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Abstract

Trait-based ecology claims to offer a mechanistic approach for explaining the
drivers that structure biological diversity and predicting the responses of 
species, trophic interactions and ecosystems to environmental change. 
However, support for this claim is lacking across broad taxonomic groups. A 
framework for defining ecosystem processes in terms of the functional traits 
of their constituent taxa across large spatial scales is needed. Here, we 
provide a comprehensive assessment of the linkages between climate, plant 
traits and soil microbial traits at many sites spanning a broad latitudinal 
temperature gradient from tropical to subalpine forests. Our results show 
that temperature drives coordinated shifts in most plant and soil bacterial 
traits but these relationships are not observed for most fungal traits. Shifts in
plant traits are mechanistically associated with soil bacterial functional traits 
related to carbon (C), nitrogen (N) and phosphorus (P) cycling, indicating that
microbial processes are tightly linked to variation in plant traits that 
influence rates of ecosystem decomposition and nutrient cycling. Our results 
are consistent with hypotheses that diversity gradients reflect shifts in 



phenotypic optima signifying local temperature adaptation mediated by soil 
nutrient availability and metabolism. They underscore the importance of 
temperature in structuring the functional diversity of plants and soil 
microbes in forest ecosystems and how this is coupled to biogeochemical 
processes via functional traits.

Introduction

A key challenge in developing a predictive framework for ecosystem
functioning is that we lack a mechanistic understanding of the 
relationships between climate, plant traits, microbial traits and 
ecosystem processes1,2. While analyses of community trait 
compositions are increasingly used to understand the processes 
shaping biodiversity and biogeography, the links between above-
ground traits and below-ground microbial processes remain largely 
unknown3,4. Nonetheless, an implicit assumption in trait-based 
ecology is that generalizable relationships between traits and the 
environment are linked across trophic levels to influence ecosystem 
processes5,6. Although recent studies have developed conceptual 
frameworks for understanding the distribution of traits in diverse 
trophic groups7,8,9,10,11, most empirical research has focused on plant
traits5,12,13,14,15 (but see refs. 16,17) and few studies have directly 
examined relationships between traits across many trophic groups 
using locally collected data1,18,19,20,21.

Here, we provide a conceptual framework for understanding how 
traits vary along a temperature gradient if both plants and microbes
are independently driven by the same thermodynamics (Fig. 1). 
Building on past studies, Fig. 1 uses the life history/resource 
acquisitive-conservation continuum22 to graphically organize 
predictions from several trait-based hypotheses along a 
temperature gradient. A finding of macroecology and biogeography 
is that temperature is a central driver that shapes and shifts 
variation in biological diversity23 (Fig. 1). Furthermore, trait-based 
ecology has shown that temperature is a central driver of plant 
diversity via selection on traits linked to plant hydraulics, leaf 
energy balance, carbon and water gas exchange and nutrient 
use22,24. Trait-based ecology states that such environmentally driven
variation and shifts in traits will in turn influence ecosystem 
functioning (Fig. 1)2. Indeed, shifts in the distribution and diversity 
of plant functional traits have been linked to variation in rates of 
nutrient uptake25, litter decomposition25,26 and ecosystem 
productivity27. Also, it has been shown that plant traits related to 
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the resource acquisition-conservation continuum may scale up to 
influence ecosystem-level nutrient cycling6,28,29,30. Since microbes 
play a critical role in the regulation of ecosystem functioning via 
decomposition and nutrient cycling, an emergent prediction of trait-
based ecology is that shifts in temperature should be associated 
with corresponding shifts in plant traits and microbial function, 
resulting in ecological feedbacks between plants and 
microbes31,32,33.

