
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Nested Refinement Types for JavaScript

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Ravi Chugh

Committee in charge:

Professor Ranjit Jhala, Chair
Professor Samuel R. Buss
Professor Alin Deutsch
Professor Cormac Flanagan
Professor Sorin Lerner

2013



Copyright

Ravi Chugh, 2013

All rights reserved.



The Dissertation of Ravi Chugh is approved and is acceptable in quality and form

for publication on microfilm and electronically:

Chair

University of California, San Diego

2013

iii



EPIGRAPH

No grammatical rules have sufficient authority
to control the firm and established usage of language.

Joseph M. Williams
“Style: Ten Lessons in Clarity and Grace"

iv



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Part I Prologue 1

Chapter 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 An Untyped λ-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Type Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Simple Types and Subtyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Richer Syntactic Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Refinement Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.4 Higher-Order Dependent Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 “Dynamic” Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.1 Untagged Unions and Path Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.2 Dictionary-Style Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.3 Extensible Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.4 Prototype Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.5 Dynamically Loaded Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Hybrid Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Part II Nested Refinements 23

Chapter 2 System D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Simple Refinements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.2 Nested Refinements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.3 Dictionaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.4 Type Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1.5 Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1.6 All Together Now . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Syntax and Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3 Type Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

v



2.3.1 Well-Formedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.2 Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.3 Subtyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4 Type Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.1 The Problem: Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4.2 The Solution: Stratified System D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 3 Algorithmic Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.1 Algorithmic Subtyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Bidirectional Type Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Chapter 4 Extensions to Subtyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1 Joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Meets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Formula Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5 Algorithmic Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Part III From System D to JavaScript 69

Chapter 5 System !D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1.1 Imperative Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1.2 Mutable Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1.3 Function Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1.4 Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Syntax and Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Type Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 Well-Formedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.2 Value Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.3 Expression Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.4 Subtyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.5 Type Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Chapter 6 System DJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.1 Base Types and Primitive Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.1.2 Prototype-Based Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.3 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.1.4 Null References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.1.5 Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.1.6 Return Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Syntax and Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3 Type Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3.1 Well-Formedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.2 Subtyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.3 Value Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

vi



6.3.4 Expression Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.5 Type Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Chapter 7 Dependent JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.1 Desugaring DJS to System DJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2.1 Improving Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2.2 Reducing the Annotation Burden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.4 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Part IV Epilogue 141

Chapter 8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.2.1 Verification for Functional Untyped Languages . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.2.2 Verification for Imperative Untyped Languages . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Appendix A Soundness of System D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
A.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
A.3 Soundness of Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

vii



LIST OF FIGURES

Figure 1.1. An Untyped λ-calculus with References and Records . . . . . . . . . . . . . . . . . . . . . . 4
Figure 1.2. Simple Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 1.3. Refinement Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 1.4. Spectrum of Syntactic and Dependent Type Systems . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 2.1. Syntax of System D Expressions and Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 2.2. Syntactic Sugar for System D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 2.3. Syntactic Sugar for System D (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 2.4. Semantics of System D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 2.5. Syntax of System D Judgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 2.6. Well-Formedness for System D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 2.7. Value Typing for System D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 2.8. Expression Typing for System D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 2.9. Subtyping for System D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 3.1. Syntax of Algorithmic System D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 3.2. Subtyping for Algorithmic System D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 3.3. Type Synthesis for Algorithmic System D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 3.4. Type Conversion for Algorithmic System D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 4.1. Joins and Meets for System D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 4.2. Extensions to Algorithmic System D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 5.1. Architecture of Dependent JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 5.2. Syntax of System !D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 5.3. Semantics of System !D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 5.4. Syntax of System !D Judgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 5.5. Well-Formedness for System !D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 5.6. Value Typing for System !D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 5.7. Expression Typing for System !D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 5.8. Subtyping for System !D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 6.1. Excerpt from System DJS file basics.djs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 6.2. Excerpt from System DJS file objects.djs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 6.3. Excerpt from DJS file prelude.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 6.4. Syntax of System DJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 6.5. Syntax of System DJS Judgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 6.6. Subtyping for System DJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 6.7. Value Typing for System DJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 6.8. Expression Typing for System DJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 6.9. Heap Unrolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 6.10. Expression Typing for System DJS (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 7.1. Sugared Types for DJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 7.2. DJS Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

viii



PREFACE

The language considered in this work is essentially a small, untyped programming

language. The firm and established usage of this language is taken to be the common patterns in

so-called dynamic languages. And the grammatical rules proposed, typing rules, are intended not

to reject large subsets of established usage and, hence, wield undue authority.
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Decades of research on type systems have led to advances in the kinds of programming

features that can be reasoned about and the kinds of errors that can be prevented. Nevertheless, the

programming idioms in untyped, or dynamic, languages make heavy use of features — run-time

type tests, mutable objects indexed by dynamically computed keys, prototype inheritance, and

higher-order functions — that are beyond the reach of prior type systems. Because of the rising

popularity of languages like JavaScript and Python, as well as the addition of dynamic features to

statically typed languages, techniques for reasoning about untyped languages are potentially very

valuable.

In this dissertation, we present Dependent JavaScript, a statically typed dialect of the

imperative, object-oriented, dynamic language. Our system builds on refinement types, which

augment traditional syntactic types with logical predicates to enable finer-grained reasoning.

We make several contributions to overcome limitations in prior refinement type systems that

prevent precise reasoning about idiomatic code in dynamic languages. First, we present nested

refinement types, where the typing relation is itself a predicate in the refinement logic in order

to specify types for programs that manipulate objects with dynamically computed keys. By

carefully coordinating SMT-based logical implication with syntactic techniques, nested refinement
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subtyping enables reasoning about such programs without resorting to a complex refinement

logic. Second, we present a formulation of flow-sensitive refinement types to retain the precision of

refinement types despite the presence of mutable variables. Finally, we present a refinement type

encoding called heap unrolling to reason about the semantics of prototype-based inheritance, again,

without resorting to a complex refinement logic. To demonstrate how these novel techniques

combine, we implement a type checker for Dependent JavaScript and evaluate its expressiveness

on a set of small, but challenging, JavaScript examples adapted from several benchmarks.
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Chapter 1

Introduction

Writing programs that do not crash at run-time and, furthermore, behave as intended is

difficult in any language. Type systems are designed to rule out the possibility of certain run-

time errors — such as “field-not-found errors” and “null-pointer exceptions” — from occurring.

Decades of research on type systems have produced numerous advances in terms of the kinds of

programming features that can be reasoned about and the kinds of errors that can be prevented.

Many of these techniques have made tremendous impact on widely-used languages such as C++,

Java, and C#, as well as on less popular but cutting-edge languages such as Haskell. Despite this

success, untyped, or so-called dynamic, languages like LISP, Python, and JavaScript have always

been popular, increasingly so in the last two decades, fueling endless debates about “catching

simple bugs early” in languages with type systems or “rapidly prototyping and innovating” in

those without them. But one irrefutable aspect of this debate is that current type systems are

unable to reason about programs in dynamic languages with sufficient precision and usability.

In this dissertation, we carve out a new point in the design space of type systems that

enables safety verification for a larger class of programming styles than in existing approaches. We

set the stage for our work, in this Introduction, as follows. First, we review a set of features that

are ubiquitous in programming languages. Next, we provide some background on techniques in

existing type systems that rule out classes of run-time errors in programs that use these features.

Then, we describe how idiomatic programs in popular, modern, dynamic languages like JavaScript,

Python, and Ruby fall beyond the reasoning capabilities of existing type systems. Finally, we

outline our novel techniques that, although general, are particularly well-suited to reason about

these challenging idioms.

1.1 An Untyped λ-calculus

Many widely-used programming languages feature functions, objects, and pointers.

Although languages often differ on the concrete syntax and sometimes on the semantics for

programs that manipulate these kinds of values, it is useful to study these “core” features in a

2
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way that is largely independent of a particular manifestation.

In seminal work, Alonzo Church [18, 20] introduced the λ-calculus (pronounced “lambda-

calculus”) as a minimal, elegant, and general formulation of the nature of computation, where

the only the mechanisms are functions (also called “lambdas”) and function application. All

other programming constructs can be encoded in terms of the pure λ-calculus. Although equal

in expressive power to Turing machines, the λ-calculus offers a higher level of abstraction for

specifying and executing computation than the relatively low-level nature of Turing machines.

The λ-calculus, however, is too low-level still for structuring complex, human-readable code, so

researchers have enriched the λ-calculus with additional features, like the ones mentioned above,

rather than relying on their encodings in the pure λ-calculus. These extensions allow the “essence”

of full-fledged languages to be modeled faithfully, giving traction to humans and tools that interact

with these programs, while avoiding overly-specific and unnecessary details.

We define the (abstract) syntax of a λ-calculus extended with records (i.e. objects) and

references (i.e. pointers) in Figure 1.1, following the style of standard presentations (e.g. [77]), to

model a set of core features found in many widely-used languages. We will describe, informally,

the semantics (often referred to as “dynamic semantics”) usually associated with these constructs,

with a focus on the kinds of errors that may arise at run-time. To set up our discussion of type

systems that rule out classes of errors, we will make a distinction between simple errors, or stuck

states, and more complex errors, which we will refer to as exceptions. Unless otherwise noted,

we assume that a language implementation terminates with an error message when a program

encounters a stuck state or an exception.

Base Values and Primitive Functions. Programming languages typically provide a set of base

values — like numbers n, booleans b, and strings s — and a set of primitive functions c that

operate on them. For example: the primitive function && may compute the boolean negation of two

boolean arguments or become stuck if one of the arguments is not a boolean; the primitive function

+ may compute the sum of two numeric arguments or become stuck if one of the arguments is not

a number; and the primitive function ++ may compute the concatenation of two strings of become

stuck if one of the arguments is not a string.

Instead of providing disjoint operations for different kinds of values, a language might

overload some operators. For example, instead of the semantics for + above, the primitive function

may be defined to operate on either pairs of numbers or strings, computing addition in the former

case and concatenation in the latter, and result in a stuck state for all other pairs of arguments.

Further still, a language may incorporate automatic, or implicit, conversion to provide yet

more flexible semantics for primitive functions. For example, + might be defined to compute the

sum of two numbers, the concatenation of two strings, and otherwise perform the concatenation

of the string representation of the two arguments, assuming the existence of another primitive

toString that produces a string representation for any argument. Under this semantics, calling
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v ::= Values

| n | b | s base value (number, boolean, string, etc.)

| c primitive function (==, &&, +, etc.)

| λx.e function

| {s = v} record (a.k.a. struct)

| r reference (a.k.a. pointer)

e ::= Expressions

| v value

| x variable

| e1 e2 function application

| {} empty record

| {e1 with e2 = e3} record update (a.k.a. field write)

| e[e′] record projection (a.k.a. field read)

| ref e heap reference allocation

| deref e dereference (a.k.a. heap read)

| setref e1 e2 set-reference (a.k.a. heap assignment)

| if e1 then e2 else e3 if-expression

Figure 1.1. An Untyped λ-calculus with References and Records

the + function would never lead to a stuck state.

In addition to the ways in which primitive functions may lead to simple errors (i.e. become

stuck), sometimes exceptions may be raised. For example, the division function / is usually

defined to divide two numbers except when the second is zero, in which case a “divide-by-zero”

exception is raised. In some languages, like C, this exception is unchecked and does not terminate

the program. The nonsensical output can lead to subsequent errors, however, so the choice to

silently proceed with evaluation can make it hard to reason about the root cause of a run-time

error.

User-Defined Functions. Function definitions allow the programmer to build computations on

top of the base values and primitive functions provided by the language. In higher-order languages,

function definitions may appear arbitrarily in programs — as in the core language of Figure 1.1

as well as in full-fledged languages like LISP, OCaml, and Haskell — and are referred to as

“first-class” citizens of the language, in the sense that functions can be passed to and returned

from other functions and stored in data structures. First-order languages like C, on the other

hand, restrict the syntax of programs to be a sequence of top-level function definitions, including
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a “main” function that serves as the entry-point, which themselves do not contain any nested

function definitions. In either case, a lambda λx.e is used to describe a function that takes a single

argument (without loss of generality) named by the formal parameter x which the function body

(the return expression) e may refer to.

The function application expression e1 e2, used to call primitive and user-defined functions,

proceeds in one of three ways depending on how e1 evaluates. If e1 evaluates to a primitive

function c, the application expression evaluates according to the semantics of the primitive

function, as described before. If e1 evaluates to a lambda λx.e and e2 evaluates to some value v,

the function body e is evaluated along with a mapping from the variable x to v. The subsequent

evaluation produces v when x is referred to. When trying to evaluate a variable that has not

been defined by (i.e. is not the formal parameter of) any enclosing function definition, evaluation

becomes stuck with a “variable-not-found” error. If e1 evaluates to anything other than a primitive

or user-defined function, then evaluation becomes stuck.

Records. Programming languages provides facilities to build up complex data structures com-

posed of base values and other data structures. One such mechanism, which we define in

Figure 1.1, is a record that maps a sequence s of string keys, or fields, s1 through sn to values

v1 through vn, respectively. Variations of records, also called structures or objects in different

settings, appear in a wide variety of languages, from purely functional languages like OCaml and

Haskell to imperative languages like C to object-oriented languages like C#, Java, and JavaScript.

Values are retrieved from records using the projection expression e[e′]: if e evaluates to a record,

e′ evaluates to a string s, and the record has an s key, then the value of that binding is retrieved;

otherwise, evaluation becomes stuck with a “field-not-found error.” The record update expression

{e1 with e2 = e3} evaluates e1 to a record, evaluates e2 to a string s, evaluates e3 to a value v, and

produces a new record value that is just like the old one except that it maps s to v, rather than the

binding of s in the original record, if any.

Many languages with records provide an inheritance mechanism that allows records to

implicilty inherit keys from a parent record. For example, one way to encode inheritance is to

equip record values with a special key “parent” that is intended to store a parent record. Then,

when evaluating the projection e[e′], where e evaluates to a record and e′ to a string s that is not

bound by the record, rather than becoming stuck evaluation would recursively look for s in the

record stored in its “parent” field. If no such “parent” key exists, then the projection would

finally become stuck with a “field-not-found error.”

Although arrays are often provided as a separate data structure mechanism, we can

encode arrays of length n + 1 as records that bind the string keys “0” through “n”. Typically, a

language with arrays raises an “array-out-of-bounds exception” when trying to retrieve (the string

representation of) an integer key that is either negative or beyond the length of the array.
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References. For better or for worse, many widely-used languages are imperative with a heap

that is kept “off to the side” during execution that maps references r (sometimes called pointers,

addresses, or locations) to values. The heap can be thought of as a global record of references that

is visible throughout the entire program. The reference creation, or allocation, expression ref e

creates a new reference r in the heap and initializes its contents to whatever e evaluates to. The

dereference expression deref e evaluates e to a reference r and retrieves the value stored in the

heap at r. If e does not evaluate to a reference, evaluation becomes stuck. The set-reference, or

assignment, expression setref e1 e2 evaluates e1 to a reference r, which must already be bound by

the heap, and updates the corresponding heap binding to whatever e2 evaluates to. The purpose of

the assignment is to perform a “side-effect” on the heap, so the value produced by the assignment

is of no consequence and is usually some dummy value. For example, using syntax typical of

some imperative languages, the assignment x := x + 1 to a mutable variable x corresponds to

the expression setref x (deref x + 1) in our core language.

In memory-unsafe languages like C, “pointers” are simply integers, rather than a separate

kind of value, and can be manipulated in all the ways that arbitrary integers can. Because pointers

are used to index into structs and arrays, exceptions like “field-not-found” and “array-out-of-

bounds” are unchecked and, hence, can lead to errors that are hard to reproduce and hard to

diagnose.

Additional Constructs. The last kind of expression we define in Figure 1.1 is the expression

if e1 then e2 else e3 that directs control flow. If the guard expression e1 evaluates to the boolean

true, then e2 is evaluated. If e1 evaluates to false, then e3 is evaluated. If e1 evaluates to any

other value, evaluation becomes stuck. Some languages have a facility to automatically convert

arbitrary values to booleans, in which case arbitrary expressions may be used as guards.

Many more features found in practical programming languages — including local vari-

ables, recursion, iteration, user-defined exceptions, non-local control flow, and threads, among

many others — have been formulated as extensions to the λ-calculus; several textbooks, including

[77] and [54], provide thorough introductions to many of these approaches. The semantics of

these features, as well as their implications for type system design, are largely orthogonal to our

discussion in this chapter.

1.2 Type Systems

As programs grow in size and complexity, it becomes harder to ensure that they will

not fail with simple errors or exceptions at run-time. Type systems are designed to statically

identify safe programs, which are guaranteed not to fail at run-time due a particular set of errors.

Typically, this set of errors is the set of stuck states, or simple errors, but more powerful type

systems can rule out certain kinds of exceptions as well. There is an inherent tradeoff in the design
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of every type system: in exchange for ruling out a class of errors from occurring at run-time,

some safe programs — and other “good” programs that may fail in a way that, for whatever

reason, is acceptable in a particular setting — will perform computation that lays beyond the

reasoning capabilities of the type system and, hence, conservatively rejected. In the extreme, a

type system that rejects every program ensures safety but is hardly useful! Decades of fruitful

research on type systems have improved this “sweet spot” — classifying as many of the safe

programs as possible — in two interrelated, but generally distinct, ways: (i) ensuring the absence

of simple errors from programs that use a wider variety of programming features and styles; and

(ii) ensuring the absence of more complex errors, beyond just the stuck states, for a given set of

programming features. In this section, we will survey several landmark techniques along each of

these fronts, after a couple general remarks.

Semantics Before Types. The techniques we will discuss identify classes of safe programs drawn

from untyped lambda-calculi, like the core language from the previous section, languages whose

semantics are defined before any notion of types. This “semantics before types” approach to

language definition has been the subject of much research with broad practical and theoretical

implications. But there are also many useful languages where types are defined along with

the syntax and semantics. Notable languages of this kind include class-based object-oriented

languages like C++ and C# which provide, in addition to a dynamically dispatched projection

expression e[e′] that is subject to traversal along an inheritance hierarchy as described before, a

statically dispatched projection expression (e @ T)[e′] that looks for the given key only in the record

denoted by the type T. Languages where static types interact with the dynamic semantics have

been studied in many contexts, but we will not describe them further in this report.

Inference vs. Annotations. An important factor in the “usability” of a type system is the

burden of type annotations required by the programmer, as opposed to types that can be inferred

automatically by the system, to prove that a program is safe. The annotation burden for the

systems we discuss generally increases with the sophistication of the system, from zero annotations

required for programs in the simplest systems to annotations that can be even larger than the

programs themselves! In the survey that follows, we will not discuss the details of how much

automatic inference each particular system performs.

1.2.1 Simple Types and Subtyping

There are several basic approaches for how type systems reason about base values,

functions, records, and references, which we will describe in this section. As we will see, a single

expression may be assigned multiple different types, in which case a subtyping relation on types,

written S <: T, relates types when the former type is “better” or “more specific” than the second.

That is, an expression e of type S can be used in any context where an expression of type T is
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required without compromising the safety of the program. We provide a representative syntax for

simple types in Figure 1.2.

Base and Function Types. Base values can be classified by types that correspond to the sorts

of values, such as Num, Bool, and Str, and by types that correspond to a specific subset of a sort

of values, such as Int to describe those numbers that are also integers. Because integers can be

assigned multiple types, the following subtyping rules relate Int with Num and all other base

types only to themselves:

Int <: Num B <: B

In the simply-typed lambda-calculus [19, 24], a function type, or arrow, T1→ T2 describes

any function λx.e that, given an argument x of type T1, either produces a value of type T2 or

does not return at all because it diverges (i.e. loops forever) or fails with a run-time error. By

allowing partiality, function types enable reasoning about functions and function applications

in a program despite not tracking precisely the exceptions that may be raised. For example, the

division function is typically assigned the type Num→Num→Num which hides the fact that it

raises a divide-by-zero exception when the second argument is zero.

Subtyping between function types is subtle. Consider an expression that expects an

argument g of function type Int→Num. To understand what functions f are safe to pass to this

context, consider the ways in which the context can interact with g: it may call g with expressions

of type Int, so f must accept values of any supertype of Int (Int and Num in our setting); and

it may use the values returned by g in contexts that requires Nums, so f must return values of

any subtype of Num (Int and Num). The following distinctive subtyping rule for function types,

where the relation on argument types is contravariant and on return types is covariant, captures

this intuition:
T1 <: S1 S2 <: T2

S1→ S2 <: T1→ T2

Control Flow. The standard way to reason about the expression if e1 then e2 else e3 is to

require that e1 has type Bool and that e2 and e3 have some common supertype T, in which case the

entire expression is assigned type T. This abstraction preludes the type system from accepting safe

expressions, such as if false then “bad” ++ 17 else “good”, which contain unsafe subexpressions

that are never evaluated at run-time.

Record Types. Record types have been studied extensively, with early investigations in the 1980s

and 1990s (e.g. [13, 103, 81, 14, 1, 82]) forming the basis for more powerful notions of objects

with inheritance found in modern languages. Many formulations of records, or “simple objects,”

use the type {s : T} to describe records that definitely have the keys, or fields, s1 through sn that
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B ::= Int | Num | Str | Bool Base Types

S, T ::= Types

| B base type

| T1→ T2 function type (arrow)

| {s : T} record type

| Ref T reference type

Figure 1.2. Simple Types

bind values of type T1 through Tn, respectively. To avoid reasoning about arbitrary computation,

these systems require that record update {e with “f” = e′} and record projection e[“f”] (often

written e.f) use syntactic (string literal) keys rather than arbitrary (computed) string keys. Record

subtyping, defined below, typically comprises three notions: permutation, which allows key-type

bindings to appear in any order; width subtyping, which allows extra keys to be “forgotten” if not

required; and depth subtyping, which allows the binding of a required key to be a subtype of that

required:

∀j. ∃i. s′i = s′′j and T′i <: T′′j

{s′ : T′} <: {s′′ : T′′}

In a system that includes width subtyping, a record type says nothing about keys not mentioned

in the type; other keys may or may not be bound by record values of that type.

Reference Types. To reason about heap-manipulating operations, the type Ref T describes heap

references that store values of type T. All assignments to such locations must store values of

type T (or any subtype) to maintain the invariant. Because a reference value is used both to store

values (which can be regarded as calling a function that sets a heap location) and to read values

(which can be regarded as calling a function that reads a heap location), subtyping on reference

types must be both contra- and covariant, or invariant:

Ref T <: Ref T

1.2.2 Richer Syntactic Types

Simple types provide a useful and solid foundation for preventing simple errors in

programs that manipulate functions, records, and references. Next, we will describe several

notable extensions that enable the static verification of larger sets of safe programs; the research

literature is filled with countless others.
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Parametric Polymorphism. Some functions — such as the identity function id = λx.x — are

agnostic to the types of their arguments, but simple function types are constructed only from

concrete base types. As such, id must be assigned a single type, for example, Num→Num,

which would allow the program to call id with numbers but not other kinds of values. As a

remedy, the polymorphic lambda-calculus [46, 83], or System F, allows functions that are parametric

in their arguments to be assigned universal types. For example, the id function can be assigned

the type ∀A. A→ A in System F, which allows different call sites to pass in different types of

arguments by instantiating the type variable A as needed in each context. A form of parametric

polymorphism [59, 72, 25], which is less expressive than in System F but enables better inference,

forms the basis for the functional programming languages Standard ML, OCaml, and Haskell.

Bounded Quantification. Using only simple types, functions that operate on records are as-

signed types that are too imprecise for many common situations. For example, consider the

function incN= λx.{x with “n” = 1 + x.n} which increments the number stored in the “n” field

of its argument and returns the updated record. Using simple types, incN can be assigned the

type {“n” :Num} → {“n” :Num} which specifies only that the output record has a numeric “n”

field. Width subtyping allows records with additional fields to be passed to incN, but any such

fields are lost by the return type of the function.

Matters are improved in systems with bounded quantification [13], where a polymorphic

function type ∀A <: T. A→ A is augmented with a type bound T that constrains what types can be

used to instantiate A. By choosing the record type from before as the bound, incN can be assigned

the type ∀A <: {“n” :Num}. A→ A which is sufficient to verify the safety of the projection and

addition operations without discarding information about any other fields present at each call

site. The interaction of bounded quantification with recursive types is improved by F-bounded

polymorphism [12], which forms the basis for generics and wildcards [100] in class-based languages

like Java.

Classes. As described earlier, the semantics of records in many languages incorporate the notion

of inheritance, where records implicitly inherit missing fields from their ancestors. Inheritance,

which is unaccounted for by the simple record types we have seen so far, has been the source

of many studies. One hallmark approach to records with inheritance (i.e. objects) is based on

classes, where a class C is a record of fields that serves as the parent for all instances of C, which

are themselves records. Another class C′ may be declared as the superclass of C and acts as the

parent of C′. An instance of C, therefore, inherits fields from C, C′, and so on. Critical to this

formulation is that the record types described by classes and their instances are not subject to

width subtyping; that is, each of these record types describes only those fields which are definitely

present at run-time. As a result, statically-defined class hierarchies can be traversed during type

checking to determine how dynamically-dispatched projection expressions will behave.
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Intersection and Union Types. An intersection type [76] T1 ∧ T2 describes expressions that satisfy

both T1 and T2. A common application of intersection types is to describe overloaded operators.

Recall that in some languages, the + operator may be defined to accept either pairs of numbers or

strings. Using intersection types, the type Num→Num→Num∧ Str→ Str→ Str can be assigned,

and when type checking a function application, the type system can perform the necessary

“case-split” to select the appropriate component of the intersection type.

Dually, a union type T1 ∨ T2 describes values that satisfy either T1 or T2. Union types

have been incorporated into systems for various purposes, for example, describing the “shared”

components of multiple object types [60], similar to the notion of an interface in object-oriented

languages.

Occurrence Typing. Many languages offer primitive operators that allow the program to

introspect, or reflect, on the sorts of values at run-time. For example, the functions isNum,

isStr, and isBool may be provided to accept arbitrary values, returning true if the argu-

ment is a member of the specified sort and false otherwise. Using this facility, the function

negate= λx. if isNum x then 0 - x else not x is defined to expect an argument x that is either a

number or a boolean, distinguished by a call to isNum, and computes the numeric subtraction or

boolean negation accordingly. Using union types, we might like to specify the type of negate as

Num∨ Bool→Num ∨ Bool, but to verify this type the system must account for the path-sensitive

reasoning, about the result of the call to isNum, on each branch.

Several approaches, including the recent occurrence typing approach in Typed Racket [99],

support a limited form of path-sensitive reasoning in order to narrow a union type by eliminating

some of its components to a more specific type along a particular branch. For example, the

primitive function isNum might, informally, be assigned the type Num→ True ∧ ¬Num→ False

where the singleton type True (resp. False) describes only the value true (resp. false), and ¬Num

describes all types except Num. By manipulating the types True and False specially when type

checking an if-expression, this approach can verify that negate satisfies the above function type

by narrowing the type of x, which is Num ∨ Bool, to Num on the then-branch and Bool on the

else-branch, thus, verifying the safety of the primitive operations on both branches.

1.2.3 Refinement Types

So far, we have taken a tour of mechanisms for statically preventing simple errors from

programs that use a variety of features and programming styles. Next, we will turn our attention

to approaches that verify the absence of more complex errors, or exceptions. The following

dependent type systems allow the type of one value to depend on the type of another, enabling the

specification of a wide variety of fine-grained properties. We refer to non-dependent type systems,

like the ones before, as syntactic systems. Dependent type systems are often simpler type systems

integrated with more precise, heavyweight program analysis techniques like verification [56], model
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B ::= Int | Num | Str | Bool Base Types

S, T ::= Types

| {x : B | p} refined base type

| x : T1→ T2 dependent function type (arrow)

| {s : T} record type

| Ref T reference type

p,q ::= Refinement Formulas

| · · · predicate

| p ∧ q | p ∨ q | ¬p logical connective

Figure 1.3. Refinement Types

checking [63], and abstract interpretation [22]; the type structure and basic invariants imposed by a

simpler type system provide a foundation atop which more complex invariants are tracked.

We refer to refinement type systems as a lightweight form of dependent types, where the

additional precision in the system is limited to constraints, or predicates, expressed in a logic

composed of decidable theories. Variations of refinement types and their applications have been

studied in many settings (e.g. [41, 104, 26, 31, 37, 7, 85, 94, 67]); the formulation that we describe

here, the syntax of which is summarized in Figure 1.3, is most closely related to presentations by

Flanagan et al. [37, 67].

Refined Base Types and Dependent Function Types. The syntax of refinement types differs

from that of simple types (Figure 1.2) in two ways. First, a base type is now written {x : B | p} to

describe the subset of values x of type B for which the formula p is true. Refinement formulas are

boolean combinations of predicates drawn from decidable theories — for example, the theories

of linear arithmetic, uninterpreted functions, and equality — that are relevant to the particular

system and applications. For example, the type {x : Int | x > 0} describes the set of positive integers

and {x : Int | x > y} describes the set of integers greater than y, an integer variable defined earlier

in the program.

Second, function types x : T1→ T2 now include the formal parameter x, which the return

type T2 can refer to. For example, (assuming parametric polymorphism in the system) the identity

function id= λx.x can be given the type ∀A. x : A→ {y : A | y = x} which is not only polymorphic

but, furthermore, encodes the fact that the return value is exactly equal to the argument.
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Refinement Subtyping. Central to the expressiveness of a refinement type system is the way

in which subtyping relates types. For function, record, and reference types, the subtyping rules

are very much like the ones described for simple type systems, with some details specific to the

presence of dependency. The subtyping rule for base types, however, appeals to the notion of

validity, because base types are defined in terms of refinement formulas:

B1 <: B2 Valid(p⇒ q)

{x : B1 | p} <: {x : B2 | q}

That is, subtyping on base types, which are sets of values, boils down to implication between

their refinement formulas. For example, {x : Int | x = 1} <: {x : Int | x > 0} <: {x : Int | true} because

x = 1⇒ x > 0⇒ true. By using rich but decidable theories, a refinement system provides a precise

notion of subtyping and can use decision procedures for Satisfiability Modulo Theories (SMT), as

implemented in solvers such as Z3 [27], to discharge the validity queries that arise during type

checking.

Control Flow-Based Reasoning. By combining precise specifications via refinements and path-

sensitive reasoning, refinement type systems are able to statically check for expressions that may

lead to run-time exceptions. The following demonstrate how numbers, primitive operations on

numbers, and equality can be assigned very precise, sometimes exact, specifications:

n :: {x : Int | x = n}

(/) :: x :Num→ y :{y′ :Num | ¬(y′ = 0)} →Num

(=) :: ∀A. x : A→ y : A→ {b :Bool | b = true⇔ x = y}

Notice that the type for division requires the second argument to be non-zero, in order to rule out

divide-by-zero exceptions. When verifying that the function λx. if x = 0 then null else 17 / x

has type Num→ (Num∨Null) (assuming the presence of union types and a singleton type Null

that describes the null value), the boolean b produced by the equality test in the guard has

type {b :Bool | b = true⇔ x = 0}. On the then-branch, the system tracks that b = true. On the

false-branch, the system tracks that b = false, so the call to the division operator is statically

verified as safe because x is guaranteed to be non-zero. This kind of path-sensitive reasoning has

been applied to verify the absence of array-bounds-exceptions (e.g. [104, 85]). For example, using

the following integer comparision and array-manipulating primitives

arrayLen :: ∀A. a :Arr(A)→ {n : Int | n = length(a)}

arrayGet :: ∀A. a :Arr(A)→ i :{j : Int | 0≤ j ∧ j < length(a)} → A

(<) :: x : Int→ y : Int→ {b :Bool | b = true⇔ x < y}
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a refinement system can verify that λa. λi. if i < arrayLen a then arrayGet a i else null has the

type (among other more precise ones) ∀A. Arr(A)→ {i : Int | i > 0} → (A∨Null) and does not fail

with array-bounds exceptions.

Data Structure Invariants. Beyond verifying the absence of complex errors, refinement types

can also be used to specify and enforce fine-grained invariants of data structures. So far, we have

discussed records and classes as ways to implement data structures. To simplify the notation in

this section, we consider a different mechanism for structuring data called algebraic datatypes, or

disjoint unions, which are especially common in functional programming languages [77]. Specified

as a (recursive) datatype, the type

IntList $ µt. Nil + Cons (hd : Int, tl : t)

specifies the type of integer lists, each of which is either the label Nil with no other data or a pair

labeled Cons, where the first component hd is an integer and the second component tl is another

integer list (referred to by the recursive type t being defined by the recursive type operator µ).

Using refinements, this coarse-grained type can be augmented with a predicate that describes each

value in the list. For example, the type of lists of positive integers can be described as follows:

PosIntList $ µt. Nil + Cons (hd :{x : Int | x > 0}, tl : t)

Going further, refinements can be used to relate elements inside a recursive data structure of

unknown size. For example, in the datatype definition

SortedIntList $ µt. Nil + Cons (hd : Int, tl : t[hd ≤ hd′])

the type t[hd ≤ hd′] represents the fact that for any given Cons node in the list, the head hd of

the node is no greater than the head hd′ of the tail of the node (i.e. the next element). Viewed

globally, this invariant captures the fact that the entire list is sorted (in particular, non-decreasing).

Refinement types have been used to statically verify fine-grained data structure properties — such

as list sortedness, tree balancedness, binary search tree well-orderedness, and graph acyclicity —

even with a large degree of automation using a technique called liquid type inference [65].

Security. The beauty of the refinement type architecture is that the language of predicates can

be selected to match the needs of a particular application. The theory of uninterpreted functions,

specifically, allows domain-specific properties to be encoded easily.

Refinement types have been used to specify and verify that reference monitors to sensitive

resources, like file systems or password managers, are implemented correctly with respect to

a security policy (e.g. [7, 94, 50]). For example, a primitive function readFile that accesses the

file system can be assigned the type u :User→ { f :Str |CanRead(u, f )} → Str to require that each
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user accesses only those files for which the CanRead privilege (represented as an uninterpreted

predicate) has been granted, defined by a security policy (i.e. formula) and manipulated by the

types of the primitive operations exposed by the reference monitor.

Precise Heap Reasoning. In simple type systems, references into the heap are assigned types of

the form Ref T, where all references of this type point to values in the heap that share the invariant

type (i.e. supertype) T. In many programs — for example, those in languages like C with explicit

memory management — more precise reasoning is required to track individual references into

the heap and the particular values they store, which may change over time.

To this end, refinement type systems can incorporate a standard approach in verification

for imperative programs where the heap (also knows as the memory or store) is treated as a record

mapping references to values, encoded in logic using McCarthy’s theory of arrays [71]. The

McCarthy operator sel(h, x) retrieves the value stored at reference x in the heap h and the operator

upd(h, x,y) is the result of updating h so that x points to y, overwriting the previous contents

stored at x, if any. In addition, using a syntactic mechanism called an affine type that ensures that

a value be “used” at most once, heap values can be threaded through a program in monadic style,

making explicit the otherwise implicit effects of imperative operations on the heap [101].

A refinement type system can incorporate this approach (e.g. [94]) to reason about a

first-order store, which binds only non-function values (for simplicity, assume only integers), by

using primitive operators that explicitly manipulate heap values:

ref :: h :Heap→ y : Int→ {(x, h′) : (Ref , Affine[Heap]) | h′ = upd(h, x,y)}

deref :: h :Heap→ x :Ref → {(y, h′) : (Int, Affine[Heap]) | y = sel(h, x) ∧ h′ = h}

setref :: h :Heap→ x :Ref → y : Int→ {h′ :Affine[Heap] | h′ = upd(h, x,y)}

The reference operation returns a new reference x and a new affine heap h′ that extends the input

heap h with the new binding; the dereference operation returns the value y bound in the heap h

and produces a new affine heap h′ that is unchanged; and the assignment operation produces a

new affine heap h′ with the appropriate binding updated. The type system syntactically ensures

that an affine heap of type {h :Affine[Heap] | p} is converted to the type {h :Heap | p} at most once,

ensuring soundness.

Compared to this “global” encoding of the heap, the “local” reasoning approach to

verification in separation logic [62, 84] builds from the notion that in typical programs, most

addresses in the heap are not aliased. Heap specifications in separation logic are smaller, referring

only to the “footprint” of a heap that is directly manipulated, making it more tractable to verify

large heap-manipulating programs. Alias Types [91], a cousin to separation logic, incorporates this

notion into a syntactic type system, which is further combined with refinement types in Low-Level

Liquid Lypes (LTLL) [86] to verify memory safety in C, a first-order imperative language.
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1.2.4 Higher-Order Dependent Types

To conclude our survey of type systems, we consider two general categories of what we

refer to as higher-order dependent type systems that manipulate properties beyond the reach of

decidable reasoning. Higher-order dependent type systems can be used to provide very strong

guarantees about programs, but the expressive power comes at the cost of relying on heuristics

to help discharge proof obligations, relying on the programmer to write additional annotations

(beyond just the specifications) to help the proving process, or both.

Undecidable Refinement Logics. The general refinement type approach can incorporate more

expressive, undecidable refinement logics at the cost of automation. For example, recall that the

refinement encoding of heaps, discussed above, was limited to storing non-function values. To

demonstrate the challenge of reasoning about a higher-order store, consider the program

let (idRef, h1) = (ref h0 λx.x) in let (f, h2) = (deref h1 idRef) in 17 + (f 42)

which stores and retrieves the identify function before applying it to an integer argument. The

type of value produced by the call to deref is described by the predicate sel(h1,idRef), which

says nothing about its type structure. So, there is no way to syntactically verify that it is a function

type, let alone an appropriate one such as Int→ Int. Therefore, for the refinement system to

support function calls through the heap, function types must be encoded in the refinement logic

(as in [95]). For example, rather than the refinement type we saw earlier, the id function would be

assigned a type like

{ f : (∀A. A→ A) | ∀x. ∀y. y = apply( f , x)⇒ y = x}

where the apply predicate is used to encode the semantics of function application. An approach

built like this — using quantifiers in first-order logic, which is undecidable — can succeed in

verifying complex programs that manipulate a higher-order store; first-order theorem provers,

and even some SMT solvers like Z3 [27], employ heuristics that perform well on some classes of

instances that arise in program verification. On the other hand, relying so heavily on the logic

to perform reasoning about functions, function calls, and data structures eliminates some of the

benefits of formulating a type system in the first place.

As an aside, it is worth noting that the contra- and covariance of function subtyping

S1→ S2 <: T1→ T2 is captured directly by the logical encoding:

(∀x. S1(x)⇒ S2(apply( f , x)))⇒ (∀x. T1(x)⇒ T2(apply( f , x)))

Logical Frameworks. Systems equipped with dependent types can serve as a foundation, often

called a logical framework, for proving properties about programs. For example, unlike the
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partial specification that a function type in weaker system represents, a total correctness property

guarantees that the program always terminates and satisfies a particular specification. Logical

frameworks from the basis for several programming languages, including LF [55], Coq [8], and

Hoare Type Theory [73], in which programs are “correct by construction.” However, building

complex systems in this style typically requires a significant manual annotation burden to assist

the proof process. One remarkable system built in this style is CompCert, a verified compiler for a

large subset of C [69].

1.3 “Dynamic” Languages

We have seen a glimpse of the significant progress made towards reasoning about the

absence of various run-time errors in programs that manipulate functions, objects, and references.

In addition to eliminating errors, the specifications tracked by type systems also provide informa-

tion (i.e. abstractions) useful for documenting the intent of the programmers and for assisting in

semantics-preserving program transformations such as refactoring and compilation.

Nevertheless, untyped, or dynamic languages, have always also been a popular parallel

playground for programming languages. The costs of static typing — the safe programs that are

rejected because of limits in expressiveness and any additional work “up front” by way of type

annotations — evidently outweigh the benefits in many situations. However, were type systems

able to reason more precisely about dynamic languages, there are likely situations (many, but not

all) where more statically-typed dialects of these languages would provide value to programmers.

