
UC Irvine
UC Irvine Previously Published Works

Title
Solving the supersymmetric flavor problem with radiatively generated 
mass hierarchies

Permalink
https://escholarship.org/uc/item/47h029jz

Journal
Nuclear Physics B, 546(1-2)

ISSN
0550-3213

Authors
Feng, Jonathan L
Kolda, Christopher
Polonsky, Nir

Publication Date
1999-04-01

DOI
10.1016/s0550-3213(99)00026-7

Copyright Information
This work is made available under the terms of a Creative Commons 
Attribution License, availalbe at 
https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/47h029jz
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


ELSEVIER Nuclear Physics B 546 (1999) 3-18 

13 
m l  I 

Solving the supersymmetric flavor problem with 
radiatively generated mass hierarchies 
Jonathan L. Feng a, Christopher Kolda b, Nir Polonsky c 

a School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA 
b Theoretical Physics Group, Lawrence Berkeley National Laboratory, University of California, 

Berkeley, CA 94720, USA 
c Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA 

Received 4 November 1998; accepted 7 January 1998 

Abstract 

The supersymmetric flavor problem may be solved if the first and second generation scalars are 
heavy (with multi-TeV masses) and scalars with large Higgs couplings are light (with sub-TeV 
masses). We show that such an inverted spectrum may be generated radiatively; that is, from 
initial conditions where all scalar masses are multi-TeV at some high scale, those with large 
Higgs couplings may be driven asymptotically to the weak scale in the infra-red. The lightness 
of third generation scalars is therefore a direct consequence of the heaviness of third generation 
fermions, and fine-tuning is avoided even though the fundamental scale of the soft supersymmetry 
breaking parameters is multi-TeV. We investigate this possibility in the framework of the usual 
Yukawa quasi-fixed point solutions. The required high scale boundary conditions are found to be 
simple and highly predictive. This scenario also alleviates the supersymmetric CP and Polonyi 
problems. (~) 1999 Elsevier Science B.V. 

PACS: 12.60.Jv; ll.10.Hi; ll.30.Pb; 14.80.Ly 
Keywords: Supersymmetric flavor problem; Fixed point solutions; Renormalization group equations; Polonyi 
problem; Fine-tuning 

1. I n t r o d u c t i o n  

If  low-energy supersymmetry (SUSY)  is realized in nature, the effective Lagrangian 

must contain many new mass parameters that explicitly, but softly, break supersym- 

metry. The requirement  that large quadratic divergences not be reintroduced in the 

electroweak breaking sector is often taken to suggest that these soft SUSY-breaking 

(SSB)  parameters  are at the scale mlight ~< 1 TeV. On the other hand, stringent flavor 

changing constraints require that many of  the soft scalar masses either be at the scale 

0550-3213/99/$ - see frontmatter ~) 1999 Elsevier Science B.V. All rights reserved. 
PII S0550-32 13(99)00026-7 
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mheavy '~ 10 TeV or fall into highly constrained patterns [ 1 ]. The tension between these 
requirements is the supersymmetric flavor problem. 

This problem may be resolved, however, if the scalars have an inverted mass hierarchy 
relative to the fermions [2-4] .  In such a scenario, the scalars of the first two generations 
are at the scale mheavy- This highly suppresses supersymmetric contributions to flavor 
(and C P )  violation involving the first two families, where the constraints are most 
stringent. At the same time, the scalar partners of the heavy fermions, which interact 
through large Yukawa couplings with the Higgs bosons, are at the scale mlight, avoiding 
fine-tuning in the Higgs sector. Note that, because the scalars of the first two generations 
interact very weakly with the Higgs bosons, they may be significantly heavier without 
destabilizing the gauge hierarchy. 

This inverted hierarchy of scalar masses has been analyzed in a number of studies, 
and it has been argued that it may be created by dynamical mechanisms at high [3,5] or 
intermediate [6] energies. The experimental signatures of such scenarios have also been 
studied. Observable effects of the light supersymmetric particles have been considered 
in Refs. [7,8], and the non-decoupling effects of very massive superparticles have been 
discussed in Refs. [9,10]. 

In this paper we note that there is no a priori need to impose this hierarchy among 
the scalar masses at some high scale, such as the grand unified theory (GUT) or Planck 
scale, in order to realize the hierarchy at the weak scale. Instead, we demonstrate that 
even if all soft scalar masses have multi-TeV values at some high scale boundary, the 
mass hierarchy may be generated radiatively. In this scheme, for specific ratios of the 
SSB parameters which we will determine, the third generation scalars are driven to 
the light scale by large Yukawa couplings. The lightness of third generation scalars and 
heaviness of third generation fermions are therefore intimately connected, and fine-tuning 
is avoided, even though the fundamental scale of the SSB parameters (the gravitino 
mass) is ,,~ 10 TeV, 

We will demonstrate this idea in the context of scenarios in which large Yukawa 
couplings saturate their infra-red quasi-fixed points (QFPs). In this case, the relevant 
SSB parameters will be seen to have simultaneous (approximate) zero fixed points. The 
required boundary conditions for such fixed points to exist will be seen to be remarkably 
simple and highly predictive, though also highly constrained [ 11 ]. l 

2. Inverted hierarchy models 

We first review the constraints on supersymmetric models with inverted scalar mass 
hierarchies. 

