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Common Variants Near ZIC1 and ZIC4 in Autopsy-Confirmed 
Multiple System Atrophy

A full list of authors and affiliations appears at the end of the article.

Abstract

Background: Multiple System Atrophy is a rare neurodegenerative disease with alpha-synuclein 

aggregation in glial cytoplasmic inclusions and either predominant olivopontocerebellar atrophy 

or striatonigral degeneration, leading to dysautonomia, parkinsonism, and cerebellar ataxia. One 

prior genome-wide association study in mainly clinically diagnosed patients with Multiple System 

Atrophy failed to identify genetic variants predisposing for the disease.

Objective: Since the clinical diagnosis of Multiple System Atrophy yields a high rate of 

misdiagnosis when compared to the neuropathological gold standard, we studied only autopsy-

confirmed cases.

Methods: We studied common genetic variations in Multiple System Atrophy cases (N = 731) 

and controls (N = 2898).

Results: The most strongly disease-associated markers were rs16859966 on chromosome 3, 

rs7013955 on chromosome 8, and rs116607983 on chromosome 4 with P-values below 5 × 10−6, 

all of which were supported by at least one additional genotyped and several imputed single 

nucleotide polymorphisms. The genes closest to the chromosome 3 locus are ZIC1 and ZIC4 
encoding the zinc finger proteins of cerebellum 1 and 4 (ZIC1 and ZIC4).

Interpretation: Since mutations of ZIC1 and ZIC4 and paraneoplastic autoantibodies 

directed against ZIC4 are associated with severe cerebellar dysfunction, we conducted 

immunohistochemical analyses in brain tissue of the frontal cortex and the cerebellum from 

24 Multiple System Atrophy patients. Strong immunohistochemical expression of ZIC4 was 

detected in a subset of neurons of the dentate nucleus in all healthy controls and in patients 

with striatonigral degeneration, whereas ZIC4-immunoreactive neurons were significantly reduced 

inpatients with olivopontocerebellar atrophy. These findings point to a potential ZIC4-mediated 

vulnerability of neurons in Multiple System Atrophy.
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Multiple system atrophy (MSA) is a rapidly progressive rare neurodegenerative disease 

presenting with variable combinations of dysautonomia, parkinsonism, and cerebellar 

ataxia.1 Two forms of MSA can be clinically distinguished, characterized by either 

predominant parkinsonism or predominant cerebellar symptoms.2 Its estimated prevalence is 

3.4–4.9 cases per 100,000 individuals in the general population, and 7.8 cases per 100,000 

in persons older than 40 years.3 The mean survival time from disease onset is 6–10 years.4,5 

Currently, only limited symptomatic treatments and no disease-modifying therapies are 

available.6

The typical symptoms of MSA are caused by the progressive degeneration of neurons in 

different brain regions, particularly in the substantia nigra, striatum, inferior olivary nucleus, 

pons, and cerebellum, but also other parts of the central nervous systems, emphasizing 

the multisystem character of MSA.2,7 The histological hallmarks in brains of patients 

with MSA are glial cytoplasmic inclusions (Papp–Lantos bodies) in oligodendrocytes 

containing aggregated and misfolded α-synuclein.8 Neuropathologically, two subtypes can 

be distinguished, one with predominant olivopontocerebellar atrophy (OPCA), the other 

with mainly striatonigral degeneration (SND).9,10 In addition, a mixed phenotype displaying 

features of both OPCA and SND is found in the brains of some patients.9,10

The pathogenesis of MSA is unclear. MSA is considered a sporadic disease.11 

Epidemiological studies have investigated the influence of environmental factors in MSA, 

including exposure to farming-related factors (pesticides, solvents, mycotoxins, dust, 

fuels, oils, fertilizers, animals) and certain lifestyles (consumption of well water, rural 

living, diet, and physical activity).12–14 Apart from a marginal effect of pesticides, no 

other environmental factors have been convincingly associated with an increased risk for 

development of MSA.12−14

Hypothesis-driven candidate gene studies have been inconsistent with respect to variants that 

might be associated with MSA. Associations of MSA with the genes COQ2, SNCA, MAPT, 

and PRNP have been discussed.15–20 One prior genome-wide association study (GWAS) 

did not identify hits of statistical significance at a genome-wide level, despite the analysis 

of 918 cases and 3864 controls.21 This GWAS had mainly included clinically diagnosed 

MSA cases. It needs to be stressed that clinical diagnosis is frequently not accurate in MSA. 