Unfortunately, except for the ultra-expressive (and, hence, not very user-friendly or suitable for

mainstream programming) higher-order dependent ones, existing type systems are unable to

reason precisely about dynamic languages. This is not due to a preponderance of exotic features in

dynamic languages, although there are some — such as the expressive macro system in LISP and

its descendants; the subtle semantics for scope in Python where variables are declared implicitly

by their use; and the arrays in JavaScript which are a curious mix of objects and traditional arrays.

Rather, dynamic languages comprise core features very much like the ones we have discussed,

but the programming idioms in which they are used pose obstacles to decidable, static reasoning.

We outline several of the major challenges, using JavaScript syntax, in this section.

1.3.1 Untagged Unions and Path Sensitivity

Dynamic languages often provide a typeof operator as a lightweight way to reflect on the

kinds of values at run-time. Unlike the primitives isNum, isBool, and isStr that we discussed

earlier to serve a similar purpose, typeof returns an ordinary string, called a tag, that classifies

the value. For example, a program expecting a value x that is either a number or boolean might

discriminate x as follows:
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if (typeof x == "number") { return 0 - x; }
else /* typeof x == "boolean" */ { return !x; }

Syntactic techniques, like occurrence typing [99], for tracking control flow are better suited to

specialized syntactic type-test functions like isNum, etc., especially as more complicated dynamic

tests are built up from individual ones and, furthermore, abstracted into functions. Refinement

types, however, are well-suited for this kind of path-sensitive reasoning, as we saw earlier, and

can also track precise relationships, for example, that the tag of the return value above is the same

as the tag of x.

1.3.2 Dictionary-Style Objects

A much more significant challenge is the notion of objects, which are much like records,

from the core language we discussed, that maps string keys to values. Recall that existing

approaches for type checking records employ record types of the form {s : T}, where s is a

sequence of strings, and require that programs use program uses only syntactic (i.e. string literal)

keys when retrieving and updating bindings. To implement records with dynamically computed

keys in these statically-typed systems, the programmer must use a separate mechanism (e.g. classes

or datatypes) to implement dictionaries, also known as maps, hash tables, or associative arrays. A

dictionary would be assigned a type like Dict[K,V] to describe mappings from unknown K-typed

keys to V-typed values. The sharp distinction between (i) records with fixed, statically-known

fields that map to values of different types and (ii) dictionaries with unknown keys that map to

values of the same type is maintained to facilitate static reasoning.

In dynamic languages, however, there is only a single mechanism: records are dictionaries.

As a result, a static type system must be able to specify and enforce invariants about dynamically

computed keys that bind values of different types. For example, a run-time test may detect the

presence of a key and only then use the binding at a particular type:

if (k in duck) { return 17 + duck[k]; }

Using refinement types over McCarthy’s theory of arrays [71], we can specify the type of this

dictionary as {d :Dict | has(d,k)⇒ Num(sel(d,k))}. This approach, employed in the statically-

typed, first-order, dynamic language Dminor [9], works well for dictionaries that store non-function

values. But, of course, dictionaries might bind function values, as well, for example:

if ("quack" in duck) { return "Duck says " + duck.quack(); }
else { return "This duck cannot quack!"; }

The function type Unit→ Str for the “quack” field could be encoded inside a refinement type, but

would enter the territory of requiring a higher-order refinement logic.
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1.3.3 Extensible Objects

To further complicate matters, objects in dynamic languages are not pure dictionaries, but

references to dictionaries. As such, they are subject to mutation by adding and removing keys. For

example, an object may be initialized to (a reference to) an empty dictionary and then extended

with a method:

var duck = {};
duck.quack = function () { return "Quack!"; };

Although simple examples like this one can be syntactically rewritten so that all keys are initialized

at once, in general, keys can be added and removed arbitrarily far apart in the program, across

function boundaries, and depending on run-time control flow. Therefore, to verify that duck.quack

will not fail with a “field-not-found-error,” static reasoning must support strong updates to the

types of heap values. As mentioned earlier, LTLL [86] is a refinement type system that supports

precise heap reasoning à la Alias Types [91], but does not support the dictionary-style objects and

higher-order functions found in dynamic languages.

1.3.4 Prototype Inheritance

A third challenge of objects in JavaScript, in particular, is that, in addition to being

mutable and indexed by arbitrary (computed) string keys, each object maintains an implicit

link to the “prototype” object from which it derives. To resolve a key lookup from an object at

run-time, JavaScript transitively follows its prototype links until either the key is found or the

root is reached without success. Thus, unlike in class-based languages, inheritance relationships

are computed at run-time, using the function Object.create below, rather than provided as

declarative specifications.

var duckling = Object.create(duck);
duckling.quack(); // "Quack!"

duck.quack = function () { return "Oink?"; };
duckling.quack(); // "Oink?"

Notice that not only is the prototype relationship computed, it is not even “frozen” at initialization

time; strong updates to the parent object duck are reflected in subsequent key lookups on the child

object duckling. There have been several proposals for type checking prototype-based objects

(e.g. [10, 45, 57]), but these either have no support for prototype hierarchies or only prototype

hierarchies of a finite length described syntactically in the source program.
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1.3.5 Dynamically Loaded Code

The final challenge we highlight is the presence of a primitive function eval that parses

an arbitrary string to evaluate as code. Although this feature is notorious for misuse and provides

an attack vector for adversaries, it is pervasive and essential for web applications that comprise

and interact with data from multiple servers:

var str = getFromNetwork("..."); eval(str);

Dynamic loading is not unique to dynamic languages, of course. But the fine-grained way in which

it appears in programs is hard to reason about, compared to classes and modules, which provide

natural boundaries for static reasoning to track the pre- and post-conditions for dynamically

loaded components. One common way to restrict the power of eval is to use a version (e.g.

parseJSON in popular JavaScript libraries) that accepts only data without code. This restriction is

not appropriate for all situations, however, and says little about the shape of the resulting data.

1.4 Hybrid Typing

To mitigate the inherent limitations of static type systems — due to expressiveness limits

or dynamically loaded code — the hybrid type checking approach [37, 67] inserts run-time casts, or

contracts [36], into the program for checking obligations that cannot be discharged at compile-time.

Only plausible casts are inserted; casts that are guaranteed to fail represent type errors within

the reasoning capabilities of the static system. Hybrid typing continues in the spirit of a long

line of research efforts to mix typed and untyped programs, referred to variously as dynamic

typing [2, 58], soft typing [15, 5], and gradual typing [88, 89]. Compiling casts efficiently and in a

way that facilitates good error messages for debugging are active areas of research (e.g. [90]).

Hybrid typing blends static- and run-time checking, neither of which is precise enough or

sufficient to guarantee correctness, within a single specification language. Unfortunately, because

existing syntactic and refinement type systems are unable to reason precisely about the idioms

in dynamic languages, incorporating them into hybrid type systems for real-world dynamic

languages would result in an overwhelming number of safety checks deferred until run-time.

1.5 Contributions

The thesis of this dissertation is that refinement type-based techniques can reason about

many of the programming idioms found in dynamic languages like JavaScript in order to verify

the absence of run-time errors. We make the following contributions to support this claim:

1. We present a novel mechanism called nested refinements, which generalizes prior refinement

type systems by describing all values (rather than just base values) using decidable refinement
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Figure 1.4. Spectrum of Syntactic and Dependent Type Systems

formulas, and a type system called System D that employs nested refinements to reason

about dictionary objects with dynamic keys in a purely functional setting;

2. We present a new combination of (nested) refinement types and flow-sensitive strong updates,

in a type system called System !D (pronounced “D-ref”), to enable reasoning about dictionary

objects in the presence of mutable variables;

3. We present a refinement type encoding called heap unrolling to reason about prototype-based

inheritance, which we incorporate, along with other JavaScript-specific encodings, in a type

system called System DJS; and

4. We present and implement an explicitly typed language called Dependent JavaScript (or

DJS for short), based heavily on the syntax and semantics of JavaScript, that translates to

System DJS for type checking. We demonstrate the utility of our techniques by type checking

(i.e. verifying the absence of run-time errors in) several small but challenging benchmarks.

Our contributions advance the state-of-the-art in refinement type systems that rely only on

decidable, first-order theories, as opposed to the higher-order logics of more powerful dependent

type systems. Although the mechanisms we develop are general, we bias our presentation towards

their application to dynamic languages, because that serves as the inspiration for this work.

Figure 1.4 shows a cartoon of where our work fits in between the kinds of syntactic, refinement,

and dependent techniques outlined earlier.

Organization. We organize the technical material into two parts.

• In the first part, we study nested refinements in detail. We present System D in Chap-

ter 2, starting with a series of examples that demonstrate the kinds of specifications that



22

nested refinements enable for a purely functional language. Central to our approach is

a novel subtyping algorithm that carefully factors work between SMT-decidable queries

and more conventional syntactic rules in order to rely only on decidable theories. Nest-

ing syntactic types inside refinements introduces a circularity that poses a challenge for

proving type soundness. We address this using a stratification argument that allows us

to prove the soundness of System D. In Chapter 3, we present a version of the system,

called Algorithmic System D, that is suitable for implementation and forms the basis for our

type checker for Dependent JavaScript. In Chapter 4, we investigate a few extensions that

increase the expressive power of nested refinement subtyping, and we prove them sound in

the context of System D.

• In the second part, we scale up the nested refinements technique to handle features in more

full-fledged, real-world dynamic languages like JavaScript and Python, namely, mutable

variables and inheritance. We extend System D to System !D in Chapter 5, adding support

for precise reasoning about imperative updates, and we extend System !D to System DJS in

Chapter 6, adding support for precise reasoning about prototype-based inheritance and other

JavaScript-specific features. We choose to present System !D as an explicit, intermediate step

in our progression, because the combination of refinement types and strong updates in a

higher-order setting is novel and, we believe, will be useful in other settings beyond our

application to JavaScript. We do not rigorously study the formal properties of System !D and

System DJS as we do for System D, however, so this is an important direction for future work.

Instead, we demonstrate the feasibility of our techniques, in Chapter 7, by implementing a

type checker for System DJS and a translation from DJS to System DJS.

Afterwards, we conclude with discussions of future directions and related work. For a shorter,

breadth-first overview of the techniques proposed in this dissertation, the reader may choose to

read up through the end of the Overview sections of the System D, System !D, and System DJS

chapters (§ 2.1, § 5.1, and § 6.1, respectively) before moving on to Chapter 7 to see how their

combination enables static reasoning in Dependent JavaScript.
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Chapter 2

System D

So-called dynamic languages like JavaScript, Python, Racket, and Ruby are popular as

they allow developers to quickly put together scripts without having to appease a static type

system. However, these scripts quickly grow into substantial code bases that would be much

easier to maintain, refactor, evolve and compile, if only they could be corralled within a suitable

static type system.

The convenience of dynamic languages comes from their support of features like run-time

type testing, value-indexed finite maps (i.e. dictionaries), and duck typing, a form of polymorphism

where functions operate over any dictionary with the appropriate keys. As the empirical study in

[52] shows, programs written in dynamic languages make heavy use of these features, and their

safety relies on invariants which can only be established by sophisticated reasoning about the flow

of control, the run-time types of values, and the contents of data structures like dictionaries.

The following code snippet, adapted from the popular Dojo JavaScript framework [96],

illustrates common dynamic features:

let onto callbacks f obj =
if f = null then

List (obj, callbacks)
else

let cb = if tagof f = "string" then obj[f] else f in
List (fun () -> cb obj, callbacks)

The function onto is used to register callback functions to be called after the DOM and required

library modules have finished loading. The author of onto went to great pains to make it extremely

flexible in the kinds of arguments it takes. If the obj parameter is provided but f is not, then obj

is the function to be called after loading. Otherwise, both f and obj are provided, and either: (a) f

is a string, obj is a dictionary, and the (function) value corresponding to key f in obj is called with

obj as a parameter after loading; or (b) f is a function which is called with obj as a parameter

after loading. To verify the safety of this program, and dynamic code in general, a type system

24
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must reason about dynamic type tests, control flow, higher-order functions, and heterogeneous,

value-indexed dictionaries.

Currently, the only systems that are expressive enough to support the full spectrum of

reasoning required for dynamic languages are higher-order dependent type systems like Coq [8],

which require that the programmer provide explicit proofs to discharge type checking obligations.

Type systems that perform automatic checking of specifications, which we classify as syntactic and

refinement systems, cannot support the necessary reasoning. Syntactic type systems use advanced

type-theoretic constructs like structural types [6], row types [98], intersection types [42], and union

types [99, 52] to track invariants of individual values. Unfortunately, such techniques cannot

reason about value-dependent relationships between program variables, as is required, for example,

to determine the specific types of the variables f and obj in onto. Refinement type systems like

[31, 85, 67, 7, 94, 9] support such reasoning by using logical predicates to describe invariants over

program variables. Unfortunately, such systems require a clear (syntactic) distinction between

complex values that are typed with arrows, type variables, etc., and base values that are typed

with predicates. Hence, they cannot support the interaction of complex values and value-indexed

dictionaries that is ubiquitous in dynamic code, for example in onto, which can take as a parameter

a dictionary containing a function value.

Our Approach. We present System D, a core calculus for dynamic languages that requires

explicit function type annotations but then supports automatic checking. In System D all values

are described uniformly by formulas drawn from a decidable, quantifier-free refinement logic.

Our first key insight is that to reason precisely about complex values (e.g. higher-order functions)

nested deeply inside structures (e.g. dictionaries), we require a single new mechanism called nested

refinements wherein syntactic types (resp. the typing relation) may be nested as special type terms

(resp. type predicates) inside the refinement logic. This is in stark contrast to prior refinement

type systems where only base types (the “leaves” of more complex types like function types) are

described using refinements. For example, in System D we specify the type of functions that map

integers to boolean with the type

{x | x :: {x | tag(x) = “integer”} → {x | tag(x) = “boolean”}}.

Formally, the refinement logic is extended with atomic formulas of the form x :: U where U is

a type term, “::” (read “has type”) is a binary, uninterpreted predicate in the refinement logic,

and where the formula states that the value x “has the type” described by the term U. This

unifying insight allows to us to express the invariants in idiomatic dynamic code like onto —

including the interaction between higher-order functions and dictionaries — while staying within

the boundaries of decidability.
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Expressiveness. The nested refinement logic underlying System D can express complex invari-

ants between base values and richer values. For example, we may disjoin two tag-equality

predicates

{x | tag(x) = “integer”∨ tag(x) = “string”}

to type a value x that is either an integer or a string; we can then track control flow involving

the dynamic type tag-lookup function tag(·) to ensure that the value is safely used at either

more specific type. To describe values like the argument f of the onto function, we can combine

tag-equality predicates with the type predicate. We can give f the type

{x | x = null∨ tag(x) = “string”∨ x :: Any→ Any}

where Any is an abbreviation for {x | true}, which is a type that describes all values. Notice the

uniformity — the types nested within this refinement formula are themselves refinement types.

Our second key insight is that dictionaries are finite maps, and so we can precisely type

dictionaries with refinement formulas drawn from the (decidable) theory of finite maps [71]. In

particular, McCarthy’s two operators — sel(x, a), which corresponds to the contents of the map x

at the address a, and upd(x, a,v), which corresponds to the new map obtained by updating x at

the address a with the value v — are precisely what we need to describe reads from and updates

to dictionaries. For example, we can write

{x | tag(x) = “dictionary”∧ tag(sel(x,y)) = “integer”}

to type dictionaries x that have (at least) an integer field y, where y is a program variable that

dynamically stores the key with which to index the dictionary. Even better, since we have nested

function types into the refinement logic, we can precisely specify combinations of dictionaries and

functions. For example, we can write the following type for obj

{x | tag(f) = “string”⇒ sel(x,f) :: Any→ Any}

to describe the second portion of the onto specification, all while staying within a decidable

refinement logic. In a similar manner, we show how nested refinements support polymorphism,

datatypes, and even a form of bounded quantification.

Subtyping. The leap in expressiveness yielded by nesting types inside refinements is accompa-

nied by some unique technical challenges. The first challenge is that because we nest complex

types (e.g. arrows) as uninterpreted terms in the logic, subtyping (e.g. between arrows) cannot be

carried out solely via the usual syntactic decomposition into SMT queries [67, 85, 9]. (A higher-

order logic (e.g. [8]) would solve this problem, but that would preclude algorithmic checking; we

choose the uninterpreted route precisely to relieve the SMT solver of higher-order reasoning!) We
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surmount this challenge with a novel decomposition mechanism where subtyping between types,

syntactic type terms, and refinement formulas are defined inter-dependently, by using the logical

structure of the refinement formulas to divide the labor of subtyping between the SMT solver

for ground predicates (e.g. equality, uninterpreted functions, arithmetic, maps, etc.) and classical

syntactic rules for type terms (e.g. arrows, type variables, datatypes).

Soundness. The second challenge is that the inter-dependency between the refinement logic

and the type system renders the standard proof techniques for (refinement) type soundness

inapplicable. In particular, we illustrate how uninterpreted type predicates break the usual

substitution property and how nesting makes it difficult to define a type system that is well-defined

and enjoys this property. To meet this challenge, we define an infinite family of increasingly precise

systems and prove soundness of the family, of which System D is a member, thus establishing the

soundness of System D.

Contributions. To summarize, we make several contributions in the first part of this dissertation:

• We show how nested refinements over the theory of finite maps encode function, poly-

morphic, dictionary, and constructed data types within refinements and permit dependent

structural subtyping and a form of bounded quantification. (Chapter 2)

• We develop a novel subtyping mechanism that uses the structure of the refinement formulas

to decompose subtyping into a collection of SMT and syntactic checks. (Chapter 2)

• We illustrate the technical challenges that nesting poses to the metatheory of System D and

present a stratification-based proof technique to establish soundness. (Chapter 2)

• We define an algorithmic version of the type system with local type inference that we

implement in a prototype checker. (Chapter 3)

• We present several extensions to nested refinement subtyping that further increase expres-

siveness of the system. (Chapter 4)

Thus, by carefully orchestrating the interplay between syntactic- and SMT-based subtyping, the

nested refinement types of System D enable the decidable static checking of features found in

idiomatic dynamic code.

2.1 Overview

We start with a series of examples that give an overview of our approach. First, we show

how by encoding types using logical refinements, System D can reason about control flow and

relationships between program variables. Next, we demonstrate how nested refinements enable
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precise reasoning about values of complex types. After that, we illustrate how System D uses

refinements over the theory of finite maps to analyze value-indexed dictionaries. We conclude

by showing how these features combine to analyze some sophisticated invariants in idiomatic

dynamic code.

Notation. We use the following abbreviations for brevity.

Int(x) $ tag(x) = “integer” Any(x) $ true

Str(x) $ tag(x) = “string” Dict(x) $ tag(x) = “dictionary”

Bool(x) $ tag(x) = “boolean” IntOrBool(x) $ Int(x) ∨ Bool(x)

We abuse notation to use the above as abbreviations for refinement types; for each of the unary

abbreviations T defined above, an occurrence without the parameter denotes the refinement type

{x |T(x)}. For example, we write Int as an abbreviation for {x | tag(x) = “integer”}. Recall that

function values are also described by refinement formulas (containing type predicates). We often

write arrows outside refinements to abbreviate the following:

x : T1→ T2 $ {y | y :: x : T1→ T2}

We write T1→ T2 when the return type T2 does not refer to x.

2.1.1 Simple Refinements

To warm up, we show how System D describes all types through refinement formulas,

and how, by using an SMT solver to discharge the subtyping (implication) queries, System D

makes short work of value- and control flow-sensitive reasoning [99, 52].

Ad-Hoc Unions. Our first example illustrates the simplest dynamic idiom: programs which

operate on ad-hoc unions. The function negate takes an integer or boolean and returns its negation.

In System D, the programmer explicitly annotates each function with a type inside a comment,

demarcated by an additional : character, just before the definition. We typeset annotations in

math mode for clarity, but the ASCII versions parsed by our type checker are quite similar.

(*: negate :: IntOrBool→ IntOrBool *)
let negate x =

if tagof x = "integer" then 0 - x else not x

The function type above states that the function accepts an integer or boolean argument and

returns either an integer or boolean result.

To verify that the definition of negate satisfies the declared function type, System D

uses the standard means of reasoning about control flow in refinement-based systems [85],
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namely strengthening the environment with the guard predicate when processing the then-

branch of an if-expression and the negation of the guard predicate for the else-branch. Thus,

in the then-branch, the environment contains the assumption that tag(x) = “integer”, which

allows System D to verify that the expression 0− x is well-typed. The return value has the type

{x | tag(x) = “integer”∧ x = 0− x}. This type is a subtype of IntOrBool since the SMT solver can

prove that tag(x) = “integer” and x = 0− x implies tag(x) = “integer” ∨ tag(x) = “boolean”.

Thus, the return value of the then-branch is deduced to have type IntOrBool.

On the other hand, in the else-branch, the environment contains the assumption that

¬(tag(x) = “integer”). By combining this with the assumption about the type of negate’s input,

tag(x) = “integer”∨ tag(x) = “boolean”, the SMT solver can determine that tag(x) = “boolean”.

This allows our system to type check the call to not :: Bool→ Bool, which establishes that the value

returned in the else branch has type IntOrBool. Thus, our system determines that both branches

return a value of type IntOrBool, and thus that negate meets its specification.

Dependent Unions. System D’s use of refinements and SMT solvers enable expressive relational

specifications that go beyond previous techniques [99, 52]. While negate takes and returns ad-hoc

unions, there is a relationship between its input and output: the output is an integer (resp.

boolean) if and only if the input is an integer (resp. boolean). We can represent this in System D

by ascribing the following more precise function type to negate.

(*: negate :: x : IntOrBool→ {y | tag(y) = tag(x)} *)
let negate x =

if tagof x = "integer" then 0 - x else not x

That is, the refinement for the output states that its tag is the same as the tag of the input. This

function is checked through exactly the same analysis as before; the tag test ensures that the

environment in the then- (resp. else-) branch implies that x and the returned value are both Int

(resp. Bool). That is, in both cases, the output value has the same tag as the input.

2.1.2 Nested Refinements

So far, we have seen how old-fashioned refinement types (where the predicates refine base

values [75, 67, 85, 9]) can be used to check ad-hoc unions over base values. However, a type system

for dynamic languages must be able to express invariants about values of base and function types

with equal ease. We accomplish this in System D by adding types (resp. the typing relation) to

the refinement logic as nested type terms (resp. type predicates).

However, nesting raises a rather tricky problem: with the typing relation included in the

refinement logic, subtyping can no longer be carried out entirely via SMT implication queries [9].

We solve this problem with a new subtyping rule that extracts type terms from refinements to

enable syntactic subtyping for nested types.
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Consider the function maybeApply which takes an integer x and a value f which is either

null or a function over integers. In System D, we can use a refinement formula that combines a

base predicate and a type predicate to assign maybeApply the following type.

(*: maybeApply :: Num→ { f | f = null∨ f :: Num→Num} →Num *)
let maybeApply x f =

if f = null then x else f x

Note that we have nested a function type as a term in the refinement logic, along with an assertion

that a value has this particular function type. However, to keep checking algorithmic, we use a

simple first-order logic in which type terms and predicates are completely uninterpreted; that is,

the types can be thought of as constant terms in the logic. Therefore, we need new machinery to

check that maybeApply actually satisfies the above type, i.e. to check that (a) f is indeed a function

when it is applied, (b) it can accept the input x, and (c) it will return an integer.

Type Extraction. To accomplish the above goals, we extract the nested function type for f stored

in the type environment as follows. Let Γ be the type environment at the callsite (f x). For each

type term U occurring in Γ, we query the SMT solver to determine whether Embed(Γ)⇒ f :: U

holds, where Embed(Γ) is the embedding of Γ into the refinement logic where type terms and

predicates are treated in a purely uninterpreted way. If so, we say that U must flow to (or just, flows

to) the caller expression f. Once we have found the type terms that flow to the caller expression,

we map the uninterpreted type terms to their corresponding type definitions to check the call.

Let us see how this works for maybeApply. The then-branch is trivial: the assumption that

x is an integer in the environment allows us to deduce that the expression x is well-typed and has

type Int. Next, consider the else-branch. Let U1 be the type term Int→ Int. Due to the bindings

for x and f and the else-condition, the environment Γ0 is embedded as

Embed(Γ0) $ tag(x) = “integer”∧ (f= null∨ f :: U1) ∧ ¬(f= null)

Hence, the SMT solver is able to prove that Embed(Γ0)⇒ f :: U1. This establishes that f is a

function on integers and, since x is known to be an integer, we can verify that the else-branch has

type Int and hence check that maybeApply meets its specification.

Nested Subtyping. Next, consider a client of maybeApply:

let _ = maybeApply 42 negate

At the call to maybeApply we must show that the actuals are subtypes of the formals. That is, in

the environment Γ1 $ negate :{ f | f :: U0}, maybeApply : · · · where the function type assigned to
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negate is U0 $ x : IntOrBool→ {y | tag(y) = tag(x)}, the following two subtyping relationships

must hold:

Γ1 ` {x | x = 42} v Int

Γ1 ` { f | f = negate} v { f | f = null∨ f :: U1} (2.1)

Alas, while the SMT solver can make short work of the first obligation, it cannot be used to

discharge the second via implication; the “real” types that must be checked for subsumption,

namely, U0 and U1, are embedded as totally unrelated terms in the refinement logic!

Once again, we use extraction to address the problem. We show that all subtyping checks

of the form Γ ` {x | p} v {x | q} can be reduced to a finite number of sub-goals of the form:

(“type predicate-free”) Embed(Γ′)⇒ p′

or (“type predicate”) Embed(Γ′)⇒ x :: U

The former kind of goal has no type predicates and can be directly discharged via SMT. For the

latter, we use extraction to find the finitely many type terms Ui that flow to x. (If there are none,

the check fails.) For each Ui we use syntactic subtyping to verify that the corresponding type is

subsumed by (the type corresponding to) U under Γ′.

In our example, the goal (Equation 2.1) reduces to proving either

Embed(Γ′1)⇒ f = null or Embed(Γ′1)⇒ f :: U1

where Γ′1 $ Γ1, f = negate. The former implication contains no type predicates, so we attempt to

prove it by querying the SMT solver. The solver decides that the query is not valid, so we turn to

the latter implication. The extraction procedure uses the SMT solver to deduce that, under Γ′1 the

type term U0 flows to f . Thus, all that remains is to retrieve the definition of U0 and U1 and check

Γ′1 ` x : IntOrBool→ {y | tag(y) = tag(x)} v Int→ Int

which follows via standard syntactic refinement subtyping [67], thereby checking the client’s call.

Thus, by carefully interleaving SMT implication and syntactic subtyping, System D enables, for

the first time, the nesting of rich types within refinements.

2.1.3 Dictionaries

Next, we show how nested refinements allow System D to precisely check programs that

manipulate dynamic dictionaries. In essence, we demonstrate how structural subtyping can be

done via nested refinement formulas over the theory of finite maps [71, 28]. In particular, we

use the following primitives (denoted by val declarations) for manipulating dictionaries, where

x iff p $ Bool(x) ∧ (x = true⇔ p):
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val {} :: (*: {d | d = empty} *)
val mem :: (*: d :Dict→ k :Str→ {b | b iff has(d,k)} *)
val get :: (*: d :Dict→ k :{s |Str(s) ∧ has(d, s)} → {x | x = sel(d,k)} *)
val set :: (*: d :Dict→ k :Str→ x :Any→ {d′ | d′ = upd(d,k, x)} *)

In the examples that follow, we often use traditional record and array syntax to abbreviate calls to

the above dictionary primitives. For example:

x[k] $ get x k

x.f $ get x “f”

{“f” = 17; “g” = true} $ set (set {} “f” 17) “g” true

We also introduce two abbreviations for dictionary types:

Fld(x,y, Int) $ Dict(x) ∧ Str(y) ∧ Int(sel(x,y))

Fld(x,y,U) $ Dict(x) ∧ Str(y) ∧ sel(x,y) :: U

The second abbreviation states that the type of a field is a syntactic type term U (e.g. an arrow).

Dynamic Lookup. SMT-based structural subtyping allows System D to support the common

idiom of dynamic field lookup and update, where the field name is a value computed at run-time.

Consider the following function:

(*: getCount :: Dict→ Str→ Int *)
let getCount t c =

if mem t c then toInt t[c] else 0

The function getCount uses the primitive operation mem to check whether the key c exists in t. The

refinement for the input d expresses the precondition that d is a dictionary, while the refinement

for the key k expresses the precondition that k is a string. The refinement of the output expresses

the postcondition that the result is a boolean value which is true if and only if d has a binding for

the key k, expressed in our refinements using has(d,k), a predicate in the theory of maps that is

true if and only if there is a binding for key k in the map d [71, 28].

The dictionary lookup t[c] is desugared to get t c where the type of the primitive operation

get, defined above, uses sel(d,k), an operator in the theory of maps that returns the binding for

key k in the map d. The refinement for the key k expresses the precondition that it is a string value

in the domain of the dictionary d. Similarly, the refinement for the output asserts the postcondition

that the value is the same as the contents of the map at the given key.

The function getCount first tests that the dictionary t has a binding for the key c; if so, it

is read and its contents are converted to an integer using the function toInt :: Any→ Int. Note
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that the if-guard strengthens the environment under which the lookup appears with the fact

has(t,c), ensuring the safety of the lookup. If t does not contain the key c, the default value 0 is

returned. Both branches are thus verified to have type Int, so System D verifies that getCount has

the declared type.

Dynamic Update. Dually, to allow dynamic updates, System D includes a primitive set, de-

clared above, that produces a new dictionary, where upd(d,k, x) is an operator in the theory of

maps that denotes the functional update of d extended with a binding from k to x. The following

illustrates how the set primitive can be used:

(*: incCount :: d :Dict→ c :Str→ {d′ |EqMod(d′,d,{c}) ∧ Int(sel(d′, c))} *)
let incCount t c =

let newcount = 1 + getCount t c in
let res = set t c newcount in res

In the declared type, EqMod(d1,d2,K) abbreviates a predicate that stipulates that d1 is identical

to d2 at all keys except for those in the set of keys K. The output type of getCount allows

System D to conclude that newcount :: Int. From the output type of set, System D deduces that

res :: {d′ | d′ = upd(t,c,newcount)}, which is a subtype of the output type of incCount. Next,

consider the following:

let d0 = {"files" = 42}
let d1 = incCount d0 "dirs"
let _ = d1["files"] + d1["dirs"]

System D verifies the following two types and, hence, concludes that the field lookups return Ints

that can be safely added:

d0 :: {x |Fld(x,“files”, Int)}

d1 :: {x |Fld(x,“files”, Int) ∧ Fld(x,“dirs”, Int)}

2.1.4 Type Constructors

Next, we use nesting and extraction to enrich System D with data structures. In general,

System D supports arbitrary user-defined datatypes, but to keep the current discussion simple, let

us consider a single type constructor List[T] for representing unbounded sequences of T-values.

Informally, an expression of type List[T] is a dictionary with a “hd” key of type T and a “tl” key

of type List[T]?, which is an optional type as defined below. As for arrows, we allow list types to

be written outside of refinements:

T? $ {x | x = null∨ T(x)} List[T] $ {x | x :: List[T]}
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Recursive Traversal. Consider a textbook recursive function that takes a list of arbitrary values

and concatenates the strings:

(*: concat :: Str→ List[Any]?→ Str *)
let rec concat sep xs =

if xs = null then "" else
let hd = xs["hd"] in
let tl = xs["tl"] in
if tagof hd != "string"

then concat sep tl
else hd ^ sep ^ concat sep tl

The null test ensures the safety of the “hd” and “tl” accesses and the tag test ensures the safety of

the string concatenation using the techniques described above.

Nested Ad-Hoc Unions. We can now define ad-hoc unions over constructed types by simply

nesting List[·] as a type term in the refinement logic. The following illustrates an idiom where an

argument is either a single value or a list of values:

(*: runTest :: Str→ {x | Int(x) ∨ x :: List[Int]?} → Bool *)
let runTest cmd fail_codes =

let status = syscall cmd in
if tagof fail_codes = "integer" then

not (status = fail_codes)
else

not (listMem status fail_codes)

Here, listMem :: Any→ List[Any]?→ Bool and syscall :: Str→ Int. The input cmd is a string,

and fail_codes is either a single integer or a list of integer failure codes. Because we nest List[·]
as a type term in our logic, we can use the same kind of type extraction reasoning as we did for

maybeApply to ascribe verify the declared type for runTest.

2.1.5 Polymorphism

Similarly, we can add polymorphic type variables to System D by simply treating type

variables A, B, etc. as (uninterpreted) type terms in the logic. Furthermore, we attach a (possibly-

empty) sequence of type variables to each function type term, and we write the following

abbreviation. As before, we use the following notation to write (polymorphic) function types and

type variables outside of refinements:

∀A. x : T1→ T2 $ { f | f :: ∀A. x : T1→ T2}

A $ {x | x :: A}



35

Generic Containers. We can compose type constructors in the ways familiar to functional

programming. For example, consider list map in System D.

(*: map :: ∀A, B. (A→ B)→ List[A]?→ List[B]? *)
let rec map f xs =

if xs = null then null
else List (f xs["hd"], map f xs["tl"])

(Of course, we could add pattern matching to improve matters, but instead we are trying to

demonstrate how much can be achieved with dictionaries alone.) By combining extraction with

the reasoning used for concat, it is easy to verify the declared type.

Predicate Functions. Consider the following list filter function.

(*: filter :: ∀A, B. (x : A→ {y | y = true⇒ x :: B})→ List[A]?→ List[B]? *)
let rec filter f xs =

if xs = null then null
else if f xs["hd"] then List (xs["hd"], filter f xs["tl"])
else filter f xs["tl"]

The predicate function f returns true for values of type A that also satisfy the possibly more

precise type B. As a result, System D verifies that filter takes a list xs of A-typed values but

returns a list of B-typed values. Thus, the general mechanism of nested refinements subsumes the

kind of reasoning performed by specialized techniques like latent predicates [99].

Bounded Quantification. Nested refinements enable a limited form of bounded quantification.

Consider the following function:

(*: dispatch :: ∀A, B. d :{x |Dict(x) ∧ x :: A} → f :{x |Fld(d, x, A→ B)} → B *)
let dispatch d f = d[f] d

The function dispatch works for any dictionary d of type A that has a key f bound to a function

that maps values of type A to values of type B. Note that there is no need for explicit type bounds;

all that is required is the conjunction of the appropriate nested refinements.

2.1.6 All Together Now

Unions, Generic Dispatch, and Polymorphism. We now have everything we need to type check

the motivating example from earlier, onto, which combined multiple dynamic idioms: dynamic

fields, tag-tests, and the dependency between nested dictionary functions and their arguments.

Nested refinements let us formalize the flexible interface for onto as follows.
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(*: onto ::
∀A. callbacks : List[Any→ Any]?
→ f : {x | x = null∨ Str(x) ∨ x :: A→ Any}
→ obj : {x | x :: A ∧ ( f = null⇒ x :: Any→ Any) ∧ (Str( f )⇒ Fld(x, f , A→ Any))}
→ List[Any→ Any]? *)

Using reasoning similar to that for previous examples, System D checks that onto satisfies this

specification, where the type of obj uses the form of bounded quantification described earlier.

Reflection. Finally, to round off the overview, we present one last example that shows how all

the features presented combine to allow System D to statically type check programs that introspect

on the contents of dictionaries. The function toXML shown below is adapted from the Python 3.2

standard library’s plistlib.py [97].

(*: toXML :: Any→ Str *)
let rec toXML x =

if tagof x = "boolean" then
element (if x then "true" else "false") null

else if tagof x = "integer" then
element "integer" (intToStr x)

else if tagof x = "string" then
element "string" x

else if tagof x = "dictionary" then
let ks = keys x in
let vs = map (*: [{s |Str(s) ∧ has(x, s)}; Str] *)

(fun k -> element "key" k ^ toXML x[k]) ks in
"<data>" ^ concat "\n " vs ^ "</data>"

else
element "function" null

The function takes an arbitrary value and renders it as an XML string, and illustrates several

idiomatic uses of dynamic features. If we give the auxiliary function intToStr the type Int→ Str

and element the type Str→ {y | y = null∨ Str(y)} → Str, we can verify the declared type for

toXML. Of especial interest is the dynamic field lookup x[k] used in the function passed to map to

recursively convert each binding of the dictionary to XML. The following primitive operation

val keys :: (*: d :Dict→ List[{s |Str(s) ∧ has(d, s)}] *)

returns a list of string keys that belong to the input dictionary. Thus, the type of ks is

List[{s |Str(s) ∧ has(x, s)}], which enables the call to map to type check, since the body of the

argument is checked in an environment where k :: {s |Str(s) ∧ has(x, s)}, which is the type that A

is instantiated with. This binding suffices to prove the safety of the key lookup. The control flow

reasoning described previously uses the tag tests guarding the other cases to prove them safe.
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Values v ::= λx.e | x | c | v1[v2 7→ v3] | C(v)

Expressions e ::= v | [T] v1 v2 | if v then e1 else e2 | let x = e1 in e2

Types T ::= {x | p}
Formulas p,q ::= P(w) | w :: U | p ∧ q | p ∨ q | ¬p

Logical Values w ::= v | F(w)

Type Terms U ::= ∀A. x : T1→ T2 | A | C[T]

Metavariables x,y,z ∈ ValueIdentifiers

A, B ∈ TypeVarIdentifiers

C ∈ TypeConstructorIdentifiers

c ∈ Constants⊃ {true,null,17,“hanna”,(=),tagof,get,fix}
F ∈ FunctionSymbols⊃ {tag,sel,upd,+}
P ∈ PredicateSymbols⊃ {=,<}

Figure 2.1. Syntax of System D Expressions and Types

2.2 Syntax and Semantics

We begin with the syntax and evaluation semantics of System D. Figure 2.1 shows the

syntax of values, expressions, and types.

Values. Values v include functions, variables, constants, dictionaries, and records created by

type constructors. The set of constants c includes base values like integer, boolean, and string

constants, the empty dictionary {}, and null. Logical values w are all values and applications of

primitive function symbols F, such as addition + and dictionary selection sel, to logical values.

The constant tagof allows introspection on the type tag of a value at run-time. For example,

tagof(3) $ “integer” tagof(true) $ “boolean”

tagof(“john”) $ “string” tagof(λx.e) $ “function”

tagof(List(1,null)) $ “dictionary” tagof({}) $ “dictionary”

Dictionaries. A dictionary v1[v2 7→ v3] extends the dictionary v1 with the binding from string

key v2 to value v3. For example, the dictionary mapping “x” to 3 and “y” to true is written

{}[“x” 7→ 3][“y” 7→ true]. The set of constants also includes operations for extending dictionaries

and accessing their fields. The function get is used to access dictionary fields and is defined as:

get (v[“x” 7→ vx]) “x” $ vx

get (v[“y” 7→ vy]) “x” $ get v “x”
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Notice that get {} k is undefined for all keys k. The function mem tests for the presence of a field,

and the function set updates the value bound to a key; these are defined as:

mem (v[“y” 7→ vy]) “x” $ mem v “x”

mem (v[“x” 7→ vx]) “x” $ true

mem {} “x” $ false

set d k v $ d[k 7→ v]

Expressions. We use an A-normal form (ANF) presentation [38] so that we need only define

substitution of values (not arbitrary expressions) into types. The set of expressions e consists

of values, function applications, if-then-else expressions, and let-bindings. Function application

[T] v1 v2 applies the function v1 to type arguments T and value argument v2; we often write v1 v2

when there are no type arguments. We use tuple syntax (v1, . . ., vn) as sugar for the dictionary

with fields “1” through “n” bound to the component values.

Types. In System D, a type T is a refinement type of the form {x | p}, where p is a refinement

formula, and is read “x such that p.” The values of this type are all values v such that the formula

p[v/x] “is true.” What this means, formally, is core to our approach and will be considered in

detail in §2.4. The choice of binders for refinement types may vary, so types are equivalent up to

alpha-renaming. Similar to the syntax for expression tuples, we use (T1, . . ., Tn) as sugar for the

dictionary type with fields “0” through “n” with the corresponding types. We define application

T(w) of types to logical values using substitution as follows:

{x | p}(w) $ p[w/x]

Refinement Formulas. The language of refinement formulas includes predicates P, such as the

equality predicate and dictionary predicates has and sel, and the usual logical connectives. For

example, the type of integers is {x | tag(x) = “integer”}, which we abbreviate to Int. The type of

positive integers is {x | tag(x) = “integer”∧ x > 0} and the type of dictionaries with an integer

field “f” is {x | tag(x) = “dictionary”∧ tag(sel(x,“f”)) = “integer”}.