A supersymmetric scenario is fine-tuned if there are large cancellations in the condi- 
tions for electroweak symmetry breaking: 

In a related, but orthogonal, approach to the supersymmetric flavor problem, one may search for models in 
which scalar mass degeneracy, as opposed to a scalar mass hierarchy, is generated by fixed points [12]. 
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1 2 m~, - rn2 u tan 213 
m z  = tan 2 /3  - 1 - / x 2 ,  

2m~ = (m~,, + mZHd + 2/z 2) sin 2/3. (1) 

In these equations mn, and ran,, are the SSB Higgs boson masses, m~ is the soft bilinear 
scalar coupling of the two Higgs doublets, /z is the Higgsino mass parameter, and 
tan/3 = /H~u)/(H~a ) is the usual ratio of Higgs vacuum expectation values. In models 
with hierarchical scalar masses these conditions have a number of implications resulting 
from the fact that the light-heavy scalar mass hierarchy and, hence, the Higgs parameters 
of Eq. ( 1 ) are not stable against radiative corrections [ 13,2]. 

Several of these implications are evident even at one loop [ 13]. For the soft scalar 
mass parameter mi, the one-loop renormalization group equation is 

1 -loop 1 2 2 dm2dt =4 ~"~Ca(i)cealMal2 - "4--~ Z hipqAipq 
o pq 

1 
- ½Y/c~r Z yJm2 - ~ Z hYm (m~ + m 2 + m2) ,  (2) 

J pq 

where t = ln(M2/Q2)/4rr, and Mx is the high scale boundary. The index a runs over 
gauge groups, Ca(i) are quadratic Casimir invariants, 2 and Y denotes hypercharge. 
M, h, and hA are gaugino masses, Yukawa couplings, and trilinear scalar couplings, 
respectively. Summations over scalar indices implicitly include summations over color 
and weak isospin. In general, of course, the masses need not be flavor diagonal, and 
one must evolve a general mass matrix. Discussion of the off-diagonal masses and their 
constraints will be deferred to Section 7. 

Each of the four terms of Eq. (2) leads to a constraint for generating and maintaining 
a scalar mass hierarchy. From the first and second terms we see that gauginos masses and 
trilinear scalar couplings must be at the light scale. From the third term, which arises 
from quartic scalar gauge interactions, it is evident that the hypercharge trace must 
roughly satisfy ~ j  Yjm~ < mlight . 2  From the fourth, one-loop corrections to light scale 

2 2 masses of the form h mheavy lead to the approximate upper bound mheavy ~ mlight/h. 
Even if the three constraints and upper bound mentioned above are satisfied, two-loop 

gauge interactions threaten to drive the light scalar masses negative. These two-loop 
corrections are given by [14] 

2-,oop E Z  2 dt a J -ta(J)Ca(t)aam.i , (3) 

for where a again sums over all gauge groups, to = y2 for hypercharge, and to = _~ 
fundamentals of SU(N).  To avoid tachyonic states and color-breaking minima, these 
must be compensated by positive contributions from gaugino masses [2,15,16]. This 

2For the U ( I )  gauge group, Ca = y2 for scalars with hypercharge Y, and for the SU(N) gauge groups, 
Ca = ( N  2 -- 1 ) / 2 N  for scalars in the fundamental representation. 
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observation leads to lower bounds on gaugino masses that are most stringent in models 
with high-energy mediation of the heavy SSB parameters, where the evolution interval 
(the logarithm) is maximized. 

3. Radiative hierarchy with low tan fl 

Now we present a first concrete example of the generation of an inverted hierarchy 
through renormalization group evolution. This will serve as a simple illustration of 
the idea. A more complicated, but more satisfactory, scenario will be discussed in the 
following section. 

We will consider the minimal supersymmetric standard model (MSSM) with super- 
potential 

W ij i~ h~ t4~ Z,iEj ~qu/Cd (4) = hu HuQiU/+ hd HuQiD) + + , 

where Hu and Ha are the up- and down-type Higgs superfields, Q and L are the quark 
and lepton doublets, U, D, and E are the up-type quark, down-type quark, and charged 
lepton singlets, respectively, and the indices i and j denote generations. 

We begin by considering the case of low tan/3. In this scenario, the only significant 
Yukawa coupling is the top quark Yukawa ht = h 33. As noted above, the stability of 
light-heavy scalar hierarchies requires gaugino masses and trilinear scalar couplings 
to be at the light scale. Scenarios in which this arises naturally will be described in 
Section 5. Assuming this to be true, and further neglecting the Tr[Ym 2] term, we find 
that the scalar masses renormalized by the top Yukawa satisfy 

d m 2 h 2 
= 4-~ Xlow m2 (5) 

dt 

where 

Xiow = - 2 (6) 
1 

and m2 = ~lm2t~,,, m2u3, ""Q~'2/~r. Two eigenvectors of Xlow have eigenvalue 0; the third, 
lh 2 = (3, 2, 1 ) r  has eigenvalue -6 .  Arbitrary boundary conditions may be evolved by 
first decomposing them along the three eigenvectors [ 17]. The components parallel to 
the eigenvectors with zero eigenvalue are constants of the evolution, and the component 
parallel to rh 2 is asymptotically damped to zero. If the initial conditions are dominated 
by their lh 2 component, the three scalar masses will have, subject to the assumptions 
above, simultaneous fixed points at zero, thereby creating a scalar mass hierarchy. Large 
components along the other two eigenvectors are not allowed as they lead either to 
tachyons or large and negative m2,. 

