinical causes of IHCA were respiratory in 44 (48%), multiorgan failure in 14 (15%), and 

metabolic acidosis in 13 (14%). Eighty-one (89%) IHCA cases occurred in the ICU, 65 

(71%) had return of spontaneous circulation, and 26 (29%) survived to discharge (Table 1). 

We identified 6100 controls of which 1783 patients (mean age 63.5±14.8, 67% male) had 

continuous ECG data available for analysis.

After adjusting for multiple hypothesis testing, we found 41/62 variables that differed 

significantly between case block 1 and control block 1, particularly those related to QRSd, 

QTc, RR, ST lead II and V2; 18/62 variables differed significantly between case blocks 2 

and 1 (Table 2). For these ECG parameters, increased change in both positive and negative 

directions were associated with IHCA.

Atrial fibrillation, 2° HB, or pauses were more commonly observed in case block 1 than 

control block 1 (Table 2). Case patients with new onset atrial fibrillation, 2° HB, and pauses 

in block 1 but not block 2 had median onset 36 (IQR 10-102), 8(IQR2-21), 18(IQR6-85) 

minutes, respectively, prior to IHCA.

Do et al. Page 4

Am J Cardiol. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Both logistic regression models achieved similar AUC on the development set (0.769 vs 

0.774) and validation set (0.842 vs 0.849) (Table 3, Figure 2). In both models, the presence 

of atrial fibrillation and 2° HB in block n but not block n-1, QRSd Δyn
+, QRSd Δyn

+/Δxn
+, 

QTc Δyn
−, RR Δyn-(n-1)

+, and ST Lead V2 Δyn-(n-1)
− were significantly associated with the 

risk of IHCA (Supplemental Table 4).

The random forest model achieved an AUC of 0.738 on the development set and 0.829 on 

the validation set. The 5 most important variables in this model were: RR Δyn-(n-1)
+, QTc 

Δyn
−, QRSd Δyn

+, QRSd Δyn-(n-1)
+, and ST Lead II Δyn

+ (Figure 3).

Evaluating the models based on sensitivity achieved with a low FPR, the random forest 

model performed best, achieving a sensitivity of 36.8%, 57.9%, and 63.2% with FPR of 

2.5%, 5%, and 10% respectively (Table 3). Using a threshold determined by maintaining an 

approximately 5% FPR, the random forest model was the best at distinguishing block 1 from 

block 2 in cases (AUC 0.954, sensitivity 91.2%, specificity 83.5%). All models, as expected, 

performed poorly at differentiating case block 2 from either control block 1 or block 2 

(Table 3).

Discussion

Rapid response teams and current-day practice of critical care medicine are predicated on 

the principle that early intervention can improve patient outcomes4. The early and accurate 

identification of clinically deteriorating patients at risk of IHCA is paramount for rapid 

response systems to be successful, but remains one of the major limitations of this 

approach4,14. The reliance of early warning systems on the available electronic health record 

data, including intermittently collected vital signs and laboratory results, limits the capability 

to detect rapid deterioration15,16. Continuous ECG data can overcome these limitations by 

providing constant information on the patient’s physiological state, particularly in those 

without invasive monitors.

In this study, we show that: 1) it is feasible to trend changes in clinically relevant ECG 

parameters and arrhythmias using continuous ECG, 2) trends in ECG parameters and 

arrhythmias differ significantly in the 3-hour window pre-IHCA, and 3) this can be 

leveraged in predictive models for IHCA due to PEA/asystole. This is the first study to 

evaluate the use of continuous ECG to predict IHCA from PEA/asystole, which make up 

around 80% of IHCA17.