Nesting: Has-Type Predicates and Type Terms. To express the types of values like functions

and dictionaries containing functions, System D permits types to be nested within refinement

formulas. Formally, the language of refinement formulas includes a form, w :: U, called a has-type

predicate, where U is a type term. The type term x : T1→ T2 describes values that have a dependent

function type, i.e. functions that accept arguments v of type T1 and return values of type T2[v/x],

where x is bound in T2. We write T1→ T2 when x does not appear in T2. Furthermore, we

write the function type term ∀A. x : T1→ T2 to describe a function type that is parameterized
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Abbreviations V ::= Int | Bool | Str | Dict | Fun

| IntOrBool | IntOrStr | · · ·
| Any

Syntactic Sugar L · M = p

LAny(x) M = true

L Int(x) M = tag(x) = “integer”

LBool(x) M = tag(x) = “boolean”

LStr(x) M = tag(x) = “string”

LDict(x) M = tag(x) = “dictionary”

LFun(x) M = tag(x) = “function”

L IntOrBool(x) M = L Int(x) M∨ LBool(x) M

L if p then q1 else q2 M = (p⇒ q1) ∧ (¬p⇒ q2)

L ite p q1 q2 M = L if p then q1 else q2 M

L x iff p M = Bool(x) ∧ (x = true⇔ p)

Figure 2.2. Syntactic Sugar for System D

by the (possibly-empty) sequence of type variables A. Type variables A, B, etc. are themselves

type terms. The type term C[T] corresponds to records constructed with the C type constructor

instantiated with the sequence of type arguments T. For example, the integer successor function

has type { f | f :: x : Int→ {y | tag(y) = “integer”∧ y = x + 1}}, dictionaries where the value at key

“f” maps Int to Int have type {d | tag(d) = “dictionary”∧ has(d,“f”) ∧ sel(d,“f”) :: Int→ Int},
and the constructed record List(1,null) can be assigned the type {x | x :: List[Int]}.

Syntactic Sugar. Throughout our discussion, we defined several syntactic abbreviations to make

types concise. We summarize these and other notational conveniences in Figure 2.2 and Figure 2.3.

Datatype Definitions. To simplify the presentation in subsequent sections, we assume the

presence of a global table Ψ of datatypes definitions (rather than including them in the syntax

of expressions) as specified in Figure 2.5. A datatype definition of C defines a named, possibly

recursive type that includes a sequence θA of type parameters A paired with variance annotations

θ. A variance annotation is either + (covariant), - (contravariant), or = (invariant). The rest of the

definition specifies a sequence f : T of field names and their types. The types of the fields may

refer to the type parameters of the declaration. A well-formedness check, which will be described

shortly, ensures that occurrences of type parameters in the field types respect their declared

variance annotations. By convention, we will use the subscript i to index into the sequence θA
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Syntactic Sugar L · M = T L · M = x : T L · M = U

L V M = {x | L V(x) M}
L V{p} M = {x | L V(x) M∧ p}

LU M = {x | x :: U}
L T? M = {x |T(x) ∨ x = null}

L { f : T1; g : T2} M = {x | LDict(x) M∧ T1(sel(x,“f”)) ∧ T2(sel(x,“g”))}
L (x1 : T1, x2 : T2) M = {x | LDict(x) M∧ π(T1(x1)) ∧ π(T2(x2))}

where π = [sel(x,“1”)/x1][sel(x,“2”)/x2]

L T M = _ : T

L x : V M = x :{x | L V(x) M}
L x : V{p} M = x :{x | L V(x) M∧ p}

L x :U M = x :{x | LU M}

L x : T1→ y : T2 M = x : T1→ {y |T2(y)}
L (x1 : T1, x2 : T2)→ T M = L (x1 : T1, x2 : T2) M→ πT

where π = [sel(x,“1”)/x1][sel(x,“2”)/x2]

Figure 2.3. Syntactic Sugar for System D (continued)

and j for f : T. For example, θi refers to the variance annotation of the ith type parameter, and f j

refers to the name of the jth field.

Semantics. The small-step operational semantics of System D is standard for a call-by-value,

polymorphic λ-calculus, and is shown in Figure 2.4. Following standard practice, the semantics is

parameterized by a function δ that assigns meaning to primitive functions c, including dictionary

operations like mem, get, and set. Because expressions are A-normalized, there is a single

congruence rule, E-Compat. Our implementation [80] desugars more palatable syntax into ANF.

2.3 Type Checking

In this section, we present the System D type system, comprising several well-formedness

relations, an expression typing relation, and, at the heart of our approach, a novel subtyping

relation which discharges obligations involving nested refinements through a combination of

syntactic and SMT-based reasoning. We summarize the syntax of environments and typing

judgements in Figure 2.5. The indices n on typing judgements should be ignored throughout this

section (and, thus, we will usually omit them); we will discuss their significance in §2.4.



41

Operational Semantics e1 ↪→ e2

[T] (λx.e) v ↪→ e[v/x]
[E-App]

let x = v in e ↪→ e[v/x]
[E-Let]

if true then e1 else e2 ↪→ e1

[E-IfTrue]
if false then e1 else e2 ↪→ e2

[E-IfFalse]

δ(c,v) is defined

c v ↪→ δ(c,v)
[E-Delta]

e1 ↪→ e′1

let x = e1 in e2 ↪→ let x = e′1 in e2

[E-Compat]

Figure 2.4. Semantics of System D

Datatypes Ψ ::= − | Ψ, type C[θA] = { f : T}
Type Environments Γ ::= − | Γ, x : T | Γ, A | Γ, p

Typing Γ `n e :: T

Subtyping Γ `n T1 v T2

Syntactic Subtyping Γ `n U1 <: U2

Implication Γ⇒n p

Well-Formedness ` Ψ ` Γ Γ ` T Γ ` p Γ `U Γ ` w

Figure 2.5. Syntax of System D Judgements

Environments. Type environments Γ include bindings that record either: the derived type T for

a variable x; a type variable A introduced in the scope of a function; or a formula p that is recorded

to track the control flow along branches of an if-expression. A type definition environment Ψ

records the definition of each constructor type C. We assume for clarity that Ψ is fixed and globally

visible, and elide it from the judgements. In the sequel, we assume that Ψ contains at least the

following definition:

type List[+A] = { “hd” : A; “tl” :List[A]? }

2.3.1 Well-Formedness

Figure 2.6 defines the well-formedness relations.

Formulas, Types, and Environments. We require that types be well-formed within the current

type environment, which means that formulas used in types are boolean propositions and mention

only variables that are currently in scope. When checking the well-formedness of a refinement
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Well-Formed Types Γ ` T

Γ, x :Any ` p

Γ ` {x | p}

Well-Formed Formulas Γ ` p

Γ ` w Γ `U

Γ ` w :: U

Γ ` w

Γ ` P(w)

Γ ` p Γ ` q

Γ ` p ∧ q

Γ ` p Γ ` q

Γ ` p ∨ q

Γ ` p

Γ ` ¬p

Well-Formed Type Terms Γ `U

Γ, A ` T1 Γ, A, x : T1 ` T2

Γ ` ∀A. x : T1→ T2

A ∈ Γ

Γ ` A

C ∈ dom(Ψ) Γ ` T

Γ ` C[T]

Well-Formed Logical Values (selected rules) Γ ` w

Γ ` c

x ∈ dom(Γ)

Γ ` x

Γ ` w

Γ ` F(w)

Well-Formed Type Environments ` Γ

` Γ x /∈ dom(Γ) Γ ` T

` Γ, x : T

` Γ A /∈ Γ

` Γ, A

` Γ Γ ` p

` Γ, p ` −

Well-Formed Datatypes ` Ψ

` Ψ ∀j. A ` Tj ∀i. VarianceOk(Ai,θi, T)

` Ψ, type C[θA] = { f : T} ` −

Figure 2.6. Well-Formedness for System D
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type {x | p}, we check that p is well-formed in the environment extended with x :Any. Note that

the well-formedness of formulas does not depend on type checking; all that is needed is the ability

to syntactically distinguish between terms and propositions. Checking that values are well-formed

is straightforward, so we omit the definition; the important point is that a variable x may be used

only if it is bound in Γ.

Datatype Definitions. To check that a datatype definition is well-formed, we first check that the

types of the fields are well-formed in an environment containing the declared type parameters.

Then, to enable a sound subtyping rule for constructed types in the sequel, we check that the

declared variance annotations are respected within the type definition. For this, we use the

procedure VarianceOk, defined as

VarianceOk(A,+, T) if (∪j Polarity(A, Tj)) ⊆ {+}

VarianceOk(A,-, T) if (∪j Polarity(A, Tj)) ⊆ {-}

VarianceOk(A,=, T) always

that records whether type variables occur in positive or negative positions within the types of

the fields. The helper procedure Polarity (defined in Appendix A) walks the structure of types,

formulas, etc. to observe the occurrences of type variables. Polarity(A, T) computes a subset of

{+,-} that includes + (resp. -) if A occurs in at least one positive (resp. negative) position inside

T. For each type variable, these polarities are computed across all field types in the definition and

then checked against its variance annotation.

After successfully checking that a type definition is well-formed, it is added to the globally-

available type definition environment Ψ. For example, when checking the well-formedness of the

type term C[T], we make sure that C is defined by testing for its presence in Ψ.

2.3.2 Typing

The expression typing judgement Γ ` e :: T, defined in Figure 2.7 and Figure 2.8, verifies

that e has type T in environment Γ. We highlight the important aspects of the typing rules.

Constants. Each primitive constant c has a type, denoted by ty(c), that is used by T-Const. Basic

values like integers, booleans, etc. are given singleton types stating that their value equals the

corresponding constant in the refinement logic. For example:

val 1 :: (*: {x | x = 1} *)
val "john" :: (*: {x | x = “john”} *)
val true :: (*: {x | x = true} *)
val false :: (*: {x | x = false} *)
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Value Typing Γ `n v :: T

Γ `n c :: ty(c)
[T-Const]

x ∈ dom(Γ)

Γ `n x :: {y | y = x}
[T-Var]

Γ `n v1 :: Dict Γ `n v2 :: Str Γ `n v3 :: T

Γ `n v1[v2 7→ v3] :: {x | x = v1[v2 7→ v3]}
[T-Extend]

Γ, A ` T1 Γ, A, x : T1 `n e :: T2

Γ `n λx.e :: {y | y = λx.e ∧ y :: ∀A. x : T1→ T2}
[T-Fun]

Ψ 3 (type C[θA] = { f : T′}) ∀i. Γ ` Ti ∀j. Γ `n vj :: Inst(T′j , A, T)

Γ `n C(v) :: {x |Fold(x,C, T,v)}
[T-Fold]

Figure 2.7. Value Typing for System D

Arithmetic and boolean operations have types that reflect their semantics. Equality on base values

is defined in the standard way, while equality on function values is physical equality.

val (+) :: (*: x : Int→ y : Int→ {z | Int(z) ∧ z = x + y} *)
val not :: (*: x :Bool→ {b | b iff x = false} *)
val (=) :: (*: x :Any→ y :Any→ {b | b iff x = y} *)
val fix :: (*: ∀A. (A→ A)→ A *)
val tagof :: (*: x :Any→ {s |Str(s) ∧ s = tag(x)} *)

The constant fix is used to encode recursion, and the type for the tag-test operation uses an

axiomatized function in the logic.

The operations on dictionaries, defined in § 2.1.3, are given refinement types over Mc-

Carthy’s theory of arrays [71] extended with a default element, which we write as bot, that is

different from all program values. The extended theory is shown to be decidable in [28]. The types

of our dictionary primitives {}, mem, get, and set use the constant empty to denote the empty

dictionary, and the predicate has(d,k) to abbreviate sel(d,k) 6= bot. To relate two dictionaries, we

use the abbreviation

EqMod(d1,d2,K) $ ∀k′. (∧k∈K k 6= k′)⇒ sel(d1,k′) = sel(d2,k′)

which states that the dictionaries d1 and d2 are identical except at the keys in K. This expansion falls

into the array property fragment, shown to be decidable in [11] by reduction to an equisatisfiable

quantifier-free formula. The EqMod abbreviation is useful for dictionary updates where we do
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Expression Typing Γ `n e :: T

Γ ` T Γ `n v1 :: {y | y :: ∀A. x : T11→ T12} Γ `n v2 :: Inst(T11, A, T)

Γ `n [T] v1 v2 :: Inst(T12, A, T)[v2/x]
[T-App]

Γ `n v :: Bool Γ, v = true `n e1 :: T Γ, v = false `n e2 :: T

Γ `n if v then e1 else e2 :: T
[T-If]

Γ ` T1 Γ `n e1 :: T1 Γ, x : T1 `n e2 :: T2 Γ ` T2

Γ `n let x = e1 in e2 :: T2

[T-Let]

Γ `n e :: T′ Γ `n T′ v T Γ ` T

Γ `n e :: T
[T-Sub]

Γ `n e :: {x | x :: C[T]}

Γ `n e :: {x |Unfold(x,C, T)}
[T-Unfold]

Figure 2.8. Expression Typing for System D

not know the exact value being stored, but do know some abstraction thereof, e.g. its type. For

example, in incCounter (from § 2.1.3) we do not know what value is stored in the count field

c, only that it is an integer. Thus, we say that the new dictionary is the same as the old except

at c, where the binding is an integer. A more direct approach would be to use an existentially

quantified variable to represent the stored value and say that the resulting dictionary is the original

dictionary updated to contain this quantified value. Unfortunately, that would take the formulas

outside the decidable fragment of the logic, thereby precluding SMT-based logical subtyping.

Standard Rules. We briefly identify several typing rules that are standard for lambda calculi

with dependent refinements. If x is bound in Γ, then T-Var assigns x the singleton type that says

that the expression x evaluates to the same value as the variable x. T-If assigns the type T to an

if-expression if the condition v is a boolean-valued expression, the then-branch expression e1 has

type T under the assumption that v evaluates to true, and the else-branch expression e2 has type

T under the assumption that v evaluates to false. The T-App rule is standard, but notice that the

arrow type of v1 is nested inside a refinement type. The procedure Inst, which instantiates a type

variable with a type, is defined recursively on formulas, type terms, and types, where the only

non-trivial cases of the definition involve type predicates with type variables:

Inst(w :: A, A,{x | p}) = p[w/x] Inst(w :: B, A, T) = w :: B
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We write Inst(T, A, T) to denote the result of applying Inst to T with the type variables and type

arguments in succession. In T-Let, the type T2 must be well-formed in Γ, which prevents the

variable x from escaping its scope. T-Sub allows expression e to be used with type T if e has type

T′ and T′ is a subtype of T.

Fold and Unfold. The T-Fold rule is used for records of data created with the datatype con-

structor C and type arguments T. The rule succeeds if the argument vj provided for each field f j

has the required type Tj after instantiating all type parameters A with the type arguments T. If

these conditions are satisfied, the formula

Fold(x,C, T,v) $ tag(x) = “dictionary”∧ x :: C[T] ∧ (∧j sel(x, f j) = vj)

specifies that values stored in the fields are precisely the values used to construct the record,

and that the value has a type corresponding to the specific constructor used to create the value.

T-Unfold exposes the fields of constructed data as a dictionary, using the formula

Unfold(x,C, T) $ tag(x) = “dictionary”∧ (∧j T′j (sel(x, f j)))

where T′j = Inst(Tj, A, T) for each j. For example, Unfold(x,List, Int) expands to the formula

tag(x) = “dictionary”∧ tag(sel(x,“hd”)) = “integer”∧ sel(x,“tl”) :: List[Int]?.

2.3.3 Subtyping

In traditional refinement type systems, there is a two-level hierarchy between types and

refinements that allows a syntax-directed reduction of subtyping obligations to SMT implica-

tions [37, 85, 67]. In contrast, System D’s refinements include uninterpreted type predicates that

are beyond the scope of (first-order) SMT solvers.

Let us consider the problem of establishing the judgement Γ ` {x | p1} v {x | p2}. We

cannot simply use the SMT query

Embed(Γ)⇒ (p1⇒ p2) (2.2)

since the presence of (uninterpreted) type predicates may conservatively render the implication

invalid. Instead, our strategy is to massage the refinements into a normal form that makes it easy

to factor the implication in Equation 2.2 into a collection of subgoals whose consequents are either

simple (non-type) predicates or type predicates. The former can be established via SMT and the

latter by recursively invoking syntactic subtyping. Next, we show how this strategy is realized by

the rules in Figure 2.9.

Step 1: Split query into subgoals. The rule I-Cnf starts by converting p1⇒ p2 into an equivalent

formula in conjunctive normal form, where each clause is written as an implication qi⇒ Q′i, where
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Q′i is a disjunction (or set) of positive simple or type predicates, by rearranging literals and adding

negations as necessary. The goal (Equation 2.2) is reduced to the following collection of subgoals,

which requires that for each clause, there exists some predicate that can be discharged:

∀i. ∃q′i. Γ, qi⇒ q′i

Step 2: Discharge subgoals. When the goal is a simple predicate, or a type predicate for which

the environment contains an assumption, the subgoal is of the form

(“type predicate-free”) Γ, qi⇒ q′i

which rule I-Valid handles by SMT. Otherwise, the subgoal is of the form

(“type predicate”) Γ, qi⇒ w :: U

which rule I-HasType handles via type extraction followed by a use of syntactic subtyping. In

particular, the rule tries to establish w :: U by searching for a type term U′ that (i) flows to w, i.e. for

which we can deduce via SMT that Embed(Γ) ∧ qi⇒ w :: U′ is valid, and (ii) is a syntactic subtype

of U (written Γ, qi ` U′ <: U). The rule I-Valid-n is not intended for use in type checking source

programs and is included solely for the metatheory, which we discuss in §2.4.

The rules U-Datatype and U-Arrow establish syntactic (refinement) subtyping, by

(recursively) establishing that subtyping holds for the matching components [37, 85, 9]. Because

syntactic subtyping recursively refers to subtyping, the S-Refine rule uses fresh variables to avoid

duplicate bindings in the environment.

Formula Implication. In each SMT implication query Embed(Γ)⇒ p, the operator Embed(·)
describes the embedding of types and environments into the logic as follows:

Embed(Γ, x :T) $ Embed(Γ) ∧ T(x)

Embed(Γ, p) $ Embed(Γ) ∧ p

Embed(Γ, A) $ Embed(Γ)

Embed(−) $ true

When embedding values into the logic, we represent each lambda by a distinct uninterpreted con-

stant. Thus, function equality is “physical equality,” so there is no concern about the equivalence

of expressions. (Note that lambdas never need to appear inside refinement formulas in source

programs, and are included in the grammar of formulas just for the metatheory.)

Refinement Logic. The SMT architecture allows individual decidable theories to be combined

in a decidable way as long as they refer to disjoint function symbols of distinct sorts [74]. In
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Subtyping Γ `n T1 v T2

y fresh Γ⇒n (p1[y/x1]⇒ p2[y/x2])

Γ `n {x1 | p1} v {x2 | p2}
[S-Refine]

Implication Γ⇒n p

CNF(p) = ∧i (qi⇒ Q′i) ∀i. ∃q′ ∈ Q′i. Γ, qi⇒n q′

Γ⇒n p
[I-Cnf]

Valid(Embed(Γ)⇒ p)

Γ⇒n p
[I-Valid]

Valid(Embed(Γ)⇒ w :: U′) Γ `n U′ <: U

Γ⇒n w :: U
[I-HasType]

In |= Embed(Γ)⇒ p

Γ⇒n p
[I-Valid-n]

Syntactic Subtyping Γ `n U1 <: U2

Γ `n A <: A
[U-Var]

Γ, A `n T21 v T11 Γ, A, x : T21 `n T12 v T22

Γ `n ∀A. x : T11→ T12 <: ∀A. x : T21→ T22

[U-Arrow]

Ψ 3 (type C[θA] = { f : T′})
∀i. if θi ∈ {+,=} then Γ `n T1i v T2i ∀i. if θi ∈ {-,=} then Γ `n T2i v T1i

Γ `n C[T1] <: C[T2]
[U-Datatype]

Figure 2.9. Subtyping for System D

System D, however, we require that all values be part of a single sort, in particular, the disjoint

union of integers, strings, booleans, dictionaries, etc. Therefore, we require a background theory

to axiomatize our refinement of this single sort. To start, we define tag to be an uninterpreted

function symbol and require the following axioms:

∀w. tag(w) =



“boolean” if w ∈ {true,false}
“integer” if w is an integer

“string” if w is a string

“function” if w = λx.e or w is a primitive function

“dictionary” if w = empty or w = upd(w1,w2,w3)

“null” if w = null

“bot” if w = bot
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For dictionaries, we define sel and upd also as uninterpreted functions, and require the following

“wrapper” axioms which correspond to McCarthy’s theory of arrays extended with a default

element [71, 28]:

∀d,k,k′, x. tag(d) = “dictionary”∧ k = k′ ⇒ sel(upd(d,k, x),k′) = x

∀d,k,k′, x. tag(d) = “dictionary”∧ k 6= k′ ⇒ sel(upd(d,k, x),k′) = sel(d,k′)

∀k. sel(empty,k) = bot

Continuing in this style, we can encode the function symbols and axioms of any decidable theory

that we wish to use (e.g. linear arithmetic) by defining corresponding uninterpreted function

symbols and wrapper axioms in our background theory to interpret them.

Although our background theory uses quantified axioms, we are yet able to ask only

decidable queries of the SMT solver; because we have a finite number of axioms and a finite

number of bindings in any environment Γ, we can explicitly instantiate all axioms with all bindings

when embedding Γ as a formula. We omit this expansion from our definition of Embed(Γ) above.

In this way, all we require from the SMT solver is the ability to reason about the (decidable) theory

of uninterpreted functions. In our implementation [80], however, we explicitly axiomatize the

above background theory using quantifiers rather than instantiating it for each query, because

modern SMT solvers like Z3 [27] have quantifier-instantiation heuristics that tend to perform well

on the kinds of queries generated by System D and other SMT-based verification systems.

Recap. Recall that our goal is to type check programs that use value-indexed dictionaries which

may contain functions as values. On one hand, the theory of finite maps allows us to use logical

refinements to express and verify complex invariants about the contents of dictionaries. On the

other, without resorting to higher-order logic, such theories cannot express that a dictionary maps

a key to a value of function type. To resolve this tension, we introduced the novel concept of

nested refinements, where types are nested into the logic as uninterpreted terms and the typing

relation is nested as an uninterpreted predicate. The logical validity queries that arise during in

type checking are discharged by rearranging the formula in question into an implication between

a purely logical formula and a disjunction of type predicates. This implication is discharged using

a novel combination of logical queries, discharged by an SMT solver, and syntactic subtyping.

This approach enables the efficient, automatic type checking of dynamic language programs that

manipulate complex data, including dictionaries which map keys to function values.

2.4 Type Soundness

In this section, we discuss type soundness for System D. Unfortunately, the presence

of nested refinements means that the standard proof techniques for proving preservation and
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progress are unavailable to us, as the usual substitution property does not hold! Next, we describe

why substitution is problematic and define a stratified system System Dn for which we establish

preservation and progress properties. The soundness of System D follows, as it is a special case of

the stratified System Dn.

2.4.1 The Problem: Substitution

The key insight in System D is that we can use uninterpreted functions to nest types

inside refinements, thereby unlocking the door to expressive SMT-based reasoning for dynamic

languages. However, this very strength precludes the usual substitution lemma upon which

preservation proofs rest. The standard substitution property in a refinement type system requires

the following:

Proposition (Substitution).

If x : T, Γ ` e :: T′ and ` v :: T, then Γ[v/x] ` e[v/x] :: T′[v/x].

The following snippet shows why System D lacks this property:

(*: foo :: f : (Int→ Int)→ {y | f :: Int→ Int} *)
let foo f = 0 in
foo (fun n -> n + 1)

The return type of the function annotation states that its argument f is a function from integers to

integers and does not impose any constraints on the return value itself. To check that foo does

indeed have this type, by T-Fun, the following judgement must be derivable:

f : Int→ Int ` 0 :: {y | f :: Int→ Int} (2.3)

By T-Const, T-Sub, S-Refine, I-Cnf, and I-Valid, the judgement reduces to the implication

true∧ f :: Int→ Int∧ ty(0)(y)⇒ f :: Int→ Int.

which is trivially valid, thereby deriving Equation 2.3, and showing that foo does indeed have the

ascribed type. If the substitution property is to hold, then the following judgement obtained by

substituting (fun n -> n + 1) for f in Equation 2.3 must be derivable:

` 0 :: {y |(fun x -> x + 1) :: Int→ Int}.

By T-Const, T-Sub, S-Refine, I-Cnf, and I-Valid, the judgement reduces to the implication

true∧ ty(0)(y)⇒ (fun x -> x + 1) :: Int→ Int (2.4)

which is invalid as type predicates are uninterpreted in our refinement logic! Thus, the function



51

body of foo before and after the call (via substitution) do not have the same type in System D,

which illustrates the crux of the problem: the I-Valid rule is not closed under substitution.

Circularity. Thus, it is clear that the substitution lemma will require that we define an interpre-

tation for type predicates. As a first attempt, we can define an interpretation I that interprets type

predicates involving arrows as

I |= λx.e :: x : T1→ T2 if x : T1 ` e :: T2.

and we can replace I-Valid with the following rule:

I |= Embed(Γ)⇒ p

Γ⇒ p
[I-Valid-Interpreted]

Notice that the new rule requires the implication be valid in the particular interpretation I instead

of in all interpretations. This allows the logic to “hook back” into the type system to derive

types for closed lambda expressions, thereby discharging the problematic implication query

in Equation 2.4. Although the rule solves the problem with substitution, it introduces a new

problem: a circular dependence between the typing judgements and the interpretation I. Since

our refinement logic includes negation, the type system corresponding to the set of rules outlined

earlier combined with I-Valid-Interpreted is not necessarily well-defined.

2.4.2 The Solution: Stratified System D

To prove soundness, we require a well-founded means of interpreting type predicates. We

achieve this by stratifying the interpretations and type derivations, requiring that type derivations

at each level refer to interpretations at the same level, and that interpretations at each level refer

to derivations at strictly lower levels. In this section, we formalize this intuition and state the

important lemmas and theorems. The full definitions and proofs may be found in Appendix A.

To achieve stratification, first, we index interpretations (In) as well as typing, subtyping,

and implication judgements (`n n); recall that we ignored these subscripts in our prior discussion.

We call these the level-n interpretations and judgements, respectively. Second, we allow level-n

judgements to use the I-Valid-n rule from Figure 2.9

In |= Embed(Γ)⇒ p

Γ⇒n p
[I-Valid-n]

and the level-n interpretations to use lower-level type derivations:

In |= λx.e :: x : T1→ T2 if x : T1 `n−1 e :: T2.
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Finally, we write

Γ `∗ e :: T if ∃n. Γ `n e :: T.

The derivations in System Dn consist of the level-n derivations. Derivations in System D0, which

we abbreviate to System D, may use all rules except I-Valid-n; these are the derivations used for

type checking closed expressions. In the sequel, we often omit the index from a typing judgement

when its index is 0.

The following “lifting” lemma states that the derivations at each level include the deriva-

tions at all lower levels:

Lemma (Lifting Derivations).

If Γ `n e :: T, then Γ `n+1 e :: T.

Stratification snaps the circularity knot and enables the proof of the following stratified substitution

lemma:

Lemma (Stratified Substitution).

If x : T, Γ `n e :: T′ and `n v :: T, then Γ[v/x] `n+1 e[v/x] :: T′[v/x].

The proof of the above depends on the following lemma, which captures the connection between

our typing rules and the interpretation of formulas in our refinement logic:

Lemma (Satisfiable Typing).

If `n v :: T, then In+1 |= T(v).

Stratified substitution enables the proof of the following preservation result:

Theorem (Stratified Preservation).

If `n e :: T, and e ↪→ e′ then `n+1 e′ :: T.

From this, and a separate progress result, we establish the type soundness of System Dn:

Theorem (Stratified System Dn Type Soundness).

If `∗ e :: T, then either e is a value or e ↪→ e′ and `∗ e′ :: T.

The soundness of System D follows as a corollary. We flesh out the details of our proof strategy in

Appendix A.
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Chapter 3

Algorithmic Typing

We established the expressiveness and soundness of nested refinements in the previous

chapter, but that declarative presentation leaves several challenges to address in order to implement

a nested refinement type checker for System D. In this chapter, we discuss these challenges and

present an algorithmic version of the type system, which we refer to as Algorithmic System D, that

employs local type inference [78, 31] and several techniques unique to our setting. The techniques

described in this chapter form the basis for our implementation of DJS [80].

Syntax. As we saw in the examples of the previous section, we require that the programmer

explicitly annotates function definitions. In Figure 3.1, we extend the syntax of System D to allow

annotated let-expressions. We also introduce a new syntactic category of types, prenex-quantified

existential types S of the form ∃x : T. S, which are useful for type checking let- and if-expressions,

as discussed in the sequel. Prenex types may not appear in source-level annotations; only the

type checker can generate and manipulate them. We often write ∃x : T. T′ to at once describe

the (zero or more) existential quantifiers of a prenex type. The syntax of type environments Γ

remains the same, since we will always explicitly manipulate existential types before adding them

to environments.

3.1 Algorithmic Subtyping

In this section, we describe two challenges in implementing type extraction, a central

mechanism in System D subtyping, and how we address them with our algorithmic subtyping

rules, defined in Figure 3.2.

Ensuring Termination. The System D subtyping, implication, and syntactic subtyping relations

(defined in Figure 2.9) are mutually recursive: after we extract type terms from the environment

during the implication phase, we recursively invoke syntactic subtyping and, hence, the top-level

subtyping relation, which completes the loop. As it turns out, a straightforward implementation

of those rules do not terminate because invocations of syntactic subtyping do not satisfy the usual

54



55

Values v ::= · · ·
Expressions e ::= · · · | let x : T1 = e1 in e2

Types T ::= · · ·
Prenex Types S ::= ∃x : T. S | T

Formulas p,q ::= · · ·
Logical Values w ::= · · ·

Type Terms U ::= · · ·

Type Synthesis Γ ` e B S

Type Conversion Γ ` e C T

Subtyping Γ; U ` S v T

Syntactic Subtyping Γ; U `U1 <: U2

Implication Γ; U⇒ p

Figure 3.1. Syntax of Algorithmic System D

guarantee that they refer to syntactically smaller terms! To understand why, consider the environ-

ment Γ0 $ f :Any, f ′ :{ f ′′ | f ′′ = f ∧ f ′′ :: U0} where U0 $ x :{y | y :: x :{z | z = f } → Any} → Any

and suppose we wish to check that

Γ0⇒ f :: x :{z | z = f } → Any. (3.1)

I-Valid cannot derive this judgement, since the implication Embed(Γ0)⇒ f :: x :{z | z = f } → Any

is not valid. Thus, we must derive Equation 3.1 by I-HasType. Type extraction (the first premise of

I-HasType) derives that f :: U0 in Γ0, so the remaining obligation is

Γ ` U0 <: x :{z | z = f } → Any.

Because of the contravariance of function subtyping on the left-hand side of the arrow, the

following judgement must be derivable:

Γ ` {z | z = f } v {y | y :: x :{z | z = f } → Any}.

After S-Refine substitutes a fresh variable, say yz, for both refinement binders, this reduces to the

implication obligation

Γ, yz = f ⇒ yz :: x :{z | z = f } → Any.

Alas, this is essentially Equation 3.1, so we are stuck in an infinite loop! We will again extract the

type U0 for f (aliased to yz here) and repeat the process ad infinitum.
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This situation arises only if we are allowed to invoke the rule I-HasType infinitely many

times. In this case, I-HasType extracts a single type term from the environment infinitely often,

since there are only finitely many in the environment. In the algorithmic system, we cut the loop

with a modest restriction: along any branch of a subtyping derivation, we allow a particular type

term to be extracted at most once. Since there are only finitely many type terms in the environment,

this is enough to ensure termination. To implement this strategy, we define the algorithmic

subtyping relations to take a set U of “already-used” type terms as an additional parameter,

which cannot be extracted by the (algorithmic analog to) rule I-HasType. This strategy prevents

Algorithmic System D from deriving certain infinite System D derivations, of the pathological

kind just discussed, but we are not aware of any interesting finite derivations that are precluded

by this strategy.

Type Extraction. Nearly all the declarative subtyping rules presented in Figure 2.9 are directed

by the structure of the judgement being derived. The sole exception is I-HasType, whose first

premise requires us to synthesize an unspecified type term U′ such that the SMT solver can

prove w :: U′. We note that, since type predicates are uninterpreted, the only type terms U′ that

can satisfy this criterion must come from the environment Γ. Thus, we define the following

procedure MustFlow(Γ, T,U) that uses the SMT solver to compute the set U′ of type terms out of

all possible type terms mentioned in Γ except those that have been previously extracted (to ensure

termination), such that for all values x, the binding x : T implies that x :: U′.

MustFlow(Γ, T,U) $ {U′ ∈ U′ | Valid(Embed(Γ, x :T)⇒ x :: U′) }

where U′ = TypeTermsOf (Γ) \ U and x is fresh

The procedure TypeTermsOf (not shown) simply traverses the environment and collects the top-

level type terms in formulas. The rule IA-HasType calls MustFlow(Γ,{x | x = w},U) to compute

the set U′ of type terms that might be needed by the second premise. Since the declarative rule

cannot possibly refer to a type term not in Γ, this strategy guarantees that U′ ∈ U′ and, thus, that

IA-HasType does not forfeit precision. After type extraction, the set U′ is added to the set of

already-extracted type terms when checking that U′ is a syntactic subtype of U.

Definitions. In Figure 3.2, we define algorithmic subtyping rules that correspond to the declar-

ative rules in Figure 2.9 (besides I-Valid-n), as well as an additional rule to manipulate prenex

types. Compared to the presentation of the declarative system, the algorithmic relations maintain a

set U of “already-used” type terms to ensure termination. Also, notice that although the IA-Valid

and IA-Cnf rules overlap, there is no need for backtracking, since we can simply try to discharge

the obligation Γ⇒ p first with IA-Valid and then IA-Cnf upon failure.

As we will discuss in the next section, algorithmic typing derives prenex types for certain
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Algorithmic Subtyping Γ; U ` S v T

y fresh Γ; U⇒ (p1[y/x1]⇒ p2[y/x2])

Γ; U ` {x1 | p1} v {x2 | p2}
[SA-Refine]

Γ, x : T; U ` S1 v T2

Γ; U ` ∃x : T. S1 v T2

[SA-Exists]

Algorithmic Implication Γ; U⇒ p

CNF(p) = ∧i (qi⇒ Q′i) ∀i. ∃q′ ∈ Q′i. Γ,qi; U⇒ q′

Γ; U⇒ p
[IA-Cnf]

Valid(Embed(Γ)⇒ p)

Γ; U⇒ p
[IA-Valid]

T = {x | x = w} MustFlow(Γ, T,U) = U′

∃U′ ∈ U′. Γ; U∪ U′ `U′ <: U

Γ; U⇒ w :: U
[IA-HasType]

Algorithmic Syntactic Subtyping (omitted) Γ; U `U1 <: U2

Figure 3.2. Subtyping for Algorithmic System D

kinds of expressions but ensures that they will only appear on the left side of subtyping obligations.

To handle such an obligation, the SA-Exists rule transfers existential bindings from a prenex

type to the type environment, following the approach in [66]. Since we do not need to discharge

subtyping queries where prenex types are on the right side, we avoid the need to “guess witnesses”

that is algorithmically problematic [66].

Incremental Environments. A noteworthy, but unsurprising, optimization in our implementa-

tion [80] compared to the algorithmic system presented here is that we maintain the environment

of logical assumptions incrementally. We add and remove assertions to and from the environment

whenever the type system manipulates the type environment, so that by the time the IA-Valid

rules needs to check Valid(Embed(Γ)⇒ p), the formula Embed(Γ) is already in the background

assumptions of the environment; only Valid(p) needs to be discharged. For clarity, we refrain

from threading this stack of background facts through all the typing and subtyping relations.

3.2 Bidirectional Type Checking

So that most expressions except function definitions may remain unannotated, we define

a bidirectional type checking algorithm, following work on local type inference [78, 31], that

comprises two parts: a type conversion judgement Γ ` e C T that checks whether e has type T

in the environment Γ, where T is required either by a type checking context or a source-level
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Type Synthesis (selected rules) Γ ` e B S

Valid(Embed(Γ)⇒ false)

Γ ` e B {x | false}
[TS-False]

Γ ` c B ty(c)
[TS-Const]

x ∈ dom(Γ)

Γ ` x B {y | y = x}
[TS-Var]

Γ + x :Any ` e B T2

Γ ` λx.e B {y | y :: x :Any→ T2}
[TS-Fun]

Γ ` v1 B T1 MustFlow(Γ, T1,∅) = U

U= {∀A. x : T11→ T12} Γ ` v2 C Inst(T11, A, T′)

Γ ` [T′] v1 v2 B Inst(T12, A, T)[v2/x]
[TS-App]

Γ ` e1 B ∃y : T′. T1 Γ + y : T′ + x : T1 ` e2 B S2

Γ ` let x = e1 in e2 B ∃y : T′. ∃x : T1. S2

[TS-Let]

Γ ` T1 Γ ` e1 C T1 Γ + x : T1 ` e2 B S2

Γ ` let x : T1 = e1 in e2 B ∃x : T1. S2

[TS-Let’]

Γ ` v C Bool Γ, v = true ` e1 B S1 Γ, v = false ` e2 B S2

Γ ` if v then e1 else e2 B Join(v,S1,S2)
[TS-If]

Figure 3.3. Type Synthesis for Algorithmic System D

annotation; and a type synthesis judgement Γ ` e B S that derives the (prenex) type S for e when

there is no expected type for e. The type checking relations are shown in Figure 3.3 and Figure 3.4.

As usual, uses of T-Sub from the declarative system are factored into other typing rules. In this

section, we highlight the novel aspects of bidirectional type checking in our setting.

Inconsistent Environments. Recall that the type extraction procedure collects the type terms

U such that Valid(Embed(Γ, x :T)⇒ x :: U). If the environment Γ, x : T happens to be inconsistent

(e.g. due to an unreachable branch of an if-expression), then all such implications will be valid. As

we will see, our typing rules for function application depend on type extraction returning exactly

one syntactic arrow, which is not the case in an inconsistent environment. To avoid this situation,

the synthesis rule TS-False and conversion rule TC-False first check whether the environment

is inconsistent, and if it is, they trivially succeed, avoiding the need for any subsequent type

extractions. This approach is sound because when the environment is inconsistent, all implication

obligations can be discharged by the SMT solver anyway.
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Type Conversion (selected rules) Γ ` e C T

Valid(Embed(Γ)⇒ false)

Γ ` e C T
[TC-False]

Γ ` c B S Γ; ∅ ` S v T

Γ ` c C T
[TC-Const]

Γ ` x B S Γ; ∅ ` S v T

Γ ` x C T
[TC-Var]

Γ, A + x : T1 ` e C T2

Γ ` λx.e C {y | y :: ∀A. x : T1→ T2}
[TC-Fun]

Γ ` [T′] v1 v2 B S Γ; ∅ ` S v T

Γ ` [T′] v1 v2 C T
[TC-App]

Γ ` e1 B ∃y : T′. T1 Γ + y : T′ + x : T1 ` e2 C T2

Γ ` let x = e1 in e2 C T2

[TC-Let]

Γ ` T1 Γ ` e1 C T1 Γ + x : T1 ` e2 C T

Γ ` let x : T1 = e1 in e2 C T2

[TC-Let’]

Γ ` v C Bool Γ, v = true ` e1 C T Γ, v = false ` e2 C T

Γ ` if v then e1 else e2 C T
[TC-If]

Figure 3.4. Type Conversion for Algorithmic System D

Unfolding. The declarative rule T-Unfold is not syntax-directed, and we cannot predict where

it will be needed since we do not have pattern matching to determine exactly when to unfold

type definitions, as in languages like ML. Instead, in the algorithmic system, we eagerly unfold

type definitions to anticipate all situations in which (one level of) unfolding might be required. In

particular, whenever the declarative system extends a type environment with a new binding, using

Γ, x : T, the algorithmic system uses the operation Γ + x : T that, in addition to adding the binding,

checks whether x satisfies any constructed types C[T], and if so, unfolds the corresponding type

definitions and records them in the environment.