In Fig. 1, we can use the resource acquisition-conservation continuum and 
the above findings to make predictions for shifts in plant traits across 
temperature gradients and assess how these shifts may drive or be driven by
shifts in microbial functioning. For example, plant communities dominated by
acquisitive traits (such as high specific leaf area (SLA) and nitrogen-rich 
leaves) correspond with bacterial metabolic pathways that yield faster rates 
of decomposition and nutrient cycling, slower rates of C sequestration30,33,34
and promote arbuscular mycorrhizal fungal associations or reduced 
dependence on mycorrhizal associations35,36. In contrast, communities 
dominated by more conservative traits (for example, low-SLA and nitrogen-
poor leaves) tend to be associated with less fertile soils that limit microbial 
metabolism, resulting in slower rates of decomposition and nutrient 
cycling3,30,34,37 and promoting ectomycorrhizal fungal associations19,35,36,38.
Colder and/or shorter growing seasons are expected to select for more 
conservative leaf traits that buffer leaf temperatures relative to air 
temperatures and promote increased rates of net photosynthesis and plant 
growth24,39. Thus, across a broad temperature gradient, variation in plant 
functional trait composition may inform understanding of plant–microbe 
interactions and their influence on soil nutrient cycling and decomposition.
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Building on this framework (Fig. 1), we take an integrative approach to 
assess three prominent hypotheses: (1) the soil-substrate age hypothesis 
(SSH)28,40,41, (2) the growth rate hypothesis (GRH)39,42,43,44, and (3) the 
adaptive trait continuum hypothesis (ATH)45,46. The SSH posits that tropical 
soils are P-limited as a result of increased leaching due to high rainfall and 
old soil age, whereas higher latitude soils are N-limited28,47.The GRH links 
the elemental composition of organisms to their metabolic rates where 
species with rapid growth have decreased N:P ratios due to increased tissue 
P-content as the result of increased allocation to P-rich ribosomes for protein 
synthesis39,42,43,44. The GRH has important implications for understanding 
variation in trait composition and nutrient cycling across broad temperature 
gradients39. For example, GRH states that in increasingly colder climates, 
selection to counteract the kinetic effects of temperature on growth selects 
for more leaf P relative to leaf N (refs. 43,45). Both hypotheses predict an 
increase in plant tissue N:P ratio with increases in decreased latitude and 
higher temperatures. This shift in plant leaf N:P ratio influences the 
functioning of soil microbes by altering the relative inputs of either N or P 
into the system, leading to reduced microbial biomass in N-limited regions 
and reduced microbial metabolism in P-limited regions48. Building on the 
GRH, the ATH states that shifts in trait composition and diversity reflect 
selection for optimal matching of phenotypes with local climate45,46. 
Therefore, it is not only important to understand how individual traits vary 
across environmental gradients but to assess the combination of traits in a 
community. These hypotheses provide a predictive framework for describing 
plant-trait distributions that can be applied to understanding and predicting 
microbial-trait distributions related to nutrient cycling.

In this study, we quantify variation in the dominance of both plant and 
microbial functional traits to assess proposed mechanisms underlying shifts 
in species assemblages across temperature. We examined 19 bacterial traits
and 13 fungal traits (represented by functional genes; Supplementary Table 
1) from 30 soil microbial communities from 1,134 soil cores (Supplementary 
Table 1) and four plant leaf traits (SLA, N:C ratio, N:P ratio and δ15N; 
Supplementary Table 1) from 30 vegetative plots at six sites spanning a 
large latitudinal temperature gradient as characterized by mean annual soil 
temperature (MAST; Supplementary Fig. 1).

Results

Soil-substrate age hypothesis and growth rate hypothesis

First, we evaluated the SSH and GRH for how key traits related to C-, N- and 
P-cycling in plants, bacteria and fungi vary across temperature and latitude. 
For plants, we observed an overall shift in the community-weighted mean 
(CWM) trait value from more conservative traits (thick, dense leaves) in more
variable cold climates to more acquisitive traits (thin, less dense leaves) in 
more stable climates (SLA r2 = 0.636, P < 0.0001 and N:C ratio r2 = 0.693, P < 
0.0001; Fig. 2a,d). As soil C increases in colder climates (see Supplementary 
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Table 2), bacterial and fungal CWM traits for C degradation of pectin 
(rhamnogalacturonan lyase, RGL) showed opposite relationships, 
significantly decreasing for bacteria (RGL r2 = 0.611, P < 0.0001; Fig. 2b) and 
increasing for fungi (RGL r2 = 0.326, P = 0.001; Fig. 2c) with increased MAST. 
Leaf CWM δ15N increased significantly with MAST (r2 = 0.713, P < 0.0001; Fig. 
2g). Four of the six bacterial functional traits related to N cycling decreased 
significantly with increased MAST (Supplementary Table 3 and Fig. 2h). 
Furthermore, fungal functional traits associated with denitrification (nirK) and
P degradation (ppx) were significantly greater in the tropics (Supplementary 
Table 3 and Fig. 2l). We found an increase in ectomycorrhizal associations in 
temperate regions (Supplementary Table 4). Furthermore, the leaf CWM N:P 
ratio increased with MAST (Fig. 2j; r2 = 0.463, P > 0.0001) and decreased with
latitude (r2 = 0.596, P > 0.0001) where 20 of the 30 plots had values of leaf 
N:P ratios greater than 15.

Adaptive trait continuum hypothesis

To evaluate the ATH, we assessed shifts in multivariate trait space 
for plant, bacterial and fungal functional traits across MAST. We 
conducted principal components analyses for traits related to C-, N- 
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and P-cycling using CWMs for plant, bacteria and fungi. Principal 
component 1 (PC1) accounted for 76.4% of the variation in plant 
functional traits, 56% of the variation in bacterial functional traits 
and 55.8% of the variation in fungal functional traits (Fig. 3; biplots 
are in Supplementary Figs. 2–4). Consistent with the ATH, plants and
bacteria (but not fungi) showed pronounced, directional shifts in 
multivariate functional trait space across this broad soil temperature
gradient (Fig. 3). The natural log of MAST explained a large 
proportion of the variation in plant (Fig. 3a; r2 = 0.825, P > 0.0001) 
and bacterial (Fig. 3b; r2 = 0.754, P > 0.0001) functional traits. These 
shifts in microbial and plant functional diversity were more strongly 
correlated with soil temperature than with soil moisture 
(Supplementary Table 5).