The current use of continuous ECG monitoring is limited by its reliance on threshold-based 

changes to trigger alarms without consideration for patients’ baseline physiology and 

variations over time, leading to innumerable nonactionable alarms18. Using trends in ECG 

parameters on continuous recordings individualizes clinical risk prediction, reflecting a 

clinician’s assessment7,19. For example, 0.1mV ST depression in a patient with baseline left 

ventricular hypertrophy and repolarization abnormalities confers a significantly lower risk 

compared to a patient with normal baseline ST segment who develops new 0.1mV ST 

depression. While some physiologic fluctuations in ECG parameters are expected even in 

Do et al. Page 5

Am J Cardiol. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



resting normal healthy subjects20,21, the degree of fluctuations prior to IHCA exceed those 

normally observed.

Evaluating trends in both positive and negative directions allow for detection of different 

types of physiologic disturbances associated with different causes of cardiac arrest 

(Supplemental Figure 3). For example, QRS prolongation by intraventricular conduction 

delay reflects progressive ischemia22, while decreases in measured QRS duration is likely a 

result of decreasing QRS amplitude23, reported in septic shock states24. Comparing trends 

and arrhythmias across time further individualizes risk prediction. Some ECG parameters, 

such as RR and ST, can fluctuate significantly even in healthy states. Hence, physiologic 

versus pathologic changes (eg. slowing heart rate preceding many PEAs25‘26), can be better 

differentiated by comparing to earlier time periods when the patient was stable 

(Supplemental Figure 4).

In this study, we show that ECG changes in a 3-hour window can provide predictive 

information for imminent IHCA, independent of other patient data. Since relatively few 

patients suffer IHCA, models with low false positive rate for similar sensitivity are preferred. 

Using this criterion, the random forest model performed best, attaining 63.2% sensitivity 

with 94.6% specificity at the selected threshold. The random forest model also showed 

excellent temporal discriminatory ability with a 91.2% sensitivity and 83.5% specificity at 

distinguishing case block 1 vs. block 2. While logistic regression has been the standard risk 

prediction model, it assumes that risk factors (ie. ECG metrics in our study) are additive27. 

Conversely, non-linear classifiers such as the random forest model perform better with 

classification problems where different factors may be highly correlated12, at the cost of 

becoming a “black box”.

Our study provides proof of concept for utilizing trends in ECG metrics to predict IHCA. 

This study does not, however, provide an estimate of the lead time by which IHCA can be 

detected with ECG metrics; this will be the focus of our future work. In this approach, ECG 

metrics can be used predictively in conjunction with other data streams in a Bayesian 

manner28,29. Whereas intermittently collected data such as vital signs and laboratory data 

can predict the “at-risk” patient, real-time ECG changes can help pinpoint the patient at 

“impending risk” of IHCA or who is rapidly deteriorating clinically. Feedback to clinicians 

can be provided with an IHCA “impending risk” score, updated in real-time (Figure 4), 

allowing for earlier detection of patient deterioration, earlier clinical intervention, and 

potentially improved patient outcomes.

Several limitations to this study should be acknowledged. First, the number of IHCA cases 

used in model derivation was small and predominantly from ICU patients, potentially 

limiting generalizability. Nonetheless, IHCA due to respiratory failure in non-intubated 

patients, the most common cause of PEA/Asystole in a general hospital population, did 

make up the largest group of cases in our study30. Secondly, due to the small number of 

cases, we could not use an independent test set for validation which can lead to 

overestimation of our model’s predictive power. However, further testing using case block 2 

data showed performance that was as expected.
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In conclusion, trends in ECG parameters, particularly in QRS duration, QTc, ST, and RR, 

differed significantly in a 3-hour window immediately preceding IHCA from PEA/Asystole 

when compared to other 3-hour windows in both case and control patients. New episodes of 

atrial fibrillation and second degree heart block were more common prior to IHCA. Using 

continuous ECG changes alone in a real-world dataset, a random forest model achieved an 

AUC 0.829, 63.2% sensitivity and 94.6% specificity at differentiating case vs. controls in an 

independent validation set, and AUC 0.954, 91.2% sensitivity and 83.5% specificity at 

distinguishing between the final 3-hour block preceding IHCA from the prior 3-hour block. 