Γ + x : T $ Γ, x : T, ∧C[T′ ]∈U Unfold(x,C, T′) where U= MustFlow(Γ,{y | y = x},∅)

Values. For constants and variables, the synthesis rules TS-Const and TS-Var are similar to the

declarative typing rules, and the conversion rules TC-Const and TC-Var invoke synthesis and

then call into subtyping to check the synthesized type against the goal. The rules for dictionaries

and constructed data (not shown) are similar. When the binder x of a lambda expression is not

annotated, TS-Fun simply checks the body assuming that x has type Any. When converting a
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function to type T, TC-Fun requires that T syntactically have the form { f | f :: U} where U is a

function type. We can relax this restriction if necessary, for example, to allow intersections of

function types.

Function Application. To synthesize a type for [T′] v1 v2, TS-App first synthesizes a type T1 for

the function v1 and uses type extraction to convert T1 to a syntactic function type ∀A. x : T11→ T12.

To avoid the need for backtracking in the type checker, TS-App requires that there is exactly one

syntactic function type that flows to v1. If there are multiple, we report an error for the application

expression. Again, we can relax this restriction to allow intersections of function types, if necessary.

From this point, the rule proceeds like the declarative rule for function application. The type

conversion rule TC-App first synthesizes the application and then performs a subtyping check

against the expected type.

Let-expressions. When deriving the type T2 for a let-expression let x = e1 in e2, the declarative

T-Let rule checks that x is not mentioned in T2, since otherwise T2 would not be well-formed in the

surrounding environment. When both e1 and the entire let-expression are annotated with expected

types, the TC-Let’ rule ensures that the type T2 is well-formed (assuming that all source-level

annotations are checked for well-formedness and that the type system generates only well-formed

conversion checks, both of which are indeed true). More difficult are the cases where at least one

of these annotations is missing, because the type derived for the expression body e2 will usually

not be well-formed due to the variables inserted inside formulas by the TS-Var rule. We would

like to allow most intermediate let-expressions to remain unannotated, however.

To resolve this issue, we use existential types to deal with the binder x that must go

out of scope. For example, the TS-Let’ synthesizes the type ∃x : T1. S2 for the let-expression

let x : T1 = e1 in e2, where T1 is the successfully verified type annotation for the expression

e1, and S2 is the derived type for e2 in an environment extended with the let-bound variable x.

Because the type S2 of e2 is guaranteed to be in prenex form, ∃x : T1. S2 is, too. The rules TS-Let

and TC-Let handle unannotated let-expressions using existentials in similar fashion.

If-expressions. The type conversion rule TC-If follows the corresponding declarative rule. To

synthesize a precise type for an if-expression, we combine the synthesized types of both branches

by guarding them with the appropriate branch conditions. A first attempt at this approach is the

following, where the synthesized type is an exact join of the branches.

Γ ` v C Bool Γ, v = true ` e1 B {x | p1} Γ, v = false ` e2 B {x | p2}

Γ ` if v then e1 else e2 B {x | (v = true⇒ p1) ∧ (v = false⇒ p2)}

This rule applies when both branches have refinement types, but type synthesis might derive a

prenex type for one or both branches. To handle the general case, the rule TS-If uses the operator
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Join(v,S1,S2), defined below, to first move the existential binders for each branch to the top-level,

ensuring that the result is still in prenex form. Rearranging variables in this way is sound because

we assume that, by convention, all let-bound variables in a program are distinct.

Join(v, (∃x : T′. T1),S2) = ∃x : (Join(v, T′,Any)). Join(v, T1,S2)

Join(v, T1, (∃x : T′. T2)) = ∃x : (Join(v,Any, T′)). Join(v, T1, T2)

Join(v, T1, T2) = {x | (v = true⇒ T1(x)) ∧ (v = false⇒ T2(x))}

Type Parameter Inference. There are two sources of type variable polymorphism in System D.

For polymorphic function applications, we use the standard “greedy” approach [78] (i.e. unifica-

tion) to infer type instantiations when possible. For constructed data expressions of polymorphic

type, we allow the programmer to provide hints in type definitions that help the type checker

decide how to infer type parameters that are omitted. For example, suppose the List definition is

updated as follows:

type List[+A] = { “hd” : A; “tl” :List[∗A]? }

Due to the presence of the marker ∗ in the type of the “tl” field, local type inference will use the

type of v2 (rather than the type of v1, which will often synthesize to a more specific type than that

satisfied by all elements of the list) to infer the omitted type parameter in List(v1, v2). We elide

both of these strategies from the rules.

3.3 Soundness

Each of the techniques in the algorithmic system are designed to be sound with respect

to the declarative system, so that the properties below hold. The procedure Erase removes type

annotations from annotated let-expressions to match the syntax of the declarative system. Notice

that for type synthesis judgements, the resulting prenex type S = ∃x : T. T′ must be manipulated

so that the existentially quantified variable bindings x : T are moved to the typing environment

and that the underlying refinement type T′ is the goal for the declarative judgement. Also notice

that the property for subtyping mentions only refinement types T1 and T2, not prenex types.

Proposition (Sound Algorithmic Typing).

1. If Γ; U⇒ p, then Γ⇒ p.

2. If Γ; U `U1 <: U2, then Γ ` U1 <: U2.

3. If Γ; U ` T1 v T2, then Γ ` T1 v T2.

4. If Γ ` e B ∃x : T. T′, then Γ, x : T ` Erase(e) :: T′.

5. If Γ ` e C T, then Γ ` Erase(e) :: T.

Proof sketch. We provide the intuition for why the above properties should hold, but we do not

present a detailed proof. To show that algorithmic implication is sound with respect to declarative
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implication, consider IA-HasType and its type extraction procedure. It is easy to see that uses of

MustFlow can be converted into derivations by I-Valid, since it depends on the validity of logical

implications. Showing that algorithmic subtyping and syntactic subtyping are sound with respect

to their declarative counterparts goes by induction on their derivation rules, which correspond

one-to-one (except for SA-Exists, which is inapplicable for property (3)).

To show that type synthesis and type conversion are sound with respect to declarative

typing, there are several key aspects to consider. First, the initial checks for an inconsistent

type environment by TS-False and TC-False are sound because the I-Valid can check arbitrary

implications given an inconsistent environment. Second, T-Unfold can be used in places where

unfolded type definitions are eagerly added to environments. Third, the subtyping premises used

in the algorithmic rules can be replaced with uses of T-Sub. Finally, the synthesis rules for let- and

if-expressions derive prenex types, whose quantifiers can be moved to the environment to match

the structure of proposition (4).

Incompleteness. As discussed earlier, the algorithmic subtyping relations limit the type terms

that may be extracted to ensure termination. As a result, there are judgements derivable in

System D that are not derivable Algorithmic System D. We conjecture that the difference in

expressiveness does not preclude useful judgements, but it would be interesting to study the

difference in detail in future work. Furthermore, System D derivations that require more than one

level of unfolding for an expression are not derivable with our unfolding heuristic.

Endnotes
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Chapter 4

Extensions to Subtyping

Having presented both declarative and algorithmic versions of System D, we now describe

a few extensions to subtyping that increase expressiveness. We prove the extensions sound and

discuss how to incorporate them into the algorithmic system.

Nested Refinement Subtyping. Recall the following two rules, which are central to System D

subtyping, that normalize formulas into implication queries and combine SMT and syntactic

reasoning to derive has-type predicates:

CNF(p) = ∧i (qi⇒ Q′i) ∀i. ∃q′ ∈ Q′i. Γ, qi⇒n q′

Γ⇒n p
[I-Cnf]

Valid(Embed(Γ)⇒ w :: U′) Γ `n U′ <: U

Γ⇒n w :: U
[I-HasType]

By extracting syntactic type constructors from refinement types, System D can manipulate syntactic

types in the premises of typing rules in familiar ways. For example, the T-App rule, which is used

to type check the function application v1 v2, requires that v1 :: {y | y :: x : T11→ T12}; to satisfy this

obligation, the I-HasType rule is responsible for proving that v1 :: x : T11→ T12.

4.1 Joins

Let us consider a situation in which the approach for deriving implications above falls

short. Consider the function type terms

U1 $ Any→ {y | Int(y) ∧ y ≥ 0} U2 $ Any→ {y | Int(y) ∧ y ≤ 0}

and a value getInt :: {x | x :: U1 ∨ x :: U2} that could, for example, be the result of an if-expression

that chooses between functions of the more specific types. Intuitively, getInt has type Any→ Int,

so we might expect the application getInt “unit” to be well-typed, but the T-App and I-HasType
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rules cannot derive the required function type. In order to treat a value x as having syntactic type

U, the first premise of I-HasType requires that it definitely have some syntactic subtype U′ that the

SMT solver can prove. When the it can prove only that x has either type U1 or U2, I-HasType does

not provide the means to establish x :: U, even when both are syntactic subtypes of U.

To handle such situations, we can make the following two additions to System D: a

join operator, defined in Figure 4.1, that combines syntactic type terms U1 and U2 into a single

overapproximate type term U; and the following rule which generalizes I-HasType:

Valid(Embed(Γ)⇒ w :: U1 ∨ · · · ∨ w :: Uk) Γ `n (U1 t · · · tUk) <: U

Γ⇒n w :: U
[I-HasType-Join]

Although many syntactic systems with subtyping include a join operator (see [77], for example),

there are several interesting aspects in our setting. First, the join of function types uses logical

disjunction and conjunction — rather than recursively using join and a separate meet operator —

to implement the typical contravariance of argument types and covariance of return types. Second,

we include the join operator in our declarative system — rather than only in our algorithmic

system, as is usually the case, where they are helpful for computing minimal types [77] — which

is not surprising given the “algorithmic flavor” of subtyping in System D, where we manipulate

the structure of formulas. Lastly, when joining two instantiations C[T1] and C[T2] of an invariant

type constructor (the fourth equation in the definition of join), we define type equality

{x | p} ≡ {x | q} $ Valid(p⇔ q)

via equisatisfiability rather than syntactic equality to determine equivalence. The combination of I-

HasType-Join and T-App (without modification) allows the problematic application getInt “unit”

to type check, because the join of U1 and U2 is Any→ Int. For simplicity, the definition of join on

constructed types in Figure 4.1 shows only the case for type constructors with exactly one type

argument; the general case is similar.

4.2 Meets

In the previous section, we added joins to handle situations where the SMT solver

can prove that a value x satisfies one of a set of syntactic type terms U. Now we present

a similar extension to handle situations where x satisfies all of U. For example, consider a

function getZero :: {x | x :: U1 ∧ x :: U2} and the application getZero “unit” There are (at least)

two possibilities for the type of the resulting value, either {y | Int(y) ∧ y ≥ 0} or {y | Int(y) ∧ y ≤ 0}.
But since getZero satisfies both function types, we might want the more precise result type

{y | Int(y) ∧ y ≥ 0∧ y ≤ 0} — that is, {y | y = 0} — which is not derivable in the system to this

point.
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Joins and Meets U1 tU2 U1 uU2

A t A = A

(type C[+A] = { · · · }) C[T1] t C[T2] = C[T1 ∨ T2]

(type C[-A] = { · · · }) C[T1] t C[T2] = C[T1 ∧ T2]

(type C[=A] = { · · · }) C[T1] t C[T2] = C[T1] if T1 ≡ T2

∀A. x : T11→ T12 t ∀A. x : T21→ T22 = ∀A. x : (T11 ∧ T21)→ (T12 ∨ T22)

A u A = A

(type C[+A] = { · · · }) C[T1] u C[T2] = C[T1 ∧ T2]

(type C[-A] = { · · · }) C[T1] u C[T2] = C[T1 ∨ T2]

(type C[=A] = { · · · }) C[T1] u C[T2] = C[T1] if T1 ≡ T2

∀A. x : T11→ T12 u ∀A. x : T21→ T22 = ∀A. x : (T11 ∨ T21)→ T2

T2 = {y | (T11(x)⇒ T12(y))

∧ (T21(x)⇒ T22(y))}

Union and Intersection Types T1 ∨ T2 T1 ∧ T2

{x | p} ∨ {x | q} = {x | p ∨ q} {x | p} ∧ {x | q} = {x | p ∧ q}

Figure 4.1. Joins and Meets for System D

We make two additions to handle situations like this: a meet operator, defined in Figure 4.1,

that combines U1 and U2 into a common syntactic subtype U; and the following analog to I-

HasType-Join:

Valid(Embed(Γ)⇒ w :: U1 ∧ · · · ∧ w :: Uk) Γ `n (U1 u · · · uUk) <: U

Γ⇒n w :: U
[I-HasType-Meet]

Like the join operator, meet is defined with logical connectives rather than recursively using meet

and join. Notice that when computing the meet of two function types, the return type predicates

are guarded by their corresponding argument types to ensure soundness. With these extensions,

System D is able to derive the type {y | y = 0} for the application getZero “unit”.
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4.3 Formula Normalization

The last extension we present addresses situations that involve mixing “all-of” and

“one-of” has-type predicates. Consider the function types

U1 $ Any→ {y | y ≥ 0} U3 $ Any→ {y | y = 0}
U2 $ Any→ {y | y ≤ 1} U4 $ Any→ {y | y = 1}

and the following implication query:

Embed(Γ0)⇒ x :: Any→ {y | y = 0∨ y = 1}

where Γ0 $ (x :: U1 ∧ x :: U2) ∨ x :: U3 ∨ x :: U4

The I-HasType-Meet rule does not apply, since there is no valid conjunction of type predicates.

The I-HasType-Join rule does apply because we can derive the formula

Valid(Embed(Γ0)⇒ x :: U1 ∨ x :: U2 ∨ x :: U3 ∨ x :: U4)

but the join of these four type terms is Any→ Int, not Any→ {y | y = 0∨ y = 1} as desired.

The problem is that the SMT solver cannot perform a precise case analysis involving type

predicates. Analogous to the way I-Cnf converts the right side of formulas into conjunctive normal

form to help introduce type predicates, we can add the following rule that converts the left side of

formulas into disjunctive normal form to help eliminate type predicates:

DNF(Embed(Γ)) = ∨i qi ∀i. qi⇒n p

Γ⇒n p
[I-Dnf]

For the example above, I-Dnf breaks the implication query into three subgoals, and the I-HasType-

Meet rule can handle x :: U1 ∧ x :: U2 case and I-HasType-Join can handle the x :: U3 and x :: U4

cases. Normalizing the left side of formulas is quite powerful — in fact, it can be used to derive

I-HasType-Join — but undesirable for an algorithmic system, as discussed in the sequel.

4.4 Soundness

In Appendix A, we augment our type soundness proofs for System D with the three

extensions described in this chapter. In this section, we outline two of the important lemmas.

The following lemma states three properties of the meet operator. Only the first property

is required for soundness (in particular, for the Satisfiable Typing lemma described in §2.4). The

last two are similar to the usual properties one would expect of a meet operator: that it computes

a lower bound and that it computes the greatest lower bound. Proving the last property depends

on the presence of the I-Dnf rule, so the meet cannot be considered maximal without it.
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Lemma (Sound Meet). Suppose U1 uU2 = U.

1. If In |= w :: U1 and In |= w :: U2 then In |= w :: U.

2. `n U <: U1 and `n U <: U2.

3. If `n U′ <: U1 and `n U′ <: U2, then `n U′ <: U.

We also prove three properties of the join operator analogous to those for the meet

operator. The proof that the join computes the least upper bound (the third property below)

depends on the presence of I-Dnf in the system.

Lemma (Sound Join). Suppose U1 tU2 = U.

1. If In |= w :: U1 or In |= w :: U2, then In |= w :: U.

2. `n U1 <: U and `n U2 <: U.

3. If `n U1 <: U′ and `n U2 <: U′, then `n U <: U′.

These lemmas, along with several others, allow us to prove type soundness for the extended

system. The full details may be found in Appendix A.

4.5 Algorithmic Typing

Each of the three extensions is simple to add to the algorithmic system. We define

the extensions in Figure 4.2. The rules IA-HasType-Meet, IA-HasType-Join, and IA-Dnf are

straightforward analogs to their declarative counterparts.

Function Application. We also update how function applications are synthesized. Recall that

the TS-App rule (Figure 3.3) requires that to call a function v1, there must be exactly one function

type that flows to it. Now the rule TS-App-Meet generalizes (and replaces) TS-App, by using the

meet operator to combine the extracted set U′ of type terms. When MustFlow returns zero type

terms, we now use the new rule TS-App-Join, where the procedure CanFlow tries increasingly

larger sets U of type terms to serve as an “upper bound” for v1.

DNF. Using IA-Dnf is algorithmically undesirable, since the environment of assumptions can

no longer be maintained incrementally (§ 3.1), leading to much larger SMT queries. Therefore,

we intend that a type checker not use IA-Dnf by default but only for complicated examples that

require its expressiveness.

Endnotes

In this chapter, we have shown how to extend the basic nested refinement subtyping

algorithm to increase expressiveness by introducing notions of joins and meets for syntactic type

constructors and by further manipulating the structure of formulas when discharging implications.
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MustFlow(Γ,{x | x = w},U) = U′ U0 = uU′∈U′U
′ Γ; U∪ U′ `U0 <: U

Γ; U⇒ w :: U
[IA-HasType-Meet]

CanFlow(Γ,{x | x = w},U) = U′ U0 = tU′∈U′U
′ Γ; U∪ U′ `U0 <: U

Γ; U⇒ w :: U
[IA-HasType-Join]

DNF(Embed(Γ)) = ∨i qi ∀i. qi; U⇒ p

Γ; U⇒ p
[IA-Dnf]

Γ ` v1 B T1 MustFlow(Γ, T1,∅) = U

U = uU′∈U U′ U = ∀A. x : T11→ T12 Γ ` v2 C Inst(T11, A, T′)

Γ ` [T′] v1 v2 B Inst(T12, A, T′)[v2/x]
[TS-App-Meet]

Γ ` v1 B T1 CanFlow(Γ, T1,∅) = U

U = tU′∈U U′ U = ∀A. x : T11→ T12 Γ ` v2 C Inst(T11, A, T′)

Γ ` [T′] v1 v2 B Inst(T12, A, T′)[v2/x]
[TS-App-Join]

Figure 4.2. Extensions to Algorithmic System D

In subsequent chapters, however, we exclude these extensions and use only the core subtyping

mechanisms from before.
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From System D to JavaScript
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Chapter 5

System !D

Dynamic languages like JavaScript, Python, and Ruby are widely popular for building

both client and server applications, in large part because they provide powerful sets of features

— run-time type tests, mutable variables, extensible objects, and higher-order functions. But

as applications grow, the lack of static typing makes it difficult to achieve reliability, security,

maintainability, and performance. In response, several authors have proposed type systems which

provide static checking for various subsets of dynamic languages [57, 43, 99, 52, 79, 9].

In the previous part of this dissertation, we developed a core calculus for dynamic

languages that supports the above dynamic idioms but in a purely functional setting. The

main insight in System D is to dependently type all values with formulas drawn from an SMT-

decidable refinement logic. We use an SMT solver to reason about the properties it tracks well,

namely, control-flow invariants and dictionaries with dynamic keys that bind scalar values. But

to describe dynamic keys that bind rich values like functions, System D encodes function types

as logical terms and nests the typing relation as an uninterpreted predicate within the logic.

By dividing work between syntactic subtyping and SMT-based validity checking, the calculus

supports automatic type checking of dynamic features like run-time type tests, value-indexed

dictionaries, higher-order functions, and polymorphism.

In the second part of this dissertation, we scale up System D to Dependent JavaScript

(abbreviated to DJS), an explicitly typed dialect of the imperative, object-oriented, dynamic

language. We bridge the vast gap between System D and JavaScript in three steps.

Step 1: Imperative Updates. The types of variables in JavaScript are routinely “changed” either

by assignment or by incrementally adding or removing fields to objects bound to variables. The

presence of mutation makes it challenging to assign precise types to variables, and the standard

method of assigning a single “invariant” reference type that overapproximates all values held

by the variable is useless in the JavaScript setting. We overcome this challenge by extending our

calculus with flow-sensitive heap types (in the style of [91, 29, 39, 3, 86]) which allow the system to

precisely track the heap location each variable refers to as well as aliasing relationships, thereby
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enabling strong updates through mutable variables. Our formulation of flow-sensitive heaps

combined with higher-order functions and refinement types is novel, and allows DJS to express

precise pre- and post-conditions of heaps, similar to as in separation logic [44].

Step 2: Prototype Inheritance. Each JavaScript object maintains an implicit link to the “proto-

type” object from which it derives. To resolve a key lookup from an object at run-time, JavaScript

transitively follows its prototype links until either the key is found or the root is reached without

success. Thus, unlike in class-based languages, inheritance relationships are computed at run-time

rather than provided as declarative specifications. The semantics of prototypes is challenging

for static typing, because to track the type of a key binding, the system must statically reason

about a potentially unbounded number of prototype links! In DJS, we solve this problem with

a novel decomposition of the heap into a “shallow” part, for which we precisely track a finite

number of prototype links, and a “deep” part, for which we do not have precise information,

represented abstractly via a logical heap variable. We unroll prototype hierarchies in shallow heaps

to precisely model the semantics of object operations, and we use uninterpreted heap predicates

to reason abstractly about deep parts. In this way, we reduce the reasoning about unbounded,

imperative, prototype hierarchies to the underlying decidable, first-order, refinement logic.

Step 3: Arrays. JavaScript arrays are simply objects whose keys are string representations of

integers. Arrays are commonly used both as heterogeneous tuples (that have a fixed number of

elements of different types) as well as homogeneous collections (that have an unbounded number

of elements of the same type). The overloaded use of arrays, together with the fact that arrays

are otherwise syntactically indistinguishable and have the same prototype-based semantics as

non-array objects, makes it hard to statically reason about the very different ways in which

they are used. In DJS, we use nested refinements to address the problem neatly by uniformly

encoding tuples and collections with refinement predicates, and by using intersection types that

simultaneous encode the semantics of tuples, collections, and objects.

JavaScript Semantics by Desugaring. Many corner cases of JavaScript are clarified by λJS [51],

a syntax-directed translation, or desugaring, of JavaScript programs to a mostly-standard lambda-

calculus with explicit references and records (like the one in discussed in Chapter 1). As λJS is a

core language with well-understood semantics and proof techniques, the translation paves a path

to a typed dialect of JavaScript: define a type system for the core language and then type check

desugared JavaScript programs. We take this path by developing System DJS, a new statically

typed calculus based on λJS. Although the operational semantics of System DJS is straightforward,

the dynamic features of the language ensure that building a type system expressive enough to

support desugared JavaScript idioms is not.
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basics.djs	
objects.djs	
prelude.djs	

program.djs	

program.js	 System	
  DJS	
  
Type	
  Checker	
  

DJS	
  Desugarer	
  

Figure 5.1. Architecture of Dependent JavaScript

Contributions. To sum up, we make several contributions in the second part of this dissertation:

• We extend System D with support for flow-sensitive strong updates, resulting in a type

system called System !D (pronounced “D-ref”), to enable reasoning about dictionary objects

in the presence of mutable variables. (Chapter 5)

• We extend System !D with encodings for prototype-based inheritance and JavaScript arrays,

resulting in a type system called System DJS. (Chapter 6)

• We define an explicitly typed dialect called Dependent JavaScript (or DJS for short), which

desugars to System DJS for type checking. Figure 5.1 depicts the architecture of our ap-

proach: we desugar a Dependent JavaScript (DJS) file program.js to the System DJS file

program.djs, which is analyzed by the type checker along with a standard prelude compris-

ing three files (basics.djs, objects.djs, and prelude.djs) that model JavaScript seman-

tics. (Chapter 7)

We have implemented DJS [80] and demonstrated its expressiveness by checking a variety of

properties found in small but subtle examples drawn from a variety of sources, including the

popular book JavaScript: The Good Parts [23] and the SunSpider benchmark suite [93]. Our

experiments show that several examples simultaneously require the gamut of features in DJS,

but that many examples conform to recurring patterns that rely on particular aspects of the type

system. We identify several ways in which future work can handle these patterns more specifically

in order to reduce the annotation burden and performance for common cases, while falling back

to the full expressiveness of DJS in general. Thus, we believe that DJS provides a significant step

towards truly retrofitting JavaScript with a practical type system.

5.1 Overview

In this section, we present a series of examples to motivate and introduce the techniques

we use in System !D to reason about mutable variables, mutable dictionary-based objects, and

collections of objects. We continue to use the notational conveniences we introduced for System D.
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Terminology. For the purposes of this chapter, we assume that JavaScript objects are simply

references to pure dictionary values; in the next chapter, we eliminate this assumption and take

into account the semantics of prototype-based objects. We refer to this simplified language

as “JavaScript” (and the corresponding typed dialect as “DJS”), and we typeset examples with

JavaScript syntax as follows.

var negate = function (x) {
if (typeof x == "integer") { return 0 - x; }
else { return !x; }

};

5.1.1 Imperative Updates

JavaScript is an imperative language where variables can be reassigned arbitrary values.

Consider the following DJS function that is like negate but first assigns the eventual result in the

variable x:

//: also_negate :: (x : IntOrBool)→ {y | tag(y) = tag(x)}
var also_negate = function (x) {

if (typeof x == "integer") { x = 0 - x; }
else { x = !x; }
return x;

};

The following is the translation of also_negate to System !D (ignore the comments for now):

0 (*: also_negate :: (x : IntOrBool)→ {y | tag(y) = tag(x)} *)
1 let also_negate (x) = (*: Γ1 = − Σ1 = emp *)
2 let _x = ref x in (*: Γ2 = x :Any Σ2 = (`x 7→ x) *)
3 if tagof (deref _x) = "integer" then (*: Γ3 = Γ2, _x :Ref `x Σ3 = Σ2 *)
4 _x := (0 - deref _x) (*: Γ4 = Γ3, Int(x) Σ4 = ∃x4 : Int. (`x 7→ x4) *)
5 else
6 _x := not (deref _x) (*: Γ6 = Γ3, ¬Int(x) Σ6 = ∃x6 :Bool. (`x 7→ x6) *)
7 ; (*: Γ7 = Γ3 Σ7 = ∃z :{y | ite (Int(x)) (y = x4) (y = x6)}. (`x 7→ z) *)
8 deref _x (*: Γ8 = Γ3 Σ8 = Σ7 *)
9 in

10 let _also_negate = ref also_negate

Several aspects of the translation warrant attention. First, since the formal parameter x, like all

JavaScript variables, is mutable, the translation of the function body begins with an explicit reference

cell _x initialized with x, and each read of x is desugared to a dereference of _x. Presentations of

imperative languages often model assignable variables directly rather than with explicit references.

Both approaches are equivalent; we choose the latter to make the presentation more similar to
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λJS [51] and System D. Second, notice that scalar constants like 0 and true and operators like

typeof and == are translated directly to corresponding ones in System !D. Third, notice that each

assignment to the variable x translates to a set reference (i.e. assignment) operation to update

the contents of the heap cell. Finally, the translations stores the function value in a mutable

variable called _also_negate. For System !D to verify that also_negate satisfies the function

type specification, it must precisely reason about heap updates in addition to control flow, as for

negate in the purely function System D setting (cf. §2.1.1).

Reference Types. The traditional way to handle references in the λ-calculus [77] is to (i) assign

a reference cell some type Ref T, (ii) require that only values of type T be stored in it, and then

(iii) conclude that dereferences produce values of type T. This approach supports so-called weak

updates, because even if a stored value satisfies a stronger type T′ than T (i.e. if T′ is a subtype

of T), subsequent dereferences produce values of the original, weaker type T. Put another way,

this approach requires that the type assigned to a reference cell be a supertype of all the values

written to the cell.

Unfortunately, weak updates would preclude System !D from verifying also_negate. The

initialization of _x on line 2 stores the parameter x which has type Any, so _x would be assigned

type Ref Any. The assignments on lines 4 and 6 type check because the updated values satisfy

the trivial type Any, but the dereference on line 8 produces a value with type Any, which does

not satisfy the specified return type. Thus, we need a way to reason more precisely about heap

updates.

Strong Updates. Allowing assignment to change the type of a reference is called strong update,

which is sound only when a reference is guaranteed to point to a single heap cell and when there

are no accesses through other aliases that refer to the same cell. The Alias Types approach [91]

provides a means of managing these concerns. Rather than Ref T, a reference type is written Ref `,

where ` is the (compile-time) name of a location in the heap, and a separate (compile-time) heap

maps locations to types, for example, (` 7→ T). Strong updates are realized by allowing heaps to

change flow-sensitively, and the aliasing problem is mitigated by maintaining the invariant that

distinct location names ` and `′ do not alias.

System !D employs this approach by using a type environment Γ that grows and shrinks

as usual during type checking but remains flow-insensitive, and a heap environment Σ that can be

strongly updated per program point. We introduce a new syntactic type term, Ref `, for reference

types that can be nested inside refinements à la System D. Extending our notational conventions

from System D, we allow reference types to be written outside refinements to abbreviate the

following:

Ref ` $ {y | y :: Ref `}
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The comments in the translated version of also_negate show how System !D verifies the

function type annotation. The figure shows, at each line i, the type environment Γi used to check

the expression on the line, and the heap environment Σi that exists after checking the expression.

After starting with the empty heap Σ1 = emp, the allocation on line 2 creates a fresh location `x in

the new heap Σ2 $ Σ1⊕ (`x 7→ x) and adds _x :Ref `x to the type environment. We use the symbol

⊕ to construct unordered sets of heap bindings. To exploit the precision of dependent types, we

map locations to values rather than types (i.e. (`x 7→ x) rather than (`x 7→ IntOrBool)).

When checking the if-expression guard on line 3, the dereference retrieves the initial value

x from the heap Σ2, so as a result of the tag-test, System !D adds Int(x) to the type environment Γ4

along the true-branch and ¬Int(x) to Γ6 along the false-branch. In the true-branch, the subtraction

on line 4 is well-typed because Int(x) and produces an integer x4 that is stored in the heap Σ4 at

location `x. In the false-branch, x is negated on line 6, producing a boolean x6 that is stored in the

heap Σ6 at location `x. System !D combines the branches by joining the heaps Σ4 and Σ6, producing

Σ7 that describes the heap no matter which branch is taken. The dereference on line 8 retrieves z, a

value of type {y | ite (Int(x)) (y = x4) (y = x6)} (where ite p q1 q2 $ (p⇒ q1) ∧ (¬p⇒ q2)), which

is a subtype of the return type annotation {y | tag(y) = tag(x)}.
In this way, System !D syntactically tracks strong updates to the heap, while reducing

subtyping obligations to implication queries in a pure refinement logic (as in System D) that does

not model imperative updates.

5.1.2 Mutable Objects

In functional dynamic languages, an object is a dictionary indexed by dynamically

computed keys, and object update (realized via the set primitive in System D) produces a

new (immutable) dictionary value. In an imperative language like JavaScript, however, object

update mutates the existing object rather than producing a new one. In this section, we describe

how System !D retains the precision of System D dictionary operations despite the presence of

mutation.

System !D inherits the dictionary primitives from before; we also incorporate a primitive

del for removing a key, which was omitted from the presentation of System D:

val {} :: (*: {d | d = empty} *)
val mem :: (*: d :Dict→ k :Str→ {b | b iff has(d,k)} *)
val get :: (*: d :Dict→ k :{s |Str(s) ∧ has(d, s)} → {x | x = sel(d,k)} *)
val set :: (*: d :Dict→ k :Str→ x :Any→ {d′ | d′ = upd(d,k, x)} *)
val del :: (*: d :Dict→ k :Str→ {d′ | d′ = upd(d,k,bot)} *)

In the discussion that follows, we refer to the following example, where the JavaScript code on

the left exercises several operations on objects and its translation to System !D on the right makes

every implicit reference operation explicit:
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var k = "g";
var x = {f: k};
var xf = x.f;
x[k] = 3;
assert (x[k] == 3);
delete x.f;
assert (!("f" in x));
var y = x;
y.f = "hi";
assert (x.f == "hi");

1 let _k = ref "g" in
2 let _x = ref (ref {"f" = deref _k}) in
3 let _xf = ref (get (deref (deref _x)) "f") in
4 deref _x := set (deref (deref _x)) (deref _k) 3;
5 assert (get (deref (deref _x)) (deref _k) = 3);
6 deref _x := del (deref (deref _x)) "f";
7 assert (not (mem (deref (deref _x)) "f"));
8 let _y = ref (deref _x) in
9 deref _y := set (deref (deref _y)) "f" "hi";

10 assert (get (deref (deref _x)) "f" = "hi");

As before, we write Σi to refer to the heap environment after processing the code on line i.

Scalar vs. Reference Values. As we saw with also_negate, variable definitions in DJS like k on

line 1 above are translated to bindings to a fresh references, and uses are translated to dereferences.

The translation of a value depends on whether it is a scalar value (e.g. integer, boolean, string) or a

reference value (e.g. object), a distinction made in languages like JavaScript, Java, and C# but not

in pure-object languages like Python and Ruby. Scalar values like “g” on line 1 are translated

directly, while reference values like the object literal {f: k} on line 2 are wrapped in reference

cells. This distinction allows functions in the translation to mutate arguments that are reference

values. After processing the first two lines, we have the following type and heap environments:

Γ3 $ _k :Ref `k, d :{d0 | d0 = upd(empty,“f”,“g”)}, _d :Ref `d, _x :Ref `x

Σ2 $ (`k 7→ “g”)⊕ (`d 7→ d)⊕ (`x 7→ _d)

Mutability and Dynamic Keys. The combination of nested refinements and strong updates

allows us to precisely track objects with dynamic keys despite the presence of imperative updates.

Consider the desugaring of our example above; we omit the assertions for clarity.

The dictionary d referred to by the DJS variable x on line 2 is stored via two levels of

indirection in the heap Σ2, so on line 3 it is dereferenced twice and then supplied to the primitive

get that performs key lookup on the functional (immutable) dictionary d on the heap. The

expression deref (deref _x) retrieves the dictionary d from Σ2, which has an “f” binding, so the

call to get type checks and produces a value of type {z | z = sel(d,“f”)}, which in the current type

environment is equivalent to {z | z = “g”}. Thus, for line 3 the type system derives _xf :: Ref `xf

and the heap Σ3 $ Σ2 ⊕ (`xf 7→ “g”).

System !D reasons about key membership, key update, and key deletion on mutable

objects in similar fashion. On line 4, the DJS object is extended with a dynamic key, that is, an

arbitrary program value and not just a string literal; this poses no problem, since System D

enables the specification of dynamic dictionaries. As opposed to the functional setting where

a new dictionary would be created, the extension mutates the existing dictionary on the heap,
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for which we use the reference update operator := (also known as set-reference, or setref). In

particular, the new heap is the result of strongly updating Σ3, where a new dictionary d′ of type

{d1 | d1 = upd(d,“g”,3)} replaces the old one stored at location `d:

Σ4 $ (`k 7→ · · ·)⊕ (`x 7→ · · ·)⊕ (`x f 7→ · · ·)⊕ (`d 7→ d′)

The system can, hence, prove that the call to get on line 5 is safe (because d′ has a binding for “g”)

and returns a value of type {n | n = 3}. Like object extension, the key deletion on line 6 results in

a strong update, producing

Σ6 $ (`k 7→ · · ·)⊕ (`x 7→ · · ·)⊕ (`x f 7→ · · ·)⊕ (`d 7→ d′′)

where d′′ has type {d2 | d2 = upd(d′,“f”,bot)}. Thus, the system proves the assertion on line 7 that

d′′ does not have a binding for “f”.

Aliasing. Factoring references into flow-insensitive reference types and flow-sensitive heap

types in the style of Alias Types [91] makes it easy to track strong updates in the presence of

aliasing. After the declaration on line 8, _y :: Ref `y is added to the type environment and the

heap environment is:

Σ8 $ · · · ⊕ (`d 7→ d′′)⊕ (`x 7→ _d)⊕ (`y 7→ _d)

Because both `x and `y store _d, a pointer to the single dictionary stored at `d, the update through

_y on line 9 is reflected when reading through _x on line 10, and, hence, the assertion is proven.

5.1.3 Function Types

The only System !D function we have seen so far, also_negate, does not take any heap

references as arguments and does not return any to the caller. In general, however, heap references

may cross function boundaries, so the types of functions must describe values on the heap.

Input and Output Worlds. We define a world W, of the form x : T/h, to describe a value x of

type T along with a heap type (or simply heap) h of the form H ⊕ h′, where H is a single heap

variable followed by a sequence of unordered location bindings. The bindings in h′ are like those

in a heap environment Σ but they map locations to binder-type pairs rather than values (e.g.

(` 7→ y : T) rather than (` 7→ v)). The variable H is used to refer to all other locations in a given

heap not constrained by h′. We sometimes refer to portion of the heap described by H′ as the

“deep” heap and the portion by h′ as the “shallow” heap, since we can “see into” the latter to

inspect its locations. All of the binders in a world — namely, the binder x and all of the binders y

in the heap — may refer to one another. As a result, a world can be thought of as a (dependent)

tuple of values, some of which reside in the heap.
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A function type in System !D, parameterized by a sequence of type variables A, location

variables L, and heap variables H, comprises an input and output world as follows:

∀A, L, H. W1→W2 = ∀A, L, H. x1 : T1 /h1→ x2 : T2 /h2

This type describes a function that, given an argument x1 of type T1 in a calling context that

satisfies the input heap h1 = H1 ⊕ h′1, produces an output value x2 of type T2 and a modified heap

h2 = H2 ⊕ h′2. The input and output heap bindings h′1 and h′2 describe only those locations that

are accessed by the function; all other locations are unaffected and bound to the heap variables H1

and H2 (these correspond variables to the “frame” from separation logic [44]). All of the binders

in the input world W1 are in scope in the output world W2, which is useful for describing how a

function mutates heap values. We often omit binders when they are not referred to.

To match the structure of function types, function applications must instantiate type and

location variables. However, our implementation, described in Chapter 7, infers instantiations in

many cases using standard local type inference techniques. When we write DJS examples in the

sequel, we omit instantiations at applications wherever our current implementation infers them.

Location Polymorphism. Consider the following function adapted from System D (cf. § 2.1.3) to

the imperative setting. So that the following function works with references to any location, we

write an annotation quantified by a location parameter:

//: getCount :: ∀L, H. (Ref L, Str)/ H ⊕ (L 7→ d :Dict)
//: → Int/ H ⊕ (L 7→ d′ :Dict{d′ = d})
var getCount = function (t, c) {

if (c in t) { return toInt(t[c]); }
else { return 0; }

};

Each caller must instantiate L appropriately to match the reference parameter that it passes in.

With this signature, and a constant toInt :: Any→ Int, the type system can prove that the key

lookup operation is safely guarded by the key membership test, that the output value is always an

integer, and that the output heap is exactly the same as the input heap (i.e. unmodified).

Notation. We sweeten function type syntax with some sugar:

• A single heap variable H is implicitly added to a function type when it contains none, and

H is added to both the input and output heaps.

• When used as an output heap, the token same refers to the sequence of locations in the

corresponding input heap, where each binding records that the final value is exactly equal

to the initial value.
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• In an input world, a reference binding x :Ref without a location introduces a location variable

L that is quantified by the type, and x (a value of type Ref L) can be used as a location in

heaps to refer to this variable L.