Next, we used simple linear regression, multiple linear regression 
and piecewise structural equation modelling to explore relationships
between soil environment, microbial functional traits and plant 
functional traits (Table 1). In these models, all dependent and 
independent variables are PC1 scores that characterize variation in 
soil environment variables (S), bacterial functional traits (B), fungal 
functional traits (F) and plant functional traits (P).
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First, we build on the ATH to evaluate how the local soil environment
as measured through key variables (PC1 of MAST, mean annual soil 
moisture (MASM) and pH; Supplementary Fig. 5) drive variation in 
microbial and plant functional traits. This was supported by simple 
regression models 1–3 (Table 1), which showed that functional traits
of plants, bacteria and fungi varied significantly with the soil 
environment (all P ≤ 0.05). The soil environment explained 74% of 
the observed variation in plant functional traits, 64% of the 
observed variation in bacterial functional traits and 13% of the 
observed variation in fungal functional traits, suggesting that plant 
functional traits followed by bacterial functional traits are more 
strongly associated with soil environment variables than are fungal 
functional traits.

Next, building from models 1–3 (Table 1), we constructed multiple 
regression models that use soil environment and functional traits as 
covariates for predicting variation in plant, bacterial and fungal 
functional traits (models 4–7, Table 1). For models predicting 
functional variation for each clade, inclusion of functional covariates 
gave similar results to those of models 1–3 (Table 1) without a 
significant preference for the multiple regression models over their 
simple regression counterparts.

On the basis of multiple regression results (models 4–7, Table 1), we
used piecewise structural equation models (piecewise SEM, refs. 
49,50) with second-order Akaike information criterion (AICc) model 
selection51 to explore directional causal relationships between 
variables. The multiple regression models 4–7 were written as SEMs 
with soil PC1 as the exogenous variable (models 8–11, Table 1). 
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Most SEMs were preferred (all AICc ≤ 32, except models 10 and 15) 
over their simple and multiple regression counterparts. For models 
comprising bacterial traits and plant traits (models 8–9), d-
separation51 identified missing paths between soil environment and 
plant traits (model 8) or soil environment and bacterial traits (model 
9). For both models, inclusion of missing paths and removal of non-

significant paths yielded model 12 ; Fig. 
4a and Table 1), which is the preferred model combining plant traits 
and bacterial traits (AICc = 22). This model indicates that variation in
the soil environment independently drives both plant functional 
traits and bacterial traits. For models considering fungal traits and 
plant traits (models 10–11, Table 1), there were no significant paths 
between fungal and plant traits and d-separation51 identified 
missing paths between soil environment and plant traits (model 10) 
or fungal traits (model 11). For both models, inclusion of missing 
paths and removal of non-significant paths gave model 13

; Table 1), which is the preferred model on the basis 
of fungal and plant traits (AICc = 7). This model indicates that there 
are no causal pathways between fungal traits and plant traits or soil 
environment. The resulting model excludes fungi, emphasizing the 
relationship between the soil environment and plant traits and 
suggesting that variation in plant traits is independently driven by 
variation in the soil environment (Fig. 4b,e).
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We constructed two more (14 and15, Table 1) that examine potential 
relationships between soil, bacteria and fungi only (these models do not 
consider plant functional trait variation). Consistent with simple linear 
regression models 2 and 3 (Table 1), models 14 and 15 showed that 
variation in soil environment was a significant predictor of variation in 
bacterial and fungal functional traits, respectively. However, these models 
also indicated that there were no significant paths between bacterial and 
fungal traits and d-separation51 identified additional missing paths between 
soil environment and fungal traits (model 14) or bacterial traits (model 15). 
For both models 14 and 15, inclusion of missing paths and removal of non-
significant paths gave models 16 and 17, respectively. Of these models, AICc

model selection identified model 17 ; Fig. 4c 
and Table 1) as the preferred model combining bacterial and fungal 
functional traits (AICc = 10). Model 17 indicates that when plant functional 
traits are not considered, variation in bacterial functional traits is 
independently driven by variation in soil environment and fungal functional 
traits and there are no significant pathways between soil environment and 
fungal traits (Fig. 4c,f).