This study supports the feasibility of utilizing trends in continuous ECG data in predictive 

models for IHCA. Effective utilization of the real-time physiologic data afforded by 

continuous ECG monitoring has the potential to transform critical care for patients with 

IHCA.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Block selection and dominant trend determination example.
Three consecutive 3-hour blocks are selected in both case and control patients. For cases, the 

blocks immediately precede in-hospital cardiac arrest (Panel A). In controls, the blocks are 

randomly selected (Panel B). Only block 1 in cases is associated with IHCA. Next, dominant 

positive and negative trends are determined for each ECG parameter in each of the blocks. 

Panel C and D shows an example of this process in block 1 of a case patient (different 

patient from Panel A). The direction of change at each point is first calculated by robust 

linear fitting (Panel C). Blue denotes increasing average values at the point (positive trends) 

and red denotes decreasing average values (negative trends). Next short segments flanked by 

longer segments with opposite directionality are merged with the more dominant trend to 

remove minor fluctuations. Panel D shows the resultant dominant trends after a short 

negative trend segment is merged with the longer positive trend segment. The dominant 

trend in either direction is then determined by the trend in that direction with the longest 

duration.
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Figure 2: Receiver Operating Characteristics Curves.
Panel A shows ROC curves for discriminating Case block 1 vs. Control block 1 in the 

validation set. Panel B shows ROC curves for discriminating all Case block 1 vs. Case block 

2. Block 1 is the 3-hour block immediately preceding in-hospital cardiac arrest, while block 

2 is the 3-hour block preceding block 1. Only Case block 1 is considered a true positive. 

Curves for 3 multivariable models are shown: 1. Logistic regression with backward stepwise 

regression, 2. Logistic regression with forward stepwise regression, 3. Random forest with 

10,000 trees. The red (X) marks the sensitivity and specificity at the threshold chosen based 

on the validation set to achieve a specificity of approximately 95%. (AUC = area under the 

curve)
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Figure 3: Random Forest Importance Plot.
This shows the 15 variables with the highest importance in the random forest, based on 

mean decrease in the Gini coefficient (measure of how much each variable contributes to 

homogeneity of the nodes and leaves in the random forest). Higher values signify higher 

importance of the variable.

Do et al. Page 12

Am J Cardiol. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Optimal Continuous ECG Risk Prediction Model
that provides a closed feedback loop, is updated continuously, and leverages the dynamic 

nature of ECG to provide personalized risk prediction. (IHCA: in-hospital cardiac arrest; 

VT: ventricular tachycardia)
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Table 1:

Demographics

Variable Case (n = 91) Control (n = 1783)

Age (years) 63.0±17.6 63.5±14.8

Male 53 (58%) 1201 (67%)

ICU 81 (89%) 1322 (75%)

Arrest characteristics

 Asystole
a
 (bpm)

16 (18%)

  Preceding HR ≤ 29 8 (50%)

  Preceding HR 30-49 1 (6%)

  Preceding HR 50-69 6 (38%)

  Preceding HR ≥ 70 1 (6%)

 PEA (bpm) 75 (82%)

  Preceding HR ≤ 29 13 (17%)

  Preceding HR 30-49 24 (32%)

  Preceding HR 50-69 22 (29%)

  Preceding HR 70-89 9 (12%)

  Preceding HR ≥ 90 7 (9%)

 ROSC 65 (71%)

 Survival to discharge 26 (29%)

Cardiac arrest cause

 Respiratory – unintubated 30 (33%)

 Respiratory - intubated 14 (15%)

 Metabolic acidosis 13 (14%)

 Hemorrhagic shock 3 (3%)

 Cardiogenic shock 6 (7%)

 Distributive shock 1 (1%)

 Myocardial infarction 2 (2%)

 Multiorgan failure 14 (15%)