For example, the function type annotation for also_negate from before expands to the following:

also_negate :: ∀H. (x : IntOrBool)/ H→ {y | tag(y) = tag(x)}/ H

And we can write the following concise type for getCount to abbreviate the previous one:

getCount :: (x :Ref , Str)/(x 7→ d :Dict)→ Int/same

Effects. Neither of the previous functions has an observable effect on callers; although each

function allocates local references, they are inaccessible from call sites. The following function

(adapted from §2.1.3) does mutate the heaps of its callers:

//: incCount :: (t :Ref , c :Str)/(t 7→ d :Dict)
//: → Any/(t 7→ d′ :Dict{EqMod(d′,d,{c}) ∧ Int(sel(d′, c))})
var incCount = function (t, c) {

var i = getCount(t, c);
t[c] = 1 + i;

};

The function mutates the object argument rather than creating a copy of the object and extending it,

so the updated object type is reflected in the output heap. The macro EqMod(d′,d,{c}) encodes the

fact that the dictionary d′ is equal to d at all keys except c; additionally, the predicate Int(sel(d′, c))

records the fact that d′ has an integer c field.

5.1.4 Collections

As discussed in §5.1.1, strong updates are sound only for references that point to exactly

one object, which is far too restrictive for all situations as real programs manipulate collections of

objects. In this section, we describe weak references in DJS to refer to multiple objects, a facility that

enables programming with arrays of mutable objects as well as recursive types.

Lists of References. In the following example, we iterate over a list of passenger objects and

compute the sum of their weights; we use a default value max_weight when a passenger does not

list his weight (ignore the annotations for now).

1 //: sumWeights ::
2 //: ∀ ˜L, ˜L′. ( ˜L 7→ Tpassenger)⊕ ( ˜L′ 7→ List[Ref ˜L; ˜L′])⇒ (Ref ˜L′?)→ Int
3 var sumWeights = function (passengers) {
4 if (passengers == null) { return 0; }
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5 else {
6 var p = passengers.hd;
7 var n = sumWeights(passengers.tl);
8 //: thaw p
9 if ("weight" in p) { return p.weight + n; }

10 else { return n; }
11 //: freeze p
12 }
13 }

We would like to specify an argument type that is a list of objects with the type

Tpassenger $ {d |Dict(d) ∧ has(d,“weight”)⇒ Int(sel(d,“weight”))}.

Using the mechanisms we have seen so far, we can assign the type

sumWeights :: ∀L. (List[Ref L])/(L 7→ Tpassenger)→ Int/same (5.1)

where List is a pre-defined recursive type constructor in the style of System D collections (§ 2.1.4).

However, this type is not very useful as it requires that the argument be a list of references to a

single object stored at the single location L.

Weak Locations. To refer to an arbitrary number (one or more) objects of the same type, we adopt

the Alias Types [91] solution, which categorizes some locations as weak to describe an arbitrary

number of locations that satisfy the same type, and syntactically ensures that weak locations are

weakly updated. We extend the syntax of a function type in System !D to the form

∀A, M, H. Ψ⇒W1→W2

to describe a weak heap Ψ of bindings ( ˜` 7→ T), where ˜` is a weak location such that all objects

that might reside at ˜` satisfy the type T and where M ranges over strong location variables L and

weak location variables ˜L. Unlike for a strong location, there is no heap binder for a weak location

because there is not a single value to describe. We allow the weak heap to be omitted when it

contains no bindings, writing ∀A, M, H. W1→W2 similar to before.

Thaw and Freeze. Using the weak location facility, we would like to describe the type of the

function above as follows:

sumWeights :: ∀ ˜L. ( ˜L 7→ Tpassenger)⇒ (List[Ref ˜L])→ Int (5.2)

Unfortunately, the existing mechanisms we have discussed are unable to verify this specification.

Each (desugared) use of p on line 9 is a dictionary of type Tpassenger, which is not sufficient to

type check the addition operation. This is quite unsatisfying, however, because the conditional
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establishes that along the then-branch, p does possess the key and therefore should be assigned

the more precise type {d | Int(sel(d,“weight”))}.
To solve this problem, we adopt a mechanism found in derivatives of Alias Types (e.g.

[29, 39, 3, 86]) that allows a weak location to be temporarily treated as strong. A weak location ˜` is

said to be frozen if all references Ref ˜` use the location only at its weak (invariant) type. The type

system can thaw a location, producing a strong reference Ref `k (with a fresh name) that can be

used to strongly update the type of the cell. While a location is thawed, the type system prohibits

the use of weak references to the location, and does not allow further thaw operations. When the

thawed (strong) reference is no longer needed, the type system checks that the original type has

been restored, re-freezes the location, and discards the thawed location. Soundness of the approach

depends on the invariant that each weak location has at most one corresponding thawed location

at a time.

In our example, we do not need to temporarily violate the type of p, but the thaw/freeze

mechanism does help us relate the two accesses to p on line 9. We can assign the following type

to the function above, where thaw state annotations require that the weak location L that stores

passengers objects must be frozen upon entry and exit of the function:

sumWeights :: ∀ ˜L. ( ˜L 7→ Tpassenger)⇒ (List[Ref ˜L])/( ˜L 7→ frzn)→ Int/( ˜L 7→ frzn) (5.3)

Notice that thaw state annotations for weak locations are placed inside strong heaps because they

are subject to update. The thaw annotation on line 8 changes the type of p from a weak reference

of type Ref ˜L to a strong reference Ref ˜`1 to a fresh thawed location, which stores a particular

dictionary on the heap (named with a binder) that is retrieved by both subsequent uses of p. Thus,

on line 9 we can relate the key membership test to the lookup, and track that p.weight produces

an integer. The freeze annotation on line 11 restores the invariant that ˜L must be frozen before

the function returns. We describe this technique further in §5.3.

Because weak locations are often frozen at function boundaries, we allow the thaw state

annotation for a weak location ˜L to be omitted from a function type, in which case ( ˜L 7→ frzn) is

added to both the input and output worlds of the function. For example, Equation 5.3 is syntactic

sugar for Equation 5.2.

Weak Locations for Recursive Types. Having addressed the issue of describing an arbitrary

number of heap values with the same type, we now turn our attention to the mechanism

for describing the list of references itself. Although we could adopt the recursive type con-

structors from System D to facilitate collections, instead, in System !D, we reuse the weak lo-

cation mechanism to describe recursive types. For example, we can describe a weak location

( ˜L0 7→ {“hd” : Int; “tl” : (Ref ˜L0)?}) and use the type Ref ˜L0 to describe (an arbitrary number

of) integer lists, each of which stores an integer and a possibly-null reference to another integer
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Values v ::= λx.e | x | c | v1[v2 7→ v3] | r

Expressions e ::= v | [T,m, h] v1 v2

| if v then e1 else e2 | let x = e1 in e2

| ref ` v | deref v | setref v1 v2

| freeze ˜` θ v | thaw ` v

Types T ::= {x | p}
Prenex Types S ::= ∃x : T. S | T

Formulas p,q ::= P(w) | w :: U | p ∧ q | p ∨ q | ¬p

Logical Values w ::= v | F(w)

Type Terms U ::= ∀A, M, H. Ψ⇒W1→W2 | A | Ref m

Weak Heaps Ψ ::= − | Ψ⊕ ( ˜` 7→ T)

(Strong) Heaps h ::= H | h⊕ (` 7→ x : T) | h⊕ ( ˜` 7→ θ)

Thaw States θ ::= frzn | thwd `

Worlds W ::= x : T/h

Strong Locations ` ::= a | L

Weak Locations ˜` ::= ˜a | ˜L

Locations m ::= ` | ˜`

Location Variables M ::= L | ˜L

Metavariables L ∈ LocationVarIdentifiers

H ∈ HeapVarIdentifiers

a ∈ StaticLocationConstants

r ∈ DynamicLocationConstants

Figure 5.2. Syntax of System !D

list. Using this approach and the abbreviation List[A; ˜L0] $ {“hd” : A; “tl” : (Ref ˜L0)?} we can

now specify and verify the following type (reproduced from line 2):

sumWeights :: ∀ ˜L, ˜L′. ( ˜L 7→ Tpassenger)⊕ ( ˜L′ 7→ List[Ref ˜L; ˜L′])⇒ (Ref ˜L′?)→ Int

5.2 Syntax and Semantics

We now introduce the formal syntax of values, expressions, and types of System !D,

defined in Figure 5.2. Metavariables not defined in Figure 5.2 are inherited from the syntax of

System D (Figure 2.1).
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Operational Semantics ∆1; e1 ↪→ e2; ∆2

Run-Time Heaps ∆ ::= − | ∆[r 7→ v]

∆; [T,m, h] (λx.e) v ↪→ e[v/x]; ∆
[E-App]

∆; let x = v in e ↪→ e[v/x]; ∆
[E-Let]

∆; if true then e1 else e2 ↪→ e1; ∆
[E-IfTrue]

∆; if false then e1 else e2 ↪→ e2; ∆
[E-IfFalse]

δ(c,v) is defined

∆; c v ↪→ δ(c,v); ∆
[E-Delta]

∆; e1 ↪→ e′1; ∆′

∆; let x = e1 in e2 ↪→ let x = e′1 in e2; ∆′
[E-Compat]

r fresh

∆; ref ` v ↪→ r; ∆[r 7→ v]
[E-Ref]

r ∈ dom(∆)

∆; deref r ↪→ ∆(r); ∆
[E-Deref]

r ∈ dom(∆)

∆; setref r v ↪→ v; ∆[r 7→ v]
[E-Setref]

∆; thaw ` r ↪→ r; ∆
[E-Thaw]

∆; freeze ˜` θ r ↪→ r; ∆
[E-Freeze]

Figure 5.3. Semantics of System !D

Values. Values v include lambdas λx.e, variables x, constants c, (functional) dictionaries v1[v2 7→
v3], and run-time heap locations r, which do not appear in source programs but arise during

evaluation. The set of constants c is inherited from System D and includes base values (numbers,

booleans, strings, the empty dictionary {}, null, etc.) and primitive functions (tagof, get, (=),

etc.). We use tuple syntax (v0, . . ., vn) as sugar for the dictionary with fields “0” through “n”

bound to the component values. Logical values w are all values and applications of primitive

function symbols F, such as addition + and dictionary selection sel, to logical values.

Expressions. As in System D, we use an A-normal form (ANF) expression syntax so that we need

only define substitution of values (not arbitrary expressions) into types. We use a more general

syntax for examples throughout this paper, and our implementation desugars expressions into

A-normal form. Expressions e include values, function application, if-expressions, let-bindings,

and several reference-manipulating operations. Since function types will be parameterized by

type, location, and heap variables, the syntax of function application requires that these be
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instantiated. Reference operations include reference allocation, dereference, and update, and

the operational semantics, defined in Figure 5.3, maintains a separate heap that maps locations

to values. The only difference compared to standard presentations of the λ-calculus extended

with references (e.g. [77]) is that the syntax of reference allocation includes an explicit strong

location `, which is intended to be a compile-time abstraction of a set of run-time locations r′ such

that StrongLoc(r′) = ` and that includes the freshly allocated run-time location r. The thaw ` v

operation converts a weak reference to a strong one; freeze ˜` θ v converts a strong reference to a

weak one, where the thaw state θ is used by the type system for bookkeeping.

Types and Formulas. Values in System !D are described by refinement types of the form {x | p}
where the scope of x is p and prenex-quantified existential types ∃x : T. S where the scope of x is S.

Existential types do not appear in source programs; they are created only during type checking

in a controlled fashion that does not preclude algorithmic type checking [66]. We often write

∃x : T. T′ to at once describe the (zero or more) existential quantifiers of a prenex type.

The language of refinement formulas includes predicates P, such as equality and the

dictionary predicate has, and the usual logical connectives. Similar to the syntax for expression

tuples, we use (T1, . . ., Tn) as sugar for the dictionary type with fields “0” through “n” with the

corresponding types.

As in System D, we use an uninterpreted has-type predicate w :: U in formulas to describe

values that have complex types, represented by type terms U, which includes function types, type

variables, and reference types. A reference type names a strong or weak location in the heap,

where a strong location ` is either a constant a or a variable L and a weak location ˜` is either a

constant ˜a or variable ˜L.

Function types, as discussed in §5.1.3, are parameterized over type, location, and heap

variables and comprise a weak heap Ψ and input and output worlds W1 and W2. The type of a

strong location is subject to strong update, so it may vary from input to output world. The type of

a weak location, however, does not vary, so there is no output weak heap for a function type. But

the thaw state of a weak location, either frozen or temporarily thawed to a strong location, may vary

and is, thus, recorded in the strong input and output heaps.

Heap Types. A strong heap type, or simply heap, h is a single heap variable H followed by an

ordered list of heap bindings h′ concatenated with the ⊕ operator. The heap binding (` 7→ x : T)

represents the fact that the value at location ` has type T; the binder x refers to this value in

the types of other heap bindings. The binding ( ˜` 7→ θ) records the current thaw state of weak

location ˜`, to help maintain the invariant that it has at most one thawed location at a time.

Syntactic Sugar. We freely use the syntactic abbreviations defined in Figure 2.2 and Figure 2.3

for System D as well as the ones introduced earlier in this chapter.
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Type Environments Γ ::= − | Γ, x : T | Γ, p

| Γ, A | Γ, M | Γ, H

| Γ, ( ˜` 7→ T)

Heap Environments Σ ::= H | Σ⊕ (` 7→ v) | Σ⊕ ( ˜` 7→ θ)

Value Typing Γ; Σ ` v :: T

Expression Typing Γ; Σ ` e :: S/Σ′

Subtyping Γ ` T1 v T2

Syntactic Subtyping Γ `U1 <: U2

Implication Γ⇒ p

World Subtyping Γ `W1 v W2; π

World Satisfaction Γ ` S/Σ |= W; π

Heap Matching h ∼ h; π

Heap Env. Matching Σ ∼ h; π

Well-Formedness ` Γ Γ ` T Γ ` p Γ `U Γ ` w

Γ ` m Γ `W Γ ` h Γ ` Ψ

Figure 5.4. Syntax of System !D Judgements

5.3 Type Checking

In this section, we discuss the well-formedness, typing, and subtyping relations of

System !D. The type system reuses the System D subtyping algorithm to factor subtyping obli-

gations between a first-order SMT solver and syntactic subtyping rules. The novel technical

development in System !D is the formulation of flow-sensitive heap types in a higher-order, de-

pendent setting. We summarize the syntax of environments and typing judgements in Figure 5.4.

Environments. The type checking relations make use of type environments Γ and heap environ-

ments Σ. A type environment binding records either: the derived type for a variable; a formula p

to track control flow along a conditional branch; a polymorphic variable introduced by a function

type; or the description of a weak location (which does not change flow-sensitively), namely, that

every object stored at ˜` satisfies type T. A heap environment is just like a heap type, except that

a strong location ` binds the value v it stores (as opposed to the type of v).

5.3.1 Well-Formedness

As usual in a refinement type system, we define well-formedness relations (Figure 5.5)

that govern how values may be used inside formulas. The key intuition is that formulas are
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Well-Formed Types Γ ` S

Γ, x :Any ` p

Γ ` {x | p}

Γ ` T Γ, x : T ` S

Γ ` ∃x : T. S

Well-Formed Worlds, Heaps, and Locations Γ `W Γ ` h Γ ` Ψ Γ ` m

Γ′ = Γ, x :Any, Binders(h) Γ′ ` T Γ′ ` h no duplicate locations in h

Γ ` x : T/h

Γ ` −

Γ ` h Γ ` ` Γ ` T

Γ ` h⊕ (` 7→ x : T)

Γ ` h Γ ` ˜` Γ ` `

Γ ` h⊕ ( ˜` 7→ thwd `)

Γ ` h Γ ` ˜`

Γ ` h⊕ ( ˜` 7→ frzn)

Γ ` Ψ Γ ` ˜` Γ ` T

Γ ` Ψ⊕ ( ˜` 7→ T) Γ ` a Γ ` ˜a

M ∈ dom(Γ)

Γ ` M

Well-Formed Type Terms (selected rules) Γ `U

Γ ` m

Γ ` Ref m

Γ′ = Γ, A, M, H Γ′ ` Ψ Γ′ `W1 Γ′, Binders(W1) `W2

Γ ` ∀A, M, H. Ψ⇒W1→W2

Well-Formed Formulas and Logical Values (omitted) Γ ` p Γ ` w

Well-Formed Type Environments (omitted) ` Γ

Figure 5.5. Well-Formedness for System !D

boolean propositions and mention only variables that are currently in scope. Locations in a heap

type h must either be location constants or location variables bound by the type environment, and

may not be bound multiple times. All of the binders in a world x : T/h, namely, x and all of the

binders in h are in scope in T and all types in h. Thus, the values in a world can be regarded as a

dependent tuple. For function types, the binders of the input world W1 are in scope in the types

of the output world W2.

5.3.2 Value Typing

The value typing judgement Γ; Σ ` v :: T (defined in Figure 5.6) verifies that the value v

has type T in the given environments. Since values do not produce any effects, this judgement

does not produce an output heap environment. Each primitive constant c has a type, denoted by

ty(c), that is used by T-Const. The standard T-Var rule assigns singleton or “selfified” types to
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Value Typing Γ; Σ ` e :: T

Γ; Σ ` c :: ty(c)
[T-Const]

x ∈ dom(Γ)

Γ; Σ ` x :: {y | y = x}
[T-Var]

Γ; Σ ` (v1, v2, v3) :: (Dict, Str, T)

Γ; Σ ` v1[v2 7→ v3] :: {x | x = v1[v2 7→ v3]}
[T-Extend]

StrongLoc(r) = ` m = ` or m = WeakLoc(`)

Γ; Σ ` r :: {x | x :: Ref m}
[T-Loc]

U = ∀A, M, H. Ψ⇒W1→W2 Γ `U EnvOfWorld(W1) = (x0 :T0, x :T, Σ1)

Γ1 = Γ, A, M, H, Ψ, (x0 : T0, x : T) Γ1; Σ1 ` e :: S/Σ2 Γ1 ` S/Σ2 |= W2; π

Γ; Σ ` λx.e :: {y | y :: U}
[T-Fun]

World Satisfaction Γ ` S/Σ |= W; π

Γ′ = Γ, x : T Γ′ ` T′ v T′′ Σ ∼ h; π Γ′, y : T′⇒ πEmbed(h)

Γ ` ∃x : T. T′/Σ |= y : T′′/h; π

Heap Environment Matching Σ ∼ h; π

Σ ≡ Σ′ h ≡ h′ Σ′ ∼ h′; π

Σ ∼ h; π H ∼ H; []

Σ ∼ h; π

Σ⊕ (` 7→ v) ∼ h⊕ (` 7→ x : T); π[v/x]

Σ ∼ h; π

Σ⊕ ( ˜` 7→ θ) ∼ h⊕ ( ˜` 7→ θ); π

Figure 5.6. Value Typing for System !D
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variables. The T-Extend rule for dictionaries is the same as in System D. The T-Loc rule assigns

run-time locations types based on their compile-time locations, as per previous discussion. The

rule T-Fun uses the procedure EnvOfWorld, defined as

EnvOfWorld(x0 : T0 /h) = (x0 : T0, x : T, Σ) where EnvOfHeap(h) = (x : T, Σ)

EnvOfHeap(h⊕ (` 7→ x : T)) = ((Γ, x : T), (Σ⊕ (` 7→ x))) where EnvOfHeap(h) = (Γ, Σ)

EnvOfHeap(h⊕ ( ˜` 7→ θ)) = (Γ, (Σ⊕ ( ˜` 7→ θ))) where EnvOfHeap(h) = (Γ, Σ)

EnvOfHeap(H) = (−, H)

that takes a “snapshot” of the input world W1 by collecting all of its binders to add to the type

environment (as a dependent tuple) and producing a heap environment Σ1 for type checking the

body. Dually, after deriving type S and heap environment Σ2 for the function body, the world

satisfaction judgement Γ1 ` S/Σ2 |= W2; π checks that these satisfy W2, modulo permutation of

heap bindings. We write h ≡ h′ and Σ ≡ Σ′ for syntactic equality of heaps and heap environments

modulo permutation. The substitution π maps binders from the heap type in W2 to the values

stored at corresponding locations in the heap environment Σ2; the substitutions produced by

world satisfaction are useful for type checking function applications, discussed shortly.

5.3.3 Expression Typing

The expression typing judgement Γ; Σ ` e :: S/Σ′ (defined in Figure 5.7) verifies that the

evaluation of expression e produces a value of type S and a new heap environment Σ′.

Prenex Quantified Types. The T-Let rule uses an existential (like in the algorithmic presentation

of System D in § 3.2) to describe the type T1 of the variable x that goes out of scope after the

body expression is checked. Alternatively, the more traditional approach (like in the declarative

presentation of System D in §2.3) requires that the variable be eliminated (e.g. via subsumption).

But we use existentials here in the declarative presentation of System !D because it simplifies

several other typing rules, in particular, T-Thaw and T-App which also derive prenex types. We

could do without existentials in System !D if we changed the syntax of thaw operations and

function applications so that each always appears as the equation of a let-binding, in which case

we could use the traditional approach.

So that existentials appear only on the left side of subtyping obligations, we ensure

that the typing rules derive prenex quantified types of the form ∃x : T. T′, where all the types

T and T′ are refinement types, not existential types. In particular, to combine the worlds of

two branches, the Join operator (not shown) rearranges existentials in similar fashion as the Join

operator in §3.2 to ensure that the resulting world is in prenex form. For example, for a conditional

with guard b, the join of (∃x1 : T1. Any/(` 7→ x1)) and (∃x2 : T2. Any/(` 7→ x2)) is (equivalent to)

(∃y : T12. Any/(` 7→ y)) where T12 $ {z | if b = true then T1(z) else T2(z)}.
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Expression Typing Γ; Σ ` e :: S/Σ′

Γ; Σ ` v :: T

Γ; Σ ` v :: T/Σ
[T-Val]

Γ; Σ ` e1 :: ∃y : T′. T1 /Σ1 Γ, y : T′, x : T1; Σ1 ` e2 :: S2 /Σ2

Γ; Σ ` let x = e1 in e2 :: ∃y : T′. ∃x : T1. S2 /Σ2

[T-Let]

Γ; Σ ` v :: Bool Γ, v = true; Σ ` e1 :: S1 /Σ1 Γ, v = false; Σ ` e2 :: S2 /Σ2

Γ; Σ ` if v then e1 else e2 :: Join(v,S1 /Σ1,S2 /Σ2)
[T-If]

` /∈ dom(Σ) Γ; Σ ` v :: T

Γ; Σ ` ref ` v :: {x | x :: Ref `}/Σ⊕ (` 7→ v)
[T-Ref]

Γ; Σ ` v :: {y | y :: Ref `} Σ ≡ Σ0 ⊕ (` 7→ v′)

Γ; Σ ` deref v :: {x | x = v′}/Σ
[T-Deref]

Γ; Σ ` v1 :: {y | y :: Ref `} Γ; Σ ` v2 :: T Σ ≡ Σ0 ⊕ (` 7→ v)

Γ; Σ ` setref v1 v2 :: {x | x = v2}/Σ0 ⊕ (` 7→ v2)
[T-SetRef]

Γ; Σ ` v :: {y | y :: Ref `} Σ ≡ Σ0 ⊕ ( ˜` 7→ θ)⊕ (` 7→ v′)

θ = frzn or θ = thwd ` Γ( ˜`) = T Γ; Σ ` v′ :: T

Γ; Σ ` freeze ˜` θ v :: {x | x :: Ref ˜`}/Σ0 ⊕ ( ˜` 7→ frzn)
[T-Freeze]

Γ; Σ ` v :: {z | z :: Ref ˜`} Σ ≡ Σ0 ⊕ ( ˜` 7→ frzn) Γ( ˜`) = T

Γ; Σ ` thaw ` v :: ∃x : T. {y | y :: Ref `}/Σ0 ⊕ ( ˜` 7→ thwd `)⊕ (` 7→ x)
[T-Thaw]

Γ; Σ ` v1 :: { f | f :: ∀A, M, H. Ψ⇒W1→W2} Γ; Σ ` v2 :: T′′

Γ ` [T/A] Γ ` [m/M] Γ ` [h/H] W ′2 = Freshen(W2)

(Ψ′,W ′1,W ′′2 ) = Inst(Inst(Inst((Ψ,W1,W ′2), A, T), M,m), H, h)

Γ ` Ψ′ Γ `W ′1 Γ `W ′′2 Ψ′ ⊆ Γ Γ ` T′′/Σ |= W ′1; π

W ′1 = y : _/_ π′ = π[v2/y] W ′′′2 = π′W ′′2 EnvOfWorld(W′′′2 ) = (x0 :T′0, x :T′, Σ2)

Γ; Σ ` [T,m, h] v1 v2 :: ∃x0 : T′0. ∃x : T′. {z | z = x0}/Σ2

[T-App]

Figure 5.7. Expression Typing for System !D
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Imperative Operations. There are three rules for imperative operations on strong locations. To

check the reference allocation ref ` v, the rule T-Ref ensures that ` is not already bound in the

heap, and then adds a binding that records exactly the value being stored. The rule T-Deref

checks that the given value is a reference to a strong location, and then retrieves the stored value;

this is the imperative analog to the “selfifying” T-Var rule. The rule T-SetRef strongly updates a

simple location.

In System !D, we use weak locations to describe collections of values, for which strong

updates are not sound. Although we could define analogs of the previous three rules for weak

locations, we require that all imperative operations go through strong locations because we provide

a mechanism for temporarily thawing weak locations. To safely allow a weak location ˜` to be

treated temporarily as strong, System !D ensures that ˜` has at most one corresponding thawed

location at a time; if there is none, we say ˜` is frozen. The rule T-Thaw thaws ˜` to a strong

location ` (which we syntactically require be distinct from all other thawed locations for ˜`) and

updates the heap environment with thaw state thwd ` to track the correspondence. Finally, the

new heap also binds a value x of type T, the invariant for all values stored at ˜`, and the output

type introduces an existential so that x is in scope in the new heap.

The rule T-Freeze serves two purposes, to merge a strong location ` into a weak (frozen)

location ˜` and to re-freeze a thawed (strong) location ` that originated from ˜`, as long as the heap

value stored at ` satisfies the invariant required by ˜`. Compared to the presentation in [3], we

combine freeze and re-freeze into a single freeze expression that includes an explicit thaw state θ.

Function Application. To type check [T,m, h] v1 v2, the T-App rule must perform some heavy

lifting. Three well-formedness checks ensure that the number of type, location, and heap parame-

ters must match the number of type, location, and heap variables of the function type, and that

the sequence of locations m contains no duplicates to ensure the soundness of strong updates [91].

The procedure Freshen generates fresh binders for the output world so that bindings at different

call sites do not collide.

The substitution of parameters for polymorphic variables proceeds in three steps. First,

the type variables A inside has-type predicates are instantiated with the type parameters T using

the procedure Inst. Second, the location variables M are replaced with the parameters m by

substitution. Third, the heap variables H are instantiated with heap parameters. At this point, the

polymorphic variables have been fully instantiated. The resulting weak heap, input world, and

output world are checked for well-formedness to ensure that no locations appear multiple times.

Next, the argument type T′′ and current heap environment Σ are checked to satisfy

the input world W ′1. If so, the substitution π maps binders from the input heap in W ′1 to the

corresponding ones in the current heap Σ. The substitution is extended with a mapping to

the argument v2 and then applied to the output world. Then, like in the T-Fun rule, we use

EnvOfWorld to collect the bindings of the output world and convert it to a heap environment Σ2.
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Subtyping (omitted) Γ ` T1 v T2

Implication (omitted) Γ⇒ p

Syntactic Subtyping (selected rules) Γ `U1 <: U2

Γ ` Ref m <: Ref m
[U-Ref]

Γ `W21 v W11; π Γ, Embed(W21) ` πW12 v W22; π′

Γ ` ∀A, M, H. Ψ⇒W11→W12 <: ∀A, M, H. Ψ⇒W21→W22

[U-Arrow]

World Subtyping Γ `W1 v W2; π

Γ ` T1 v T2 h1 ∼ h2; π π′ = π[x1/x2] Γ, x1 : T1, Embed(h1)⇒ π′Embed(h2)

Γ ` x1 : T1 /h1 v x2 : T2 /h2; π′

Heap Matching h1 ∼ h2; π

h1 ≡ h′1 h2 ≡ h′2 h′1 ∼ h′2; π

h1 ∼ h2; π H ∼ H; []

h1 ∼ h2; π

h1 ⊕ (` 7→ x1 : T) ∼ h2 ⊕ (` 7→ x2 : T); π[x1/x2]

h1 ∼ h2; π

h1 ⊕ ( ˜` 7→ θ) ∼ h2 ⊕ ( ˜` 7→ θ); π

Figure 5.8. Subtyping for System !D

Finally, the derived type uses existentials to describe the values in the output world.

Location Polymorphism. To simplify the presentation of System !D, we offer only a single

mechanism — namely, universal quantification — to abstract over locations. As a result, functions

must be quantified over all simple locations inserted by desugaring (to model imperative JavaScript

variables), which clutters function types and, worse, requires explicit declaration and instantiation

of locations that are “internal” to the desugaring translation and not accessible in the original

DJS program. Instead, in the next chapter, we discuss how to use existential quantification in the

output types of functions to describe these internal locations, and use universal quantification in

the input types of functions to describe only those locations which are visible in DJS.

5.3.4 Subtyping

Several relations, defined in Figure 5.8, comprise subtyping.
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Subtyping and Implication. As in System D, subtyping on refinement types reduces to implica-

tion of refinement formulas, which is discharged by a combination of uninterpreted, first-order

reasoning and syntactic subtyping.

Syntactic Subtyping. As in Alias Types [91], we enforce the invariant that distinct strong

locations do not alias, so references to them are never related by subtyping. The U-Ref relates

each location only to itself. The U-Arrow rule for function types is familiar, treating input worlds

contravariantly and output worlds covariantly.

Worlds. In order to check world subtyping, the judgement Γ ` x1 : T1 / H1 ⊕ h1 v x2 : T2 / H2 ⊕ h2

checks that T1 is a subtype of T2 and that the heaps agree on the “deep” part (that is, if H1 = H2.

Then, it checks that the structure of the “shallow” parts match — using a heap matching relation

that uses a ≡ operator that permutes bindings as necessary — and creates a substitution π of

binders from h2 to h1. Finally, the heap bindings, which can be thought of as dependent tuples,

are embedded as formulas and checked by implication.

Embedding. We write Embed(T) for the embedding of a type as a formula, a straightforward

definition in § 2.3 that lifts to environments Embed(Γ), heap bindings Embed(h), and worlds

Embed(W). Because the binders in a world may refer to each other in any order (recall that a

world can be thought of as a dependent tuple, where each component is named with a binder),

the embedding of a world starts by inserting dummy bindings so that all binders in scope for the

type of each heap binding. For example:

W0 $ x0 : T0 / H ⊕ (`1 7→ x1 : T1)⊕ (`2 7→ x2 : T2)

Embed(W0) = Embed(x0 :Any, x1 :Any, x2 :Any, T0(x0), T1(x1), T2(x2))

5.3.5 Type Soundness

We intend System !D to satisfy progress and preservation theorems, but we do not prove

them. The process will likely be tedious but not require new proof techniques. Unlike System !D,

which introduced the problematic nesting of syntactic types inside uninterpreted formulas,

System !D does not introduce any new mechanisms in the refinement logic. Furthermore, several

variations of Alias Types [91, 102, 57, 3, 39], even in a dependent setting [86], have been proven

sound, and we expect to reuse their techniques to prove the soundness of System !D. Alternatively,

rather than adopting these prior syntactic techniques, other proof strategies to consider, in future

work, are to translate System !D into a more expressive verification system like Hoare Type

Theory [73] or F* [95], or even in world-passing style to System D, which can model the heap as a

dictionary indexed by references.
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Chapter 6

System DJS

In the previous chapter, we showed how to combine nested refinements with support for

flow-sensitive heaps in order to reason precisely about mutable objects. In this chapter, we extend

our techniques with a refinement type encoding called heap unrolling to reason precisely about

mutable objects that feature prototype-based inheritance. In addition, we provide refinement type

encodings for JavaScript primitive operators and arrays, which pose several challenges. Finally,

we describe how to reason about the loops and control flow operators in an imperative language

like JavaScript. The resulting system, called System DJS, serves as the target for translating and

reasoning about Dependent JavaScript in the next chapter.

6.1 Overview

Terminology. JavaScript has a long history and an evolving specification. Throughout the rest

of this dissertation, we say “JavaScript” to roughly mean ECMAScript Edition 3, the standard

version of the language for more than a decade [61]. We say “ES5” to refer to Edition 5 of

the language, recently released by the JavaScript standards committee [32]; Edition 4 was never

standardized. We say “ES6” to refer to features proposed for the next version of the language,

scheduled to be finalized soon. DJS includes a large set of core features common to all editions.

6.1.1 Base Types and Primitive Operators

The base values of JavaScript differ slightly from those we have presented in System !D.

Like before, JavaScript has booleans, strings, and functions with tags “boolean”, “string”, and

“function”, respectively. Unlike System !D, however, JavaScript has only a single number type,

for both integers and double-precision floating point numbers, with tag “number”; we included

only integers in System !D, with tag “integer”, omitting floats for simplicity. Furthermore, the

tag of null in JavaScript is “object” (not “null”), as is the tag of every object reference. Finally,

there is an undefined value with tag “undefined”.

Consider the following JavaScript function, annotated in DJS, based on a familiar example

94
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from previous chapters. Notice that unlike the System !D function also_negate (discussed in

§ 5.1.1), the tag-test checks for “number” rather than “integer” and, more importantly, that the

argument type annotation is Any rather than NumOrBool.

//: negateAny :: (x :Any)→ {y | if Num(x) then Num(y) else Bool(y)}
var negateAny = function (x) {

if (typeof x == "number") { x = 0 - x; }
else { x = !x; }
return x;

};

If the input to negateAny is a number, so is the return value. If not, the function uses an interesting

feature of JavaScript, namely, that all values have a boolean interpretation. The values false,

null, undefined, the empty string “”, 0, and the “not-a-number” value NaN are considered falsy,

and evaluate to false when used in a boolean context; all other values are truthy. The operator !

inverts “truthiness,” so the else-branch returns a boolean no matter what the type of x is. The

ability to treat arbitrary values as booleans is commonly used, for example, to guard against null

values. We use the following abbreviations to capture this notion:

falsy(x) $ x ∈ {false∨ null∨ undefined∨ “”∨ 0∨ NaN}

truthy(x) $ ¬falsy(x)

Primitives. Using refinements, we assign precise, and sometimes exact, types to System DJS

primitive functions, defined in the file basics.djs (Figure 6.1). The type of the not operator

(which the DJS negation operator ! desugars to) inverts truthiness. The types of the operators

&& and || are interesting, because as in JavaScript, they do not necessarily return booleans. The

“guard” operator && returns its second operand if the first is truthy, which enables the idiom

if (x && x.f) { ... } that checks whether the object x and its “f” field are non-null. Dually,

the “default” operator || returns its second operand if the first is falsy, which enables the idiom

x = x || default to specify a default value.

The + operator is specified as an intersection of function types and captures the fact that it

performs both string concatenation and numerical addition, but does not type check expressions

like 3+ “hi” that rely on the implicit coercion in JavaScript. We choose types for System !D

primitives that prohibit implicit coercions since they often lead to subtle programming errors.

By using refinement types, we have the flexibility to decide how much we want to restrict

the underlying semantics of the language. The reader may wish to compare the types of operators

in basis.djs to the original ones in System D (and, hence, System !D) defined in §2.3.2.

Equality. JavaScript provides two equality operators: == implicitly coerces the second operand

if its tag differs from the first, and strict equality === does not perform any coercion. To avoid
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val tagof :: (*: x :Any→ y :Str{y = tag(x)} *)
val not :: (*: x :Any→ b :Bool{b iff falsy(x)} *)
val (||) :: (*: x :Any→ y :Any→ z :Any{if falsy(x) then z = y else z = x} *)
val (&&) :: (*: x :Any→ y :Any→ z :Any{if truthy(x) then z = y else z = x} *)
val (===) :: (*: x :Any→ y :Any{tag(y) = tag(x)} → b :Bool{b iff (x = y ∧ x 6= NaN)} *)
val (==) :: (*: x :Any→ y :Any→ b :Bool{tag(x) = tag(y)⇒ b iff (x = y ∧ x 6= NaN)} *)
val (+) :: (*: x :Num→ y :Num→ z :Num{(Int(x) ∧ Int(y))⇒ (Int(z) ∧ z = x + y)} *)
val (+) :: (*: Str→ Str→ Str *)
val fix :: (*: ∀A. (A→ A)→ A *)

Figure 6.1. Excerpt from System DJS file basics.djs

reasoning about implicit coercions, we give a relatively weaker type to ==, where the boolean

result relates its operands only if they have the same tag.

Integers. JavaScript provides a single number type that has no minimum or maximum value.

However, programmers and optimizing JIT compilers [53] often distinguish integers from arbitrary

numbers. In System !D, we describe integers with the following abbreviation:

Int(x) $ Num(x) ∧ integer(x)

We introduce the uninterpreted predicate integer(x) in the types of integer literals. Numeric

functions like + propagate “integer-ness” where possible, and they use the (decidable) theory of

linear arithmetic to precisely reason about integers, which is important for dealing with arrays.

Control Flow and Imperative Updates. System DJS inherits the System !D mechanisms for

reasoning about control flow along branches and about strong updates to mutable variables. Thus,

after desugaring the DJS function negateAny to System DJS in the same style described in the

previous chapter, DJS verifies that the function satisfies the type annotation.

6.1.2 Prototype-Based Objects

JavaScript sports a special form of inheritance, where each base object is equipped with a

link to its prototype object. This link is set when the base object is created and cannot be changed or

accessed by the program. When trying to retrieve a key k not stored in an object x itself, JavaScript

transitively searches the prototype chain of x until it either finds k or it reaches the root of the object

hierarchy without finding k. The prototype chain does not play a role in the semantics of key

update, addition, or deletion. (Many implementations, however, expose the prototype of an object

x with a non-standard x.__proto__ property, and prototypes do affect key update in ES5. We

discuss these issues further in §7.4.)
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For example, consider the initially empty object child created by the function beget

(described in the sequel) with prototype object parent. The prototype of object literals, like

parent, is the object stored in Object.prototype (note that the “prototype” key of Object is not

the same as its prototype object). Thus, all keys in parent and Object.prototype are transitively

accessible via child.

var parent = {"last": " Doe"};
var child = beget(parent);
child.first = "John";
assert (child.first + child.last == "John Doe");
assert ("last" in child == true);
assert (child.hasOwnProperty("last") == false);

The JavaScript operator k in x tests for the presence of k anywhere along the prototype chain of

x, whereas the native function Object.prototype.hasOwnProperty tests only the “own” object

itself. Keys routinely resolve through prototypes, so a static type system must precisely track them.

Unfortunately, we cannot encode prototypes directly within the framework of refinement types

and strong update, as the semantics of transitively traversing mutable and unbounded prototype

hierarchies is beyond the reach of decidable, first-order reasoning.

Shallow and Deep Heaps. We solve this problem by syntactically reducing reasoning about

prototype-based objects to the refinement logic. Our key insight is to decompose the heap into a

“shallow” part, the bounded portion of the heap for which we have explicit locations, and a “deep”

part, which is the potentially unbounded portion which we can represent by uninterpreted heap

variables H. We explicitly track prototype links in the shallow heap by using bindings of the form

(` 7→〈d, `′〉), where the prototype of the object at ` is stored at `′. We cannot track prototype links

explicitly in the deep heap, so instead we summarize information about deep prototype chains

by using the abstract (uninterpreted) heap predicate HeapHas(H,`,k) to encode the proposition

that the object stored at location ` in H transitively has the key k, and the abstract (uninterpreted)

heap function HeapSel(H,`,k) to represent the corresponding value retrieved by lookup.