Discussion

This study assessed a central hypothesis of trait-based ecology—namely that
temperature drives shifts in functional traits associated with decomposition 
and nutrient availability to ultimately influence ecosystem 
processes23,28,39,45,52,53. The latitudinal diversity gradient provides a 
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platform for empirically testing trait-based hypotheses for nutrient 
availability (SSH)28,47, nutrient cycling via the kinetic effects of temperature 
on growth (GRH)39 and finally how temperature shapes the optimal 
phenotype (ATH)45. These hypotheses provide a predictive framework for 
describing plant traits across a broad temperature gradient and applying 
them to characterize shifts in key microbial traits provides a more thorough 
understanding of nutrient availability and cycling (Fig. 1). Also, this 
integrative approach provides insight to how abiotic factors drive variation in
the multivariate trait composition of plants and microbes, which may result 
in direct and/or indirect ecological feedbacks. These biotic interactions may 
be characterized as shifts in microbial functional trait composition driven by 
shifts in plant functional trait composition, or as shifts in plant functional 
traits driven by shifts in microbial traits. While these interactions may not be 
mutually exclusive, both influence soil properties and chemistry, further 
shaping feedbacks between organisms and their environment.

Soil-substrate age hypothesis

The SSH comes from the observation that soil nutrient content changes with 
soil age from weathering and leaching, and posits that tropical soils are P-
limited due to increased leaching and old age, whereas higher latitude soils 
are N-limited28. We found associated changes in plant resource acquisition 
strategies with changes in nutrient availabilities. Specifically, in support of 
the SSH, we observed that leaf N:P ratios generally decreased with latitude 
and increased with temperature. However, 20 of the 30 plots had values of 
N:P ratio greater than 15, suggesting that plots in Colorado and North 
Carolina may also be P-limited28,30,54. Furthermore, we examined CWM leaf 
δ15N as an integrative measure of total N-cycling (where more negative leaf 
δ15N corresponds to lower N availability and more N-fixing microbial 
associations53,55) and found it increased with MAST. Overall, the low levels of
leaf δ15N observed for temperate regions further supports the proposed N-
limitation at higher latitudes and colder climates, suggesting ectomycorrhizal
associations may be favoured in these regions. Indeed, we found an increase
in ectomycorrhizal associations in temperate regions (Supplementary Table 
4). Increased ectomycorrhizal associations facilitate decomposition of the 
more recalcitrant leaf litter associated with slow-conservative leaf traits35,56. 
In addition to shifts in mycorrhizal associations, a fungal functional trait 
associated with denitrification (nirK) was found to be significantly greater in 
the tropics (Supplementary Table 3), supporting the SSH which predicts an 
increase in N availability in lower latitudes that may further correspond with 
fewer ectomycorrhizal associations in these regions. Most bacterial 
functional traits related to N-cycling significantly decreased with increased 
MAST, which may reflect fewer enzymatic active sites in tropical systems as 
the result of increased availability of more labile substrates for extraction 
and use by bacteria.
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Growth rate hypothesis

The GRH predicts that species with rapid growth have decreased N:P ratios 
due to increased P-content of tissues as the result of greater allocation 
towards P-rich ribosomes for protein synthesis39,42,43,44. In ecosystems with 
cold, short growing seasons, selection for more rapid growth rates result in 
more species with higher P irrespective of P limitations. However, if the 
system is both P-limited and there is less selective pressure for fast growth 
rates then plants should have increased N:P ratios39,42,43,44. Compared to 
colder forests, warmer forests have trees with canopies with low foliar C and 
P but higher N content, as supported by the observed increase in N:P ratios 
with increased temperature. Additionally, the observed shift in soil nutrient 
availability (N:C ratio; Supplementary Table 2) is supported by an increase in
CWM leaf δ15N with temperature, indicating that tropical ecosystems are 
more N-rich with higher rates of litter decomposition (increase in leaf N:C 
ratios) that are matched with more acquisitive plant traits (increase in 
SLA)55. This functional shift is matched by soil bacteria with overall higher 
capacities for C, N and P use in cooler climates, possibly driven by a 
combination of substrate availability and complexity. For example, 
temperate soils are large C reserves, where the high complexity of C 
substrates result in lower rates of decomposition that may require increased 
affinity of bacterial functional traits associated with C-cycling. Similarly, N 
limitation in temperate climates may result in higher capabilities of N 
degradation to effectively use the low biologically available nutrient (Fig. 
2b,e,h,k and Supplementary Table 1). However, we observed an opposite 
pattern for fungi, suggesting they have a greater (albeit more variable) 
capacity for C (RGL increased with MAST), N (nirK increased with MAST) and 
P (ppx increased with MAST) use in warmer climates despite nutrient 
limitations (Fig. 2c,l and Supplementary Table 3, nirK). This suggests that 
bacteria and fungi differentially contribute to nutrient cycling across the 
gradient and may respond differently to changes in climate.