For example, a recent clinicopathological study demonstrated a false-positive diagnosis at 

autopsy in 38% of patients with clinically diagnosed MSA.22

To avoid inclusion of misdiagnosed patients in the GWAS described in this study, we 

included only autopsy-confirmed cases and appropriate ethnicity-matched controls.
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Subjects and Methods

Patient Recruitment

Ethical approval had been obtained from all responsible ethics committees. All participants 

had given written consent.

Neuropathologists at each recruitment site (Table 1) based the definite neuropathological 

diagnosis of MSA on histopathological criteria, taking into account glial cytoplasmic 

inclusions immunoreactive for α-synuclein in characteristic anatomical distribution as a 

defining feature of MSA.23 Age, sex, disease history (including disease onset and duration), 

and neuropathological findings were recorded in a standardized manner for all cases.

Controls were ethnically matched to cases and either derived from biobanks KORA-gen24 

or popGen25 (Europe sites) or from a North American site (Alzheimer’s Disease Genetics 

Consortium).26 The Alzheimer’s Disease Genetics Consortium assembled and genotyped 

DNA from subjects enrolled in the 29 NIA-Alzheimer’s Disease Centers located across 

the United States. For this study, the Alzheimer’s Disease Genetics Consortium provided 

a subset of mostly clinical, cognitively normal controls. Patients and controls were of 

North-Western European and African American ancestry.

DNA Extraction

We isolated DNA from 30 mg frozen cerebellar cortex using QIAamp DNA Mini Kit 

(Qiagen, Venlo, the Netherlands). DNA extraction was performed at German Center for 

Neurodegenerative Diseases (DZNE, Munich, Germany). DNA was stored at −80°C until 

use. DNA concentration was measured using a NanoDrop Spectro-photometer. DNA quality 

was determined by gel electrophoresis.

Genotyping

All samples were genotyped on Infinium Global Screening Arrays (Illumina, San Diego, 

CA, USA). The cases were genotyped at the Institute of Clinical Molecular Biology, Kiel 

University, Germany. The samples were genotyped in one batch on array version 2.0 for 

cases and version 1.0 for controls. Genotypes were called using Illumina Genome studio 

according to the manufacturer’s instructions using in-house cluster files.

Quality Control and Imputation

We used PLINK (v. 1.9) [1] and R (v. 3.6.3)27 for all analyses. Only variants successfully 

genotyped in both the patient and the control populations were included in the subsequent 

analyses. Variants with multicharacter allele codes, insertions, deletions, duplicated markers, 

and all A/T and G/C variants were excluded. We excluded all samples discordant between 

reported and genotypic sex. Missing sex was imputed, and samples with ambiguously 

imputed sex were discarded. After a first step of filtering out samples and variants with 

call rate of less than 85%, we excluded variants with an individual call rate of less than 

98% in a second filtering step. Next, we removed variants with a minor allele frequency 

<0.01, a significant deviation from Hardy–Weinberg equilibrium (P < 1 × 10−6) in controls, 

or informative missingness (P < 1 × 10−5). Subsequently, we excluded individuals with a 
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variant call rate of <98% or an outlying heterozygosity rate (mean ± 3 standard deviations). 

