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ABSTRACT 
 

Fingerprinting SoC FPGA via Measuring Communication Link 

Over the past few decades, Field Programmable Gate Arrays (FPGAs) have found widespread 

application in various fields, including signal processing, hardware acceleration, machine learning, 

etc. To address the requirements of heterogeneous computing, a new category of devices called 

System-on-Chip FPGAs (SoC-FPGAs) has emerged. These devices combine the capabilities of 

microcontrollers and FPGAs to leverage the advantages offered by both general-purpose CPUs 

and FPGAs. However, the introduction of SoC-FPGAs also introduces potential security 

vulnerabilities since both CPUs and FPGAs are impressionable to side-channel attacks. On SoC-

FPGAs, the CPUs and FPGAs are connected through the communication link, which can be 

utilized as an attacking interface for such side-channel attacks. In this paper, we proposed such 

side-channel attacks targeting SoC-FPGAs to fingerprint the hardware accelerators running on 

them by measuring the communication link. We implemented a benchmark program that stresses 

the communication link and records the I/O bandwidth of the running accelerators. After analyzing 

the collected data traces using machine learning classifiers, we successfully distinguished the 

unique I/O pattern of different victim accelerators. Our highest classification accuracy result is 

93.3% with a random forest classifier, and it proved that attackers could use such an attack to 

perform accelerator fingerprinting on SoC-FPGAs. As far as we know, this is the first attack by 

which fingerprinting accelerator on SoC-FPGAs via measuring communication link. 
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Chapter 1  

Introduction 

 

 

 

 

1.1 FPGA Hardware Security 

Field Programmable Gate Arrays (FPGAs) are a type of integrated circuit that allows programming 

by the customer to have the desired function or circuit. With its flexibility, FPGAs can be 

configured to perform various computations, including signal processing, cryptography, and 

machine learning. Therefore, FPGAs become a popular choice in a wide range of applications, 

from aerospace to consumer electronics. However, with great power comes great security threat. 

Hardware attacks on FPGAs can take various forms, such as tampering with the configuration 

memory, probing the input and output pins, or injecting faults to alter the circuits’ behavior. Such 

attacks can lead to critical security breaches, including data theft, system malfunction, and 

unauthorized access. 

Ensuring FPGA hardware security requires a multi-layered approach that involves the 

design, implementation, and verification of secure FPGA circuits. At the design stage, security 

requirements must be identified and integrated into the system design, including secure booting, 

cryptographic key management, and access control. The implementation stage involves the 

selection of secure FPGA components and the integration of security mechanisms, such as anti-
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tamper features, into the FPGA design. Verification ensures that the FPGA circuit meets the 

security requirements and is resilient to hardware attacks. To enhance FPGA hardware security, 

various techniques have been developed, such as obfuscation, encryption, and authentication. 

Obfuscation involves modifying the FPGA design to make it harder to reverse-engineer and 

understand. Encryption consists in encrypting the FPGA configuration bitstream to prevent 

unauthorized access or modification. Authentication involves verifying the authenticity of the 

FPGA configuration bitstream and ensuring that only authorized users can program the FPGA. 

Besides the manufacturing security of FPGAs, recent research works showed that FPGAs 

are vulnerable to various types of security attacks. For example, bitstream fault injection [1], 

hardware trojan [2], rowhammer attacks [3], power side-channel attacks [4], etc. In this research, 

our goal is to prove that SoC-FPGAs are vulnerable to side-channel attacks by measuring the 

communication link. 

1.2 Why Side-Channel Attack? 

Side-channel attacks are a type of hardware attack that can reveal information leakage by 

measuring the system’s physical characteristics, including power consumption, electromagnetic 

emissions, and timing variation. Side-channel attacks on FPGAs are particularly dangerous 

because they can provide the attacker with access to sensitive information, such as cryptographic 

keys, stored in the FPGA’s configuration memory or the user’s design. There are several types of 

side-channel attacks that target FPGAs, such as power analysis side-channel attacks, 

electromagnetic analysis side-channel attacks, glitch attacks, timing analysis side-channel attacks, 

etc. Power analysis side-channel attacks extract sensitive information by measuring the power 

consumption of the FPGA during its operation. Electromagnetic analysis side-channel attacks 

extract sensitive information by monitoring the electromagnetic radiation emitted by the FPGA 
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during its operation. Glitch attacks introduce controlled faults into the FPGA to cause it to 

malfunction. Finally, timing analysis side-channel attacks rely on the variations in the FPGA’s 

timing caused by the input data. Several mitigations have been developed to prevent the FPGAs 

from side-channel attacks, such as masking, noise injection, and circuit-level countermeasures. 