Adaptive trait continuum hypothesis

Building on the ATH45, if the latitudinal diversity gradient represents a 
change in species richness57,58,59, then we expect a change in the 
phenotypic optimum that necessitates a change in community trait 
distribution45. We can further make predictions for how traits should shift 
from more conservative in lower temperatures of high latitudes to more 
acquisitive in higher temperatures of lower latitudes. Although we assessed 
traits individually and observed clear shifts in the conservative-acquisitive 
continuum with temperature, consistent with the leaf economic spectrum 
hypothesis52,60,61, changes in multivariate trait space provide an integrative 
understanding of how the phenotypic optima change with temperature. We 
documented shifts in multivariate functional trait space across the 
temperature gradient for plants and bacteria that ultimately reflect changes 
in life history, genetic variation and community variation46. In contrast to 
recent findings21, we found a stronger relationship between traits of plants 
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and bacteria than those of plants and fungi. Although we did not observe a 
significant shift in the multivariate trait space for fungi, this may suggest 
that soil temperature is not a key driver in fungal traits across the latitudinal 
gradient, and that other abiotic or biotic properties may be more important 
for shaping fungal trait distributions35,53. It is also possible that this lack of 
relationship for fungi is the result of the functional traits measured in this 
study, suggesting that other plant or fungal trait combinations may be better
predictors. For example, given the importance of mycorrhizal fungi in the 
rhizosphere, and relationships between the rhizosphere and climate, it is 
possible that plant root traits and/or fungal morphological traits are more 
closely associated with temperature gradients62.

Conclusion

Variation in leaf traits directly affects soil-substrate quality, which in turn 
influences microbial activity and biogeochemical processes31. Although our 
understanding of how plant traits influence these processes is still 
developing, few studies have assessed couplings of plant and microbial 
functional traits across broad environmental gradients63. For example, shifts 
in microbial functional composition could be driven by shifts in plant 
functional trait composition63. Alternatively, shifts in plant functional traits 
could be influenced by shifts in microbial traits that in turn influence soil 
properties and chemistry. Our results demonstrate the pathways of causality 
linking soil climate, microbial traits and plant traits (Table 1) and highlight 
coordinated shifts in both plant and microbial functional trait diversity across
a broad latitudinal temperature gradient (Fig. 4). Together, these results 
support a key premise of trait-based ecology, where correlated variation in 
plant and bacterial functional traits linked to ecosystem processes are driven
by temperature63. Changes in soil properties across the temperature 
gradient drive variation in plant functional traits and bacterial functional 
traits (Fig. 4a) reflecting nutrient limitation across broad ecological 
gradients28 and highlighting the regional effects of biogeochemical 
processes, microclimates and energy fluxes on microbial diversity10,32,33,64. 
However, fungal taxonomic and functional diversity are considerably less 
understood than both plants and bacteria, which may result in unobserved 
relationships and inexplicit biases.

Our findings underscore the importance of temperature in structuring the 
coupling of plant and microbial functional diversity in and across forest 
ecosystems, as well as for biogeochemical cycling. As a result, they have 
implications for understanding and predicting ecological consequences of 
climate change. First, if temperature drives the observed shift in plant and 
bacterial functioning from tropical to subalpine forests, ecosystems 
subjected to climate warming should also experience directional shifts in 
functional diversity and biogeochemistry. Our results provide comparisons of
functional traits in and across bacterial, fungal and plant communities 
spanning a latitudinal temperature gradient. They also point to the 
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importance of a trait-based approach for providing powerful tools and 
measures for projecting the effects of current and future climate 
warming6,7,10,65,66.

Although several challenges remain in fully comparing patterns of functional 
traits across taxonomic groups, our findings highlight the mechanisms that 
help shape biodiversity across temperature and further increase our 
understanding of the main drivers that structure and maintain diversity 
gradients. Limits on our ability to identify and quantify activity of microbes 
remain an outstanding challenge. Due to the complex and heterogeneous 
nature of soil, biases may be present during many steps of processing for 
sequencing, such as DNA extraction, PCR amplifications and 
primers67,68,69,70 leading to over/under-representation of certain taxa. 
Another challenge is that the presence of a gene in an organism does not 
necessarily mean that the gene is expressed. With the major advances in 
molecular tools, continued collections of in situ samples across broad 
environmental gradients will provide more insights to the mechanisms 
driving patterns of functional diversity across trophic levels.