To determine whether the fixed points for the mass parameters are reached rapidly 
enough, let us consider scenarios in which the top quark Yukawa is near its quasi-fixed 
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point (QFP)  [18] .  In the low tan/3 QFP scenario, ht is drawn to its QFP value of 
ht FP ~ 1. i in the infra-red, irrespective of  its value at the high scale, as long as this 

value is not too small. Weak scale parameters are therefore insensitive to the exact 
value of the top Yukawa at the high scale, which is attractive because our scenario 
may then be realized without postulating specific and possibly complicated relations 
between the parameters of  the Yukawa and SSB sectors. Given the relation ht (mr) '~ 
(0 .95 / s in /3 )  (mP°le/175 OeV) ,  we find tan/3~ ~ 1.8 for the low tan/3 QFP scenario. 3 

Such low values of  tan/3 are currently probed in Higgs boson searches. 
In the QFP scenario, it is possible to solve analytically for the low energy values of  

the soft scalar masses in terms of  the high scale boundary conditions, which we denote 
by zeroes [20]:  

m 2 0.52M2/2 - 3Am 2 H,, ~m~,,(O) + 

m 2 0.52M~/2, u,, ~ m~,,(0) + 

m20, ~ m2Q,(O) + 7.2M2/2 - 6jAm 2, 

m2u, --~ mZu~ (0) + 6.7 M2u2 - 6i2Am 2, 

m2n, --~ mZD,(O) + 6"7MlZ/2, 

m~, ~-- m2,(O) + 0.52M2/2, 

2 ~m2 (0) +0.15M~/2,  mE~ 

where 

(7) 

/tm 2 ~- ~ [m~,,(O) + m~3(O) + m2,(O)] r 

1 1 +M~/2 ( 7 r -  r 2) + 5Ao (gAo - 2.3M1/2) r (1 -- r) , (S) 

and, for simplicity, we have assumed a common gaugino mass M1/2 and trilinear scalar 
coupling Ao at the high scale, which is identified with the scale of  coupling constant 
unification. The subscript i is a generational index; 61 = 62 = 0 and 63 = 1. Finally, the 
parameter r = [ht/h~] 2 ~< l is a measure of  the proximity of  the top Yukawa coupling 
to its QFP value at the weak scale. 

From Eq. (7)  we see that the large Yukawa coupling ht gives a large negative 

correction to the H, ,  Q3 and U3 scalar masses. It is easy to verify that in the limit 

of  r --- 1 and neglecting M|/2, the equation mH,, = mQs = mu3 = 0 is solved by the 
boundary conditions 

m 2 [ H, , (0) ,m23(0) , rn~3(0)]  =rag [ 3 , 2 , 1 1 ,  (9) 

as expected. (This relation was also noted in Ref. [21] . )  That is, even if all scalar 
masses are at some heavy scale mheavy " 10WeV, if the constraints of  Eq. (9) are 

3 We ignore here various subtleties associated with the value of the strong coupling and with finite super- 
partner radiative corrections to mt p°le. These can lead to substantial corrections, but may be absorbed in the 
relevant value of tan/3Fp [ 191. 
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Fig. I. The two-loop renormalizatioo group evolution of SSB masses for a representative case in the low tan fl 
QFP scenario. The boundary conditions at Q ~ 2.4 × 1016 GeV are those of Eq. (9) with m0 = 5 TeV, and 
Ml/2 = 500 GeV and Ao = 0. The SSB masses for Q3, U3, and Hu are quickly driven to the weak scale by 
the top Yukawa coupling, while the rest of the scalars, represented by D 3 here, remain at the multi-TeV scale. 

satisfied, then mH,,, mQ3, and my3 are still only ~ mlight in the infra-red. From the 

form of  Eqs. (7)  and (8 ) ,  we see that these conclusions hold, roughly, as long as 

1 - r  ~ (mlight/mheavy)Z and deviations from the boundary conditions of  Eq. (9)  satisfy 

dm~, , AmZQ3 , dm~3 <~ 2 mlight. 
The l igh t -heavy  hierarchy is, of  course, also subject to the constraints discussed in 

Section 2. From Eq. (8 ) ,  we see that we require MI/2, Ao '~ mlight .4 In addition, the 

boundary condit ions for Hd and the other sfermions are constrained by the requirement 

Tr[Ym z] < mlight2 ," simple boundary conditions, such as the condition that all of  these 

other scalar masses equal mo, may be found to satisfy this constraint. Finally, the zero 

fixed points of  the mass parameters receive the usual two-loop gauge corrections of  

Eq. (3) .  Because of  large group theoretical factors, the two-loop corrections to the light 

sfermion masses are always more important than the one-loop Yukawa correction. As 

noted above, for the light scalar squared masses to remain positive, the negative two- 

loop corrections above must be compensated by positive gaugino mass contributions. 

The requirement that there be no tachyons or color-breaking minima demands roughly 

that MI/2 ~ V"-~s/4"rrmo. 
We have confirmed the analytic approximations described above with complete nu- 

merical  calculations including the two-loop gauge corrections. In Fig. 1 we show the 

renormalizat ion group evolution of  the SSB mass parameters for a representative set 

of  boundary conditions satisfying Eq. (9) .  Despite multi-TeV values at the high scale 

boundary, we see that the masses renormalized by the large top Yukawa are quickly 

driven to the weak scale in the infra-red. The other scalar masses remain at the multi- 

TeV scale, and we see that a scalar mass hierarchy is generated radiatively. To quantify 

4 In fact, Ao ~ mlight is not required in this example if r --* 1; this will not hold in general, however. 
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Fig. 2. The allowed region (shaded) in the (M~/2, too) parameter place, where Ml/2 is the high scale gaugino 
mass, and m0 specifies the high scale scalar masses through Eq. (9). One-loop renormalization group equations 
are used and Ao = 0. To the left of the solid (dashed) contour, the scalar Q3 (/-/3) mass is below 1 TeV at the 
weak scale. All physical squared masses are positive and electroweak symmetry is properly broken throughout 
the plane. Note the different mass scales. 