 Unknown 8 (9%)

a
Asystole due to sinus arrest or complete AV block with no escape rhythm

Abbreviations. ICU: intensive care unit, HR: heart rate, bpm: beats per minute, PEA: pulseless electrical activity, ROSC: return of spontaneous 
circulation
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Table 2:

Electrocardiographic parameter summary

Variable Case Block 1 (n = 
91)

Control Block 1 (n 
= 1783) p-value 

c Case block 1 (n = 

85 
d
)

Case block 2 (n = 

85 
d

) p-value 
e

Arrhythmias, n(%)

 AF, any in block n 31 (34%) 373 (20%) 0.0029 30 (35%) 17 (24%) 0.0258

 AF, present block n not 
block n-1 13 (14%) 64 (3%) <0.0001 13 (15%) 3 (4%) 0.0086§

 2° HB, any in block n 36 (40%) 332 (18%) <0.0001 33 (39%) 7 (10%) <0.0001
f

 2° HB, present block n 
not block n-1 26 (29%) 162 (3%) <0.0001 26 (31%) 3 (4%) <0.0001

f

 Pauses, any in block n 30 (33%) 376 (20%) 0.0073 30 (35%) 8 (12%) <0.0001
f

 Pauses, present block n 
not block n-1 22 (24%) 229 (12%) 0.0020 22 (26%) 5 (7%) 0.0004§

Trend Slope (Δyn/Δxn)
b
, median (IQR)

 QRS Amplitude 
Averaged + (μV/hr) 321 (119 – 641) 312 (138 – 627) NS 305 (119 – 623) 223 (118 – 447) NS

 QRS Amplitude 
Averaged + (μV/hr) 310 (125 – 613) 285 (137 – 608) NS 243 (122 – 608) 210 (97 – 499) NS

 PR Interval + (ms/hr)
a 8.0 (4.5 – 14.1) 6.7 (3.6 – 12.6) NS 5.9 (3.7 – 9.3) 8.0 (3.9 – 16.2) NS

 PR Interval − (ms/hr)
a 9.5 (4.3 – 20.0) 6.7 (3.7 – 13.4) 0.0466 6.5 (3.5 – 20.5) 7.6 (3.6 – 13.0) NS

 QRS Duration + (ms/hr) 6.5 (2.8 – 13.6) 4.2 (1.8 – 8.6) 0.0020 8.1 (3.3 – 14.1) 3.6 (1.9 – 7.8) 0.0488

 QRS Duration − (ms/hr) 5.5 (3.0 – 13.2) 3.7 (1.6 – 8.1) 0.0011 5.3 (3.0 – 13.3) 4.2 (1.9 – 8.1) 0.0019
f

 QTc + (ms/hr) 16.9 (8.3 – 37.3) 13.9 (7.6 – 27.5) NS 16.7 (8.8 – 32.2) 13.5 (7.4 – 25.6) NS

 QTc − (ms/hr) 16.4 (9.5 – 53.3) 13.3 (6.9 – 25.5) 0.0086 15.6 (8.8 – 54.4) 12.7 (7.2 – 36.5) NS

 RR + (ms/hr) 48.8 (26.5 – 76.1) 52.8 (27.2 – 98.2) NS 40.8 (26.4 – 75.9) 40.6 (19.0 – 69.5) NS

 RR − (ms/hr) 45.1 (23.2 – 96.4) 53.8 (25.6 – 112.9) NS 42.0 (18.5 – 90.4) 32.9 (15.9 – 65.6) NS

 ST Lead II + (μV/hr) 28.6 (13.1 – 67.1) 15.0 (7.8 – 29.0) <0.0001 29.1 (12.9 – 66.4) 20.1 (8.6 – 37.9) 0.0020
f

 ST Lead II − (μV/hr) 28.5 (14.0 – 48) 15.0 (8.0 – 30.4) <0.0001 27.0 (14.0 – 47) 20.5 (8.3 – 35.5) NS