However, with the increasing use of FPGAs in critical systems, such as aerospace, defense, 

banking, and cloud computing, exploring new types of side-channel attacks and developing 

mitigations against them is essential. 

1.3 Contributions 

Thus, our approach is to fingerprint edge SoC-FPGAs via the communication link. To achieve this, 

our method is first to design a benchmark to stress the communication link and conduct read/write 

to host memory blocks in the SoC-FPGA (DE1-SoC board in this work). Then we collect traces 

of the bandwidth of our benchmark circuit when different kernels are running on the same FPGA 

from AXI. The details of how we build our dataset will be covered in the corresponding section. 

After collecting the traces, we feed them to the machine learning model to classify the victim 

circuit. The results of different machine learning classifiers will be discussed at the end. To the 

best of my knowledge, this is a new type of side-channel attack targeting SoC-FPGAs. 

1.4 Content Overview 

Chapter 2 covers the background information about what SoC FPGAs are, what side-channel 

attacks are, and introduces some other techniques that have been studied in FPGA security. 

Chapter 3 covers the experiment environment, the design and implementation of our benchmark 

program, and the machine learning models we used for trace classification. Chapter 4 contains the 

evaluations of the experiment results. Chapter 5 will discuss the experiment result compared to 

our previous work [22], the parameters we have chosen to use for the benchmark programs, 
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possible mitigations to our proposed attack, limitations, and future work. Finally, Chapter 6 

concludes the thesis. 
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Chapter 2  

Background 

 

 

 

 

2.1 Edge SoC-FPGAs 

An edge system on-chip (SoC) is a type of integrated circuit that consists of a central processing 

unit, memory, input/output interface, and other processing components on a single chip. It is 

designed to process data or make decisions at the edge of a network. Field programmable gate 

arrays (FPGAs) are integrated circuits that can be programmed after being manufactured. With its 

reprogramming function, it is often used as the hardware accelerator for custom applications, such 

as machine learning. Thus, an edge SoC-FPGA is a type of integrated circuit that combines the 

functionalities of edge SoC and FPGA. One of the critical advantages of edge SoC-FPGAs is their 

flexibility. With the programmable logic, not only a wide range of applications are able to be 

deployed onto the chip, but it also makes high levels of customization possible. On the other hand, 

an edge SoC-FPGA contains processing units such as CPUs, memory, and I/O interfaces. This 

allows it to perform processing tasks on the chip rather than sending the data to a centralized data 

center for processing, which reduces latency, improves security, and reduces the amount of data 

that needs to be transmitted over the network. The different types of I/O interfaces, including 

Ethernet, USB, PCIe, and serial interfaces, allow the device to communicate with other 
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components in the system. The I/O interfaces also make integrating with existing systems and 

devices easy, providing a seamless integration process. Another advantage of edge SoC-FPGAs is 

they integrate multiple functions onto a single chip. This integration reduces the number of 

components required in a system, which can reduce the power consumption, and system cost and 

improves the system reliability. 

Also, with the CPU on board, developers can run operating systems such as Linux on the 

chip and write software using familiar programming languages such as C and Python. The on-chip 

memory can be used for program and data storage and can be accessed at high speed, which gives 

it the ability to process the data in real time. They are commonly used in a variety of applications, 

such as industrial automation, automotive, and robotics. 

In conclusion, edge SoC-FPGAs are integrated circuits that combine CPU, memory, I/O 

interfaces, and programmable logic onto a single chip. They are designed to be flexible, low-power, 

and cost-effective. In addition, they can provide hardware acceleration for a wide range of 

applications, including machine learning, image processing, and edge computing. Thus, makes 

them the ideal choice for the systems that require real-time processing for high-speed data. 

2.2 DE1-SoC and Communication Link 

2.2.1 DE1-SoC 

In this research, we choose the DE1-SoC Development board as our targeting platform. DE1-SoC 

is an Altera SoC-FPGA developed by Terasic Technologies Inc, which combines a dual-core ARM 

Cortex-A9 processor with FPGA fabric. It provides many features for users to conduct a wide 

range of projects, including Cyclone V SoC FPGA with 85k programmable logic elements (LEs), 

1GB DDR3 SDRAM and 2GB HPS DDR3, ethernet, USB, HDMI, and VGA ports for 
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connectivity, onboard sensors, including temperature, light, and accelerometer sensors, etc. As a 

result, it is a popular choice for academic and research purposes and for device prototyping.  

2.2.2 Communication Link 

On DE1-SoC, the HPS portion is connected to the FPGA portion through the HPS-FPGA 

interfaces, which are the Advanced eXtensible Interface (AXI) bridges. There are mainly three 

bridges used for communication, HPS-to-FPGA bridge, FPGA-to-HPS bridge, and Lightweight 

HPS-to-FPGA bridge. Both the HPS-to-FPGA bridge and FPGA-to-HPS bridge are high-

performance AXI interfaces that have a configurable data width of 32, 64, and 128 bits. They allow 

the HPS or FPGA to master transactions to slaves to the FPGA or HPS fabric and vice versa. 