As an example, recall the child object and its prototype parent. Suppose that the

prototype of parent is an unknown object grandpa, rather than Object.prototype as written. If

child, parent, and grandpa are stored at locations `1, `2, and `3 with underlying “own” dictionary

values d1, d2, and d3, then we write the following heap:

`1 7→〈d1, `2〉 ⊕ `2 7→〈d2, `3〉 ⊕ `3 7→〈d3, `4〉 ⊕ H

Despite not knowing what value is the prototype of grandpa, we name its location `4 that is

somewhere in the deep part of the heap H.
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Function Types. Before we proceed, we pause to discuss function types in System DJS, which

are of the form

∀A, M, H. W1→W2 = ∀A, M, H. x1 : T1 /h1→ x2 : T2 /h2

just like in System !D (§ 5.1.3). We re-iterate the notational conveniences introduced for System !D

and we add two new ones in System DJS to accommodate prototype links and the fact that heap

variables H can now be mentioned inside formulas:

• When used as an output heap, the token same refers to the sequence of locations in the

corresponding input heap, where each binding records that the final value is exactly equal

to the initial value.

• In an input world, a reference binding x :Ref without a location introduces a location variable

L that is quantified by the type, and x (a value of type Ref L) can be used as a location

in heaps to refer to this variable L. Further, the dotted variable ẋ introduces a location

parameter L′ corresponding to the prototype of x, and ẋ can be used as a location in heaps

to refer to this variable L′.

• A heap variable H is implicitly added to a function type when it contains none, and H is

added to both the input and output heaps; this variable corresponds to the “frame” from

separation logic [44]. In this case, the token cur refers to H.

Key Membership and Lookup. When describing simple objects in System !D, we used the

original System D primitives (mem and get) to desugar key membership and lookup operations.

In System DJS, however, to account for the transitive semantics of key membership and lookup

facilitated by prototype links, we introduce new primitives hasPropObj and getPropObj defined

in objects.djs (Figure 6.2). These primitives differ from their purely functional System D

counterparts in two ways: each operation goes through a reference to a dictionary on the heap,

and the abstract predicates ObjHas and ObjSel are used in place of has and sel. These abstract

predicates are defined over the disjoint union of the shallow and deep heaps as follows and,

intuitively, summarize whether an object transitively has a key and, if so, the value it binds.

ObjHas(d,k, H, ẋ) $ has(d,k) ∨HeapHas(H, ẋ,k)

x = ObjSel(d,k, H, ẋ) $ if has(d,k) then x = sel(d,k) else x = HeapSel(H, ẋ,k)

Transitive Semantics via Unrolling. Let us return to the example of the child, parent, and

grandpa prototype chain to understand how unrolling captures the semantics of transitive lookup.

Below, we show how DJS key membership tests and key lookup operations (on the left) desugar

to System DJS (on the right):
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val hasPropObj :: (*: (x :Ref , k :Str)/(x 7→〈d :Dict, ẋ〉)
→ b :Bool{b iff ObjHas(d,k,cur, ẋ)}/same *)

val getPropObj :: (*: (x :Ref , k :Str)/(x 7→〈d :Dict, ẋ〉)
→ x :Any{x = ObjSel(d,k,cur, ẋ)}/same *)

val setPropObj :: (*: (x :Ref , k :Str, y :Any)/(x 7→〈d :Dict, ẋ〉)
→ z :Any{z = y}/(x 7→〈d′ :Dict{d′ = upd(d,k,y)}, ẋ〉) *)

val delPropObj :: (*: (x :Ref , k :Str)/(x 7→〈d :Dict, ẋ〉)
→ Bool/(x 7→〈d′ :Dict{d′ = upd(d,k,bot)}, ẋ〉) *)

val getIdxArr :: (*: ∀A. (x :Ref , i : Int)/(x 7→〈a :Arr(A), ẋ〉)
→ y :Any{arrGetIdx(y, a, i, A)}/same *)

val getLenArr :: (*: ∀A. (x :Ref , k :Str{k = “length”})/(x 7→〈a :Arr(A), ẋ〉)
→ n : Int{if packed(a) then n = len(a) else true}/same *)

val getPropArr :: (*: ∀A. (x :Ref , k :Str{k 6= “length”})/(x 7→〈a :Arr(A), ẋ〉)
→ y :Any{arrGetProp(y,cur, ẋ,k)}/same *)

val setIdxArr :: (*: ∀A. (x :Ref , i : Int, y : A)/(x 7→〈a :Arr(A), ẋ〉)
→ z :Any{z = y}/(x 7→〈a′ :Arr(A){arrSetIdx(a′, a, i)}, ẋ〉) *)

val getElem :: (and (type getPropObj)
(type getIdxArr) (type getLenArr) (type getPropArr))

Figure 6.2. Excerpt from System DJS file objects.djs

k in child
child[k]

1 hasPropObj (deref _child, deref _k)
2 getPropObj (deref _child, deref _k)

Assuming that the mutable reference _k stores a value k, the result of the System DJS function call

on line 1 has the following type, which we expand by unrolling ObjHas:

{x | x iff ObjHas(d1,k, (`2 7→〈d2, `3〉)⊕ (`3 7→〈d3, `4〉)⊕ H,`2)}

= {x | x iff has(d1,k) ∨ has(d2,k) ∨ has(d3,k) ∨HeapHas(H,`4,k)}

The first three disjuncts correspond to looking for k in the shallow heap, and the last is the

uninterpreted predicate that summarizes whether k exists in the deep heap. Similarly, we unroll

ObjSel in the type of the System DJS call on line 2 as follows:

{x | if has(d1,k) then x = sel(d1,k) else

if has(d2,k) then x = sel(d2,k) else

if has(d3,k) then x = sel(d3,k) else

if HeapHas(H,`4,k) then x = HeapSel(H,`4,k) else x = undefined }

Notice that we use the constant undefined in the last case because, unlike in stricter languages
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//: __hasOwn :: (this :Ref , k :Str)/(x 7→〈d :Dict, ẋ〉)→ b :Bool{b iff has(d,k)}/same
//: __hasOwn :: ∀A. (this :Ref , k :Str)/(this 7→〈a :Arr(A), ˙this〉)
//: → b :Bool{b iff k = “length”}/same
//: __hasOwn :: ∀A. (this :Ref , i : Int)/(this 7→〈a :Arr(A), ˙this〉)
//: → b :Bool{if packed(a) then b iff 0≤ i < len(a) else true}/same
var __hasOwn = "#extern";

function Object() { ... }
Object.prototype = { "hasOwnProperty": __hasOwn, ... };

//: __push :: ∀A. (this :Ref , x : A)/(this 7→〈a :Arr(A), ˙this〉)
//: → Int/(this 7→〈a′ :Arr(A){arrSetIdx(a′, a,1)}, ˙this〉)
var __push = "#extern";

//: __pop :: ∀A. (this :Ref , x : A)/(this 7→〈a :Arr(A), ˙this〉)
//: → y :Any{if packed(a) then y :: A else Undef (y)}
//: / (this 7→〈a′ :Arr(A){arrSetIdx(a′, a,−1)}, ˙this〉)
var __pop = "#extern";

function Array() { ... }
Array.prototype = {"push": __push, "pop": __pop, ... };

Figure 6.3. Excerpt from DJS file prelude.js

like System !D, the semantics of JavaScript returns undefined when an unbound key is retrieved.

(Attempting to retrieve a key from undefined, however, does produce a run-time error.) Thus, our

technique of decomposing the heap into shallow and deep parts, followed by heap unrolling,

captures the exact semantics of prototype-based object operations modulo the unknown portion of

the heap. Thus, System DJS precisely tracks objects in the presence of mutation and prototypes.

Additional Primitives. The new update and deletion primitives setPropObj and delPropObj

(Figure 6.2) affect only the “own” object, since the prototype chain does not participate in the

semantics. We model native JavaScript functions like Object.prototype.hasOwnProperty with

type annotations in the file prelude.js (Figure 6.3). Notice that the function type for objects (the

first in the intersection) checks only the “own” object for the given key.

Constructors. JavaScript provides the expression form new Foo(args) as a second way of con-

structing objects, in addition to object literals whose prototypes are set to Object.prototype.

The semantics are straightforward, but quite different than the traditional new syntax suggests.

Here, if Foo is any function (object), then a fresh, empty object is created with prototype object

Foo.prototype, and Foo is called with the new object bound to this (along with the remaining

arguments) to finish its initialization. We desugar constructors and new with standard objects
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and functions (following λJS [51]) without adding any special System DJS constructs or primitive

functions. We describe the desugaring of constructors in detail in the next chapter.

Inheritance. Several inheritance relationships, including ones that simulate traditional classes,

can be encoded with the construction mechanism, as shown in the popular book JavaScript: The

Good Parts [23]. Here, we examine the “prototypal pattern,” a minimal abstraction which wraps

construction to avoid the unusual syntax and semantics that leads to common errors; we discuss

the rest in § 7.3. The function beget (the basis for Object.create in ES5) returns a fresh empty

object with prototype o.

1 //: beget :: ∀L. (o :Ref )/(o 7→〈d :Dict, ȯ〉)
2 //: → Ref L/(L 7→〈{x | x = empty}, o〉)⊕ (o 7→ same)
3 var beget = function (o) {
4 /*: ctor F :: this :Ref → {x | x = this} */
5 function F() { return this; };
6 F.prototype = o;
7 return new /*: L */ F();
8 };

The DJS token ctor on line 4 instructs desugaring to: initialize the function object with a

“prototype” key that stores an empty object literal (since it will be called as a constructor);

and expand the type annotation provided as follows to require that this initially be an empty

dictionary, as is common for all constructors.

this :Ref /(this 7→〈{d | d = empty}, ˙this〉)→ {x | x = this}/same

The assignment on line 6 strongly updates Foo.prototype (overwriting its initial empty object)

with the argument o. Thus, the object constructed (at location L) on line 7 has prototype o, so

beget has the ascribed type. In most cases, new can be used without a location annotation and

a fresh one is chosen by our implementation. In this case, however, we annotate line 7 with L

(from the type of beget), which our implementation does not infer because there is no input

corresponding to L.

6.1.3 Arrays

The other workhorse data structure of JavaScript is the array, which is really just an object

with integer “indices” converted to ordinary string keys. However, arrays pose several tricky

challenges as they are commonly used both as finite tuples as well as unbounded collections.

var arr = [17, "hi", true];
arr[3] = 3; arr.push(4);
assert (arr.length == 5 && arr[5] == undefined);
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As for any object, retrieving a non-existent key returns undefined rather than raising an “out-

of-bounds” exception. Like other objects, arrays are extensible simply by writing “past the end.”

Array literal objects have prototype Array.prototype, which includes a push (resp. pop) function

for adding an element to (resp. removing an element from) the end of an array.

Loops are used to iterate over arrays of unknown size. But since lookups may return

undefined, it is important to track when an access is “in-bounds.” JavaScript bestows upon arrays

an unusual “length” property, rather than a method, to help. Reading it returns the largest

integer key of the array, which is not necessarily its “size” because it may contain “holes” or even

non-integer keys. Furthermore, assigning a number n to the “length” of an array either truncates

it if n is less than its current length, or extends it (by padding with holes) if it is greater. Despite the

unusual semantics, programmers commonly use arrays as if they are traditional “packed” arrays

with integer “indices” zero to “size” minus one. The type system must reconcile this discrepancy.

Array Types. We introduce a new syntactic type term Arr(T) and maintain the following four

properties for every value a that satisfies the has-type predicate a :: Arr(T). We refer to strings

that do not coerce to integers as “safe,” and we use an uninterpreted predicate safe to describe

such strings. For example, safe(“foo”) whereas ¬safe(“17”).

(A1) a contains the special “length” key.

(A2) All other “own” keys of a are (strings that coerce to) integers.

(A3) For all integers i, either a maps the key i to a value of type T, or it has no binding for i.

(A4) All inherited keys of a are safe (i.e. non-integer) strings.

An array can have arbitrary objects in its prototype chain, so to ensure (A4), we require that all

non-array objects bind only safe strings. This sharp distinction between between array objects

(that bind integer keys) and non-array objects (that bind safe string keys) allows System DJS to

avoid reasoning about string coercions, and does not significantly limit expressiveness because, in

our experience, programs typically conform to this division anyway. To enforce this restriction,

the type for keys manipulated by primitives in objects.djs and prelude.js is actually SafeStr,

rather than Str as shown in Figure 6.2 and Figure 6.3, where SafeStr $ {s |Str(s) ∧ safe(s)}. We

discuss an alternative approach in §7.4 that allows non-array objects to bind unsafe strings.

Packed Arrays. Arrays a that additionally satisfy the uninterpreted predicate packed(a) enjoy the

following property, where len(a) is an uninterpreted function symbol.

(A5) For all integers i, if i is between zero and len(a) minus one, then a maps i to a value of type

T. Otherwise, a has no binding for i.
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We introduce the following notation for packed arrays:

a :: Array(T) $ a :: Arr(T) ∧ packed(a)

Tuple Arrays. Using additional predicates, System DJS gives precise types to array literals, which

are often used as finite tuples in idiomatic code. For example, we can describe pairs as follows:

[Int, Int] $ {a | a :: Array(Int) ∧ len(a) = 2}

[Bool, Str] $ {a | a :: Array(Any) ∧ len(a) = 2∧ Str(sel(a,0)) ∧ Bool(sel(a,1))}

Thus, the technique of nested refinements allows us to smoothly reason about arrays both as

packed homogeneous collections as well as heterogeneous tuples.

Array Primitives. We define several array-manipulating primitives in objects.djs (some of

which we show in Figure 6.2) that maintain and use the array invariants above. For key lookup on

arrays, we define three primitives:

• getIdxArr looks for the integer key i on the own object a using the abbreviation

arrGetIdx(y, a, i, A) $ if ¬packed(a) then (y :: A ∨Undef (y)) else
(if 0≤ i < len(a) then y :: A else Undef (y))

and ignores the prototype chain of a because (A4) guarantees that a will not inherit i, and

returns a value subject to the properties (A3) and (A5) that govern its integer key bindings;

• getLenArr handles the special case when the string key k is “length”, which (A1) guarantees

is bound by a, and returns the the true length of the array only if it is packed; and

• getPropArr deals with all other (safe) string keys k by reading from the prototype chain of

the array, re-using the heap unrolling mechanism and the macro

arrGetProp(y, H,`,k) $ if HeapHas(H,`,k) then y = HeapSel(H,`,k) else Undef (y)

ignoring its own bindings because of (A2).

For array updates, we define setIdxArr that uses the following macros to preserve packedness

(A5) when possible.

arrSetIdx(a′, a, i) $ if 0≤ i < len(a) then arrSize(a′, a,0) else
if i = len(a) then arrSize(a′, a,1) else true

arrSize(a′, a,n) $ packed(a)⇒ (packed(a′) ∧ len(a′) = len(a) + n)

In particular, the updated array a′ is packed if (1) the original array a is packed, and (2) the

updated index i is either within the bounds of a (in which case, the length of a′ is the same as a)
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or just past the end (so the length of a′ is one greater than a). In similar fashion, we specify the

remaining primitives for update and deletion to maintain the array invariants, and the ones for

key membership to use them, but we do not show them in Figure 6.2.

In prelude.js (Figure 6.3), we use precise types to model the native push and pop

methods of Array.prototype (which maintain packedness, as above), as well as the behavior of

Object.prototype.hasOwnProperty on arrays (the last two cases of the intersection type). Thus,

the precise dependent types we ascribe to array-manipulating operations maintain invariants (A1)

through (A5) and allow System DJS to precisely track array operations.

Desugaring. It may seem that we need to use separate primitive functions for array and non-array

object operations, even though they are syntactically indistinguishable in JavaScript. Nevertheless,

we are able to desugar DJS based purely on expression syntax (and not type information) by

unifying key lookup within a single primitive getElem and giving it a type that is the intersection

of the (three) array lookup primitives and the (one) non-array lookup primitive getPropObj.

We define getElem in Figure 6.2, where we specify the intersection type using and and type as

syntactic sugar to refer to the previous type annotations. We define similar unified primitives for

setElem, hasElem, and delElem (not shown in Figure 6.2). Desugaring uniformly translates object

operations to these unified general primitives, and type checking of function calls ensures that the

appropriate cases of the intersection type apply.

6.1.4 Null References

The object and array primitives we have shown require (non-null) strong references as

arguments, which statically rules out the possibility of null-dereference exceptions. To facilitate

idiomatic programming, however, we choose to adopt types for these primitives that allow null

references to be passed as arguments. For example, we modify the type of hasPropObj below,

using the abbreviation Ref ?$ {x | x :: Ref L ∨ x = null}, where L is the location variable that the

function type is implicitly quantified over. Notice that we add the predicate x 6= null to the output

type, because if hasPropObj evaluates without raising an exception, then x is guaranteed to be

non-null, a fact which may help discharge subsequent obligations in the program.

val hasPropObj :: (*: (x :Ref ?, k :Str)/(x 7→〈d :Dict, ẋ〉)
→ b :Bool{x 6= null∧ b iff ObjHas(d,k,cur, ẋ)}/same *)

We modify the types for all other object and array primitives in objects.djs and prelude.js in

similar fashion, but elide these changes from the presentation.
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6.1.5 Collections

We reuse the weak location mechanism from System !D to describe recursive data struc-

tures in System DJS. Consider the following adapted from the SunSpider [93] benchmark

access-binary-trees.js, annotated in DJS.

1 //: type TreeNode[ ˜L] = {“i” :Num; “l” : (Ref ˜L)?; “r” : (Ref ˜L)?}
2

3 //: ctor TreeNode :: ∀ ˜L. ( ˜L 7→〈TreeNode[ ˜L], aTreeNodeProto〉)⇒
4 //: (this :Ref , Num, Ref ˜L?, Ref ˜L?)→ Ref ˜L
5 function TreeNode(item, left, right) {
6 this.i = item; this.l = left; this.r = right;
7 //: freeze this
8 return this;
9 }

10

11 //: itemCheck :: ∀ ˜L. ( ˜L 7→〈TreeNode[ ˜L], aTreeNodeProto〉)⇒ (Ref ˜L?)→Num
12 TreeNode.prototype.itemCheck = function f() {
13 if (this.l == null) { return this.item; }
14 else {
15 return this.i + f.apply(this.l) + f.apply(this.r);
16 }
17 };

The source-level macro on line 1 introduces TreeNode to abbreviate the type of TreeNodes, using

traditional record type syntax instead of the underlying McCarthy operators. This abbreviation is

parameterized by a weak location ˜L so that disjoint sets of trees can be described with different

weak reference types. In the constructor annotation on line 3, the prototype object for new

instances is specified to be the predictable location aTreeNodeProto created by desugaring for the

object TreeNode.prototype. The return type Ref ˜L declares that the output is a reference to one

of these recursive objects, which System DJS verifies by checking that on line 6 the appropriate

fields are added to the strong, initially-empty object this before it is frozen and returned.

Recursive Traversal. There are two differences in the itemCheck function above compared to

the original version, which cannot be type checked in DJS. First, we name the function being

defined (notice the f on line 12), a JavaScript facility for recursive definitions. Second, we write

f.apply(this.r) instead of this.r.itemCheck() as in the original, where the native JavaScript

function apply allows a caller to explicitly supply a receiver argument. The trouble with the

original call is that it goes through the heap (in particular, the prototype chain of this) to resolve

the recursive function being defined. This function will be stored in a strong object, and we have

no facility (e.g. mu-types) for strong objects with recursive types; our only mechanism is for weak

objects. If we write f.apply(this.r), however, the recursive function f is syntactically manifest,
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and we can translate the definition with a call to the standard fix primitive (Figure 6.1). In

Chapter 7, we describe how we handle a limited form of apply that is sufficient for our idiomatic

recursive definitions in DJS. We expect that we can add a more powerful mechanism for recursive

types that supports the original code as written, but we leave this to future work.

Loops. The System !D and System DJS examples with weak locations, which we have seen in

this section and in §5.1.4, use recursion to iterate over elements of collections. We support loops

in DJS by translation to recursive functions. As such, a loop requires an annotation like any other

function. Consider the following function adapted from the previous chapter:

1 //: type Passenger = {d |Dict(d) ∧ has(d,“weight”)⇒ Int(sel(d,“weight”))}
2 //: sumWeights ::
3 //: ∀ ˜L, L. ( ˜L 7→〈Passenger, L〉)⇒
4 //: (ps :Ref , Int)/(ps 7→〈a :Array(Ref ˜L), ṗs〉)→ Int/same
5 var sumWeights = function (ps, max_weight) {
6 var sum = 0;
7 //: ( ˜L 7→ frzn)⊕ (ps 7→〈a′ :Any{a′ = a}, ṗs〉)→ same
8 for (var i=0; i < ps.length; i++) {
9 var p = ps[i];

10 //: thaw p
11 if (p.weight) { sum += p.weight; }
12 else { sum += max_weight; }
13 //: freeze p
14 }
15 return sum;
16 }

Line 7 provides a loop annotation, which specifies an input (resp. output) heap type that must be

satisfied before (resp. that is guaranteed after) each iteration of the loop. This annotation says that

the weak location is frozen before and after every iteration of the loop, and that the array stored

at location ps is unmodified (i.e. the array value a′ is exactly equal to the initial array a from the

entry point of the sumWeights function). The latter fact is important for tracking that the length

of the array is the same across each iteration and, thus, that the array lookup on line 9 is within

bounds. Our implementation automatically inserts loop annotations for common patterns like

this, which we will discuss in the next chapter.

6.1.6 Return Statements

Throughout our presentation so far, we have written only JavaScript functions that have

either a single return statement or a return statement along every control flow path. In general,

however, return statements can appear in arbitrary positions. For example, consider the following

variation of the negate function, and for the purposes of this discussion, let us assume that we

choose a type for the negation operator that accepts only boolean arguments:
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//: anotherNegate :: (x :NumOrBool)→ {y | tag(y) = tag(x)}
var anotherNegate = function (x) {

if (typeof x == "number") {
return 0 - x;

}
return !x;

};

In System DJS, we handle arbitrary return statements by using break and label expressions,

following the approach of λJS [51]. The following is the desugared function in System DJS:

1 let anotherNegate (x) =
2 let _x = ref x in
3 @return {
4 let tmp =
5 if (tagof _x == "number") then
6 break @return (0 - deref _x)
7 else
8 undefined in
9 break @return (not (deref _x))

10 } in
11 let _anotherNegate = ref anotherNegate

Notice that the entire function body is wrapped in an expression labeled @return, and the two

JavaScript return statements are translated to break expressions (on lines 6 and 9) that complete

the evaluation of the expression labeled @return, producing the specified value. Because the if-

statement in the JavaScript function did not specify an else-case, the desugared function produces

undefined on the else-branch. The expression labeled @return is the final expression of the

function body, so System DJS must check that it satisfies the return type annotation, namely,

{y | tag(y) = tag(x)}. In particular, every break expression that terminates the @return expression

must produce a value of this type.

The break expression on line 6 appears in the then-branch of the conditional, so Num(x)

holds. Furthermore, the value produced by the subtraction is also a number, so this break

expression satisfies the expected return type. Let us now consider the break expression on line 9,

which appears after the if-expression, which returned only on the then-branch. To verify the safety

of the boolean negation on line 9 and to verify that the result satisfies the expected type, we need

a way to track that execution reaches line 9 only if x is not a number. In System DJS, we assign

the type {z | false} to each break expression break @x v (in addition to checking that v satisfies the

expected type for @x) to capture the fact that code after the break is unreachable. As a result, by

joining the types of the branches, we obtain the following type for the if-expression

tmp :: {z | if Num(x) then false else z = undefined}
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Values v ::= λx.e | x | c | v1[v2 7→ v3] | r

Expressions e ::= v | [T,m, h] v1 v2

| if v then e1 else e2 | let x = e1 in e2

| let x = ref v in e | ref ` v | deref v | setref v1 v2

| newobj ` v v′ | freeze ˜` θ v | thaw ` v

| @x{ e} | break @x v

Types T ::= {x | p}
Prenex Types S ::= ∃x : T. S | T

Formulas p,q ::= P(w) | w :: U | p ∧ q | p ∨ q | ¬p | HeapHas(H,`,w)

Logical Values w ::= v | F(w) | HeapSel(H,`,w)

Type Terms U ::= ∀A, M, H. Ψ⇒W1→W2 | A | Ref m | Arr(T)

Weak Heaps Ψ ::= − | Ψ⊕ ( ˜` 7→ T) | Ψ⊕ ( ˜` 7→〈T, `〉)
(Strong) Heaps h ::= H | h⊕ (` 7→ x : T) | h⊕ (` 7→〈x : T, `′〉) | h⊕ ( ˜` 7→ θ)

Thaw States θ ::= frzn | thwd `

Worlds W ::= x : T/h

Metavariables @x ∈ Labels

Figure 6.4. Syntax of System DJS

which captures the fact that evaluation terminates (or diverges) on the then-branch. This type for

tmp, together with the binding x :NumOrBool, allows System DJS to deduce that Bool(x) on line 9.

Thus, the boolean negation is well-typed and, furthermore, produces a value that satisfies the

expected return type.

6.2 Syntax and Semantics

We now introduce the formal syntax of values, expressions, and types of System DJS,

defined in Figure 6.4. The syntax and semantics of System DJS is based heavily on System !D

(§5.2), so we limit our discussion in this section to the differences. The metavariables not defined

in Figure 6.4 are inherited from Figure 2.1 and Figure 5.2.

Simple vs. Object Locations. In System DJS, we use two kinds of location bindings in strong

heaps: a simple location binding (` 7→ x : T) describes the binding of a non-dictionary value x of

type T, and an object location binding (` 7→〈x : T, `′〉) describes the binding of a dictionary value x

of type T along with a prototype link to the location `′. As in System !D, we use weak locations to

describe collections of values. Analogous to strong heap locations, there are weak simple locations

and weak object locations. The weak heap binding ( ˜` 7→ T) describes an arbitrary number (one
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or more) values of type T, and ( ˜` 7→〈T, `〉) describes an arbitrary number of dictionary values of

type T, all of which have the prototype link `. As we will see in the next chapter, the desugaring

of DJS to System DJS requires only weak locations for objects, but the mechanism works for both

kinds of locations.

Expressions. The syntax of expressions differs from System !D in four ways. First, we introduce

an additional expression form let x = ref v in e for allocating simple references. We syntactically

pair reference allocation with a let-binding to facilitate a new typing rule for references. The expres-

sion forms for dereference and assignment are unchanged. Second, the expression newobj ` v v′

stores the value v at a fresh location r — where the name ` is a compile-time abstraction of a set

of run-time location names that includes r — with its prototype link set to the object location

referred to by v′. Whereas ref allocates references to simple locations, newobj allocates references

to object locations. Unlike simple locations, deref and setref cannot be used to manipulate

object locations. Instead, the primitive dictionary and array functions getPropObj, getIdxArr,

getElem, setElem, etc. are the only means for manipulating object locations; the semantics of these

operations were discussed earlier. Third, the expression @x{ e} labels the enclosed expression

e. Finally, the break expression break @x v terminates execution of the innermost expression

labeled @x within the function currently being evaluated and produces the result v. If no such

labeled expression is found, evaluation becomes stuck. Label and break expressions are included

to translate the control flow operations of DJS.

The operational semantics of System DJS is based on λJS [51] — a λ-calculus extended

with references, prototype-based records, and control-flow operators — with only minor dif-

ferences. For example, in λJS each dictionary binds a reference to its prototype object in a

distinguished field “__proto__”. In System DJS, however, to facilitate heap unrolling in the type

system, we add a second binding form (for object locations) as follows to make prototype links

manifest in the syntax of run-time heaps:

Run-Time Heaps ∆ ::= − | ∆[r 7→ v] | ∆[r 7→〈v, r′〉]

Furthermore, rather than including explicit syntactic forms for object operations as in λJS, we

desugar these operations to calls to getElem, setElem, etc. Because the operational semantics of

System DJS is mostly standard, we refer the reader to [51] for the full details.

Array Types. Compared to System !D, we add a new syntactic type term Arr(T) to describe

dictionaries indexed by integer keys, each of which binds either undefined or a value of type T.

Uninterpreted Heap Symbols. As in System !D, each strong heap h, of the form H ⊕ h′, com-

prises a “shallow” part h′ that describes the types of certain locations and a “deep” part H that

summarizes all other locations. To describe invariants about the deep part of a heap, System DJS
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introduces two uninterpreted heap symbols that can appear in refinement formulas. The predicate

HeapHas(H,`,k) represents the fact that the chain of objects in H starting with ` has the key k.

Similarly, the function symbol HeapSel(H,`,k) refers to the value retrieved when looking up key k

in the heap H starting with `.

Syntactic Sugar. We introduced syntactic sugar in Figure 2.3 to write traditional record type

syntax in terms of refinements. Because of inheritance in System DJS, it is now useful to define a

variation that specifies the entire set of keys bound by a dictionary. We use the abbreviation

Keys(d,K) $ ∧k∈K has(d,k) ∧ (∀k′. (∧k∈K k 6= k′)⇒¬has(d,k′))

to capture the fact that only the keys K are bound in d, using a formula that falls into the decidable

array property fragment [11]. We extend the syntactic sugar for record types to use this predicate,

for example, as in the second abbreviation below:

L { f : T1; g : T2} M = {x | LDict(x) M∧ T1(sel(x,“f”)) ∧ T2(sel(x,“g”))}
L { f : T1; g : T2; _ :Bot} M = {x | L { f : T1; g : T2} M∧ Keys(x,{“f”,“g”})}

6.3 Type Checking

We now turn our attention to the well-formedness, typing, and subtyping relations of

System DJS. The type system reuses the System D subtyping algorithm to factor subtyping obli-

gations between a first-order SMT solver and syntactic subtyping rules and reuses the System !D

formulation of heaps to support strong updates. The novel technical developments here are: the

use of uninterpreted heap symbols to regain precision in the presence of imperative, prototype-

based objects; the encoding of array primitives to support idiomatic use of JavaScript arrays; and

the use of refinement types to assign precise types to JavaScript operators. Type checking for

System DJS is based heavily on System !D (§5.3), so our discussion in this section will highlight

the differences.

We summarize the syntax of environments and typing judgements in Figure 6.5. The

changes to type and heap environments in System DJS compared to System !D mirror the changes

to strong and weak heap types. Expression typing in System DJS refers to a label environment Ω

that records the world W that the expression labeled @x is expected to satisfy; all other judgement

forms remain the same as in System !D (summarized in Figure 5.4).

6.3.1 Well-Formedness

It is straightforward to extend System !D well-formedness to deal with the extensions to

the syntax of types in System DJS, namely, object locations in strong and weak heaps, and heap

predicates. We elide these definitions.
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Type Environments Γ ::= − | Γ, x : T | Γ, p

| Γ, A | Γ, M | Γ, H

| Γ, ( ˜` 7→ T) | Γ, ( ˜` 7→〈T, `〉)
Heap Environments Σ ::= H | Σ⊕ (` 7→ v) | Σ⊕ (` 7→〈v, `′〉) | Σ⊕ ( ˜` 7→ θ)

Label Environments Ω ::= − | Ω, @x :W

Expression Typing Γ; Σ; Ω ` e :: S/Σ′

Figure 6.5. Syntax of System DJS Judgements

Subtyping (omitted) Γ ` T1 v T2

Implication (omitted) Γ⇒ p

Syntactic Subtyping (selected rules) Γ `U1 <: U2

T1 ≡ T2

Γ ` Arr(T1) <: Arr(T2)
[U-Array]

World Subtyping (omitted) Γ `W1 v W2; π

Heap Matching (omitted) h1 ∼ h2; π

Figure 6.6. Subtyping for System DJS

6.3.2 Subtyping

We extend System !D subtyping with an array subtyping rule U-Array (Figure 6.6). Arrays

are invariant in their type parameter (using type equality {x | p} ≡ {x | q} $ Valid(p⇔ q)), but

can be related with additional predicates. For example, {a | a :: Arr(Num) ∧ packed(a) ∧ len(a) = 2}
is a subtype of {a | a :: Arr(Num)}.

6.3.3 Value Typing

The definition of the value typing judgement Γ; Σ ` v :: T in System DJS (Figure 6.7)

differs from System !D in two ways. First, although the T-Const rule remains the same, the

set of constants c and their types ty(c) have changed, as discussed in § 6.1. In our implementa-

tion, the function ty(c) is defined by the standard prelude files (basics.djs, objects.djs, and

prelude.js). Second, because the expression typing judgement refers to a label environment, the
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Value Typing (selected rules) Γ; Σ ` v :: T

Γ; Σ ` c :: ty(c)
[T-Const]

U = ∀A, M, H. Ψ⇒W1→W2 Γ `U EnvOfWorld(W1) = (x :T0, y :T, Σ1)

Γ1 = Γ, A, M, H, Ψ, x : T0, y : T Γ1; Σ1; − ` e :: S/Σ2 Γ1 ` S/Σ2 |= W2; π

Γ; Σ ` λx.e :: {z | z :: U}
[T-Fun]

World Satisfaction (omitted) Γ ` S/Σ |= W; π

Heap Environment Matching (omitted) Σ ∼ h; π

Figure 6.7. Value Typing for System DJS

T-Fun rule type checks a function body with the empty label environment, because the semantics

of break expressions prevents function boundaries from being crossed; all other premises of T-Fun

are unchanged.

6.3.4 Expression Typing

In this section, we describe several noteworthy aspects of the System DJS expression

typing judgement Γ; Σ; Ω ` e :: S/Σ′, defined in Figure 6.8 and Figure 6.10.

If-Expressions. The T-If rule allows an arbitrary (non-boolean) value v as the guard for an

if-expressions, and, hence, strengthens the type environment with truthy(v) rather than v = true

(resp. falsy(v) rather than v = false) when type checking the then-branch (resp. false-branch).

The Join operation (not shown) for combining worlds is also modified to guard existentials with

“truthiness” predicates, rather than boolean equality, in this way.

Labeled Expressions. Label environments Ω play a role when type checking break and label

expressions; the typing rules for all other expression forms simply thread the label environment

through their premises without modification. The T-Label rule for @x{ e} binds the label @x to

an expected world W in the label environment used to check e, and expects that all exit points

of e produce a value and heap environment that satisfy the expected world. The exit points are

all break @x v expressions in e, as well as the “fall-through” of expression e for control flow

paths that do not end with break; the T-Break rule handles the former cases, and the second and

third premises of T-Label handle the latter. If all exit points satisfy the expected world, we use

the EnvOfWorld procedure to convert the heap type into a heap environment, like in the T-App
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Expression Typing (selected rules) Γ; Σ; Ω ` e :: S/Σ′

Γ; Σ ` v :: T

Γ; Σ; Ω ` v :: T/Σ
[T-Val]

Γ; Σ ` v :: Any Γ, truthy(v); Σ; Ω ` e1 :: S1 /Σ1 Γ, falsy(v); Σ; Ω ` e2 :: S2 /Σ2

Γ; Σ; Ω ` if v then e1 else e2 :: Join(v,S1 /Σ1,S2 /Σ2)
[T-If]

Γ; Σ; Ω, @x :W ` e :: S/Σ′ Γ ` S/Σ′ |= W; π

EnvOfWorld(W) = (x0 :T0, y :T, Σ′′)

Γ; Σ; Ω ` @x{ e} :: ∃x0 : T0. ∃y : T. {z | z = x0}/Σ′′
[T-Label]

Ω(@x) = W Γ; Σ ` v :: T Γ ` T/Σ |= W; π

Γ; Σ; Ω ` break @x v :: {x | false}/Σ
[T-Break]

Γ; Σ ` v1 :: { f | f :: ∀A, M, H. Ψ⇒W1→W2} Γ; Σ ` v2 :: T′′

Γ ` [T/A] Γ ` [m/M] Γ ` [h/H] W ′2 = Freshen(W2)

(Ψ′,W ′1,W ′′2 ) = Unroll(Inst(Inst(Inst((Ψ,W1,W ′2), A, T), M,m), H, h))

Γ ` Ψ′ Γ `W ′1 Γ `W ′′2 Ψ′ ⊆ Γ Γ ` T′′/Σ |= W ′1; π

W ′1 = y : _/_ π′ = π[v2/y] W ′′′2 = π′W ′′2 EnvOfWorld(W′′′2 ) = (x0 :T′0, x :T′, Σ2)

Γ; Σ; Ω ` [T,m, h] v1 v2 :: ∃x0 : T′0. ∃x : T′. {z | z = x0}/Σ2

[T-App]

Figure 6.8. Expression Typing for System DJS

rule. Notice that T-Break derives the type {x | false} because a break expression immediately

completes the evaluation context, thus making the subsequent program point unreachable (cf. the

anotherNegate example in §6.1.6).

Heap Unrolling. The T-App rule for System DJS must do even more than the one in System !D

due to the presence of the heap predicates HeapHas(H,`,k) and HeapSel(H,`,k) in formulas. Every

premise of T-App remains the same as in System !D except the one that instantiates type, location,

and heap variables with the supplied parameters. As a result of the instantiations, occurrences

of HeapHas and HeapSel may refer to arbitrary heap types h rather than just heap variables H,

as required. These pre-types (and pre-formulas, pre-heaps, etc.) are expanded using the procedure

Unroll, defined in Figure 6.9, that transitively follows prototype links in heap bindings, precisely

matching the semantics of object key membership and lookup. Figure 6.9 shows only the rules for

heap predicates; all other rules simply recursively traverse the syntax of types, formulas, heaps,
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Unroll(HeapHas(H ⊕ h,`,k)) = UnrollHas(H, h,`,k)

UnrollHas(H, h,`,k) =
has(d,k) ∨UnrollHas(H, h,`′,k) if (` 7→〈d : T, `′〉) ∈ h

HeapHas(H,`,k) else if ` 6= aroot

false else (i.e. ` = aroot)

Unroll(ψ(HeapSel(H ⊕ h,`,k))) = UnrollSel(ψ, H, h,`,k)

UnrollSel(ψ, H, h,`,k) =
if has(d,k) then ψ(sel(d,k)) else UnrollSel(ψ, H, h,`′,k) if (` 7→〈d : T, `′〉) ∈ h

ψ(HeapSel(H,`,k)) else if ` 6= aroot

ψ(undefined) else (i.e. ` = aroot)

Figure 6.9. Heap Unrolling

etc. We write the location constant aroot for the root of the prototype hierarchy. We use the notation

ψ(p) to refer to a formula context ψ, a formula with a hole, filled with p.

Object References. The rule T-NewObj stores the dictionary v1 in the heap at location `1 along

with a prototype link to the location `2 that v2 refers to. The T-ThawObj and T-FreezeObj rules

are analogs to T-Thaw and T-Freeze, inherited without change from System !D, to operate on

object locations rather than simple locations. There are no rules for object locations analogous to

T-Deref and T-SetRef, inherited from System !D. Instead, several primitive functions (getElem,

setElem, etc.) facilitate reading from and writing to object locations.

Existentially-Quantified Locations. In System !D, we added universal quantification over loca-

tion variables to the structure of function types. Being the only mechanism for location polymor-

phism in the system, this leads to function types with an excess of universally-quantified location

variables. To see why, consider the following function that resembles the kind of System !D

function that results from desugaring an identify function in JavaScript:

let id x =
let _x = ref x in
deref _x

System !D and its rule T-Ref requires that the syntax of ref mention some strong location `, not

allocated before, to use for this fresh reference; this location is omitted from the code listing above.
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Expression Typing (selected rules) Γ; Σ; Ω ` e :: S/Σ′

` /∈ dom(Σ) Γ; Σ ` v :: T

Γ; Σ ` ref ` v :: {x | x :: Ref `}/Σ⊕ (` 7→ v)
[T-Ref]

L fresh Γ1 = Γ, L, x : ({y | y :: Ref L}) Σ1 = Σ⊕ (L 7→ v)

Γ; Σ ` v :: Any Γ1; Σ1; Ω ` e :: S/Σ2 Σ2 ≡ Σ′ ⊕ (L 7→ v′)

S = ∃z : T. T′ Γ, z : T; Σ2 ` v′ :: T CleanLoc(x, L, T,S/Σ′) = (S′/Σ′′)

Γ; Σ; Ω ` let x = ref v in e :: S′/Σ′′
[T-LetRef]

Γ; Σ ` (v1, v2) :: (Dict, {y | y :: Ref `2}) Σ ≡ Σ0 ⊕ (`2 7→〈v′, `3〉)

Γ; Σ; Ω ` newobj `1 v1 v2 :: {x | x :: Ref `1}/Σ⊕ (`1 7→〈v1, `2〉)
[T-NewObj]

Γ; Σ ` v :: {y | y :: Ref `} Σ ≡ Σ0 ⊕ ( ˜` 7→ θ)⊕ (` 7→〈v′, `′〉)
θ = frzn or θ = thwd ` Γ( ˜`) = 〈T, `′〉 Γ; Σ ` v′ :: T

Γ; Σ; Ω ` freeze ˜` θ v :: {x | x :: Ref ˜`}/Σ0 ⊕ ( ˜` 7→ frzn)
[T-FreezeObj]

Γ; Σ ` v :: {z | z :: Ref ˜`} Σ ≡ Σ0 ⊕ ( ˜` 7→ frzn) Γ( ˜`) = 〈T, `′〉

Γ; Σ; Ω ` thaw ` v :: ∃x : T. {y | y :: Ref `}/Σ0 ⊕ ( ˜` 7→ thwd `)⊕ (` 7→〈x, `′〉)
[T-ThawObj]

Figure 6.10. Expression Typing for System DJS (continued)

One choice is to pick some location constant ax for _x, which results in the following type for id:

id :: x :Any→ {y | y = x}/(ax 7→ {y | y = x}) (6.1)

Notice that the output heap of the function must refer to ax; heap subtyping in System !D and

System DJS may not drop location bindings from strong heaps, which would allow the same

location name to be used for multiple allocations and, thus, undermine the soundness of strong

updates in the system.