 ST Lead V2 + (μV/hr) 16.0 (6.2 – 33.5) 10.5 (5.5 – 19.5) 0.0009 16.5 (5.4 – 34.6) 12.6 (6.5 – 26.2) NS

 ST Lead V2 − (μV/hr) 15.8 (6.5 – 33.0) 10.5 (5.3 – 20.7) 0.0060 16.3 (6.6 – 33.0) 11.7 (6.4 – 22.8) NS

Trend Slope Comparison (Δyn/Δxn – Δyn-1/Δxn-1) 
b
, median (IQR)

 QRS Amplitude 
Averaged + (μV/hr) 43 (−148 – 278) 10 (−212 – 243) NS 69 (−131 – 277) 13 (−155 – 157) NS

 QRS Amplitude 
Averaged − (μV/hr)

45 (−108 – 238) −4 (−187 – 203) NS 43 (−171 – 301) 23 (−162 – 159) NS

 PR Interval + (ms/hr)
a 0.0 (−2.7 – 2.8) 0.2 (−4.8 – 5.1) NS 0.1 (−3.3 – 3.3) −0.7 (−3.7 – 3.1) NS

 PR Interval − (ms/hr)
a 1.2 (−2.6 – 7.7) 0.2 (−4.8 – 5.0) 0.0210 0.3 (−4.2 – 7.9) −0.15 (−4.0 – 5.2) NS

 QRS Duration + (ms/hr) 0.4 (−2.6 – 7.1) 0 (−3.7 – 3.9) NS 1.1 (−2.3 – 9.6) −0.1 (−2.8 – 2.2) NS

 QRS Duration − (ms/hr) 1.3 (−2.2 – 5.2) 0.1 (−3.5 – 3.7) 0.0072 2.2 (−1.1 – 6.1) 0.4 (−2.7 – 2.7)
0.0096

f

Am J Cardiol. Author manuscript; available in PMC 2020 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Do et al. Page 16

Variable Case Block 1 (n = 
91)

Control Block 1 (n 
= 1783) p-value 

c Case block 1 (n = 

85 
d
)

Case block 2 (n = 

85 
d
) p-value 

e

 QTc + (ms/hr) 1.0 (−7.6 – 18.0) 0.3 (−11.0 – 11.3) NS 1.0 (−7.7 – 18.3) 0.1 (−8.9 – 11.4) NS

 QTc − (ms/hr) −2.4 (−7.1 – 21.8) 0.4 (−8.9 – 10.7) NS 0.1 (−7.7 – 23.8) 0.2 (−9.9 – 19.8) NS

 RR + (ms/hr) 3.9 (−23.4 – 29.3) 3.3 (−31.8 – 38.3) NS 2.8 (−24.8 – 25.1) 0.6 (−17.5 – 22.1) NS

 RR − (ms/hr) 3.7 (−16.2 – 37.4) 0.1 (−42.2 – 38.1) NS 3.3 (−15.2 – 37.7) 0.2 (−16.2 – 17.4) NS

 ST Lead II + (μV/hr) 6.3 (−5.4 – 32.3) −0.4 (−11.5 – 11.1) 0.0002 6.3 (−5.4 – 32.3) −1.9 (−9.5 – 18.3) 0.0201

 ST Lead II − (μV/hr) 4.2 (−6.8 – 26.1) −0.2 (−11.7 – 11.1) 0.0029 4.5 (−8.7 – 26.1) 2.0 (−10.7 – 12.8) NS

 ST Lead V2 + (μV/hr) 2.4 (−8.7 – 10.6) −0.1 (−7.9 – 7.7) NS 2.6 (−8.7 – 13.3) 0.8 (−6.5 – 12.7) NS

 ST Lead V2 − (μV/hr) 1.5 (−6.8 – 12.8) 0.0 (−8.2 – 7.0) NS 1.5 (−6.8 – 12.8) 2.3 (−5.2 – 11.1) NS