Furthermore, the FPGA-to-HPS bridge enables the FPGA to fabric to have complete visibility into 

the HPS address space and provides access to the coherent memory interface. The Lightweight 

HPS-to-FPGA bridge is primarily used for control and status register accesses to peripherals in the 

FPGA fabric and only supports a fixed data width of 32 bits for the HPS to master transactions to 

slaves in the FPGA fabric. The connections between the FPGA fabric and the L3 interconnect part 

of the HPS are shown in Figure 2.1. The letters M and S indicate master and slave. The level 3 

(L3) main switch masters the HPS-to-FPGA bridge, and the L3 slave peripheral switch masters 

the lightweight HPS-to-FPGA bridge. The L3 main switch is mastered by the FPGA-to-HPS 

bridge, which allows the master in the FPGA to have access to most of the slaves in the HPS.  

2.3 Side-Channel Attack 

As mentioned in section 1.2, side-channel attacks are a type of attack that measures the physical 

characteristics to reveal sensitive information about the system. Once the attacker breaches the 

FPGAs, it can lead to unwanted data leakage and harm the customer’s profit. In  
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Figure 2.1 AXI Bridge Connectivity (adapted from Altera, 2014) 

recent research works, FPGAs have been proven that are vulnerable to side-channel attacks. In 

literature, the most extensively researched types of side-channel attacks are listed below. 

2.3.1 Long Wire Side-Channel Attack 

In the previous research work [5], the authors found that on FPGAs, there is a routing resource 

that is used to connect configurable logic blocks (CLBs), called long wire, which can be used as a 

source for information leakage. Long wire has the following physical characteristics when 

transferring data: the delay of the nearby long wires is shorter when transferring a logical 0 than a 

logical 1. Based on this phenomenon, the authors monitor the data transfers in the target long wire 

by connecting the ring oscillator (RO) to it. The frequency of the ring oscillator will increase when 

the target long wire transfers a logical 1, and it will decrease when the target long wire transferring 

a logical 0. By using this long wire side-channel attack, they successfully recovered 99% of the 

bits that were being transmitted in the target long wire. Similarly, [6] recovered the secret key of 

an AES implementation using the long wire side-channel attack. 
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2.3.2 Power Side-Channel Attack 

Power side-channel attacks usually are achieved by monitoring the power consumption of the 

FPGAs. Since the power consumption of the FPGAs is closely tied to the data being processed or 

transmitted, attackers can use the power consumption of the target FPGA to recover secret 

information such as the cryptographic key. Usually, power side-channel attacks require physical 

access to the target FPGAs, but [4] proposed a remote power side-channel attack by designing an 

RO-based on-chip power monitor on the FPGA to monitor the RSA crypto module which is 

working on the same FPGA in the cloud environment. Furthermore, [7] proposed a new design of 

the RO-based on-chip power monitor, which can measure the internal voltage on a nanosecond 

scale. Their work is able to retrieve the secret of an AES encryption circuit using the power side-

channel attack. Also, the power side-channel can be used for accelerator fingerprinting, as shown 

in [8]. 

2.3.3 PCIe Side-Channel Attack  

In [9], the authors used PCIe congestion side-channel to recover the secret information of the 

victim machine in 3 scenarios, keystroke typing, webpage browsing, and training machine-

learning model. Their attack is achieved by sending a delay to the PCIe link to cause it to be in the 

congestion stage and observe the I/O pattern of the device. However, [9] focuses on revealing 

secret information about GPUs. 

 In [10], the author proposed a side-channel attack using PCIe contention on the AWS cloud 

server. The authors note that where PCIe slots are situated in the PCIe layout can cause varying 

levels of delay and data transfer rates. As a result of this, they can recognize alterations in data 

transfer rates when different FPGAs on the same server try to access memory simultaneously, 

leading to PCIe conflict, and they can deduce the specific location of various FPGAs in the AWS 
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server through this method. Although [10] also targets FPGAs, their work aims to reveal the 

infrastructure information. Unlike our work, we focus on the information about the applications 

running on the FPGAs. 

2.4 Related Works 

Recently, several types of side-channel attacks have been studied. Long wire side-channel attack 

is one major type, where attackers use long wire to extract secret information on the FPGAs. [5] 

found the physical characteristics of the long wire, which can cause different delays to the nearby 

long wire when transferring a logical 1 and logical 0. The authors use ROs to monitor the frequency 

change to determine whether the bits transmitted in the target long wire are a logical 1 or 0. 