how generic such results are, we display in Figs. 2 and 3 the regions in parameter 
space for which phenomenologically desirable squark masses are obtained. In Fig. 2 the 

weak scale parameters are obtained from the high scale boundary conditions through 
one-loop renormalization group equations. In the shaded region, both Q3 and U3 masses 
are positive and below 1 TeV. Any gaugino mass is possible, as long as it is not so 

large as to drive the Q3 and U3 masses above 1 TeV. In Fig. 3, the two-loop gauge 
contributions are included. As noted above, these contributions must be compensated 

by gaugino contributions to avoid tachyons and color-breaking minima, and so now, for 

a given m0, there is a minimum allowed Ml/2. We see, however, that there is still a 
substantial band in which all phenomenological requirements are met, and the Q3 and 

U3 masses are below a TeV. 
In this scenario the fine-tuning associated with m~, and the squark fields Q3 and U3, 

which are strongly coupled to Hu, has been successfully eliminated. Unfortunately, mH,~ 
is not affected by the Yukawa fixed point in the low tan fl scenario and remains at the 
heavy scale. Electroweak symmetry breaking therefore requires/x 2 ~ m 2, ~ mheavy , 2  and 
this scenario is still fine-tuned. 5 

This flaw may be avoided in high tan fl scenarios, to which we will turn in the 
following section. Before doing so, however, we collect here a number of remarks. 
First, note that the boundary conditions of Eq. (9) are inconsistent with any minimal 

GUT embedding requiring mQ3(0) = m u 3 ( 0  ) .  Second, large ( >  10%) and negative 

5 The requirement that squark mixing not lead to color-breaking minima also leads to the constraint 
mlightmH,l < m2Q ~ 7M~/2, which is, however, weaker than the constraints discussed above and is easily 

satisfied. 
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Fig. 3. Same as in Fig. 2, but including the two-loop gauge contributions in the evolution. To the left of the 
left-most solid (dashed) contour, the scalar Q3 (/-/3) mass is negative at the weak scale; to the right of the 
right-most solid (dashed) contour, the scalar Q3 (U3) mass is above 1 TeV. In the shaded region, both masses 
are positive and below 1 TeV. 

finite mass corrections to the top quark mass may increase the low tan/3 QFP value to 
tan/3FP >> 1. In this case, as is evident from Eq. (1),  the fine-tuning related to large 

mn,, is significantly diminished, and mHa "~ mheavy may be tolerated. However, the finite 
mass contributions realized by supersymmetric QCD corrections in most models are 

< 10%, and so this scenario may be difficult to realize. 

Finally, it is entertaining to note that mild, I/Z] >> mweak is actually preferred by 
coupling constant unification, as it leads to a pattern of superparticle threshold corrections 

that diminishes the prediction for the strong coupling as(mweak). In the absence of 

threshold corrections, one predicts too-large a s ( M z )  ~ 0.13, and most typical patterns 
of superparticle threshold corrections only aggravate this problem. 

4. Radiative hierarchy with high tan fl 

The fine-tuning situation may be resolved in the case of high tan/3 ,-~ 50-60, where 
both ht and hb -- h 33 are near their fixed points. The coupled set of renormalization 
group equations is now more complicated. However, assuming ht .'~ hb, and neglecting 
for simplicity all gaugino masses, trilinear scalar couplings and Tr[Ym 2 ] as before, we 
find that the scalar masses evolve as 

d m  2 h 2 
-- ~-E-t Xhighm 2 ( 1 0 )  

~ 

where 



Xhig  h = - -  
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2 2 0 
1 2 1 
0 2 2 
0 3 3 

II  

(l l)  

and here m 2 2 2 mZQ~ , m203 , m~,l ) r. = ( m H , , ,  m u  3 , . Three eigenvectors of Xhigh have eigenvalue 
0; the other two are ~ = ( - 3 ,  - 2 ,  0, 2, 3) r with eigenvalue - 5  and fil 2 = (3, 2, 2, 2, 3) r 
with eigenvalue -7 .  We thus expect a two-parameter family of boundary conditions 
leading to a scalar mass hierarchy. 

As before, we consider the QFP framework, but now for high tan/3. Neglecting 
gaugino masses and the trilinear scalar couplings, we find simple solutions for the 
low-energy masses in terms of their high scale boundary values [22]: 

m2H,, --'~ m~/,, ( 0 )  - 3zlm~, 
m 2 H,, ~- m~, (O)  - 3Am 2, 

mzQ.~--m~;(O)-Si(dmZt + dm2b), 

m 2 ~.~ m 2 U, -- u;(O) -- 8i2Am~, 

m 2 o, ~- m2,(O) - 6i2Am 2, 

m2 L; ~ m2L; ( O ) , 

m 2 2 e, ~ m  ,(0), (12) 

where 

' [m~ (O)+m2Q3(O)+m2u3(O)]r  Am 2 ~ ~ ,, 

,10 [m~/ , (0 ) -m~/~(0)+m23(0) -m23(0) ]  [ S r + ( l _ r ) 5 / 7 _  1], (13) 

Am2";-- ~ [m2,; (0) + m2Q3 (0) + m23(0)] r 

+ ~  In 2H,,(0) - m~/d(0) + m23(0)- m23 (0)] [75-r + ( 1 - r )  5/7- 1] ,  ( 14) 

and, as before, r = [ht/hFtP] 2 ~< I. In this solution, we have neglected small differences 
in the top and bottom Yukawa coupling evolution, and assumed vanishing leptonic 
couplings. In particular, we neglect h~; see the discussion below. 