Trend Change (Δyn) 
b
, median (IQR)

 QRS Amplitude 
Averaged + (μV)

113 (54 – 181) 86 (47 – 158) NS 102 (54 – 181) 72 (41 – 141) 0.0224

 QRS Amplitude 
Averaged − (μV)

109 (65 – 165) 85 (48 – 143) 0.0462 98 (48 – 190) 75 (31 – 126) 0.0494

 PR Interval + (ms) 
a 10 (5 – 15.5) 7 (4 – 14) 0.0347 8 (5 – 14) 9 (5 – 15) NS

 PR Interval − (ms) 
a 12 (5 – 17) 7 (4 – 14) 0.0270 8 (4 – 18) 9 (4 – 12.5) NS

 QRS Duration + (ms) 9 (4 – 16) 4 (2 – 8) <0.0001 11 (4 – 16) 5 (2 – 12)
0.0005

f

 QRS Duration − (ms) 7.5 (3 – 13) 5 (2.8 – 8) 0.0015 8 (3 – 13) 5 (2 – 8)
0.0101

f

 QTc + (ms) 24.4 (14.6 – 43.3) 14.6 (8.5 – 26.7) <0.0001 24.1 (11.9 – 44.6) 16.8 (8.4 – 31.3)
0.0035

f

 QTc − (ms) 30.1 (11.1 – 56.9) 14.4 (9.0 – 26.0) <0.0001 30.1 (10.5 – 60.6) 16.9 (8.4 – 34.4)
0.0108

f

 RR + (ms) 59 (35.5 – 134) 61 (32 – 103) NS 62 (36 – 137) 41 (18 – 70)
0.0024

f

 RR − (ms) 61 (28 – 120) 58 (31 – 105) NS 51 (21 – 120) 37 (22 – 71) NS

 ST Lead II + (μV) 32 (15 – 70) 16 (9 – 29.8) <0.0001 34 (15 – 75) 19 (9 – 41)
0.0020

f

 ST Lead II − (μV) 30 (14 – 66.5) 16 (9 – 29) <0.0001 30 (14 – 64.5) 20 (12 – 45) 0.0037
f

 ST Lead V2 + (μV) 16 (8-33) 11 (6 – 20) 0.0003 18 (8 – 37) 12 (6 – 20) 0.0311

 ST Lead V2 − (μV) 20 (9 – 41) 11 (6 – 20) <0.0001 20 (9 – 41) 12 (6 – 22) 0.0002
f

Trend Change Comparison (Δyn-(n-1))
b
, median (IQR)

 QRS Amplitude 
Averaged + (μV) 21 (−29 – 77) 0 (−59 – 61) 0.0306 28 (−24 – 93) −3 (−42 – 55) NS

 QRS Amplitude 
Averaged − (μV) 10 (−22 – 104) 0 (−42 – 49) 0.0239 8 (−34 – 114) 10 (−46 – 38) NS

 PR Interval + (ms)
a 0 (−3 – 3) 0 (−5 – 4) NS −1 (−5.5 – 3.5) 0 (−5 – 4) NS

 PR Interval − (ms)
a 1 (−1.5 – 4.5) 0 (−4 – 4) NS 2 (−3.5 – 9.5) 0 (−3 – 3) NS

 QRS Duration + (ms) 1 (−1 – 6) 0 (−3 – 3) 0.0004 2 (−2 – 11) 0 (−4 – 3) NS

 QRS Duration – (ms) 1 (−1 – 5.75) 0 (−3 – 3) 0.0069 2 (−1 – 8) −1 (−4.5 – 3) 0.0211

 QTc + (ms) 6 (−6 – 22) 0.7 (−8.3 – 9.3) 0.0365 6 (−6 – 24) 0.8 (−9.4 – 12.9) NS

 QTc − (ms) 7 (−5 – 25) −0.20 (−8.5 – 8.2) 0.0002 7 (−6 – 36) −1.0 (−5.9 – 12.2) NS
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Variable Case Block 1 (n = 
91)