Similarly, [6] performs the long wire side-channel attack to recover the secret key of an AES 

implementation. In [4], the authors proposed another type of side-channel attack targeting FPGAs, 

which is the power side-channel attack. The authors designed an RO-based on-chip power monitor 

to observe the power consumption of the FPGA in a fixed time interval since different processing 

stages consume different power. This attack successfully recovers the secret key of an RSA crypto 

module and also shows that it is possible to perform an FPGA-to-CPU attack on the same SoC. 

 Our work focused on fingerprinting FPGA accelerators using communication links. [9] 

proved that such side-channel attacks using the PCIe communication link can reveal secret 

information about the victim device. They stress the PCIe link by sending data through Remote 

Direct Memory Access (RDMA) NICs and observing the I/O pattern of the device. Their attack 

captured the keystroke timing, web rendering, and the machine learning modules that are running 

on the victim device. [10] conduct a similar attack that stresses the PCIe link to generate PCIe 

contention. By using this attack, they reveal the infrastructure information on the AWS cloud. 
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Although both attacks use PCIe communication links to extract secret information, [9] targets 

GPUs, and [10] focuses on the infrastructure information. 

 In our previous research [22], we implemented such side-channel attacks targeting Intel’s 

cloud service, Devcloud [23]. We stressed the PCIe communication link using benchmark 

accelerators and measured the bandwidth of communication. The data collected is classified using 

machine learning models. As a result, our proposed attack successfully classified the six different 

accelerators deployed on cloud FPGAs with a random forest classifier’s accuracy at 88%. We also 

looked into how different parameters used for our benchmark programs will affect the 

classification accuracy results and found the optimal set of parameters. The work in this paper is 

transplanted from our previous work [22], which targets the SoC-FPGAs using the same attack 

method. The optimal set of parameters for the benchmark programs is used in this work. 
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Chapter 3 

Method and Implementation 

 

 

 

 

3.1 Testing Environment 

A DE1-SoC Development board was chosen to be our targeting platform. According to [11], our 

DE1-SoC has a Dual-core ARM Cortex-A9 MPCore processor as CPU, Altera Cyclone V FPGA, 

64MB SDRAM on the FPGA fabric, 1GB DDR3 SDRAM and Micro SD card socket for storage. 

The detailed device specification is shown in Figure 3.1.    

 In this experiment, our goal is to measure the bandwidth of the communication link when 

running different benchmark kernels and then feed the collected data to machine learning 

classifiers to fingerprint the victim circuit. The experiment procedure can be divided into the 

following stages: 

1) Design and implement benchmark kernels to stress the AXI communication link 

between the HPS and FPGA fabric.  

2) Collect corresponding I/O measurement data of the victim circuit and divide the data 

into training sets and testing sets. 

3) Feed the training set to the machine learning classifiers and then use the testing set to 

obtain fingerprinting results. 
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HPC FPGA 

Dual-core ARM Cortex-A9 MPCore processor Altera Cyclone V 

1GB DDR3 SDRAM 85K programming logic elements 

Micro SD card socker 64MB SDRAM 

UART to USB, ISB Mini-B connector 10 red user LEDs 

1GB Ethernet PHY with RJ45 connector Six 7-segment display 

  

Figure 3.1 Device Specification of DE1-SoC 

3.2 Benchmark Design 

In this section, we will discuss the specific implementation details of the benchmark that was used 

to stress the AXI communication link and monitor the I/O bandwidth. The benchmark’s analysis 

helps to understand the I/O patterns of victim circuits, which can then be utilized to determine the 

type of victim employed for our fingerprinting attack on the SoC FPGA. Our benchmark program 

is developed using OpenCL [12]. The benchmark comprises two parts, the master host program 

executed by the CPU and the kernel executed by the FPGA. The implementation details of the 

program will be described below. 

3.2.1 Host Program 

Our host program will first allocate NUM_BUFFER memory blocks of size BUFFER_SIZE in the 

1GB SDRAM of the HPC. The memory blocks will be accessed by the benchmark kernel using 

read and write operations. While the benchmark accelerator is running, our host program will 

record the time of the execution using the profiling APIs provided by OpenCL. To eliminate the 

impact of any noise, the operations of a benchmark kernel will be repeated and then averaged for 

NUM_REPEAT times for each memory block. Lastly, the host program will return a trace which 

is formed by combining all the bandwidth measurements. Algorithm 1 shows the pseudocode of 

our host program. 