We used a pruned dataset containing only markers in low linkage-disequilibrium regions 

(pairwise r2 < 0.2) to test for duplicated individuals and cryptic relatedness (Pihat > 0.125) 

using pairwise genome-wide estimates of the proportion of identity by descent. For each 

detected sample pair we excluded the individual with a lower call rate. Ethnical outliers were 

identified by a principal-component analysis (PCA) together with the publically available 

1000 Genomes data with known ethnicities.28 Because the study population has genetically 

a mainly European ancestry, as ascertained by the PCA, we determined a European center 

and excluded samples more than 1.5 times the maximal European Euclidean distance 

away from this center. After a first association analysis of genotyped single nucleotide 

polymorphisms (SNPs) only, we inspected visually the cluster plots of all variants with a 

P value <1 × 10−5 and discarded variants without adequate cluster separation. Imputation 

was carried out on the quality-assured dataset using the TOPMed Imputation Server, which 

employs Eagle2 for phasing and minimac4 for the imputation of genotypes.29,30 The most 

likely genotype is used in downstream analyses. Variants were again filtered for minor 

allele frequency and deviation from Hardy–Weinberg equilibrium in controls with the same 

thresholds as before. In addition, SNPs with an imputation quality score R2 < 0.7 were 

excluded, leaving 8,131,900 variants for analyses. As a final step of the quality-control 

procedure, we used the R package PCAmatchR to ethnically match cases to controls with 

a 1:4 ratio to overcome possible difficulties with population stratification, leading to 3240 

individuals for the analyses.31

Association Analysis

We used logistic regression to test the additive genetic model of each marker for association 

with disease status. Following scree plot analysis, we incorporated the first two dimensions 

of the PCA and sex as covariates. We used a genome-wide significance threshold of P 
< 5 × 10−8 and the threshold of P < 5 × 10−6 for suggestive association. Conditional 

analyses, including, in turn, each SNP with a suggestive association as additional covariate, 

were conducted to identify adjacent independent signals. Furthermore, we tested for clumps 

of correlated SNPs, ie, to assess how many independent loci had been associated, and 

determined the number of variants supporting the lead SNP at each locus, ie, variants with P 

values less than the clumping threshold of 5 × 10−5 are in linkage disequilibrium (r2 ≥ 0.4) 

and not farther than 250 kb away from the respective SNP. Visualization of the results was 

carried out with R and LocusZoom32 for regional plots. Variant positions in this article are 

reported on human genome version 38 (GRCh38/hg38).

Immunohistochemistry on MSA Patients’ Brain

Formalin-fixed and paraffin-embedded (FFPE) tissues from patients with MSA and controls 

without neurological or psychiatric diseases were obtained from the Neurobiobank Munich 

(Germany). All autopsy cases of the Neurobiobank Munich were collected on the basis 

of an informed consent according to the guidelines of the ethics commission of the Ludwig-

Maximilians-University (Munich, Germany; #345–13). MSA cases had been diagnosed 

according to established histopathological diagnostic criteria.10,23
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For ZIC4 immunohistochemistry, 5-μm-thick sections of FFPE tissues of the frontal 

cortex and the cerebellar hemisphere, including the dentate nucleus, were prepared. After 

deparaffinization, heat-induced epitope retrieval was performed in Tris/EDTA, pH 9, at 95°C 

for 30 minutes. For blocking of endogenous peroxidase and unspecific protein binding, 

the sections were incubated with 5% H2O2 in methanol for 20 minutes and I-Block 

reagent (Applied Biosystems, Waltham, MA, USA) for 15 minutes. Subsequently, ZIC4 

primary antibody (rabbit, polyclonal; Merck/Sigma-Aldrich, Darmstadt, Germany) was 

applied overnight at 4°C at a dilution of 1:100. Signal detection was performed using the 

DCS ChromoLine DAB kit (DCS, Hamburg, Germany) according to the manufacturer’s 

instructions. Sections were counterstained for 1 minute with Mayer’s hemalum solution 

(Waldeck, Münster, Germany).

To determine the fractions of ZIC4-positive neurons of all neurons in the dentate nucleus, we 

scanned stained slides using a slide scanner (Axio Scan. Z1; Zeiss, Oberkochen, Germany) 

and visualized using the free ZEN lite software (v. 3.3; Zeiss). For statistical evaluation of 

the data, Student t test was used, and statistical significance was defined as P < 0.05.