Control Block 1 (n 
= 1783) p-value 

c Case block 1 (n = 

85 
d
)

Case block 2 (n = 

85 
d
) p-value 

e

 RR + (ms) 21 (−19.5 – 55) 1 (−33 – 37) 0.0010 23 (−18 – 57) −8 (−25 – 23) 0.0019
f

 RR − (ms) 12 (−16 – 54) 2 (−31 – 35.5) 0.0220 9 (−21 – 60.5) −4 (−24 – 15) 0.0451

 ST Lead II + (μV) 7 (−7 – 35.5) 0 (−10 – 10) 0.0006 9 (−7.5 – 42) 0 (−9 – 13) NS

 ST Lead II − (μV) 9 (−6 – 30.5) 0 (−10 – 10) <0.0001 9 (−7 – 26) 4 (−6 – 12) NS

 ST Lead V2 + (μV) 2 (−4.5 – 10.5) 0 (−7 – 6) 0.0419 4 (−4 – 18.3) 0 (−8 – 7) NS

 ST Lead V2 − (μV) 6 (−2 – 25.5) 0 (−6 – 7) <0.0001 7.5 (−2 – 26) 0(−6 – 10) 0.0113
f

Abbreviations: AF – atrial fibrillation, HB – heart block, IQR – interquartile range

a
Reported where measureable given this is not measureable in atrial fibrillation

b
For each row, + denotes the measure for the dominant positive trend, and − denotes the measure for the dominant negative trend for that ECG 

parameter. All negative trend change and slope measurements are reported as the absolute value.

c
All univariate comparisons with p-value < 0.05 were also significant at q-value < 0.05, which corrects for false discovery rate due to multiple 

hypothesis testing

d
This reflects the number of patients who had a block 3 available, as this was required to calculate trend slope and trend change comparison values

e
All trend comparisons were performed using paired comparison with the Wilcoxon signed-rank test

f
These values were significant at the q-value < 0.05 level, which corrects for the false discovery rate due to multiple hypothesis testing
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Table 3:

Multivariate Model Performance

Logistic Regression – Backward Stepwise Logistic Regression – Forward Stepwise Random Forest

Development Set (Case block 1 vs. Control block 1)

 AUC 0.769 0.774 0.738

Validation Set (Case block 1 vs. Control block 1)

 AUC 0.842 0.849 0.829

 Sensitivity, FPR 2.5% 21.1% 15.8% 36.8%

 Sensitivity, FPR 5.0% 42.1% 42.1% 57.9%

 Sensitivity, FPR 10.0% 52.6% 52.6% 63.2%

Validation Set Performance at Selected Threshold
a

 Sensitivity 47.4% 47.4% 63.2%

 Specificity 93.9% 93.2 % 94.6%

Test
b
 – All Case Block 1 vs. Case Block 2

 AUC 0.753 0.749 0.954

 Sensitivity 39.5% 41.8% 91.2%

 Specificity 89.4% 89.4% 83.5%

Test
b
 – Validation Set Case Block 1 vs. Control Block 2

 AUC 0.849 0.852 0.840

 Sensitivity 42.1% 47.3% 63.2%

 Specificity 94.6% 94.5% 93.8%

Test
b
 – Case Block 2 vs. Validation Set Control Block 1

 AUC 0.524 0.536 0.584

 Sensitivity 10.6% 10.6% 16.5%

 Specificity 93.9% 93.2% 94.6%

Test
b
 – Case block 2 vs. Control block 2

 AUC 0.532 0.543 0.600

 Sensitivity 10.6% 10.6% 16.5%

 Specificity 94.6% 94.5% 93.8%

Abbreviations: AUC – area under the curve, FPR – false positive rate

a
Threshold selected for FPR on validation set approximately 5 %

b
All sensitivity and specificities are reported at the selected threshold
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