 



14 
 

Algorithm 1: Host Program 

 Input:  number of buffers NUM_BUFFER, trace length, BUFFER_SIZE,  

number of executions, NUM_REPEAT 

 Output: trace 

 Initialization: assign 1 to the variable i and j, allocate buffer [BUFFER_SIZE] [NUM_BUFFER] 

 while ( i < NUM_BUFFER ) do 

 exe_time = 0 

  While iterations ≤ NUM_REPEAT do 

  Run benchmark accelerator and operate on buffer[i]; 

  exe_time += time of execution; 

  end 

 exe_time /= NUM_REPEAT; 

 trace [i] = 1 / exe_time; 

 end 

  

 

Algorithm 2: Benchmark Kernel 

 Input:  Pointer to pre-allocated host memory *dst, access number NUM_ACCESS 

 Initialization: id = work-item’s ID number 

 while ( i < NUM_ACCESS ) do 

  dst [id] = ( int ) ( i*dst[id] ); 

 end  

  

 

3.2.2 Benchmark Accelerator 

The main functionality of our benchmark accelerator is to stress the AXI communication link by 

massive reading and writing to the designated memory destination. To ensure that our benchmark 

accelerator is accessing the designated memory destination, we implement an address pointer dst 

pointing to the pre-allocated host memory. This configuration also ensures that our benchmark 

accelerator is accessing the host memory through the AXI communication link. We use 

NUM_ACCESS to control how many times the memory location is accessed by the benchmark 

accelerator. Algorithm 2 shows the operation of our benchmark accelerator.  
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3.3 Machine Learning Modules 

In our experiment, the traces we collect are fixed-length, 1-D vectors, which are determined by 

our benchmark program. Machine learning modules were employed to evaluate the relationship 

between bandwidth leakage and its corresponding benchmark accelerator. The following machine 

learning modules were used in our experiment: 1D-Convolution [13], Multi-layer Perceptron 

(MLP) [14], Support Vector Machine (SVM) [15], and Random Forest [16].  
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Chapter 4 

Evaluation  

 

 

 

 

4.1 Experiment Setting 

4.1.1 Hardware Environment 

The system OS we used on DE1-SoC is obtained from Terasic Inc [17], which is an Ubuntu mirror 

with OpenCL support. The OpenCL kernel files are compiled on the PC since it requires significant 

computational resources. Then we copy the bitstream files to the board. To ensure optimal OpenCL 

compatibility, the host files are compiled directly on the board. 

4.1.2 Dataset Collection 

During the data collection phase, each benchmark accelerator is repeatedly executed to ensure we 

have enough traces for the classification part. By initiating each execution with new arguments, 

we can generate an arbitrary number of trace vectors based on the specified loop number. This 

allows us to conduct the benchmark and victim kernel operations and obtain diverse trace vectors. 

4.1.3 Victim Circuits 

In our experiment, we download and modify the FPGA-accelerated workloads from the Xilinx 

Vitis Accelerator Example repository [18] and [19]. There are six workloads used in our 
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experiment: adder, apply_watermark, fir, matmul, nw, and pathfinder. 

The detailed description of each workload is shown in Table I. 

TABLE I: Descriptions of our Victim accelerators. 

Name Code Function 
adder A Adder. Reading inputs from an input buffer, performing computations, 

and writing the results to an output buffer. 
apply_watermark AW  Image processing. Reading images from an input buffer, adding 

watermark andhiheh hack to an output buffer. 
fir F Signal processing. Reading input and coefficient data from an input 

buffer. 
matmul M Matrix multiplication. Reading two matrices, A and B, from the input 

buffer, calculate AB, writing the result to an output buffer. 
nw NW Generating two sequences randomly with the same length, which can 

be divided by 16. 
pathfinder P Finding a path on a 2-D grid from the bottom row to the top row with 

the smallest accumulated weights. 

 

TABLE II: Configuration details of our machine learning classifiers. 

Name Configuration 

1D-Convolute 
Build using Pytorch, cross entropy loss, and stochastic gradient descent (SGD) 

learning rate = 0.001, trained for 1500 epochs. 

MLP 
Build using Pytorch, cross entropy loss, and Adam optimizer, 

learning rate = 0.001, trained for 1500 epochs 

Random-forest RandomForestClassifier ( ). Obtained from Scikit-learning library, depth = 32768 

SVM SVC ( ). Obtained from Scikit-learning library 

 

4.1.4 Machine Learning Classifier Setting 

The four machine learning classifiers used in our experiment are built using Python machine 

learning libraries such as Pytorch [20] and Scikit-learn [21]. Table II shows the configuration 

details of our classifiers. We split the collected dataset into two groups, 70% of the dataset will be 

used to train the classifier, and the remaining 30% will be used in the testing stage. 
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4.2 Results 

 
Figure 4.1 Data collected under the default setting. 