Results

Patient Sample

From the initial sample of 731 cases, 13 cases had to be excluded because of insufficient 

tissue quality. After thorough quality control and filtering, 648 cases and 2592 controls 

covering 8,131,900 variants were included in the association analysis (Fig. 1). The number 

of excluded samples and variants in each step of the quality-control procedure is shown in 

Tables S1 and S2.

Association Results

We performed logistic regression incorporating sex and determined the first two dimensions 

of PCA as covariates using the scree plot method. The genomic inflation factor of λ = 1.01 

(unimputed λ = 1.01; Fig. S1) indicates that no significant population stratification was 

present (Fig. 2A). We did not identify any disease-associated variants with a P value less 

than the genome-wide significance threshold of P < 5 × 10−8, but suggestive associations 

with P < 5 × 10−6 at 10 different loci (Fig. 2B) with the leading SNP at each locus 

shown in Table 2. Conditional analyses, including, in turn, any SNP with P < 5 × 10−6, 

excluded the presence of multiple independent signals at each locus. All variants with 

suggestive associations are listed in Table S3. The most noteworthy hits were rs16859966 

on chromosome 3 (P = 8.6 × 10−7; odds ratio [OR], 1.58; 95% confidence interval [CI]: 

1.32–1.89), rs7013955 on chromosome 8 (P = 3.7 × 10−6; OR, 1.8; 95% CI: 1.40–2.31), 

and rs116607983 on chromosome 4 (P = 4.0 × 10−6; OR, 2.93; 95% CI: 1.86–4.63), which 

were supported by at least one additional genotype, as well as several imputed SNPs with P 

values less than the clumping threshold of 5 × 10−5 as discovered in the clumping analysis 

(Table 2). The genes closest to the chromosome 3 locus are the Long Intergenic Non-Protein 

Coding RNA 2032 (LINC02032) approximately 100 kb downstream and the zinc-finger 

proteins of cerebellum 1 and 4 genes (ZIC1, ZIC4), located roughly 600 kb upstream 

(Fig. 2E). The top SNP rs7013955 on chromosome 8 maps to the lysyl oxidaselike 2 gene 
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(LOXL2; Fig. 2D). The association signal around SNP rs116607983 on chromosome 4 is 

located in a region devoid of protein-coding genes approximately 2000 kb to either side 

(Fig. 2E). A fourth locus on chromosome 5 (rs2279135) was also supported by multiple 

clumped SNPs, but all SNPs, including the lead SNP, were imputed (Table 2). Several 

variants clumped at the chromosome 5 locus were located in the ARHGEF37 gene, coding 

for Rho Guanine Nucleotide Exchange Factor 37 (Fig. 2F). None of the identified SNPs 

is an expression quantitative trait locus in brain tissues according the Genotype Tissue 

Expression project.33 At four of the six remaining loci with variants exhibiting suggestive 

associations, at most two supporting SNPs were present, which were all imputed; in the 

other two loci, no supporting SNPs could be found in the clumping analysis (Table 2, Fig. 

S2). We did not investigate these loci further because it is unlikely that they represent 

valid associations. No significant associations with Bonferroni-adjusted P values were 

detected with previously reported Parkinson’s disease associations from a meta-analysis 

of 17 datasets from a Parkinson’s disease GWAS (Table S4).34

ZIC4 Immunohistochemistry on MSA Patients’ Brain

ZIC4 and ZIC1 are known to play a critical role in the embryonal development of 

the cerebellum. Heterozygous deletions comprising the ZIC1 and ZIC4 locus have 

been associated with the Dandy–Walker malformation, a rare congenital condition 

characterized by a hypoplastic cerebellar vermis and an enlarged fourth ventricle.35,36 

In mice, deletions of ZIC1 and ZIC4 lead to a striking phenotype similar to the Dandy–

Walker malformation with cerebellar hypoplasia and foliation defects.35,36 In addition, 

paraneoplastic autoantibodies against ZIC4 protein are linked to severe cerebellar dys-

function and degeneration.37,38

Because cerebellar degeneration and corresponding symptoms are also a central hallmark 

of MSA, we decided to follow up on a potential role of ZIC4 in MSA patient brains 

by performing immunohistochemical stainings. For ZIC1, no primary antibody was 

appropriately sensitive and specific on human tissue in our hands. Thus, FFPE tissues of 

the cerebellum and, for comparison, the frontal cortex of patients with MSA (n = 10 SND, 

n = 14 OPCA/mixed phenotype) and healthy controls (b = 5) were stained with antibodies 

raised against ZIC4.