Methods

Study system

We collected data from six forest sites along a broad latitudinal temperature 
gradient from 9 to 44° N (Supplementary Fig. 1a). Five sites are part of the 
National Science Foundation (NSF) Long-Term Ecological Research (LTER) 
network: Niwot Ridge, Colorado (NWT); Harvard Forest, Massachusetts (HFR);
H. J. Andrews Experimental Forest, Oregon (AND); Coweeta, North Carolina 
(CWT); Luquillo, Puerto Rico (LUQ). The sixth site, Barro Colorado Island, 
Panama (BCI) is administered by the Smithsonian Tropical Research Institute.
The selected sites characterize variation from subalpine to temperate to 
tropical forest ecosystems, and span broad climate gradients, with mean 
annual temperatures ranging from 2.5 to 25.7 °C and mean annual 
precipitation ranging from roughly 500 to 3,100 mm (Supplementary Fig. 1b).
At each of these locations, a permanent 25-ha plot was established from 
which all sampling for woody plants and soil microbes occurred. Each 500 × 
500 m2 (25 ha) plot was oriented north (Supplementary Fig. 6a). In each plot, 
we established five 0.1 ha ‘Gentry’ style vegetation plots that consisted of 
five 100 × 2 m2 transects and 21 individual square-metre soil plots. Each 100 
m transect of the vegetation plots was divided into two 50 m segments and 
was separated by 8 m from the next 100 m transect, so that each ‘Gentry’ 
plot was located in a 42 × 100 m2 area (Supplementary Fig. 6b). The 21 
square-metre soil plots were laid out on perpendicular transects 
(Supplementary Fig. 6c) with plots adjacent to 1, 10, 50, 100 and 200 m in 
each cardinal direction from a central square-metre plot. During the autumn 
of 2011 and spring on 2012, all woody vegetation greater than 1 cm at 
ground height was measured, identified and tagged. At each site, we also 
collected and homogenized nine surface-soil cores (~10 cm depth, Oakfield 
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Apparatus Company model HA) from 21 square-metre plots in the summer of
2012 (1,134 soil cores in total).

Plant functional traits

We collected five leaves from at least two individuals of the five most 
abundant species on the basis of their basal area in each plot at each site 
and averaged trait values at the genus level in each plot to match microbial 
level measurements (76 unique genus across sites; Supplementary Table 6). 
We measured four leaf traits related to resource acquisition, nutrient 
availability and biogeochemical cycling to characterize plant functional 
diversity: SLA, δ15N, leaf N:P ratio and leaf N:C ratio6,27,28,32. For each leaf, 
the fresh leaf area was measured using a flatbed scanner and the area was 
calculated using image analysis software ImageJ. Leaves were dried in a 
drying oven for a minimum of 72 h at 60 °C before the final dry mass was 
weighed. Leaves were then transported dry to the University of Arizona 
where they were placed again into a drying oven and ground into a fine 
homogenous powder for leaf stoichiometry and isotope assays. Total P 
concentration was determined using persulfate oxidation followed by the 
acid molybdate technique (APHA 1992) and P concentration was then 
measured colorimetrically with a spectrophotometer (ThermoScientific 
Genesys20). Concentrations of δ15N, C and N were measured by the 
Department of Geosciences Environmental Isotope Laboratory at the 
University of Arizona on a continuous-flow gas-ratio mass spectrometer 
(Finnigan Delta PlusXL) coupled to an elemental analyser (Costech). Samples
of 1.0 ± 0.2 mg were combusted in the elemental analyser. Standardization is
on the basis of acetanilide for elemental concentration, NBS-22 and USGS-24
for δ13C and IAEA-N-1 and IAEA-N-2 for δ15N. Precision is at least ±0.2 for δ15N 
(‰), on the basis of repeated internal standards. We used four traits related 
to resource acquisition, nutrient availability and biogeochemical cycling to 
characterize plant functional diversity: SLA, δ15N, leaf N:P ratio and leaf N:C 
ratio71. SLA is defined as the light-capturing surface area per unit of dry 
mass (m2 kg–1)72,73. SLA has been shown to correlate with net photosynthetic 
capacity, leaf longevity, relative growth rate, litter decomposition and 
nutrient cycling6,27,72,74. Stable nitrogen isotope (δ15N, ‰) describes the 
ratio of 15N to 14N in foliar tissue75. Leaf δ15N has been used as an integrative 
measure of N cycling55. Variation in the ratio of 15N and 14N provides 
information on the differences in N acquisition and origin N. Furthermore, it 
has been shown to be positively correlated with N-fixing microbial 
associations76. Leaf N:P ratio reflects shifts in the allocation of N towards 
rubisco for photosynthesis and P towards ribosomal RNA for protein synthesis
and has been shown to decrease with latitude28,77. Leaf N:C ratio reflects 
shifts between carbohydrates and proteins in leaf tissue and is a good 
predictor of decomposition rates78,79,80. To be consistent with methods used 
for microbial analyses, observations for many species within each genus 
were averaged to create a genus-level mean trait value for each plot. This 
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only occurred when many measurements per species per genus were 
available in a plot.

DNA extraction

Community DNA was extracted using a grinding SDS lysis extraction 
methods followed by gel purification as described previously81 from 5 g of 
mixed soils from nine sampling cores pooled from each square-metre plot. 
DNA quality was assessed using NanoDrop ND-1000 Spectrophotometer 
(NanoDrop Technologies). DNA concentration was measured by PicoGreen 
using a FLUOstar OPTIMA fluorescence plate reader (BMG LABTECH).