In contrast to the previous low tan/3 case, hb is now significant. We must then demand 
that the Hu, Ha, Q3, U3, and D3 scalar masses all be driven to zero in the infra-red. 
We find that this scenario is obtained for an extremely simple two-parameter family of 
boundary conditions given by 

m 2 nu ( 0 )  = 3 2 -~mv~ ( O ) , 

m2H,,(O) = 3 2 5mo3 (0), (15) 
1 m~(O) = ~ [m~3(O ) + m~3(O)] . 
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These boundary conditions are just a reparametrization of the space spanned by the 
eigenvectors rh 2 and/h22. Clearly, in this case both Higgs mass parameters are affected 

by the fixed point and no fine-tuning is required (aside from the moderate tuning at the 
level of 2 2 mw/mlight, which is always associated with such high values of tan/3 [24]) .  

The solutions of Eq. (12) are valid for boundary values h~(0) << h2(0) and hT << 

4"n'mlight/mheavy. The first relation is found in a certain range of very high tan/3 ~ 50- 
60.6 (See, for example, Fig. 1 of Ref. [19] .) One often associates the high tan/3 QFP 

scenario with either hb = h~ o r  ht  = hb = hT unification at the GUT scale, as implied by 
minimal SU(5) and SO(10) GUTs, respectively. A subset of the solutions of Eq. (15), 
with m 2 03(0) = m 2 ( 0 )  = m23(0) and m 2 ( 0 )  = m ~ ( 0 )  = 3m~(0),  is consistent with 
such a GUT embedding. (The hypercharge trace condition is automatically satisfied 
in this case.) In general, however, the boundary conditions need not admit a true 

(minimal) GUT embedding, and we therefore do not require such scalar mass relations 
or the accompanying Yukawa coupling unifications. 

It is difficult to incorporate analytically the effects of a non-negligible h~, and generally 
an involved numerical analysis is required. In Ref. [22] this effect was estimated, but 
the results were valid only for 0.6 < r < 0.95. The required boundary conditions have 
a complicated dependence on r and therefore do not have obviously simple forms away 

from the QFP value of r = 1. 
In the quantitative discussions above, we have focused on only two simple scenarios 

with minimal field content. It should be stressed, however, that while the required 
boundary conditions depend on the specific Yukawa fixed point structure, the existence 
of such boundary conditions stems from the general existence of such a structure. 

Hence, it is reasonable to speculate that our observations apply more generally. For 
example, one could look for similar QFP solutions in the MSSM extended by a gauge 

singlet S interacting through the superpotential term SHuHd, or at the case of lepton 
number violating Yukawa couplings with simultaneous fixed points [23]. Many other 

such examples are possible. 

5. High-energy frameworks and R-symmetry 

We have seen that inverted scalar hierarchies may be generated radiatively for certain 
boundary conditions. Such boundary conditions are both highly constrained and highly 
predictive, and it is of some interest to investigate specific high energy frameworks 
that give such mass patterns. Here we will limit ourselves to a discussion of general 
principles that lead to the required features. 

Let us concentrate on the high tan/3 scenario. The appearance of a light-heavy 
hierarchy in the scalar mass sector can only occur if there is already a hierarchy 
between the scalar masses (heavy) and the /.t parameter, m~, gaugino masses, and A- 

6Again, the exact value of tariff for which hi(O) "~ h b ( O )  >~> hr(0) depends sensitively on low-energy 
finite radiative corrections to the t and b-quark masses and on the exact value of the strong coupling. 



J.L. Feng et aL/Nuclear Physics B 546 (1999) 3-18 13 

terms (light). (Electroweak symmetry breaking requires m~ at the light scale, since 
m2= 1 2 (m~/,, + m2d + 2/z 2) sin 2/3.) 

Such a hierarchy might be generated by an approximate U(1) symmetry. In the 
absence of the /z and SSB parameters, the MSSM possesses two global U(1)  sym- 
metries: a Peccei-Quinn symmetry, under which all components of a given superfield 

have the same charge, and an R-symmetry, under which the boson and fermion com- 
ponents of a given superfield differ by one unit. If /z and the SSB parameters are 
viewed as spurion fields [26], we may choose the following charge assignments for 
them: PQ(~) = PQ(m 2) = I, with all others PQ neutral, R(mo) = R(/z) = 0, and 
R(m 2) = R(M]/2) = R(A) = - 2 .  Under suitable linear combinations of these two 
symmetries, such as R ÷ PQ, all parameters are charged, except for the scalar masses 
m0. (Note that scalar masses are neutral, and gaugino masses and A-terms are charged, 
for all possible linear combinations.) Thus, an approximate U( 1 ) symmetry, such as an 

R + PQ symmetry, naturally produces the necessary hierarchy, and the presence of R 
symmetries may play a vital role in realizing models that exhibit the inverted hierarchy. 

Alternatively, the suppression of the necessary parameters may be the result of some 
other mechanism. Assume, for example, that the scale at which SUSY breaking is 
communicated to the MSSM, M, is significantly higher than the initial scale of SUSY 

breaking itself, v/ft. We can then express the most general set of operators in an 
expansion in powers of V'-ff/M. The leading terms in that expansion that generate the 

# parameter and soft terms have the following form: 

Scalarmasses:fd40~cbi [StS ZtZ ] 
LM 2 + - ~ -  + . . . .  (16) 

  amete  : + I 

Gauginomasses: fd2OW~w~[S+. . .  1 , (18) 

A-terms: f d2Oq~iq~j~k [ S + . . .  1 and f d4Oqb~cI)i [ S + . . .  1, (19) 

where the W~ are gauge vector supermultiplets containing the standard model gauginos, 
the 4~i are standard model chiral superfields, and S and Z represent SUSY-breaking 
gauge singlet and non-singlet superfields, respectively. These terms give SSB parameters 
and the jx parameter when the S and Z fields get F-term vacuum expectation values: 
S ~ FsO 2, Z ---, FzO 2 (and, in the second source for A-terms, q~ --, F~,O 2 ~ q~jq~k02). 