Nuclear and cytoplasmic staining of frontal cortex neurons was observed in all brains 

examined without differences between healthy controls and patients with MSA (Fig. 3A–

C). In the cerebellar dentate nucleus, we found strong expression of ZIC4 in a subset of 

neurons in healthy controls, as well as patients with MSA with predominant SND (Fig. 

3D,E,G,H). In contrast, patients with MSA with mixed subtype or OPCA showed reduced 

numbers of ZIC4-positive neurons, which were furthermore only weakly stained (Fig. 

3F,I). Quantification of the proportions of ZIC4-positive neurons among the total number 

of dentate nucleus neurons depicted relatively constant proportions in healthy controls 

and patients with MSA-SND (33.2% ± 0.0% vs 32.6% 0.0%), whereas in patients with 

MSA-OPCA or MSA-mixed phenotype, we found significantly lower percentages of ZIC4-

positive neurons (15.5% ± 0.1%) (Fig. 3J).
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Discussion

As part of the study, brain banks were contacted worldwide, and all available white 

MSA brains were included. As in the prior GWAS with 918 predominantly clinically 

diagnosed MSA patients, our current GWAS of 648 patients with autopsy-confirmed MSA 

did not identify disease-associated common variants less than the genome-wide significance 

threshold. Previously, hypothesis-driven candidate gene studies found inconsistent results for 

genetic variants and genes potentially associated with MSA. An association of MSA with 

genetic variants in COQ2, SNCA, MAPT, and PRNP had been discussed.16–20,39 However, 

these genes have not been convincingly confirmed in other candidate gene studies and have 

not been associated in a previous MSA GWAS.21 This preceding GWAS analyzed 918 

mostly clinical cases and 3864 controls. Overall, this GWAS did not identify any genome-

wide significant hits. Because our prior GWAS of 219 patients with autopsy-confirmed 

corticobasal degeneration did identify significant disease-associated common variants, our 

current findings strongly suggest that the genetic contribution to disease risk is smaller in 

MSA.40

Nevertheless, our study demonstrates several suggestive associations at different loci, which 

may provide relevant hypotheses for follow-up investigations into the pathogenesis of MSA.

Specifically, we identified a variant on chromosome 3 (rs16859966; P = 8.6 × 10−7; OR, 

1.58; 95% CI: 1.32–1.89) located upstream of ZIC1 and ZIC4. ZIC1 and ZIC4 are located in 

close genomic proximity to each other and encode transcription factors highly expressed in 

different brain areas.41,42

Proper function of these proteins is critical for the development of the CNS, particularly the 

cerebellum.36 Although no effect of rs16859966 on ZIC1 or ZIC4 expression is recorded in 

the Genotype Tissue Expression database, rare genetic variants or deletions in ZIC1 or ZIC4 
result in congenital cerebellar defects.35,36,43 A heterozygous deletion of ZIC1 and ZIC4 

causes the Dandy–Walker malformation, a developmental disorder of the cerebellum.35,44 

Remarkably, two recent epigenomic analyses in brain tissue of MSA point to ZIC4.45,46 

Moreover, paraneoplastic autoantibodies against ZIC4 induce cerebellar degeneration.38 Due 

to the pronounced cerebellar degeneration in MSA, we followed up on a possible role of 

ZIC4 In MSA.

Although we could detect a relatively constant proportion of approximately one-third ZIC4-

positive neurons among all neurons in the cerebellar dentate nucleus in healthy controls 

and patients with MSASND, cases with MSA-OPCA or the mixed MSA phenotype showed 

significantly lower fractions of ZIC4-positive neurons. This finding suggests that ZIC4 

may be involved in the neurodegeneration in MSA. The involvement of ZIC4 mutations 

in the Dandy–Walker cerebellar malformation and the paraneoplastic ZIC4 autoantibody–

associated cerebellar degeneration could suggest a pathomechanism in MSA, by which 

altered ZIC4 expression could increase neuronal vulnerability. Further analyses of a 

potential functional interaction of α-synuclein and ZIC4 are currently ongoing.