The collected data traces for our six accelerator workloads are shown in Figure 4.1. The parameters 

we used to collect data traces in this experiment are listed below: 

• NUM_ACCESS = 1000, 

• NUM_REAPET = 10, 

• BUFFER_SIZE = 4 Bytes, 

• NUM_BUFFER = 100. 
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From Figure 4.1, we can see that the traces of each accelerator workload lie in different 

bandwidth regions. This indicates that the traces of our accelerator workloads can be separated and 

also prove that our benchmark kernels can capture the unique I/O patterns leaked from the 

communication link (AXI communication link in this experiment) during the execution of the 

accelerator workloads.  

 
Figure 4.2 Corresponding t-SNE visualization 
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TABLE III: Accuracy results. 

Model Accuracy 

1D-Convolution 66.7% 

MLP 68.7% 

SVM 74.7% 

Random forest 93.3% 

 

 The collected data traces are then normalized, with the maximum bandwidth value in the 

dataset being 1 and the minimum bandwidth value being 0. The pre-processed dataset is then 

visualized using t-Distributed stochastic neighbor embedding (t-SNE) [20]. T-SNE stands as a 

highly popular technique for visualizing high-dimensional data. It assigns a high probability to 

similar objects and a low probability to dissimilar object. Then the objects are grouped with the 

ones that have similar probability and placed on a 2D map. The result of our data visualization is 

displayed in Figure 4.2. From Figure 4.2, we can see that the data points of each accelerator 

workload are placed in different regions on the map, which can also prove that our traces are 

distinguishable. 

 Table III shows the classification accuracy result of the four machine learning classifiers 

used in this experiment. The random forest has the highest accuracy result at 93.3%. SVM has an 

acceptable accuracy of 74.7%. To our surprise, the 1D-Convolution model, despite its complexity, 

exhibits the poorest classification accuracy performance. 

 Since random forest and SVM are the classifiers that have higher accuracy results, we 

provide the metrics details of random forest and SVM in Table IV. These metrics serve as 

evaluation measures to assess the quality of classification results generated by a classifier, which 

include: 



21 
 

• Accuracy: represents how many items are classified correctly in a dataset. It is widely 

considered the most intuitive way to assess the classifier’s performance. 

• Precision score: represents how many items are classified correctly out of all correctly 

classified items. 

• Recall score: represents how many items are classified correctly out of all the correctly 

labeled items. 

• F-1 score [21]: represents how well the classifier is performing in terms of precision score 

and recall score. In this measurement, the precision score and the recall score have the same 

weight. 

TABLE IV: Metrics of our random forest and SVM classifiers 

Model Accuracy Class Precision Recall F-1 

SVM 74.7% 

adder 0.00 0.00 0.00 

apply_watermark 1.00 1.00 1.00 

fir 0.72 0.82 0.77 

matmul 0.00 0.00 0.00 

nw 0.00 0.00 0.00 

pathfinder 0.71 1.00 0.83 

Random forest 93.3% 

adder 1.00 0.86 0.92 

apply_watermark 1.00 1.00 1.00 

fir 0.88 1.00 0.94 

matmul 1.00 0.33 0.50 

nw 1.00 0.75 0.86 

pathfinder 0.92 1.00 0.96 

We also include the confusion matrixes of our random forest and SVM classifier in Figure 

4.3 and Figure 4.4. The confusion matrixes illustrate the accuracy of the random forest and SVM 

classifiers used in this experiment in classifying each of the accelerator workloads. The values 

within each cell of the confusion matrix indicate the number of traces corresponding to the 

predicted label and the true label. Upon observing Figure 4.3 and Figure 4.4, we can infer that the 

random forest has a better performance, and the SVM did a poor job at predicting 3 of the 

accelerator workloads, which are adder, matmul, and nw. 
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Figure 4.3 Confusion matrix of our random forest classifier. 

 

Figure 4.4 Confusion matrix of our SVM classifier. 
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Figure 4.5 Accuracy results with the different number of labels used. 

In this experiment, we also verify the capability of our random forest and SVM classifiers to 

distinguish between target accelerator traces and unwanted data. To do so, we select target 

accelerators from Table I and label the rest of the data as “unwanted,” for example, if we select 

adder and nw as our target accelerators, the traces collected from apply_watermark, fir, 

matmul, and pathfinder will be labeled as “unwanted.” Since there could have multiple combinations 

of the target accelerators when selecting one to five target accelerators, we experiment with all possible 

combinations and then use the average accuracy as our final result. On the other hand, the number of labeled 

traces is modified to be equal to remove the situation, such as the unwanted labeled data traces outnumber the 

target accelerator traces, causing the accuracy results to become inaccurate. Our result is shown in Figure 4.5.  
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 By examining Figure 4.5, it becomes evident that our classifiers demonstrate they can distinguish 

between the target accelerator traces and unwanted data traces. When the number of target accelerators is 

equal to one to three, both classifiers maintain high accuracy results which are above 90%. Starting from four 

target accelerators, both classifiers’ accuracy is dropping. However, our random forest still maintains an 

accuracy of around 90%, and the SVM’s accuracy dropped tremendously.  
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Chapter 5 

Discussion  

 

 

 

 
In this section, we will compare the results of this work with our previous work [22], talk about 

the parameters we have chosen for the benchmark programs, possible mitigations for our proposed 

attack, limitation, and future work. 