From the expressions above, it is clear that the terms corresponding to dimension-3 
operators rely on SUSY-breaking singlet fields at leading order in M - I  , while the scalar 
masses do not. Therefore, in any scenario in which Fs << Fz (or S is absent from 
the spectrum), /z, the gaugino masses, and all A-terms will be suppressed relative to 
scalar masses. For example, to generate the desired hierarchy, it is sufficient for Fs 
to be generated radiatively so that Fs "-' a/47r Fz. (Note, however, that m 2 must be 
suppressed by some other means, such as the U(1) symmetries discussed above.) 
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Finally, it is interesting to ask whether such a hierarchy could ever occur in super- 
gravity-mediated SUSY-breaking models. It is known that in models without singlets, 

gaugino masses are suppressed relative to scalar masses. If we further assume that there 
are no Planck scale vacuum expectation values in the hidden sector (as is expected in 
models that break SUSY in the fiat limit), then A-terms will also be suppressed [27]. 

In such scenarios, conventional contributions to the gaugino masses and A-terms are 
highly suppressed, and the dominant contributions have recently been shown to be 
those arising from the superconformal anomaly [28]. In fact, the natural suppression 
of gaugino masses relative to squark masses is then one-loop, roughly corresponding to 
the size we require in our mechanism. 

Once the hierarchy between the scalar and gaugino masses is generated, it is still 

necessary to understand the particular form of the scalar mass boundary conditions that 
are required in these scenarios. 

The rational relations that are required among the soft masses in the previous sections 
are immediately reminiscent of the relations one would expect were soft masses to 
be communicated via D-terms of broken gauge symmetries. This results in terms Z~ = 
½g2[T r Qim2i + ~:]2, where Q is a charge in the Cartan subalgebra of the broken group 

and ( is an order parameter of the group's breaking. Note that the squared masses 
are always proportional to the broken Cartan charges of the fields. Unfortunately, it is 
impossible to have the spectrum of charges corresponding to Eq. (9) [Eq. (15) ] and 
simultaneously demand invariance of the top [top and bottom] Yukawa coupling under 
the broken symmetry group, which is a natural assumption given its large size. 

One might also consider the framework of weakly coupled string theory. There, 

the dilaton field is one of the singlets S above. If SUSY breaking is dominated by the 
dilaton F component, then gaugino masses and (universal) scalar masses are of the same 
order [29]. However, if SUSY breaking is dominated by F components of moduli ~M, 

gaugino masses arise only at loop-level in string theory, giving M1/2 ~ (O'string/477") m0. 
(Of  course, a mechanism for suppressing the A-terms is also needed.) Incidentally, in 
the moduli-dominated scenario, scalar masses are generically all at the same scale, but 
may differ by order one coefficients given by the K/ihler metric: rn 2 .~ Kiim 2. This 

is exactly the necessary condition for radiative inverted hierarchy generation. In this 
framework, the boundary condition scalar mass ratios that we derived above correspond 
to ratios of modular weights of the different fields. 

6. The CP and Polonyi problems 

The R-symmetry discussed above was previously studied in Ref. [ 25 ], where a num- 
ber of attractive phenomenological features were noted. In that work, an approximate 
R-symmetry was seen as a possible source for a hierarchy/z, M~/2, A ~ 1 GeV << mo 
mweak. In this study, we are considering mass scales roughly 100 times those discussed 
there. However, as most of the attractive features discussed there result from the hier- 
archy itself, they apply equally well here. For example, supersymmetric contributions 
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to electron and neutron electric dipole moments are de,n oc ( l /m~)(Ml/2Fn/m2),  where 
rh ,-~ /~, A, and m0 represents scalar masses of the first generation. These contribu- 
tions are therefore suppressed both by the large scalar mass scale and by the hierarchy 
be tween  mlight and mheavy, and are well below current experimental bounds. 

Our models also have an important cosmological virtue. Many supergravity models 
contain a boson q~, the Polonyi field, with mass of order the gravitino mass. The 
Polonyi field has gravitational couplings and, consequently, an extremely long lifetime 

2 3 r ~ Me/m4~, where M p  is the Planck mass. For such models with gravitino masses 
of order 100 GeV, the Polonyi field typically decays during or after temperatures of 
order 1 MeV, thereby potentially ruining nucleosynthesis. This is often referred to as 
the "Polonyi problem" [30], and is a serious cosmological difficulty for many models. 

The Polonyi problem may be solved, for example, in particular SUSY-breaking sce- 
narios [31]. Irrespective of the SUSY-breaking mechanism, however, in the models 
discussed here, the Polonyi problem is always alleviated, as the gravitino mass m3/2 
m0 is in the multi-TeV range. It has been pointed out that this provides a solution to the 
Polonyi problem, since in this case even a Polonyi field with mass m6 ~ m3/2 ,.o l0 TeV 
decays sufficiently quickly to avoid the difficulty mentioned above [ 32]. Potential prob- 
lems with generating the baryon asymmetry and overclosing the universe with Polonyi 
decay products may also be solved, the first with Affleck-Dine baryogenesis, and the 
second with the presence of a very light and stable superpartner or with R-parity viola- 
tion [33]. 