Explorative analysis of PD-related associations identified by GWAS yielded no significant 

association in MSA when adjusting for multiple testing. However, for unadjusted P values, 
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five SNPs reached a significance threshold of P< 0.05,which might be interesting to study 

further.

This study has a major limitation. Typically, a GWAS is conceptualized as a two-stage 

design with a discovery stage and a replication stage and supposedly achieving “genome-

wide significance” in the discovery stage. The P values in the replication stage should 

remain significant after Bonferroni correction. Due to the limited number of autopsy-

confirmed MSA cases worldwide, we could not conduct a two-stage procedure, let alone 

a further independent replication. In view of the aforementioned diagnostic uncertainty in 

clinical cases, a replication in predominantly clinically diagnosed MSA cases did not seem 

desirable.

Therefore, we strongly encourage bringing MSA cases to autopsy and conducting a further 

independent replication study to confirm or refute the hypotheses provided by our study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
Flowchart sample quality control. SD, standard deviation. [Color figure can be viewed at 

wileyonlinelibrary.com]
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FIG. 2. 
Association plots for multiple system atrophy (MSA). (A) QQ (quantile-quantile) plot 

based on 8,109,760 variants after imputation. (B) Manhattan plot showing –log10 P values 

from logistic regression on imputed variants with sex and two principal components as 

covariates plotted against their chromosomal position. The red and blue lines indicate the 

genome-wide significance threshold of 5 × 10–8 and threshold for suggestive associations 

of 5 × 10–6, respectively. (C) Regional plot for the association between MSA and variants 

on chromosome 3 in the genomic region from 147.4 to 148.6 Mb. A circle represents a 
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genotyped variant and a plus symbol an imputed variant. The r2 metric displays the pairwise 

linkage-disequilibrium (LD) between the leading and the respective variant. The bottom 

part shows gene positions. (D) Regional plot for associations on chromosome 8 in the 

genomic region from 22.7 to 23.9 Mb. (E) Regional plot for associations on chromosome 

4 in the genomic region from 32.8 to 34.0 Mb. (F) Regional plot for associations on 

chromosome 5 in the genomic region from 149.0 to 150.2 Mb. [Color figure can be viewed 

at wileyonlinelibrary.com]
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FIG. 3. 
ZIC4 immunohistochemical staining of multiple system atrophy (MSA) patients and control 

brains. Representative ZIC4 immunohistochemical stainings of different brain regions 

(antibodies binding specifically to antigens in biological tissues, eg, brain tissue) of a control 

without neurodegenerative disease (A, D, G) and two MSA patients with striatonigral 

degeneration (SND) (B, E, H) and mixed subtype (C, F, I), respectively. (A–C) Nuclear 

and cytoplasmic expression of ZIC4 (brown staining) was detected in a comparable manner 

in the frontal cortex of healthy controls and patients with MSA. In the cerebellar dentate 
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nucleus (dotted lines in D–I) of healthy controls and patients with SND, a constant subset 

of neurons stained strongly positive for ZIC4, whereas in patients with olivopontocerebellar 

atrophy (OPCA) or mixed subtype, only weak staining could be observed, and the number 

of ZIC4-positive neurons was clearly reduced (D–I, with higher magnification in G–I). (J) 

Quantification of ZIC4-immunoreactive neurons in relation to the total number of neurons 

of the dentate nucleus depicted on the entire slide showed significantly reduced fractions of 

ZIC4-immunoreactive neurons in patients with either mixed subtype (light blue) or OPCA 

(dark blue) compared with SND or controls without neurodegenerative disease, while no 

difference was seen between patients with SND and healthy controls. Scale bars: 100 μm 

(A–C), 200 μm (D–F), 50 μm (G–I). [Color figure can be viewed at wileyonlinelibrary.com]
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