5.1 Compare with Previous Work 

In our previous work [22], we proposed a novel attack that fingerprints the accelerators running 

on the cloud FPGA via measuring the PCIe communication link. The experiment was conducted 

on Intel’s cloud service, Devcloud [23]. The same attack method was used, which stressed the 

communication link (PCIe in our previous work) using benchmark accelerators and measuring the 

I/O bandwidth. Six benchmark accelerators were deployed onto the victim circuit for data trace 

collection in both works. Then the collected data traces were classified using machine learning 

models, including 1D-convolute, MLP, SVM, and random forest. The comparison of the 

classification accuracy result is shown in Table V. Both works successfully distinguished the 

communication pattern of the different benchmark accelerators deployed on the victim circuit. 

However, our current work has better accuracy result compared to this work. In our previous work, 

the random forest had an accuracy of 88%, and SVM had an accuracy of 69%.  



26 
 

 

 

TABLE V: Accuracy results in comparison with [22] 

 Model Accuracy 

Current work 

1D-Convolution 66.7% 

MLP 68.7% 

SVM 74.7% 

Random forest 93.3% 

[22] 

1D-Convolution 26.0% 

MLP 55.0% 

SVM 69.0% 

Random forest 88.0% 

 

 

 

Figure 5.1 Confusion matrix of random forest classifier (adapted from [22]). 
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Figure 5.2 Confusion matrix of SVM classifier (adapted from [22]). 

 

 In both of our works, random forest and SVM classifiers had the better accuracy result. To 

find out why our current work had better accuracy results, we include the confusion matrix of 

random forest and SVM classifier models in Figure 5.1 and Figure 5.2.  

After comparing the confusion matrix of both works, random forest maintains a high 

accuracy when classifying all traces. Still, we can see from Table III, the recall score and F-1 score 

on matmul of our current work are low. And in the confusion matrix, we can see that half of the 

traces of matmul are placed in the wrong category. This could be caused by the total number of 

traces collected for each victim accelerator being different in both works. In our previous work, 

we collected 200 traces for each victim accelerator, but in this work, the data traces we collected 

for each benchmark accelerator are fewer. However, our accuracy result with random forest shows 

that even when fewer data traces were provided, our random forest classifier can still distinguish 
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the different communication patterns of the different benchmark accelerators used in the 

experiment. On the other hand, our SVM classifier could not predict the traces of adder, matmul, 

and nw to the correct categories. As of adder and matmul, it could be caused by insufficient 

amounts of data traces. On the other hand, the misprediction of nw could be caused by the SVM 

classifier not being good at making predictions when the data traces are similar to each other. In 

Figure 4.2, the t-SNE visualization of our traces, we can see that although the data traces of nw 

and pathfinder are close to each other, we can still claim that they lie in different areas of the 

2D map. However, Figure 4.4 shows that all of the nw data traces are identified as it belongs to 

pathfinder. As we can see from Figure 5.1 and Figure 5.2, most of the data traces are placed 

to the correct slot in the confusion matrix in our previous work, but the overall accuracy of our 

previous work is lower than our current work. This could be caused by fewer victim accelerators 

being used in this work. In our previous work, we used eight victim accelerators, but in this work, 

we only used six victim accelerators. 

We can conclude that our random forest classifier can still distinguish the I/O patterns of 

each victim accelerator even with fewer data traces provided. However, with more data traces 

provided, it clearly can do a better job at the classification task.  

5.2 Parameter Choice 

Since this work is transplanted from our previous work [22], the parameters we used in this 

experiment for our benchmark programs are adapted from the previous work, which is described 

in Section 4.2. In our previous work, we conducted experiments using different parameters for the 

benchmark programs. The details of the parameters we tested for the benchmark programs are 

listed below: 
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• NUM_ACCESS = 250, 500, 1000, 2000, and 4000. 

• NUM_BUFFER = 50, 100, 200, 400, and 800. 

• BUFFER_SIZE = 1 byte, 2 bytes, 4 bytes, 8 bytes, and 16 bytes. 

• NUM_REPEAT = 1, 5, 10, 20, and 50. 