7. Summary and outlook 

To conclude, we have investigated the possibility that soft SUSY-breaking scalar 
mass parameters are not < 1 TeV at some high scale boundary, as is typically assumed, 
but rather, are all in the multi-TeV range. For particular boundary conditions, given in 
Eqs. (9) and (15), we find that scalars with large Higgs couplings are asymptotically 
driven to the weak scale by renormalization group evolution, while the remaining scalars 
stay at the multi-TeV scale. By this mechanism, the light scalars are precisely those that 
must be light to preserve the gauge hierarchy, and the heavy scalars are precisely those 
corresponding to light fermions that must be heavy to satisfy stringent flavor-changing 
constraints. 

As in all models with hierarchical squark masses, it is important to note that multi-TeV 
scalar masses by themselves do not completely satisfy all flavor constraints [15,16]. In 
the above analysis, we have discussed only the evolution of the flavor diagonal masses. 
However, it is possible that off-diagonal masses are present at the high scale; such 
masses are largely unaffected by renormalization group evolution. Recent improvements 
in calculations of K ° - K  ° mixing have strengthened this most stringent constraint, so that 
now, even with mheavy ~ I0  TeV, the off-diagonal squark masses must roughly satisfy 

2 2 ml2/mheavy <~ 0.1 [1 ] .  This requirement on mixings (or non-degeneracies) is, however, 
relatively mild and is a great improvement over analogous constraints on models with 
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squarks below the TeV scale. 
There are several experimental signatures of these models. As evident from the dis- 

cussion above, detectable effects in the kaon system are possible. In addition, although 
the requirement of no tachyons implies roughly m23, m23 ~< mlightmheavy, large effects in 
the B system, for example, may be possible, and are potentially observable at current of 
near-future experiments [ 8]. There are also implications for the high energy frontier. At 
least some gauginos and some third generation sfermions are predicted to be accessible 
at the next generation of collider experiments. While the mheavy sector will not be, it 
may then be explored indirectly by measurements of the superoblique corrections of 
Ref. [9]. Although very massive scalars decouple from many observables, they leave 
their imprint on low energy processes by breaking the equality of gauge boson-fermion- 
fermion couplings and the corresponding gaugino-fermion-sfermion couplings. These 
deviations are non-decoupling. The superoblique parameters are therefore sensitive to 
arbitrarily heavy MSSM sfermions, and may be measured to high accuracy in processes 
involving the observable superparticles [9,10]. 

In this scenario, several requirements must be met. First, the flavor off-diagonal 
masses discussed above must be suppressed relative to flavor diagonal ones. Of course, 
as noted above, the necessary suppressions are mild relative to models with all scalars 
below the TeV scale. It is also worth noting that in such conventional models, even if 
some mechanism for suppressing flavor violation is implemented, (flavor-conserving) 
constraints on electric dipole moments and the Polonyi problem may still be rather 
severe; as argued in Section 6, these problems are naturally alleviated in the models 
discussed here. 

In addition, the requirement of extreme scalar degeneracy or alignment to remove 
dangerous flavor-changing contributions is replaced by the requirement of particular 
high scale boundary conditions. In the absence of a more fundamental theory, this is not 
an obvious improvement. However, this scenario opens a new arena for SUSY model 
building. With regard to the supersymmetric flavor problem, it presents the possibility 
that a solution is provided by some dynamical mechanism that produces the required 
boundary conditions, such as the simple conditions of Eq. (15). We have discussed the- 
oretical motivations for the required hierarchies and a possible relation to R symmetries. 
More generally, and independent of the SUSY flavor problem, it raises the possibility 
of scenarios in which electroweak symmetry breaking is not  fine-tuned, even though the 
fundamental scale for the soft SUSY-breaking parameters is ,-~ 10 TeV, rather than ,-~ 1 
TeV as is typically assumed. 

Finally, we note that, while our illustrations have been limited to the MSSM, these 
observations should apply more generally. It would be particularly interesting to pursue 
this framework in models with extended fixed point structures, and also more extensively 
in the high tan/3 regime. 



J.L. Feng et al./Nuclear Physics B 546 (1999) 3-18 17 

Acknowledgements 

The  authors  thank J. Bagger ,  P.G.O. Freund,  T. Moro i  and A. Pomaro l  for s t imulat ing 

c o m m e n t s  and conversat ions .  J .L .E  is grateful  to the theory groups of  Stanford and 

S L A C  for  hospitali ty,  and N.P. thanks the theory group at C E R N  for its hospitality. J.L.F. 

is supported by the Depar tment  o f  Energy  under  contract  D E - F G 0 2 - 9 0 E R 4 0 5 4 2  and 

through the generos i ty  o f  Frank and Peggy  Taplin. C.K. is supported by the Depar tment  

o f  Energy  under  contract  D E - A C 0 3 - 7 6 S F 0 0 0 9 8 .  The  work  o f  N.P. is supported by the 

N S F  under  grant  N S F - P H Y - 9 4 - 2 3 0 0 2  and by the Depar tment  o f  Energy under  contract  

D E - F G 0 2 - 9 6 E R 4 0 5 5 9 .  

References 

I 1 ] For recent quantitative analyses, see M. Ciuchini et al., hep-ph/9808328; 
R. Contino and I. Scimemi, hep-ph/9809437. 

I21 S. Dimopoulos and G.F. Giudice, Phys. Lett. B 357 (1995) 573; 
A. Pomarol and D. Tommasini, Nucl. Phys. B 466 (1996) 3. 