Sequencing methods

Specific PCR was performed to amplify soil community DNA using primers of 
the V4 region of 16S rRNA genes for bacteria and internal transcribed spacer 
(ITS) between 5.8S and 28S rRNA genes for fungi as described previously58. 
PCR amplicons were sequenced by an Illumina MiSeq sequencer. The raw 
reads of 16S and ITS were processed as previously reported58. Pair-end 
sequences were joined with FLASH (ref. 82). Unqualified sequences were 
filtered by Btrim program83. U-CHIME (ref. 84) was used to remove chimeras 
before operational taxanomic unit (OTU)s were obtained by UCLUST at the 
97% sequence identity85. Representative sequences of OTUs were aligned 
PyNAST (refs. 86,87) for 16S and MUSCLE (ref. 88) for ITS. The alignments 
were then used to construct an approximately maximum-likelihood 
phylogenetic tree using FastTree2 program89. Taxonomic identity of each 
representative sequence was determined using the RDP Classifier90 and 
chloroplast, mitochondria and archaeal sequences were removed from 16S 
dataset. In addition, singletons detected solely in one of the subsamples 
were discarded before the statistical analyses to remove noise from the 
dataset. After the OTU table was generated, we rarefied each sample to the 
sequencing depth of 25,901 per sample for 16S and 13,688 per sample for 
ITS. To address concerns that arise with the use of rarefied data, we did a 
simulation to compare the accuracy of CWM calculated after normalization 
by different methods. DESeq or edgeR was recommended to replace 
rarefying91. Isometric log-ratio, additive log-ratio and centred log-ratio are 
recommended considering compositional data issues92. Since isometric and 
additive log-ratios are not applicable to CWM calculation (data cannot match 
taxa trait after transform), we compared rarefying with centred log-ratio, 
DESeq, edgeR and proportion without rarefying. To simulate a local 
community, we randomly draw 10,000 OTUs from the phylogenetic tree 
observed in our study. Then, the trait of each OTU, defined as the optimum 
environmental condition for each OTU, is simulated as a Brownian motion 
model of evolution. The individual number (total abundance) is 1 × 108, which
is close to the total number of bacterial cells in 1 g of soil. The abundance of 
each OTU depends on the fitness (that is, difference of the trait and 
environmental condition) and is calculated using a Gaussian function. The 
CWM value calculated from the 1 × 108 individuals is the expected ‘true’ 
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CWM. We simulated sequencing results with different library sizes 
(sequencing depth, from 1 × 102 to 5 × 105) as random draw from the 1 × 108 
individuals. Then, the simulated sequencing results are normalized by 
different methods and CWM is calculated after normalization. The R code and
tree file are available as Supplementary Data 4. The results (Supplementary 
Fig. 7) demonstrated: (1) rarefying led to accurate estimation of CWM across 
all tested library sizes; (2) rarefying to 100 reads showed higher standard 
deviation of CWM than other methods but rarefying to 10,000 reads obtained
high precision without obvious standard deviation; (3) DESeq and edgeR 
resulted in obviously incorrect CWM unless the library size is large enough; 
(4) centred log-ratio totally transformed the data, thus always miscalculating
CWM. The results indicate the ‘rarefying and compositional issue’ is not a 
notable problem for CWM calculation and current recommended solutions to 
the issue are not applicable or necessary for CWM calculation. The OTU 
tables are available at http://www.ou.edu/ieg/publications/datasets and the 
raw sequencing data have been deposited in the NCBI Sequence Read 
Archive under accession code PRJNA308872. On the basis of the rarefied OTU
table, we calculated relative abundance of each OTU in each sample (ɸil) and 
average relative abundance of each OTU in each site (ɸik).

GeoChip hybridization and data processing

The purified DNA was analysed by GeoChip 5.0. DNA labelling, hybridization 
and imaging were performed as previously described93,94. The raw GeoChip 
data were preprocessed using a data analysis pipeline 
(http://ieg.ou.edu/microarray/). Outliers and unreliable signals were identified
by the microarray imaging software (Agilent) and removed before further 
analysis. The raw data were normalized across samples by the sum of target 
spot signals and unqualified spots (for example, signal-to-noise ratio less 
than 2.0) were removed. The within-array normalization was performed on 
the basis of signals of universal standards. Across all samples, spot signals 
were normalized by the average signal intensity of control spots and then by 
the sum of all sample spot signals. Next, the spots with: (1) a signal-to-noise 
ratio less than 2.0, (2) a coefficient of variation larger than 0.8, or (3) a raw 
signal less than 100 were removed as unqualified readings. The qualified 
signals in each sample were logarithmic transformed and divided by the 
mean of qualified signals in the sample to get final signals of target spots. 
Each target spot represents a probe, that is a functional gene in a certain 
type of microorganisms, usually a gene in a certain species, subspecies or 
strain. In this study, we focused on the probes of functional genes involved in
the cycling of C, N and P (Supplementary Table 1). For each functional trait 
represented by a certain gene (trait j), we identified all probes of gene j 
belonging to a certain taxon (taxon i) and calculated the average signal of 
detected probes in a certain plot (plot l) to measure the functional trait j of 
taxon i in plot l (λijl). We also calculated a probe signal in each site as the 
sum of the probe signal across all samples from the site. Then, for gene j, the
average signal of all probes belonging to taxon i in a site (site k) was used to 
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measure the functional trait j of taxon i in site k (λijk). The microarray data 
presented are available at http://www.ou.edu/ieg/publications/datasets.