Although the type above is correct, its use is rather limited: because it refers to a single

location constant ax, the function may not be called twice as the second call would try to allocate

the location ax, which would already have been allocated by the first call. The natural recourse for

this situation is to quantify over the location instead:

id :: ∀Lx. x :Any→ {y | y = x}/(Lx 7→ {y | y = x}) (6.2)
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With this type, each call site would instantiate the location parameter Lx with a different location

constant, allowing the function to be called arbitrarily many times.

Relying on universal quantification for every reference allocation is unfortunate, however,

since there are many such allocations in programs that result from desugaring JavaScript. Even

though many of these abstractions and instantiations can be mechanically inserted, we might

like to extend the system with existential locations to avoid the hassle. The following rule would

introduce a new strong location variable L for each reference allocation; notice that the syntax of

the ref expression does not name a strong location:

Γ; Σ ` v :: T

Γ; Σ; Ω ` ref v :: ∃L. {x | x :: Ref L}/Σ⊕ (L 7→ v)
[T-Ref-Exists]

We would then extend the syntax of function types to include a sequence of existentially-quantified

strong locations in the output world for the reference cells allocated by the function body:

∀A, M, H. Ψ⇒W1→∃L. W2

It would be up to the function application rule, rather than the syntax of each function application

expression, to instantiate each of these variables with fresh location constants. With this approach,

we would write the following type:

id :: x :Any→∃Lx. {y | y = x}/(Lx 7→ {y | y = x}) (6.3)

This is better, but we would still rather that the location not be mentioned at all:

id :: x :Any→ {y | y = x} (6.4)

But, as we said before, we cannot simply drop locations from heap types, because other types —

like those for functions that close over these reference cells — may depend on these constraints.

Consider the following example:

let makeCounter () =
let _n = ref 0 in
fun () -> setref _n (1 + deref _n); deref _n in

let next = makeCounter () in
assert (next () == 1);
assert (next () == 2);

Using existentials, we can give the following precise type:

makeCounter :: Any→∃L. (Any/(L 7→ j : Int)→ {k | k = j + 1}/(L 7→ {k | k = j + 1}))
/ (L 7→ {i | i = 0}) (6.5)



117

This type records the fact that given any argument, makeCounter allocates some location L

initialized to 0 and returns a function that, given any argument in an environment where the heap

maps L to some integer j, returns the integer j + 1 and modifies the heap such that L maps to

j + 1. (We can assign an equivalently precise type using universal quantification by moving the

location variable to the input world as before.) In this case, it is clear that we cannot simply drop

the existential location L because the type of the closure refers to it! However, instead, if we were

to assign the less precise type

makeCounter :: Any→∃L. (Any/(L 7→ Int)→ Int/(L 7→ Int))
/ (L 7→ Int) (6.6)

then, as for the type of id, we would like to drop the existential location from the type completely

and write the following:

makeCounter :: Any→ Any→ Int (6.7)

Dropping Locations. In System DJS, we provide a rule T-LetRef — in addition to the T-Ref

inherited from System !D — that allows locations to be dropped from subsequent types and

heaps. For the expression let x = ref v in e, creates a “temporary” existential location L for the

reference cell that is only in scope while checking the let-body e. After type checking e, T-LetRef

drops all occurrences of L from the types and heaps if two conditions are met: (i) that location L

stores a value v′ that satisfies some type T = {x | p}, where the only variable p refers to is x; and

(ii) that any heap bindings of L in the derived type for e are syntactically of the form (L 7→ T)

where there is no binder to name the value. These two conditions are sufficient to ensure that

values stored at L will always satisfy T, and that no other type will depend on a particular value

stored at L. Hence, the location need not be specifically tracked any longer. These restrictions

are stronger than absolutely necessary to justify that the location L be forgotten, but they seem

to be a reasonable heuristic for common cases (like the types for id and makeCounter above)

where we want specifications that do not require the full expressive power of dependent types

and existential locations. The T-LetRef uses the procedure CleanLoc to check the two conditions

above and remove any occurrences of L from the derived type and heap; we elide its definition.

Because System DJS inherits from System !D the ability to use universal quantification

for very precise specifications, in System DJS we include only the limited form of existential

quantification that T-LetRef provides, rather than also including T-Ref-Exists and its associated

changes as discussed earlier.

6.3.5 Type Soundness

Many standard stuck states are not stuck in JavaScript: a function can be applied with

any number of arguments; an operator can be used with any values because of implicit coercion;
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and, all property lookups succeed (possibly producing undefined). Nonetheless, several (non-

exceptional) stuck states remain, including applying a non-function value and retrieving a property

for a non-object value. System DJS is designed to ensure that well-typed programs do not get

stuck and can only fail with exceptions due to retrieving a property from undefined or null.

We can also provide the stronger guarantees that only bound keys are retrieved and only non-

null objects are accessed (thus ruling out the possibility of null dereference exceptions) simply

by changing the types of object primitives appropriately. As with System !D, however, we do

not prove progress and preservation theorems for System DJS. Many of the new techniques in

System DJS beyond those in System !D do not introduce any new features to the refinement logic.

Proving the soundness of the T-LetRef rule for dropping locations in certain situations, however,

will likely require an imperative, higher-order program logic such as Hoare Type Theory [73].
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Chapter 7

Dependent JavaScript

The techniques we developed in the previous chapters have culminated in System DJS, a

refinement type system that can reason about mutable, prototype-based objects with dynamically

computed keys, untagged unions and control flow, and the specific details of JavaScript arrays.

As such, we are now ready to define Dependent JavaScript, a statically typed dialect of a large

JavaScript subset. First, we define the explicitly typed syntax of DJS along with its semantics

via desugaring rules that translate DJS expressions to System DJS. Next, we describe several

optimizations in our implementation to help reduce the annotation burden and improve the

performance of the type checker. Then, we describe an evaluation of DJS on a series of small but

challenging benchmarks. We conclude with a discussion of some limitations and features not

currently supported in DJS.

7.1 Desugaring DJS to System DJS

In this section, we present the explicitly typed abstract syntax of DJS along with desugaring

rules J e K= e that translate DJS expressions e to System DJS expressions e. Most of the desugaring

rules borrow from the translation of JavaScript to λJS in [51], so we limit our discussion to the

aspects most relevant to DJS; we refer the reader their work for more details. Our desugaring rules

produce System DJS expressions that are not in A-normal form; our implementation converts

desugared expressions into ANF before type checking. We use annotated let-expressions let x :

T1 = e1 in e2 in System DJS to declare the expected type T1 for e1 in order to help facilitate

bidirectional type checking, in the style described in Chapter 3. We define the System DJS

ascription and assertion commands as follows:

e as T $ let x : T = e in x

assert e T $ let x = e in let _ = x as T in x

We use the metavariable I ::= [T,m, h] to range over instantiation parameters for function applica-

tion. Most instantiation parameters are inferred by the type checker (§7.2).

119
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Constants. Desugaring constants is straightforward. For example:

J typeof e K = tagof JeK

J !e K = not JeK

J e1 + e2 K = Je1K + Je2K

J “September” K = “September”

J 2013 K = 2013

Variables. JavaScript variables are mutable, so they desugar to explicit references in System DJS.

In the DS-LetRef rule below, we implicitly assume that e1 is not a function value, a case which

subsequent desugaring rules handle.

J x K = deref _x [DS-Deref]

J e1 = e2 K = setref Je1K Je2K [DS-SetRef]

J var x= e1; e2 K = let _x= ref Je1K in Je2K [DS-LetRef]

Sequencing and Conditionals. These are straightforward:

J e1; e2 K = let _ = Je1K in Je2K [DS-Seq]

J if (e1) { e2 } else { e3 } K = if Je1K then Je2K else Je3K [DS-If]

Objects. Object and array operations desugar to the primitive functions hasElem, getElem,

setElem, and delElem described in §6.1. For desugaring object and array literals, we write

pro(e) $ getPropObj (JeK, “prototype”)

to set the prototypes of fresh object and array literals, translated to newobj which creates values

with prototype links. Our implementation inserts a fresh location for object and array literals if

none is provided.

J /∗ : I ∗/ e2 in e1 K = /∗ : I ∗/ hasElem (Je1K, Je2K) [DS-HasElem]

J /∗ : I ∗/ e1[e2] K = /∗ : I ∗/ getElem (Je1K, Je2K) [DS-GetElem]

J /∗ : I ∗/ e1[e2] = e3 K = /∗ : I ∗/ setElem (Je1K, Je2K, Je3K) [DS-SetElem]

J /∗ : I ∗/ delete e1[e2] K = /∗ : I ∗/ delElem (Je1K, Je2K) [DS-DelElem]

J /∗ : ` ∗/ { ek :ev } K = newobj ` {Jek0K = Jev0K; . . . } (pro(Object)) [DS-ObjLit]

J /∗ : ` ∗/ [ e ] K = newobj ` {“0” = Je0K; . . . } (pro(Array)) [DS-ArrLit]

Functions. To desugar a function value, we create mutable reference cells for all of its parameters,

as well as an explicit this parameter, and wrap the entire (desugared) function body expression

with the label @return. In DJS, as opposed to JavaScript, we choose to distinguish between

recursive and non-recursive functions by the presence or absence of the name f in the syntax of
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the function value (just before the argument list). For simplicity, unlike in JavaScript, we do not

package all arguments into an arguments array, but this would be easy to incorporate if desired.

J function (x1, . . . , xn) { e } K = [DS-Function]

λ(this, x1, . . ., xn).

let (_this, _x1, . . ., _xn) = (ref this, ref x1, . . ., ref xn) in

@return{ JeK}

J /∗ : f :: T ∗/ var f = function (x1, . . . , xn) { e }; e′ K = [DS-LetFunc]

let _f= ref (Jfunction(x1, . . . ,xn){e}K as T) in Je′K

J /∗ : f :: T ∗/ var f = function f(x1, . . . , xn) { e }; e′ K = [DS-LetFixFunc]

let _f= ref ([T] fix (λf. Jfunction(x1, . . . ,xn){e}K) in Je′K

The following two rules handle return and this according to the desugaring of functions:

J return e K = break @return JeK [DS-Return]

J this K = deref _this [DS-This]

Function Calls. JavaScript has several different syntactic forms for function calls. The following

two rules handle direct calls and method calls:

J /∗ : I ∗/ e(e1, . . . , en) K = /∗ : I ∗/ JeK (null, Je1K, . . ., JenK) [DS-DirectCall]

J /∗ : I ∗/ e[e′](e1, . . . , en) K = let obj = JeK in [DS-MethodCall]

let f = getElem (obj, Je′K) in

/∗ : I ∗/ f (obj, Je1K, . . ., JenK)

In DS-FuncCall, we supply null as the receiver rather than the “global object” window as in

JavaScript, which is a source of subtle programming errors.

In JavaScript, all functions are desugared to objects. In DJS, we distinguish between

scalar functions that desugar to scalar values, as above, and constructor functions that desugar to

objects, as we will discuss shortly. The primary benefit of non-constructor functions as objects in

JavaScript is that they inherit from Function.prototype, which stores two native functions apply

and call that allow the caller to explicitly supply the receiver argument. We do not provide

general support apply and call in DJS, because they require mechanisms beyond the scope of

our (already-large) type system System DJS; for example, the latter accepts an arbitrary number of

arguments. However, to support the recursive function idioms described in § 6.1.5, we do provide

limited support for apply that syntactically looks for “apply” and explicitly sets the receiver:

J /∗ : I ∗/ e.apply(e1, . . . , en) K = /∗ : I ∗/ JeK (Je1K, Je2K, . . ., JenK) [DS-ApplyCall]

Because we do not desugar scalar functions to objects, there is no danger that the apply function

can be “hijacked” by overwriting the “apply” property, since an attempt to write to any field of a
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scalar function is rejected by the System DJS type system.

Constructors. In JavaScript, any function can be used as a constructor, but sometimes the lack of

distinction can lead to programming errors. In DJS, we use the token ctor in a function annotation

to declare its intent as a constructor, and we desugar the function accordingly.

J /∗ : ctor F :: T ∗/ function F (x1, . . . , xn) { e }; e′ K = [DS-LetConstructor]

let ctor = Jfunction(x1, . . . ,xn){e}K as EmptyThis(T) in

let proto = J/∗ : aFProto ∗/ {}K in
let foo = { “__code__” = ctor; “prototype” = proto } in
let _F= newobj aF foo (pro(Function)) in Je′K

In particular, the desugared System DJS expression is an object, allocated at the predictable

location aF that can be mentioned in subsequent source-level annotations, with two fields: a

distinguished “__code__” field that stores the actual function value, desugared as before; and a

“prototype” field initialized to an empty object at the predictable location aFProto. As we will see

next, constructor functions are always called with an empty object as the first parameter. To avoid

this boilerplate in the types of constructor functions, EmptyThis(T) augments the user-supplied

annotation T with this requirement. For example:

EmptyThis((this :Ref , T1)→ Ref this/(this 7→〈T2, ˙this〉))

$ (this :Ref , T1)/(this 7→〈{d | d = empty}, ˙this〉)→ Ref this/(this 7→〈T2, ˙this〉)

For calls to constructors, the DS-New rule creates a fresh object whose prototype is set to

the object in the constructor object’s “prototype” field (which may or may not be the initial object

created when the constructor function was defined), and calls the function in the “__code__” field

to finish the initialization.

J new /∗ : ` I ∗/ e(e1, . . . , en) K = let foo = JeK in [DS-NewCall]

let ctor = getElem (foo, “__code__”) in

let proto = getElem (foo, “prototype”) in

let obj = newobj ` {} proto in

/∗ : I ∗/ ctor (obj, Je1K, . . ., JenK)

Loops. We translate iteration in DJS to recursion in System DJS. Because the “arguments” and

“return values” of loops are trivial, we require that loop (function) annotations T provide only

input and output heaps. In particular, loop annotations are of the following form which are

expanded to ordinary function types:

h1→ h2 $ ∀H. (Any)/ H ⊕ h1→ Any/ H ⊕ h2
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The desugaring of loops to recursive functions below is standard. In our presentation, we omit

the facility for desugaring JavaScript break and continue expressions using label and break

expression in System DJS; see [51] for this technique.

J /∗ : T ∗/ while (econd) { ebody } K = [DS-While]

letrec loop : T = λ_.

if JecondK then (JebodyK; loop “unit”) else undefined

in loop “unit”

J /∗ : T ∗/ for (einit; econd; eincr) { ebody } K = [DS-For]

let _ = JeinitK in

letrec loop : T = λ_.

if JecondK then (JebodyK; JeincrK; loop “unit”) else undefined

in loop “unit”

Thaw and Freeze. These are straightforward:

J /∗ : thaw ` x ∗/ K = setref _x (thaw ` (deref _x )) [DS-Thaw]

J /∗ : freeze ˜` θ x ∗/ K = setref _x (freeze ˜` θ (deref _x )) [DS-Freeze]

Assertions. These are straightforward:

J assert(e) K = assert JeK {x | x = true} [DS-AssertTrue]

J assert(/∗ : T ∗/ e) K = assert JeK T [DS-AssertType]

7.2 Implementation

We have implemented a desugarer and type checker for DJS [80] in OCaml, borrowing and

extending the λJS [51] JavaScript parser and desugarer, and using the Z3 SMT solver [27] to dis-

charge logical validity queries. We specify System DJS primitive functions in the files basics.djs

and objects.djs, and JavaScript built-in functions like Object.prototype.hasOwnProperty in

prelude.js (desugared to prelude.djs). These three files comprise a standard prelude included

with every desugared DJS program for type checking. Next, we will discuss several optimizations

that we have implemented to reduce the annotation burden on DJS source programs and to

improve the performance of the System DJS type checker.

7.2.1 Improving Performance

Our DJS implementation extends the bidirectional type checking approach described in

Chapter 3, requiring explicit function type annotations but inferring types for many intermediate
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B∗ ::= Int | Num | Str | Bool Base Types

T∗ ::= Sugared Refinement Types

| {x | p} general type

| {x : (U∗) | p} stylized type

U∗ ::= Sugared Syntactic Types

| U1 ∩ · · · ∩ Un intersection of syntactic type terms

| B∗1 ∪ · · · ∪ B∗n union of base types

| (T∗1 , · · ·, T∗n ) tuple type

| { f1 : T∗1 ; · · · ; fn : T∗n} record type (unknown domain)

| { f1 : T∗1 ; · · · ; fn : T∗n ; _ :Bot} record type (known domain)

| T∗? option type

| Null null type

Figure 7.1. Sugared Types for DJS

expressions. In addition, we employ several optimizations to reduce the number of validity queries

made to the SMT solver and, hence, reduce the running time of the type checker.

Fast Path. A key aspect of nested refinements is the ability to describe all values, base values

as well as more complex ones like functions and dictionaries, using refinement predicates. With

System DJS, we have shown how to build on this general mechanism to specify and reason about

properties of programming patterns in dynamic languages. But although the expressiveness from

describing all values with predicates is crucial, there are often specific patterns where syntactic

handling of types are sufficient for verifying safety.

We implement a “fast path” in our type checker that tracks some information about types

of values syntactically, resorting to the refinement-type based mechanisms we have discussed for

the general case. Figure 7.1 shows the syntax of types that our implementation tracks, splitting

types into general refinement types {x | p}, corresponding to the System DJS refinement types

we have discussed, and more specific, stylized, syntactic types {x : (U∗) | p}, which keep some

information about the type manifest with syntax rather than only logically with predicates.

Syntactic types U∗ include intersection, union, tuple, record, and option types and are used

to help optimize some of the typing rules. For example, to implement the System DJS rule

T-Deref (replicated below) in the algorithmic style described in Chapter 3, the type checker must

extract a type term for the value v being dereferenced, an operation that requires possibly-many

SMT queries. To avoid this expense, our implementation first attempts to derive a type for the
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dereference expression using the following rule TS-Deref*:

Γ; Σ ` v :: {y | y :: Ref `}
Σ ≡ Σ0 ⊕ (` 7→ v′)

Γ; Σ; Ω ` deref v :: {x | x = v′}/Σ
[T-Deref]

Γ; Σ ` v B {y : (Ref `) | p}
Σ ≡ Σ0 ⊕ (` 7→ v′)

Γ; Σ; Ω ` deref v B {x | x = v′}/Σ
[TS-Deref*]

The first premise synthesizes a stylized reference type for v that syntactically mentions the location

` to be found in Σ, thus avoiding the need to query the SMT solver. If the expression cannot be

type checked using this optimized rule, (an algorithmic version of) the general rule T-Deref is

used instead. Similarly, we add optimized versions of other rules that manipulate syntactic types,

for example, the T-App rule which requires the first argument to be a function type.

We also use sugared syntactic types to optimize subtyping queries before resorting to the

general rules. For example, the optimized rules for base types and record types below resemble

the traditional syntactic subtyping rules described in §1.2.1:

Γ `U∗1 <: U∗2

Γ ` {x : (U∗1 ) | p} v {y : (U∗2 ) | true}
[SA-Sugar-Fast*]

Γ ` Null <: T∗?
[SA-Null*]

∃i. B∗i = Int or B∗i = Num

Γ ` ∪i B∗i <: Num
[SA-Num*]

∀j. ∃i. f1i = f2j and Γ ` T∗1i v T∗2j

Γ ` { f1 : T∗1 } <: { f2 : T∗2 }
[SA-Recd*]

When falling back to the general case with the rule below, stylized types are converted into

refinement types with straightforward embeddings into the logic (for a reminder, see Figure 2.2,

Figure 2.3, and the end of §6.2).

Γ ` {x | LU∗1 M(x) ∧ p} v {y | LU∗2 M(y) ∧ q}

Γ ` {x : (U∗1 ) | p} v {y : (U∗2 ) | q}
[SA-Sugar-Slow*]

Selfification. At odds with the fast path rules above is the T-Var rule (replicated below) which

assigns the “selfified” type {y | y = x} to a variable x that is bound in the environment. Although

this precision is crucial, the equality stymies the optimized handling of types because it “hides”

the syntactic structure of types. Accordingly, we replace T-Var with a new rule TS-Var*

x ∈ dom(Γ)

Γ; Σ ` x :: {y | y = x}
[T-Var]

x ∈ dom(Γ)

Γ; Σ ` x B Selfify(Γ(x), x)
[TS-Var*]

where the helper procedure Selfify keeps syntactic type information, if any, intact:

Selfify({y | p}, w) $ {y | y = w}

Selfify({y : (U∗) | p}, w) $ {y : (U∗) | y = w}
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Notice that selfified types are still exact but also retain syntactic sugar. This strategy also applies to

primitives whose output types involve equality predicates. For example, the following optimized

rule uses sugared types to optimize the key lookup for an object (i.e. a dictionary on the heap):

Γ; Σ ` v B {y : (Ref `) | p}
Σ ≡ Σ0 ⊕ (` 7→〈d, `′〉) Γ(d) = {y : ({“f” : T∗; · · · }) | q}

Γ; Σ; Ω ` getElem (v, “f”) B Selfify(T∗, sel(d,“f”))/Σ
[TS-GetElem-1*]

The output type may be stylized, but it is still exact because it contains the predicate sel(d,“f”).

Arrays and Safe Strings. In § 6.1.3, we discussed how arrays in JavaScript inherit from arbitrary

prototype chains, just like non-array objects. To help recover the notion of integer-indexed arrays

in DJS, we introduced the notion of safe strings, which do not coerce to integers, and required

that all non-array objects bind only safe string keys.

Instead, in our implementation, we restrict arrays so that they must have the particular

prototype location aArrayProto, which is the initial object location allocated for Array.prototype in

our prelude, rather than an arbitrary location. Furthermore, we require that this location always

store the value dArrayProto, which is the dictionary value initialized by the prelude. For example,

for the getIdxArr primitive, rather than the first type below (replicated from Figure 6.2), we

assign the second type instead:

∀A. (x :Ref , i : Int)/(x 7→〈a :Arr(A), ẋ〉)→ y :Any{arrGetIdx(y, a, i, A)}/same

∀A. (x :Ref , i : Int)/(x 7→〈a :Arr(A), aArrayProto〉)⊕ (aArrayProto 7→〈{d | d = dArrayProto}, aroot〉)
→ y :Any{arrGetIdx(y, a, i, A)}/same

These restrictions prohibit user programs from extending or overwriting Array.prototype, which

is useful in many situations. But in return, we avoid the need to reason about the safety of strings

because these restrictions ensure that the prototype chain of every array, which binds only safe

strings, is known.

Incremental Environments. As mentioned in Chapter 3, our implementation maintains environ-

ments of logical assumptions incrementally (using a backtracking facility in SMT solvers like Z3)

to minimize the cost of embedding type environments as formulas.

7.2.2 Reducing the Annotation Burden

Our bidirectional type checker requires type annotations for functions but infers types

for many intermediate expressions. Nevertheless, in DJS, function types can be quite large, and

several expression forms require explicit type parameters. We incorporate several techniques in

our implementation to reduce the annotation burden. These techniques supplement the many
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notational abbreviations we have employed throughout this dissertation for refinement types

(many of which are summarized in Figure 2.2 and Figure 2.3) and for polymorphic, flow-sensitive

function types (described in §5.1.3 and §6.1.2).

Polymorphic Instantiation Inference. The syntax of function application [T,m, h] v1 v2 requires

type, location, and heap parameters to instantiate the universally-quantified variables of the

function type ∀A, M, H. Ψ⇒W1→W2 of v1. Type and location parameters are inferred using the

standard “greedy” approach employed in many local type inference algorithms [78], where we

syntactically pattern-match type and location variables against the (stylized) type of the argument

v2. We also look for type and location arguments in the current heap environment to match

corresponding type and location variables in the input heap type of a function. When type and

location variables appear only in the output world of the function type, we are unable to infer

instantiations; in these cases, the syntax of the expression must explicitly provide instantiations.

In our benchmarks, we are able to omit most type and location arguments.

To infer heap arguments to instantiate the deep part H of an input heap type H ⊕ h, we

collect each heap location ` that is not mentioned in the shallow part h and infer the binding

(` 7→ {x | x = y}) — or (` 7→〈{x | x = y}, `′〉) if ` is an object location with prototype `′ — where

y is the value stored at ` in the current heap environment Σ at the call-site. This singleton type

encodes the fact that the location is unmodified by the function call, matching the intuition that

the deep part of the heap is irrelevant to the function. (To facilitate our handling of sugared types,

the inferred heap binding is actually (` 7→ Selfify(Γ(y), y)), where Γ is the type environment at the

call-site.) In our benchmarks, we are able to omit all heap arguments.

Location Invariants. If a function refers to a mutable variable from an outer scope, its heap

type must explicitly list its location and type. As a result, function types can be verbose. For

example, consider the following function and (one possible) verifiable annotation, assuming that

the desugarer uses the predictable location api for the mutable variable pi of type Ref api:

var pi = 3.14, e = 2.718;

//: getPi :: ()/(api 7→ n :{x | x = 3.14})→ {x | x = 3.14}/same
var getPi = function () { return pi; };

Without the binding for api, the function body would not be allowed to dereference pi; the location

for e can be omitted from the type since it is not dereferenced. Clearly, writing annotations like

this is quite unpleasant.

To ease this burden, we (transitively) collect the free variables x for each function definition

and, for each location ax that is missing from its type annotation, automatically add a heap binding

for ax, depending on which of the following three ways the variable is declared:
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var a = ...;
var b /*: T */ = ...;
var c /*: Ref T */ = ...;

• If the variable x is declared without any annotation (as a is), the binding (ax 7→ {y | y = v})
is added to both the input and output heap types, where v is the current value of ax in the

heap environment at the location of the function definition. That is, the lack of annotation

an annotation on x signifies that any inner function that refers to x (i.e. that ”closes over x”)

can only be called when x stores v and must not modify x (or if it does, it must restore v

before returning).

• If the variable x is declared with an annotation T (as b is), the binding (ax 7→ y : T) is added

to the input heap and (ax 7→ y′ : T) is added to the output heap. That is, any inner function

that refers to x can only be called when x stores a value of type T and must maintain this

invariant, although the particular value stored may be different.

• If the variable x is declared with an annotation Ref T (as c is), the binding (` 7→ 〈y : T, `′〉)
is added to the input heap and (` 7→〈y′ : T, `′〉) is added to the output heap, where ` is the

location of the reference value (i.e. object or array) initialized on the right-hand side of the

declaration and `′ is its prototype. This kind of annotated declaration is the analog to the

previous one for variables that store reference values instead of scalar values.

There are several aspects worth noting. First, this is a purely syntactic strategy that simply adds

heap bindings to the types of subsequent closures, and these bindings are not trusted; nothing is

said about whether these annotations will actually be satisfied during type checking. Second, these

annotations have no impact on what values can be stored in variables except at the boundaries

of functions that refer to them. If desired, it would be simple to extend the type checker to,

furthermore, require that variables always satisfy their location invariants. Finally, due to the

presence of higher-order functions, the set of free variables transitively accessed by a function is

not always syntactically manifest, in which case our simple heuristics fail to automatically insert

corresponding heap bindings.

As an example of how location invariants for variable declarations reduce the size of

function type annotations, consider the following:

var pi = 3.14, e = 2.718;

//: getPi :: ()→ {x | x = 3.14}
var getPi = function () { return pi; };
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Because pi is unannotated, the function type for getPi is augmented to require that pi stores 3.14

at both function boundaries, as in the initial version above. If pi is annotated with Num, then the

following less precise type can be verified:

var pi /*: Num */ = 3.14, e = 2.718;

//: getPi :: ()→Num
var getPi = function () { return pi; };

In this case, the return type {x | x = 3.14} cannot be verified, because the (augmented) input heap

says only that api stores a number. In the following, the location invariant allows the closure incN

to modify obj, as long as it maintains the invariant that the “n” key stores an integer:

var obj /*: Ref {n : Int} */ = {"n": 0};

//: incN :: ()→ Any
var incN = function () { obj.n = 1 + obj.n; };

The three ways above to choose location invariants apply only to variable declarations.

Because objects cross function boundaries, we also allow heap bindings to mention location

invariants. For example, the heap binding (` 7→ 〈x : T, `′〉 T′) is like the usual one augmented

with the invariant T′ to be automatically inserted at subsequent function boundaries. This heap

binding is analogous to the variable location invariant for reference values.

Because loops desugar to functions that close over variables, the location invariant

mechanism significantly reduces the annotation burden for loop boundaries.

Location invariants are also useful for improving the performance of type checking if-

expressions, which normally use the procedure Join to compute the “exact join” of two branches

(§6.3.4). This strategy introduces disjunctions into the antecedents of validity queries, which can

be slow to answer since the SMT solver must carry out expensive case-splits. When this precision

is not needed, the user can choose a mode that computes “inexact joins” for if-expressions, where

the value of each variable x on either branch is required to satisfy the declared location invariant

for x, but the exact values are not propagated.

Thaw and Freeze. System DJS requires that all weak references be thawed before use. Often

times, however, accesses to a single weak object do not need to be correlated, so having to insert

unnecessary thaw and freeze operations can be onerous. To reduce this burden, we include

several specialized rules that allow weak objects to be used directly. For example, the following

rule supports key lookup on a weak object:
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Γ; Σ ` v B {y : (Ref ˜`) | p}
QuickThaw(Γ,Σ,v, ˜`) = (x : T∗1 ,y,`,Σ1)

Γ1, x : T∗1 , y :Ref `; Σ1; Ω ` getElem (y, “f”) B T∗2 /Σ2

Γ; Σ; Ω ` getElem (v, “f”) B ∃x : T∗1 . ∃y :Ref `. T∗2 /Σ
[TS-GetElem-Weak-1*]

Notice that the object is a reference to a weak location ˜`, but the type for getElem requires a

strong reference. This rule uses QuickThaw (not shown) to “inline” the effect of a thaw expression

by checking that ˜` is frozen in Σ, creating a new thawed strong location `, pointed to by y, that

stores a value x of the weak location type T∗1 in a new heap environment Σ1. The rule then derives

a type for key lookup on this temporarily-thawed object. We include several other rules that wrap

object operations with implicit thaw and freeze operations in a similar manner.

Although useful, the approach above does not work when successive accesses to a weak

object need to be related with the precision of refinement types (as in the sumWeights example

from §6.1.5). Extending thaw and freeze inference to surround larger sequences of expressions

would, in future work, help to further reduce the annotation burden in these situations.

Untampered Natives. We augment the input and output heap of every function type with

the binding (aArrayProto 7→〈{d | d = dArrayProto}, aroot〉) to reduce the annotation burden given the

restriction we impose on arrays, described earlier. Since many user programs will not need to

modify Object.prototype, by default, we insert a similar binding for the initial location aObjectProto

and value dObjectProto of Object.prototype from the prelude. The user can override the insertion

of this binding by manually specifying a binding for aObjectProto in the heap types of an arrow.

7.3 Experiments

To demonstrate the expressiveness of DJS, we have annotated and type checked several

small examples from various sources: JavaScript: The Good Parts [23] a popular reference book

for JavaScript programmers; the SunSpider benchmark [93]; the V8 [49] benchmark; the Google

Closure Library [48]; Google Gadgets examples studied earlier in the literature [52]; and the

IBEX project [50] for writing secure browser extensions with refinement types. These examples

exercise a variety of invariants, besides those demonstrated by previous examples (e.g. negate,

sumWeights, etc.). We also ported the counter and dispatch examples from System D (Chapter 2)

to DJS to demonstrate the nesting of function types inside objects with dynamic keys.

Figure 7.2 summarizes our results. For each example: “Un” is the number of (non-

whitespace, non-comment) lines of code in the unannotated benchmark; “Ann” is the lines of code

in the annotated DJS version (including comments because they contain annotations); “Time” is

the running time, rounded to the nearest second, on a 2.66GHz machine with 4GB of RAM running

Ubuntu; and “Queries” is the number of validity queries issued to Z3 during type checking.
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Adapted Benchmark Un Ann Queries Time

JavaScript: The Good Parts

prototypal 18 23 39 0.1

pseudoclassical 15 21 47 0.3

functional 19 37 46 0.4

parts 11 18 28 0.2

SunSpider

string-fasta 10 17 51 0.5

access-binary-trees 34 37 96 1.7

access-nbody 129 160 648 7.0

V8

splay 17 25 19 0.1

Google Closure Library

typeOf 15 20 52 0.2

Google Gadgets

morse 403 412 4014 4.1

resistor 600 615 8551 15.1

IBEX

delicious 17 18 6 0.1

facepalm 73 80 95 0.3

gmail-plus 20 25 61 0.2

hover-magnifier 24 31 64 0.8

js-tools 13 15 4 0.1

print-new-yorker 19 24 36 0.1

nit-twit 86 114 193 1.4

typograf 47 52 29 0.2

untiny 22 24 5 0.1

Other

negate 9 9 6 0.1

sumWeights 9 15 45 0.1

counter 16 18 24 0.1

dispatch 4 8 7 0.1

initArray 7 13 51 0.2

Totals 1637 1831 14217 33.6

Un: LOC without annotations; Ann: LOC with annotations;

Queries: Number of Z3 queries; Time: Running time in seconds

Figure 7.2. DJS Benchmarks
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In the rest of this section, we highlight some of the features of DJS that our benchmarks

leverage; our discussion is organized by the source of benchmarks.

JavaScript: The Good Parts. Besides the prototypal pattern discussed in §6.1.2, Crockford [23]

presents three additional inheritance patterns using JavaScript’s construction mechanism. Each of

these examples relies on the support for imperative, prototype-based objects in DJS. The following

example, parts.js, demonstrates construction “by parts” where functions extend arbitrary object

arguments with methods:

//: make_dog :: (x :Ref )/(x 7→〈d :Dict, ẋ〉)
//: → Any/(x 7→〈d′ :Dict{EqMod(d′,d,{“bark”}) ∧ sel(d′,“bark”) :: (this :Any)→ Str}, ẋ〉)
var make_dog = function (x) {

x.bark = function () /*: (this :Any)→ Str */ { return "bark"; };
};

//: make_cat :: (x :Ref )/(x 7→〈d :Dict, ẋ〉)
//: → Any/(x 7→〈d′ :Dict{EqMod(d′,d,{“purr”}) ∧ sel(d′,“purr”) :: (this :Any)→ Str}, ẋ〉)
var make_cat = function (x) {

x.purr = function () /*: (this :Any)→ Str */ { return "purr"; };
};

var hybrid = {};
make_dog(hybrid);
make_cat(hybrid);
var noise = hybrid.bark() + hybrid.purr();
assert (typeof noise == "string");

The annotated line count reported for parts.js in Figure 7.2 is higher than what appears in this

listing, because the concrete syntax parsed by our tool is not as compact as the typesetting here.

Notice that there are no annotations besides function types, as the bidirectional type checker is

able to infer all polymorphic instantiations. In future work, certain patterns of code like this can

be handled specially to remove the need to annotate the inner functions, as their type annotations

appear elsewhere.

SunSpider. The makeCumulative function in string-fasta.js iterates over an object with an

unknown number of keys that all store integers, and sums them in place within the object. While

iterating over the keys of the object, the function uses a variable to store the key from the previous

iteration, a subtle invariant that DJS is able to express by describing the heap before and after each

iteration. Compared to the original version, we allow the bindings to store arbitrary values and

use a tag-test to sum only the integer bindings. To specify the original version requires universally

quantified formulas, which DJS avoids to retain decidable type checking.

Our largest example adapted from SunSpider is access-nbody.js, which defines a
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constructor function NBodySystem that creates a container object to store an array of Body objects.

The prototypes of both constructors are augmented with methods, and the thaw/freeze mechanism

is heavily used while iterating over the array of Body objects to read and write their fields.

V8. The splay.js benchmark defines the following interesting tree node constructor (annotations

omitted). Rather than initializing each “own” object with null left and right subtrees, the

constructor’s prototype object stores the defaults.

function Node(k,v) { this.k = k; this.v = v; }
Node.prototype.left = null;
Node.prototype.right = null;

After construction, however, Nodes are often extended with explicit subtrees. Using the flexibility

of refinements, we assign each Node x a type with the predicate has(x,“left”)⇒ sel(x,“left”) =

null ∨ sel(x,“left”) :: Ref ˜L, where ˜L is a weak location that describes Nodes, to ensure that

retrieving the “left” key produces another (possibly-null) Node regardless of whether it is stored

on the object or not (and similarly for “right”).

Google Closure Library. The behavior of the typeOf function is like the typeof operator except

that it returns the more informative result “null” for null and “array” for arrays; the operator

returns “object” in both cases. The type specification for typeOf depends on the ability to

express intersections of function types in DJS, and verifying it requires control-flow tracking in the

presence of mutation as well as a precise specification for the native (ES5) function Array.isArray,

which we model in prelude.js.

Google Gadgets. Strobe [52] is a non-dependent type system for λJS that supports untagged

unions and strong updates for scalar values within (but not across) function boundaries, but does

not reason about prototype inheritance or the pecularities of JavaScript arrays. Regardless, they

are able to rule out useful classes of run-time errors from their benchmarks, including some from

the Google Gadgets [47] collection.

We adapted two of these examples, morse.js and resistor.js, to DJS. These two are our

largest benchmarks and, compared to most others, the annotation overhead is very small. These

examples consist of many function definitions that operate over a few kinds of objects defined

early in the programs. As a result, using the location invariant mechanism for variable declarations

and other syntactic sugar, the annotations are rather lightweight. Regarding performance, these

examples make heavy use of nested loops and conditionals. Although our efforts to improve

performance (e.g. inexact joins based on location invariants) have already reduced the time to

type check these examples, there are additional syntactic patterns of programs which need to be

optimized in future work.
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IBEX. The authors of the IBEX project [50] advocate writing browser extensions in Fine [94],

a refinement type system for ML, that compile to JavaScript after verification [40]. By using

uninterpreted predicates to encode security concerns for the browser extension architecture,

refinement type checking ensures the absence of certain security-relevant run-time errors. They

develop several small example browser extensions as a proof of concept.

One hindrance to the potential adoption of their approach is that their system requires

writing programs in the functional language ML rather than JavaScript, which is the foundation

of web development. Since DJS is a refinement type system for JavaScript, which can use

uninterpreted predicates to encode security and other domain-specific properties, we ported

several examples from IBEX to DJS. We found it straightforward to port these examples, though

admittedly, the functional programming style of those examples are likely easier to port than the

imperative styles of full, real-world extensions. Regardless, the combination of refinement types

for security and refinement types for JavaScript is a promising direction for future work.