131 G. Dvali and A. Pomarol, Phys. Rev. Lett. 77 (1996) 3728; Nucl. Phys. B 522 (1998) 3. 
I41 A.G. Cohen, D.B. Kaplan and A.E. Nelson, Phys. Lett. B 388 (1996) 588. 
151 R.N. Mohapatra and A. Riotto, Phys. Rev. D 55 (1997) 1; 

R.-J. Zhang, Phys. LeU. B 402 (1997) 101; 
A.E. Nelson and D. Wright, Phys. Rev. D 56 (1997) 1598; 
J. Hisano, K. Kurosawa and Y. Nomura, hep-ph/9810411. 

I61 H.P. Nilles and N. Polonsky, Phys. Lett. B 412 (1997) 69; 
D.E. Kaplan, E Lepeintre, A. Masiero, A.E. Nelson and A. Riotto, hep-ph/9806430. 

171 S. Ambrosanio and A.E. Nelson, Phys. Lett. B 411 (1997) 283. 
181 A.G. Cohen, D.B. Kaplan, F. Lepeintre and A.E. Nelson, Phys. Rev. Lett. 78 (1997) 2300. 
[9] H.-C. Cheng, J.L. Feng and N. Polonsky, Phys. Rev. D 56 (1997) 6875; D 57 (1998) 152. 

1101 K. Hikasa and Y. Nakamura, Z. Phys. C 70 (1996) 139; 71 (1996) 356; 
M.M. Nojiri, K. Fujii and T. Tsukamoto, Phys. Rev. D 54 (1996) 6756; 
M.M. Nojiri, D.M. Pierce and Y. Yamada, Phys. Rev. D 57 (1998) 1539; 
S. Kiyoura, M.M. Nojiri, D.M. Pierce and Y. Yamada, Phys. Rev. D 58 (1998) 075002; 
E. Katz, L. Randall and S.-F. Su, hep-ph/9801416. 

[ I 1 ] Preliminary results of our investigation were reported in N. Polonsky, Nucl. Phys. B (Proc. Suppl. ) 62 
(1998) 204. 

1121 See, for example, 1. Jack and D.R.T. Jones, Phys. Lett. B 349 (1995) 294; 
I. Jack, D.R.T. Jones and K.L. Roberts, Nucl. Phys. B 455 (1995) 83; 
P.M. Ferreira, I. Jack and D.R.T. Jones, Phys. Lett. B 357 (1995) 359; 
M. Lanzagorta and G.G. Ross, Phys. Lett. B 364 (1995) 163. 

[131 M. Drees, Phys. Rev. D 33 (1986) 1468. 
[141 S.P. Martin and M.T. Vaughn, Phys. Rev. D 50 (1994) 2282; 

1. Jack, D.R.T. Jones, Phys. Lett. B 333 (1994) 372; 
Y. Yamada, Phys. Rev. D 50 (1994) 3537. 

[151 N. Arkani-Hamed and H. Murayama, Phys. Rev. D 56 (1997) 6733. 
[ 161 K. Agashe and M. Graesser, hep-ph/9801446; 

D. Wright, hep-ph/9801449. 
[17] See, for example, M. Wise, in Proc. of TASI '87, ed. R. Slansky and G. West (World Scientific, 

Singapore, 1988); 
J. Bagger, in Proc. of TASI '95, ed. D. Soper (World Scientific, Singapore, 1996) pp. 109-162. 

[181 C.T. Hill, Phys. Rev. D 24 (1981) 691. 
[ 19] N. Polonsky, Phys. Rev. D 54 (1996) 4537, and references therein. 



18 J.L. Feng et al./Nuclear Physics B 546 (1999) 3-18 

120] L.E. Ibanez and C. Lopez, Nucl. Phys. B 233 (1984) 511; 
M. Carena, M. Olechowski, S. Pokorski and C.E.M. Wagner, Nucl. Phys. B 419 (1994) 213; 
M. Carena and C.E.M. Wagner, Nucl. Phys. B 452 (1995) 45. 

121] M. Carena, P. Chankowski, M. Olechowski, S. Pokorski and C.E.M. Wagner, Nucl. Phys. B 491 (1997) 
103. 

[22] M. Carena and C.E.M. Wagner, hep-ph/9407209. 
[23] V. Barger, M.S. Berger, R.J.N. Phillips and T. Wohrmann, Phys. Rev. D 53 (1996) 6407. 
[24] See, for example, R. Rattazzi and U. Sarid, Phys. Rev. D 53 (1996) 1553. 
[25] J.L. Feng, N. Polonsky and S. Thomas, Phys. Lett. B 370 (1996) 95. 
126] S. Dimopoulos and S. Thomas, Nucl. Phys. B 465 (1996) 23. 
1271 I. Joichi and M. Yamaguchi, Phys. Lett. B 342 (1995) 111. 
[281 L. Randall and R. Sundrum, hep-th/9810155; 

G. Giudice, M. Luty, H. Murayama and R. Rattazzi, hep-ph/9810442. 
[29] See, for example, J. Louis and Y. Nir, Nucl. Phys. B 447 (1995) 18 and references therein. 
[301 G.D. Coughlan, W. Fischler, E.W. Kolb, S. Raby and G.G. Ross, Phys. Lett. B 131 (1983) 59. 
I31 ] See, for example, T. Banks, D.B. Kaplan and A.E. Nelson, Phys. Rev. D 49 (1994) 779; 

M. Dine, L. Randall and S. Thomas, Phys. Rev. Lett. 75 (1995) 398; 
Nucl. Phys. B 458 (1996) 291. 

[32] J. Ellis, D.V. Nanopoulos and M. Quir6s, Phys. Lett. B 174 (1986) 176. 
[33] T. Moroi, M. Yamaguchi and T. Yanagida, Phys. Lett. B 342 (1995) 105; 

M. Kawasaki, T. Moroi and T. Yanagida, Phys. Lett. B 370 (1996) 52, and references therein. 