We concluded that as the NUM_ACCESS and NUM_REPEAT increase, the accuracy will 

increase, but after a certain point (NUM_ACCESS = 1000 and NUM_REPEAT = 10), the accuracy 

will decrease. This is caused by as the NUM_ACCESS and NUM_REPEAT increase, the 

benchmark program’s execution time will also increase and capture more I/O patterns. However, 

after NUM_ACCESS = 1000 and NUM_REPEAT = 10, the long execution time caused the 

benchmark program to lose the ability to capture the I/O patterns. Therefore, the accuracy of 

classification starts to drop. On the other hand, NUM_BUFFER and BUFFER_SIZE do not affect 

the accuracy of classification as much. Thus, we used the parameters that give the best accuracy 

results, which are NUM_ACCESS = 1000, NUM_BUFFER = 100, BUFFER_SIZE = 4 bytes, and 

NUM_REPEAT = 10. 

5.3 Mitigations 

Our experiment reveals the security vulnerability of the SoC-FPGAs, which is the communication 

link (i.e., AXI) between the HPS and FPGA fabric. Our attack method utilizes benchmark 

accelerators to stress the communication link and capture the information leakage from the unique 

I/O pattern of different accelerators as fingerprints. The data traces we collected are further used 

by machine learning models to perform classification tasks. The classification accuracy shows that 

our attack can accurately distinguish the unique I/O pattern of different accelerators. 
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 To mitigate our proposed attack, which uses the information leakage from the 

communication link on the SoC-FPGAs, manufacturers could add an additional layer to the 

communication link for obfuscation. In this additional layer, random latency will be introduced to 

the data transmission process instead of transmitting raw data. Therefore, the I/O pattern of 

accelerators will be destroyed. 

 On the other hand, the board users could implement their host program, which transmits 

data to the different storage clusters to mitigate our attack. For example, board users could use 

both the onboard SDRAM and the Micro SD card as storage and set up a time interval for their 

host program, which changes the data transmitting destination between the onboard SDRAM and 

the Micro SD card. However, it can also disturb the communication pattern. 

5.4 Limitations and Future Work 

In this paper, we proposed a new side-channel attack targeting SoC-FPGAs. The experiment was 

conducted under the closed-world assumption, which means all the data traces we collected from 

the benchmark accelerators are predetermined and labeled. We only aimed to reveal the possible 

security vulnerabilities that existed in communication links. Our experiment proved that 

implementing benchmark programs that stress the communication link and measure the 

communication bandwidth with a random forest machine learning classifier is enough to conduct 

such fingerprint attacks under the closed-world assumption. For the open-world scenario, which 

requires including data collected from unknown and unwanted benchmark accelerators, the 

training dataset is more closely related to the real world. In the real world, attackers typically target 

a few significant and sensitive victim accelerators with other indifferent accelerators. Since our 

experiment only considered the closed-world scenario, it is possible that our attack method does 

not apply to the real-world setting. 
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 For our future work, we will enhance the proposed attack and extend it to cover an open-

world experiment setting. We could introduce more victim accelerators to the experiment to 

strengthen such attacks since we only target six victim accelerators in this experiment. It is valuable 

to see how the machine learning classifiers will perform when more victim accelerators are 

included in the training dataset. To extend the coverage to an open-world setting, we could 

introduce a small portion of the benchmark accelerators into the data collection phase, which 

leaves them unlabeled. Then we could determine if we should recognize the unlabeled data as a 

new instance of victim accelerators. 
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Chapter 6 

Conclusion  

 

 

 

 
In conclusion, we have proposed a new method of side-channel attack targeting SoC-FPGAs, 

which reveal the information leakage using the communication link. By using our attack method, 

attackers can tell what hardware accelerators are running on the SoC-FPGAs. Our experiment 

implemented six benchmark programs that stress the AXI communication link between the HPS 

and FPGA fabric on the DE1-SoC Development board and measure the I/O bandwidth. Machine 

learning models further use the collected data traces to perform classification tasks. The highest 

accuracy we achieved for the machine learning classification is 93.3% with random forest. Our 

experiment results show that the communication pattern of the running accelerators can be leaked 

from communication links such as AXI. It is beneficial for such side-channel attacks targeting 

SoC-FPGAs because we revealed a new security vulnerability of SoC-FPGAs. As far as we know, 

this is the first work that uses information leakage from the communication link to fingerprint 

accelerators on the SoC-FPGAs. In comparison with our previous work [22], which used a similar 

attack method targeting cloud-FPGAs, we can conclude that we successfully transplanted such an 

attack method from cloud-FPGAs to SoC-FPGAs. However, applying such attacks under the open-
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world assumption is still a challenging research problem. Therefore, we will continue 

implementing and enhancing our attack method to suit the open-world setting. 
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