Mycorrhizal associations

Mycorrhizal associations were categorized using Nguyen et al. for fungi and 
Wang and Qiu95,96. Mycorrhizal associations included arbuscular mycorrhiza, 
ectomycorrhiza, ericoid mycorrhiza (trees only) and their combinations 
calculated as percentages. Percentage was calculated on the basis of taxon 
abundance for arbuscular mycorrhiza, ectomycorrhiza and all mycorrhiza 
(Supplementary Table 4).

Analysis

All analyses were performed using the statistical software R. To characterize 
patterns of functional traits across temperature, we calculated abundance 
weighted community level trait metrics using genus abundances in each site 
k for each trait j. CWMjk was calculated for each site k for each trait j as:

where ɸik is the relative abundance of taxa i in site k, λijk is the trait 
mean of taxa i in site k. CWMjl was calculated for each plot l for each 
trait j as:

where ɸil is the relative abundance of taxa i in plot l, λijl is the trait mean of 
taxa i in plot l. This metric is commonly used in trait-based community 
ecology in plants but has never been applied to microbial communities. To 
apply it to microbial communities, we make three general assumptions 
(Supplementary Box 1). First, for each soil sample, we used the output from 
GeoChip data for each functional gene as a measure of gene abundance per 
gene per taxa69,97,98. An assumption of this approach is that GeoChip output 
corresponds to microbial functional capacity (ranging from low to high 
capacity). If the presence of a functional gene has a low occurrence value 
obtained using GeoChip then that taxon has a low capacity for that function 
(low potential rate of corresponding reaction per unit of microbial biomass). 
Second, the taxa detected by both sequencing and GeoChip analysis may 
represent the major taxon with the function of interest due to greater 
genomic coverage of more common taxa. Third, 16S and ITS sequencing 
results can be used to measure the relative abundances of taxa. Results of 
16S and ITS sequencing are now widely serving as practical measures of 
taxa relative abundances. Although amplicon sequencing has reproducibility 
issues, current amplicon sequencing can still be useful and obtain acceptable
(though relative) reliability if used appropriately. To ensure appropriate use, 
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we set standard biological replicates, remove singletons and used 
abundance rather than binary results67,99.

To evaluate the relationships between CWMjl traits for plants, microbes and 
MAST, a linear regression was performed using the lm function in base R. To 
assess the multivariate trait space, a principal component analysis was 
conducted on the standardized CWMjl data using the prcomp function in base
R. Linear regression was used to assess the relationship between PC1 and 
MAST for plants, bacteria and fungi. PC1 for both bacteria and fungi were 
then compared to PC1 for plant traits using linear regression. We used 
simple linear regression, multiple linear regression and piecewise structural 
equation modelling to explore relationships between soil environment, 
microbial functional traits and plant functional traits (Table 1). In these 
models, all dependent and independent variables are standardized PC1 
scores that characterize variation in soil environment variables, bacterial 
functional traits, fungal functional traits and plant functional traits. We 
evaluated the hypothesis that soil environment variables (MAST, MASM and 
pH) are primary drivers of variation in microbial and plant functional traits by
using the PC1 for the soil environment. AICc was used to indicate the 
preferred model obtained via d-separation and/or AICc model selection. Path 
diagrams were created to represent the relationship between measured 
variables (for example, PC1 for soil, plants, bacteria and fungi) with arrows 
that represent the unidirectional relationships between those variables, with 
significance set to α = 0.05. Standardized effect sizes and coefficients of 
determination (r2; partial r2 reported for multiple linear regressions) were 
calculated and used to scale the arrows.

Relative importance of explanatory variables was conducted to explore the 
relationship between MAST and MASM. A multiple linear regression in the 
form of (trait = a + soil temperature (x) + soil moisture (x)) was used to 
determine importance of soil temperature compared with soil moisture. The 
R package relaimpo was used to calculate the relative importance of MAST 
and MASM on each CWM trait as well as each PC1 for plants, bacteria and 
fungi100 (Supplementary Table 5).

Reporting Summary

Further information on research design is available in the Nature Research 
Reporting Summary linked to this article.

Data availability

Raw sequencing data have been deposited in the NCBI Sequence Read 
Archive under accession code PRJNA308872. The OTU tables and microarray 
data presented are available at http://www.ou.edu/ieg/publications/datasets. 
Additional data files and r-scripts are available at https://osf.io/thjxs/. 
Community-weighted mean trait data are available as Supplementary Data 
1–3.
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Code availability

R-script used for data formatting and statistics are available on the Open 
Science Framework website https://osf.io/thjxs/. Code for the simulation is 
available as Supplementary Data 4.
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