Using nested refinements, we were able to cleanly encode an idiom we encountered while

porting these examples. The IBEX browser extension platform provides a function of the form

getEltsByTagName_1 :: ∀L. (· · · )→ Ref L/(L 7→〈Arr({x | p ∧ q}), aArrayProto〉)

that returns a new array on the heap. The particular argument and return types are not important

for this discussion, just that the elements of the array satisfy predicates p and q. The trouble is

that some clients of this function require only that the output array have type Arr({x | p}) and

wish to use the array in a contexts which expect this type. Unfortunately, because array subtyping

is invariant (defined in Figure 6.6), Arr({x | p ∧ q}) is not a subtype of Arr({x | p}). As one option

for recourse, the library writer could provide a second version of the function with the same

run-time semantics but a different compile-time specification:

getEltsByTagName_2 :: ∀L. (· · · )→ Ref L/(L 7→〈Arr({x | p}), aArrayProto〉)

The client can then choose which version of the function to call. Of course, it is undesirable to

duplicate functionality for all combinations of choices. Instead of duplication, we can factor the

choice of specification into a single type using nested refinements as follows:

getEltsByTagName :: ∀A, L. (· · · )→ Ref L/(L 7→〈Arr({x | p ∧ (0 :: A⇒ q)}), aArrayProto〉)

The type variable A acts as a “guard” to the predicate q that some clients wish to have but others

do not. The has-type predicate 0 :: A allows the caller of the function to choose whether or not to

include the predicate q by instantiating A with, for example, {x | true} to “include” it or {x | false}
to “exclude” it. In particular, the following two subtyping relationships are satisfied:
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Arr({x | p ∧ (true⇒ q)}) <: Arr({x | p ∧ q}) because p ∧ (true⇒ q)⇔ p ∧ q

Arr({x | p ∧ (false⇒ q)}) <: Arr({x | p}) because p ∧ (false⇒ q)⇔ p

As a result, the single specification for getEltsByTagName captures both of the specific choices

earlier. Note that the particular has-type predicate used to guard q is irrelevant; all that is needed

is some predicate that allows instantiation to result in true and false.

Other. The last example we discuss is initArray.js. Although we could verify a less precise

type for the function below with far fewer annotations, we elect to illustrate the expressive power

of DJS. Given an integer n, initArray returns a packed array of integers, allocated at the location

L, of length n if n is non-negative; otherwise, the length is zero.

1 //: pred Goal(y,m) = y :: Arr(Int) ∧ packed(y) ∧ if m < 0 then len(y) = 0 else len(y) = m
2 //: initArray :: ∀L. (n : Int)→ Ref L/(L 7→〈{x |Goal(x,n)}, aArrayProto〉)
3 var initArray = function (n) {
4 var arr = /*: L */ [];
5

6 //: (ai 7→ j : Int{j ≥ 0∧ (n ≥ 0⇒ j ≤ n)})⊕ (L 7→〈{xj |Goal(xj, j)}, aArrayProto〉)
7 //: → (ai 7→ sameType)⊕ (L 7→〈{xexit |Goal(xexit,n)}, aArrayProto〉)
8 for (var i = 0; i < n; i++) {
9 arr[i] = i;

10 }
11 return arr;
12 };

The annotation on line 4 allocates an empty array at L, the variable quantified by the type of the

function. Because arr is declared without a location invariant, the heap types in the subsequent

loop annotation are augmented with bindings for the location aarr (corresponding to the variable

arr) which constrain the reference value of type Ref L to be unmodified (i.e. points to this same

array throughout the loop). The input heap annotation on line 6 describes two requirements that

must hold before each iteration: (a) that the location ai (corresponding to the variable i) stores a

positive integer j that is no greater than n if n is non-negative; and (b) that the value xj at location

L is a packed array of integers of length j. The output heap annotation on line 7 declares two

properties that should hold after the loop exits: (a) that ai stores an integer j′ (possibly different

from j) that satisfies the same type as in the input heap — the syntactic sugar sameType allows the

programmer to avoid duplicating the corresponding type from the input heap; and (b) that the

value xexit stored at L is a packed array of integers of length n. DJS verifies these two properties

directly as a result of desugaring the annotated loop to an annotated recursive function. The

output heap type of the loop ensures that L satisfies the output heap type of initArray.
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Summary of Evaluation. We have demonstrated that our type system, System DJS, is expressive

enough to support the invariants from a series of small but varied examples drawn from existing

JavaScript benchmarks. We have found that the full range of features in DJS are indeed required,

but that many examples fall into patterns that do not simultaneously exercise all features. The

average annotation overhead for the entire benchmark suite is 12% (the annotated programs are

approximately 1.12 times as large as the unannotated ones), but the overhead is quite large for

many complicated examples. For example, the average annotation overhead for morse.js and

resistor.js alone is only 2% but the average for all others is 27%. Regarding performance, the

running time of our type checker is acceptable for small examples, but less so as the number of

queries to the SMT solver increases. That said, our preliminary efforts to reduce the annotation

burden and improve performance (described in §7.2) have already made a large impact on our

benchmarks. Therefore, we believe that future work on desugaring and on type checking can treat

common cases specially in order to further reduce the annotation burden and running time, and

fall back to the full expressiveness of the system when necessary.

7.4 Limitations and Future Work

In the past three chapters, we have shown how to scale up the technique of nested

refinements of System D — a type system for dynamic languages in a functional setting — to a

more full-featured language like JavaScript — with imperative updates, prototype-based objects,

and arrays — through a combination of strong updates, prototype chain unrolling, and other

encodings. We believe that Dependent JavaScript is the most promising approach, to date, for

supporting real-world dynamic languages like JavaScript. DJS already supports a large subset

of JavaScript that can be used for projects where all the code is controlled (e.g. server-side

applications), and future work on integrating with run-time environments could allow DJS code

to run alongside full untyped JavaScript. In the rest of this section, we identify several current

limitations of DJS.

Recursion Through Mutable Variables. To define a recursive function in DJS, we require that

the function value be named (by providing an identifier just before the argument list, which is

optional in JavaScript). For example, the following is the factorial function in DJS; we use the

JavaScript ternary conditional expression e1 ? e2 : e3 for concision:

//: fact :: (Int)→ Int
var fact = function fact(n) { return (n <= 0) ? 1 : (n * fact(n-1)); };

In idiomatic JavaScript, on the other hand, the name fact can be omitted from the function value,

because by the time the function body is called and evaluated, the variable fact will store the
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function value being defined, thus capturing the recursion. Regardless, it is a rather small burden

that in DJS the function must be named in order to reason about the recursion.

The more significant issue is that our handling of recursive definitions prohibits common

patterns of mutually recursive functions. For example, consider the following functions that test

the parity of their arguments:

var isEven, isOdd;
isEven = function (n) {

return (n == 0) ? true : ((n < 0) ? false : isOdd(n-1));
};
isOdd = function (n) {

return (n == 1) ? true : ((n < 1) ? false : isEven(n-1));
};

Each variable initially stores the dummy undefined value and is then strongly updated with a

function value that calls the other. By the time either function is called, both variables have been

strongly updated, so the mutual recursion evaluates safely at run-time. Given the support for

strong updates in DJS, we might expect to reason about these functions with the following types,

where the location constants aisEven and aisOdd correspond to the mutable variables isEven and

isOdd, respectively:

isOdd :: (Int)/(aisEven 7→ (Int)→ Bool)→ Bool/same

isEven :: (Int)/(aisOdd 7→ (Int)→ Bool)→ Bool/same

DJS can, indeed, verify that these specifications are satisfied, but it cannot type check a call to

either function. For example, to verify a call to isOdd, the problem is that the type assigned to

isEven is not a subtype of (Int)→ Bool as required by the type of isOdd; the former requires that

aisOdd stores a function of a particular type, but the latter requires that the function make no

assumptions about the input heap. That DJS cannot verify the safety of calls to these functions

based on the above specifications is reassuring, because they do not capture the fact that either of

the variables could be overwritten later, thus breaking the mutual recursion.

The lack of support for mutually recursive functions is a significant limitation. In future

work, DJS can be extended with open scoping [16], where we would assign the following types:

isOdd :: (aisEven 7→ (Int)→ Bool)V (Int)→ Bool

isEven :: (aisOdd 7→ (Int)→ Bool)V (Int)→ Bool

Each function type declares its requirements on the heap (factored to the left of theV symbol),

and the crucial mechanism in open scoping is that all of the requirements are checked for mutual

consistency at every function call rather than once at each function definition.
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Recursion Through the Heap. Support for recursion through the heap in DJS is currently limited.

Consider the following, where the mutual recursion is resolved through the heap via this:

var obj = {};
obj.isEven = function (n) {

return (n == 0) ? true : ((n < 0) ? false : this.isOdd(n-1));
};
obj.isOdd = function (n) {

return (n == 1) ? true : ((n < 1) ? false : this.isEven(n-1));
};

Trying to assign types in the style for isEven and isOdd above, again, fails to suffice for checking

calls to either function. However, because weak locations allow for self-reference, the following

weak location can be used to describe the object:

EvenOdd[ ˜L] $ {“isOdd” : (this :Ref ˜L, Num)→ Bool; “isEven” : (this :Ref ˜L, Num)→ Bool}

Although this workaround is sufficient for certain situations, the imprecision of weak locations is

not always acceptable, so mutual recursion between strong objects on the heap is important to

add in future work.

The open scoping approach can be extended to deal with recursion through “own” objects

on the heap, but a primary challenge will be reasoning about open recursion through the heap in

our flow-sensitive, dependent setting. A solution is likely to involve refined heaps where predicates

constrain heap locations, analogous to how refinement types use predicates to constrain values.

Integration with Contracts. In Chapter 1, we described how the hybrid typing approach inte-

grates run-time contract checking for properties that are beyond the reach of static reasoning and

for code that is unavailable at compile-time (e.g. because of dynamic code loading with eval).

Future work on contracts will need to integrate with the combination of nested refinements,

flow-sensitive heaps, and prototype reasoning that we have introduced in DJS. Flow sensitivity

provides a natural path for integrating with dynamically-loaded code, since this facility can be

used to specify the pre- and post-conditions required at a particular call to eval.

Features Currently Unsupported. In addition to general use of apply and call as discussed in

§7.1, there are several other JavaScript constructs that are currently unsupported in DJS:

• To allow mutation of prototype links via the non-standard “__proto__” property, we could

add a setproto expression to the language and detect cycles during heap unrolling.

• The eval statement allows a string to be parsed and executed, which is useful but dangerous

if misused. Since DJS is flow-sensitive, we can constraint eval with heap invariants before

and after the statement, and then perform staged type checking in the style of [17] at run-time.
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• ES5 introduces optional per-object and per-property attributes (for example, to prevent

modifications or deletions) that can likely be incorporated into our encoding of dictionaries.

One benefit of such an extension is that the type system could reason more precisely about

which objects are in a prototype chain. For example, we could then allow non-array objects

to bind unsafe strings as long as we prevent them from appearing in the prototype chain

of arrays, thus weakening the distinction we impose between array and non-array objects

(§6.1.3). A second benefit is that native objects could be marked as unmodifiable, statically

enforcing the pattern they are usually “untampered" as discussed in §7.2.

• ES5 getters and setters interpose on object reads and writes. Since this is a deep change to

the semantics of object operations (invoking arbitrary functions), adding general support for

these will likely be heavyweight. Interestingly, one can think of our treatment of the special

array “length” property (§6.1.3) as a built-in getter/setter.

• Each function has an implicit arguments array that binds all parameters supplied by the

caller, regardless of how many formals the function defines. Current ES6 proposals include

a modified version, where an explicit parameter can bind a variable number of arguments

beyond those named by formals, similar in style to Python.

• The x instanceof Foo operator checks whether or not Foo.prototype is somewhere along

the prototype chain of x. We could add a primitive to match these semantics.

• Scalar values can be explicitly coerced by wrapper functions, such as Boolean, in addition

to the implicit coercion we have discussed.

Undesirable Features. The last three features we discuss regularly compete for the title of worst

among several “warts” in the language (e.g. [23]) that lead to confusing code and hard-to-detect

bugs. Incidentally, the λJS translations of all three are straightforward and can be supported in

DJS, but we see no reason to given their demerits.

• The with statement adds the fields of an object to the current scope of a block, allowing

them to be accessed without qualification. There is hardly a good reason to use this feature,

and it is banned in ES5 “strict” mode.

• All var declarations are implicitly lifted to the top of the enclosing function, resulting in

“function scope” rather than lexical scope. Although simple to detect when var-lifting kicks

in, we opt for the latter. ES6 will likely add an explicit let binding form that is not subject to

lifting. In DJS, var is essentially the new let form, but we stick with the traditional syntax

for familiarity.

• For a “method call” x.f(y), the receiver x is supplied for the this argument to the function,

but for a “direct call” x(y), JavaScript implicitly supplies the global object for this, masking
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common errors. We choose to statically reject direct calls to functions that require a this

parameter.
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Chapter 8

Conclusion

The motivating challenge for this work was to develop decidable, static reasoning tech-

niques to rule out run-time errors in the presence of programming idioms found in untyped

languages. Throughout this dissertation, we have developed several refinement-type based tech-

niques, summarized below, which can be applied to a variety of programming languages, both

typed and untyped, that incorporate higher-order functions, objects, and references (i.e. the core

language in Figure 1.1).

Key Technique 1: Nested Refinement Types. Our first contribution was to eliminate the syntac-

tic distinction between base and function types found in prior refinement systems by nesting the

typing relation inside the logic using uninterpreted functions. In particular, all types in System D

are described as refinement types, and syntactic type constructors, like arrows, can appear inside

formulas; these two changes to the language of refinement types are depicted below:

T ::= {x : B | p}  T ::= {x | p}
| ∀A. x : T1→ T2  p ::= · · · | y :: ∀A. x : T1→ T2

Nested refinements are well-suited to describe dictionary-based objects that store values of

arbitrary, heterogeneous types. Many untyped languages, such as Python, Ruby, and JavaScript,

conflate records (with string literal keys) and dictionaries (with arbitrary string keys), so nested

refinements can be applied in these settings. Furthermore, nested refinements may prove useful

in traditional statically typed languages, as well, to help reason about programming patterns

involving dictionaries.

Key Technique 2: Flow-Sensitive Refinement Types. Our second contribution was to extend

dependent function types with input and output heaps, depicted with the following syntax:

∀A. x : T1→ T2  ∀A, M, H. Ψ⇒W1→W2

142
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Our approach draws from and extends the work of Alias Types [91] — a flow-sensitive, syntactic

type system for higher-order programs — and Low-Level Liquid Types [86] — a flow-sensitive,

refinement type system for first-order programs. We formulated System !D with nested refine-

ments, but the flow-sensitive, dependent function types we presented can be incorporated into

traditional refinement type systems, as well.

Key Technique 3: Refinement Type Encoding for Prototypes. Our last main technique was to

use refinement predicates to encode the semantics of prototype inheritance without using a fancier

refinement logic than one with McCarthy’s theory of arrays [71]. In System DJS, we formulated

the notion of uninterpreted heap predicates that are unrolled (or expanded) when reasoning about

function application. This notion can also be incorported into refinement type systems (with and

without nesting) for functional languages, as well as languages with nominal (i.e. class-based)

inheritance, because classes can be encoded with prototypes.

Beyond these three general mechanisms, we also provided JavaScript-specific encodings

for arrays and primitive operations in System DJS in order to demonstrate the feasibility of

applying our techniques to JavaScript.

8.1 Future Work

We have argued that our new refinement-type based techniques enable static reasoning

for programming idioms found in dynamic languages. Along the way, we have identified

several aspects to this work that warrant further consideration: the metatheory of flow-sensitive

refinements, developed in System !D, and prototype unrolling, developed in System DJS, needs

to be studied to provide a foundation of type safety; the expressiveness of System DJS needs to

be extended to handle additional patterns, for example, mutually recursive functions; a larger

evaluation of real-world examples is needed, which will require additional efforts to improve

the usability (i.e. performance, annotation overhead, and error messages) of the system; the new

techniques need to be integrated with contracts for situations where code is either unavailable or

beyond the reach of static reasoning; and the new techniques should be studied in the context

of different languages, both typed and untyped. Next, we identify several additional future

directions that may build on our work.

Iterative Refinement Type Inference. Our techniques require explicit type annotations at func-

tion boundaries, and we perform local type inference for many intermediate expressions. Global

type inference would be desirable in many situations, especially when function type annotations

are relatively simple and uninformative, and when migrating existing, untyped programs. Liquid

Types [85, 65, 86] is an effective technique for performing global refinement type inference with a

very low annotation burden. The approach requires that simple syntactic types are inferred by
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a first phase, after which precise refinement predicates are inferred. Unfortunately, there is no

simple syntactic type structure to start with in untyped languages — which is why we proposed

nested refinements — so the Liquid Types approach cannot be applied directly.

One possibility for modular, global inference in this setting is to start by computing

verification conditions for the arguments to each function, based on the refinement types of

primitive operators, and then iteratively coarsen them until a weaker, but suitably informative, type

is synthesized. It may be useful to interact with the user (e.g. by asking abductive questions [30])

to determine the level of precision required.

“Gradual Gradual Typing”. Many JavaScript programmers use tools like Google Closure Com-

piler and Microsoft TypeScript that allow optional type annotations to be written. These anno-

tations can provide helpful documentation, identify simple kinds of errors, and, perhaps most

importantly, enable basic IDE support like auto-completion. However, to describe these tools as

“optional type systems” is misleading, because the annotations are trusted, rather than verified,

in certain cases. As a result, writing annotations in these systems can be thought of as “gradual

gradual typing,” moving untyped programs towards gradual typing (where annotations are

verified), gradually.

Nevertheless, Closure Compiler and TypeScript provide value to programmers and are

becoming more popular as a result. In future work, translations from the Closure Compiler and

TypeScript annotation languages to DJS can help programmers migrate their applications from

the former systems to DJS to obtain stronger guarantees.

Software Engineering Tools. Tools like Closure Compiler and TypeScript are attractive to

programmers because they enable a degree of IDE support, which is crucial when developing

large applications but noticeably lacking for dynamic languages. IDE tools can be built on the

techniques in DJS to support JavaScript development. Some existing IDE support for JavaScript is

based on pointer analysis [34, 35]; because of the aliasing restrictions enforced by DJS to enable

strong updates, DJS-typable programs may be able to leverage precise pointer information and,

thus, opportunities for sound refactoring.

Furthermore, it might be fruitful to incorporate the results of previous run-time traces

into the information presented when viewing a source program, especially for expressions that

have been left untyped. This information can be used to inform the programmer about how to

modify the program to increase the degree of safety or, alternatively, design more test cases to

increase the confidence that trusted assumptions in the code are not violated at run-time.

Browser Extension Security. Third-party JavaScript code is routinely downloaded and run in

Web browsers as extensions that augment the functionality and appearance of the browser. To

improve the security of third-party extensions, researchers and practitioners have proposed: (i)
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that programmers develop in higher-level languages that are more amenable to verifying fine-

grained security policies which then compile to JavaScript for execution (e.g. IBEX [50]); and (ii)

that sandboxes be built to limit the capabilities of third-party JavaScript and then verify that the

sandboxes correctly enforce coarse-grained security policies (e.g. ADsafety [79]). Although both

approaches have been fruitful, the former requires programming in higher level languages than

JavaScript, and the the latter guarantees only relatively weak security properties. As discussed in

§7.3, we believe a promising direction of future work is to use refinement types to encode security

properties for programs written directly in (Dependent) JavaScript.

8.2 Related Work

We presented background on a variety of syntactic, refinement, and dependent type

systems in Chapter 1 to set the stage for our contributions. To wrap up our presentation, we

discuss additional related work with respect to the specific challenges we have addressed in

System D and System DJS.

8.2.1 Verification for Functional Untyped Languages

In this section, we highlight related approaches to statically verifying features of functional

dynamic languages. For a thorough introduction to contract-based and other hybrid approaches,

see [36, 88, 67].

Dynamic Unions and Control Flow. Among the earliest attempts at mixing static and dynamic

typing was adding the special type dyn to a statically-typed language like ML [2]. In this approach,

an arbitrary value can be injected into dyn, and a typecase construct allows inspecting its precise

type at run-time. However, one cannot guarantee that a particular dyn value is of one of a subset

of types (cf. negate from §2.1). Several researchers have used union types and tag-test sensitive

control-flow analyses to support such idioms. Most recently, Typed Racket [99] and Strobe [51]

feature values of (untagged) union types that can be used at more precise types based on control

flow. In the former, each expression is assigned two propositional formulas that hold when the

expression evaluates to either true or false; these propositions are strengthened by recording the

guard of an if-expression in the typing environment when typing its branches. Type checking

proceeds by solving propositional constraints to compute, for each value at each program point,

the set of tags it may correspond to. The latter shows how a similar strategy can be developed

in an imperative setting, by coupling a type system with a data flow analysis. However, both

systems are limited to ad-hoc unions over basic and function values. In contrast, System D shows

how, by pushing all the information about the value (resp. reasoning about flow) into expressive,

but decidable refinement predicates (resp. into SMT solvers), one can statically reason about

significantly richer idioms (related tags, dynamic dictionaries, polymorphism, etc.).
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Records and Objects. There is a large body of work on types for objects (e.g. [14, 1, 77]). Several

early advances incorporate records into ML [81], but the use of records in these systems is unlikely

to be flexible enough for dynamic dictionaries. In particular, record types cannot be joined when

they disagree on the type of a common field, which is crucially enabled by the use of the theory

of finite maps in our setting. Recent work includes type systems for JavaScript and Ruby. [6]

presents a rich type system and inference algorithm for JavaScript, which uses row-types and

width subtyping to model dictionaries (objects). The system does not support unions, and uses

fixed field names. This issue is addressed in [98], which models dictionaries using row types

labeled by singletons indexed by string constants, and depth subtyping. A recent proposal [105]

incorporates an initialization phase during which object types can be updated. However, these

systems preclude truly dynamic dictionaries, which require dependent types, and moreover lack

the control flow analysis required to support ad-hoc unions. DRuby [43] is a powerful type

system designed to support Ruby code that mixes intersections, unions, classes, and parametric

polymorphism. DRuby supports “duck typing,” by converting from nominal to structural types

appropriately. However, it does not support ad-hoc unions or dynamic dictionary accesses.

Dependent Types for First-Order Programs. The observation that ad-hoc unions can be checked

via dependent types is not new. [68] develops a dependent type system called guarded types that

is used to describe records and ad-hoc unions in legacy Cobol programs that make extensive use

of tag-tests, where the “tag” is simply the first few bytes of a structure. [64] presents an SMT-based

system for statically inferring dependent types that verify the safety of ad-hoc unions in legacy C

programs. [21] describes how type checking and property verification are two sides of the same

coin for C (which is essentially uni-typed.) It develops a precise logic-based type system for C

and shows how SMT solvers can be used for type checking. This system contains a hastype(x,T)

notion which is similar to ours except that T ranges over a fixed set of type constants as opposed to

arbitrary types. Thus, one cannot use their hastype to talk about complex values (e.g. dependent

functions, duck-typed records with only some fields) nested within dictionaries in their system.

Finally, the system supports function pointers but does not fully support higher-order functions.

Dminor [9] uses refinement types to formalize similar ideas in a first-order functional data

description language with fixed-key records and run-time tag-tests. The authors show how unions

and intersections can be expressed in refinements (and even collections, via recursive functions),

and hence how SMT solvers can wholly discharge all subtyping obligations. However, the above

techniques apply only to first-order languages, with static keys and dictionaries over base values.

Refinement Types for Higher-Order Programs. The key novelty of System D is the introduction

of nested refinement types, which are a generalization of the refinement types introduced by the

long line of work pioneered by Xi and Pfenning [104] and further studied in [26, 31, 85, 67, 7, 94].

The main difficulty in applying these classical refinement type systems to dynamic languages
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is that they require a distinction between base values that are typed with refinement predicates

and complex values that are typed with syntactic constructors. In particular, dynamic languages

contain dependent dictionaries, which require refinements (over the theory of arrays) to describe

keys but syntactic types to describe the values bound to keys. This combination is impossible with

earlier refinement types systems but is enabled by nesting types within refinements.

Combining Decision Procedures. Our approach of mixing logical reasoning by SMT solvers

and syntactic reasoning by subtyping is reminiscent of work on combining decision procedures

[74, 87]. However, such techniques require the component theories to be disjoint; since our logic

includes type terms which themselves contain arbitrary terms, our theory of syntactic types cannot

be separated from the other theories in our system, so these techniques cannot be directly applied.

8.2.2 Verification for Imperative Untyped Languages

In this section, we discuss topics related to types for imperative dynamic languages, hence,

strong updates and inheritance.

Location Sensitive Types. The way we handle reference types draws from the approach of

Alias Types [91], in which strong updates are enabled by describing reference types with abstract

location names and by factoring reasoning into a flow-insensitive tying environment and a flow-

sensitive heap. Low-Level Liquid Types [86] employs their approach in the setting of a first-order

language with dependent types. In contrast, our setting includes higher-order functions, and our

formulation of heap types gives variable names to unknown heaps to reason about prototypes and

gives names to all heap values, which enables the specification of precise relationships between

values of different heaps; the heap binders of [86] allow only relationships between values in a

single heap to be described.

The original Alias Types work also includes support for weak references that point to

zero or more values, for which strong updates are not sound. Several subsequent proposals [39,

4, 33, 3, 86, 92] allow strong updates to weak references under certain circumstances to support

temporary invariant violations. We adapt the thaw and freeze mechanism from [3] and [86] with

mostly cosmetic changes.

Prototype Inheritance. Unlike early class-based languages, such as Smalltalk and C++, the

(untyped) language Self allows objects to be extended after creation and feature prototype, or

delegation, inheritance. Static typing disciplines for class-based languages (e.g. [1]) explicitly

preclude object extension to retain soundness in the presence of width subtyping, the ability to

forget fields of an object. To mitigate the tension between object extension and subtyping, several

proposals [10, 45] feature quite a different flavor: the fields of an object are split into a “reservation”

part, which may be added to an object but cannot be forgotten, and a “sealed part” that can
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be manipulated with ordinary subtyping. Our approach provides additional precision in two

important respects. First, we precisely track prototype hierarchies, whereas the above approaches

flatten them into a single collection of fields. Second, we avoid the separation of reservation and

sealed fields but still allow subtyping, since “width subtyping” in System !D is simply logical

implication over refinement formulas; forgetting a field — discarding a has(d,k) predicate — does

not imply that ¬has(d,k), which guards the traversal of the prototype chain.

Typed Subsets of JavaScript. Several (syntactic) type systems for various JavaScript subsets

have been proposed. Among the earliest is [98], which identifies silent errors that result from

implicit type coercion and the fact that JavaScript returns undefined when trying to look up a non-

existent key from an object. The approach in [6] distinguishes between potential and definite keys,

similar to the reservation and sealed discussed above; this general approach has been extended

with flow-sensitivity and polymorphism [105]. The notion of recency types, similar to Alias Types,

was applied to JavaScript in [57], in which typing environments, in addition to heap types, are

flow-sensitive. Prototype support in [57] is limited to the finite number of prototype links tracked

by the type system, whereas the heap symbols in System !D enable reasoning about entire prototype

hierarchies. Unlike System !D, all of the above systems provide global type inference; our system

does not have principal types, so we can only provide local type inference [78]. ADsafety [79]

is a type system for ADsafe, a JavaScript sandbox, that restricts access to some fields. Although

expressive enough to check ADsafe, which heavily uses large object literals, they do not support

strong update and so cannot reason about object extension. Unlike System !D, none of the above

systems include dependent types, which are required to express truly dynamic object keys and

precise control-flow based invariants.

Recent work on JavaScript verification uses separation logic [44] to track precise flow-

sensitive invariants. They support only first-order programs, and the expressiveness of their

logic takes them beyond automatic verification, thus requiring properties to be manually proved.

JS* [95] is a verification system for JavaScript that, like DJS, translates programs to a variant

of λJS for analysis. Their underlying refinement type system, F*, is higher-order and, hence,

capable of reasoning about more complex properties than System DJS. As is usual for higher-order

dependent systems, the tradeoff is that analysis time and the size of specifications can be large.

JavaScript Semantics. We chose the JavaScript “semantics-by-translation” of λJS [51] since it

targets a conventional core language that has been convenient for our study. An alternate

semantics [70] inherits unconventional aspects of the language specification [61] (e.g. “scope

objects”), which complicates the formulation of static reasoning.
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Appendix A

Soundness of System D

We prove the type soundness of System D, following the outline in § 2.4, as well as the

extensions to subtyping, discussed in Chapter 4.

Polarity. Before we attend to the metatheory, we define Polarity(A, T) $ Poles(A,+, T) in terms

of the helper procedure Poles below, used to compute the polarity (either co-, contra-, or invariant)

of type variables in datatype definitions, which we elided from the presentation of well-formed

datatype definitions (§2.3.1). We define the inversion of polarities as ¬(+) = - and ¬(-) = +. In

the last case of the definition, we assume type C[θB] = { · · · }.

Poles(A,θ,{x | p}) = Poles(A,θ, p)

Poles(A,θ, P(w)) = ∅

Poles(A,θ,w :: U) = Poles(A,θ,U)

Poles(A,θ, p ∧ q) = Poles(A,θ, p) ∪ Poles(A,θ,q)

Poles(A,θ, p ∨ q) = Poles(A,θ, p) ∪ Poles(A,θ,q)

Poles(A,θ,¬p) = Poles(A,¬θ, p)

Poles(A,θ, A) = {θ}

Poles(A,θ, B) = ∅

Poles(A,θ,∀B. x : T1→ T2) = Poles(A,¬θ, T1) ∪ Poles(A,θ, T2)

Poles(A,θ,C[T]) = ∪i


Poles(A,θ, Ti) if θi = +

Poles(A,¬θ, Ti) if θi = -

Poles(A,+, Ti) ∪ Poles(A,-, Ti) if θi = =

Poles(A,+, T) computes a subset of {+,-} that includes + (resp. -) if A occurs in at least one positive

(resp. negative) position inside T. For each type variable, these polarities are computed across

all field types in the definition and then checked against its variance annotation, as described in

150



151

§ 2.3.1. By convention, we assume that all type variables in a program are distinct, so the equation

for polymorphic function types above safely ignores the type variables B.

A.1 Preliminaries

We specify definitions and assumptions about our refinement logic. Recall that we define

the application of types to logical values using substitution as follows:

T(w) = {x | p}(w) $ p[w/x]

Definition A.1.1 (Refinement Logic).

The refinement logic underlying System Dn starts with the quantifier-free fragment of

first-order logic with equality extended with the theory of uninterpreted functions. As described

in § 2.3, the domain of values is drawn from a single datasort, and we use uninterpreted functions

to classify values into more precise sets. Expressions, formulas, and type terms are encoded in

the logic as uninterpreted constructed terms. Function terms are pairs of formal parameters and

expression terms. To assign meaning to type predicates, we use a three-valued logic, where a

third “don’t-care” or “undefined” truth value augments the usual true and false values. In the

interpretation In at level n, we evaluate type predicates v :: U to true as follows (we refer to this

definition later as “Type Predicate Interpretation”):

• In |= λx.e :: ∀A. x : T11→ T12

if ` ∀A. x : T11→ T12 and A, x : T11 `n−1 e :: T12

• In |= c :: ∀A. x : T11→ T12

if ` ∀A. x : T11→ T12, ty(c) = {y | y = c ∧ y :: ∀A. x : T01→ T02}, and

`n−1 ∀A. x : T01→ T02 <: ∀A. x : T11→ T12.

• In |= C(v) :: C[T]

if ` T, type C[θA] = { f : T′}, and `n−1 vj :: Inst(T′j , A, T) for all j.

In all other cases, type predicates evaluate to the undefined truth value. We make the assumption

that there are no negative occurrences of type predicates in programs and, hence, in type checking

obligations. This restriction, together with the use of a three-valued logic, ensures that the

interpretations at each level are monotonic with respect to the set of formulas which evaluate to

true; this property is captured by the Lifting lemma, described later.

Since there are no typing judgements with index less than 0, no type predicates evaluate

to true in the interpretation I0 at level 0. Thus, I0 consists of only the underlying logic with

uninterpreted functions.
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Fact A.1.2 (Refinement Logic Properties).

• (Validity) We write Valid(p) to mean that, as usual, p is satisfiable in I0 with arbitrary assignments

to free variables. In the I-Valid rule, we appeal to a decision procedure to check whether Valid(p).

• (Free Variable Substitution) If x appears free in p and q, then p⇒ q implies p[v/x]⇒ q[v/x] for

all v.

• (Uninterpreted Predicate Substitution) If P is an uninterpreted predicate symbol in p and q, then

p⇒ q implies p[P′/P]⇒ q[P′/P] for all P′.

Assumption A.1.3 (Constant Types). Recall that the δ function defines the semantics of constants. For

every constant c ∈ dom(ty), the following properties hold.

• (Well-formed) ` ty(c).

• (Normal) ty(c) = {x | x = c ∧ p} where either p = true or p = x :: ∀A. y : T1→ T2.

• (App) If ty(c) = {x | x = c ∧ x :: ∀A. y : T11→ T12}, then for all v, n, and T

`n v :: Inst(T11, A, T) implies that δ(c,v) is defined and `n δ(c,v) :: Inst(T12(v), A, T).

• (Valid) Valid(ty(c)(c)). In other words, we add the fact ty(c)(c) to the initial type environment.

Assumption A.1.4 (Datatype Representation). This assumption requires that the implementation treats

constructed data just like ordinary dictionaries, in particular, that the fields of constructed data can be read

and written using the ordinary dictionary primitives. Let type C[θA] = { f : T′} be a member of the fixed,

global list of datatype definitions Ψ.

• If In |= v :: C[T], then In |= tag(v) = “dictionary”∧ (∧j Inst(T′j , A, T)(sel(v, f j))).

A.2 Proofs

To reduce clutter, we elide the well-formedness requirements of all expressions, formulas,

types, type terms, typing environments, and type definitions mentioned in the lemmas and

theorems that follow. We write “IH” in proofs to abbreviate “induction hypothesis.” We often use

the metavariable S, in addition to T, to range over refinement types {x | p}.

Lemma A.2.1 (Inversion). We list only properties that we will need to use.

1. If Γ `n ∀A. x : T11→ T12 <: ∀A. x : T21→ T22,

then Γ, A `n T21 v T11 and Γ, A, x : T21 `n T12 v T22.

2. If Γ `n λx.e :: T, then Γ `n λx.e :: {y | y = λx.e ∧ y :: ∀A. x : T1→ T2}
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Proof. By induction.

Lemma A.2.2 (Reflexive Subtyping).

1. Γ `n U <: U

2. Γ `n T v T

Proof. By mutual induction.

Lemma A.2.3 (Transitive Subtyping).

1. If Γ `n U1 <: U2 and Γ `n U2 <: U3, then Γ `n U1 <: U3.

2. If Γ `n T1 v T2 and Γ `n T2 v T3, then Γ `n T1 v T3.

Proof. By mutual induction.

Lemma A.2.4 (Narrowing). Suppose Γ `n T v T′.

1. If Γ, x : T′⇒n p, then Γ, x : T⇒n p.

2. If Γ, x : T′ `n U1 <: U2, then Γ, x : T `n U1 <: U2.

3. If Γ, x : T′ `n T1 v T2, then Γ, x : T `n T1 v T2.

4. If Γ, x : T′ `n e :: T1, then Γ, x : T `n e :: T1.

Proof. By mutual induction.

Lemma A.2.5 (Weakening). Suppose Γ = Γ1, Γ2 and Γ′ is such that ` Γ′ and either

Γ′ = Γ1, x : T, Γ2 or Γ′ = Γ1, p, Γ2 or Γ′ = Γ1, A, Γ2.

1. If Γ⇒n q, then Γ′⇒n q.

2. If Γ `n U1 <: U2, then Γ′ `n U1 <: U2.

3. If Γ `n T1 v T2, then Γ′ `n T1 v T2.

4. If Γ `n e :: T, then Γ′ `n e :: T.

Proof. By mutual induction.

Lemma A.2.6 (Free Variables in Subtyping). Suppose w is a closed, well-formed value.

1. If Γ⇒n p and x appears free in p, then Γ⇒n p[w/x].

2. If Γ `n {x | p} v {x | q}, then Γ `n {x | p[w/x]} v {x | q[w/x]}.
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Proof. By mutual induction. The premise of the I-Valid-n case is In |= Embed(Γ)⇒ p. Since x

appears free in the implication, by Free Variable Substitution, In |= Embed(Γ)⇒ p[w/x]. Thus, by

I-Valid-n, Γ⇒n p[w/x]. The rest of the proof is a straightforward induction.

Lemma A.2.7 (Sound Variance).

1. Suppose Γ `n T1 v T2.

(a) If B appears only positively in T, then Γ `n Inst(T, B, T1) v Inst(T, B, T2).

(b) If B appears only positively in p, then Γ `n {x | Inst(p, B, T1)} v {x | Inst(p, B, T2)}.

2. Suppose Γ `n T1 v T2.

(a) If B appears only negatively in T, then Γ `n Inst(T, B, T2) v Inst(T, B, T1).

(b) If B appears only negatively in p, then Γ `n {x | Inst(p, B, T2)} v {x | Inst(p, B, T1)}.

3. Suppose Γ `n T1 v T2 and Γ `n T2 v T1.

(a) Then Γ `n Inst(T, B, T2) v Inst(T, B, T1) and Γ `n Inst(T, B, T1) v Inst(T, B, T2).

(b) Then Γ `n {x | Inst(p, B, T2)} v {x | Inst(p, B, T1)}

and Γ `n {x | Inst(p, B, T1)} v {x | Inst(p, B, T2)}.

Proof. The proofs of (1) and (2) are by mutual induction on types and formulas. The proof of (3) is

a stand-alone induction on types and formulas.

Proof of (1a). Let T = {x | p}. The goal follows by IH (1b), because, by definition of Inst on refine-

ment types, Inst({x | p}, B, T1) = {x | Inst(p, B, T1)} and Inst({x | p}, B, T2) = {x | Inst(p, B, T2)}.

Proof of (1b).

Case: p = P(w). Trivial, since Inst(p, B, T1) = Inst(p, B, T2) = p.

Cases: p = q1 ∧ q2, p = q1 ∨ q2. By IH (1b), I-Valid, I-Cnf, and S-Refine.

Case: p = ¬q. By IH (2b), I-Valid, I-Cnf, and S-Refine.

Case: p = w :: U.

Subcase: U = B.

By definition, Inst(p, B, T1) = T1(w) and Inst(p, B, T2) = T2(w).

By Free Variables in Subtyping, Γ `n {x |T1(w)} v {x |T2(w)}.

Subcase: U = x : S1→ S2.

Let S11 = Inst(S1, B, T1) and S12 = Inst(S1, B, T2).

Let S21 = Inst(S2, B, T1) and S22 = Inst(S2, B, T2).
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Since B appears only positively in p, it appears only negatively in S1,

by the well-formedness of the type definition and the definition of Poles.

By IH (2a), Γ `n S12 v S11.

Since B appears only positively in p, it appears only positively in S2.

By IH (1a), Γ `n S21 v S22.

By Weakening, Γ, x : S21 `n S21 v S22.

By U-Arrow, Γ `n x : S11→ S21 <: x : S12→ S22.

By I-Valid, Γ, p :: x : S11→ S21⇒n p :: x : S11→ S21.

By I-HasType, Γ, p :: x : S11→ S21⇒n p :: x : S12→ S22.

By I-Cnf and S-Refine, Γ `n {y |w :: x : S11→ S21} v {y |w :: x : S12→ S22}.
That is, Γ `n {x | Inst(p, B, T1)} v {x | Inst(p, B, T2)}.

Subcase: U = C[S], where type C[θA] = { · · · }.

Subsubcase: θ = + and θ = =.

Let S1 = Inst(S, B, T1) and S2 = Inst(S, B, T2).

Since B appears only positively in p, it appears only positively in S.

By IH (1a), Γ `n S1 v S2.

By U-Datatype, Γ `n C[S1] <: C[S2].

By I-Valid, I-HasType, I-Cnf, and S-Refine, Γ `n {y |w :: C[S1]} v {y |w :: C[S2]}.

Subsubcase: θ = -.

Similar.

Proof of (2a) and (2b). Similar.

Proof of (3). Straightforward induction.

Lemma A.2.8 (Lifting Derivations).

1. If Γ⇒n p, then Γ⇒n+1 p.

2. If Γ `n U1 <: U2, then Γ `n+1 U1 <: U2.

3. If Γ `n T1 v T2, then Γ `n+1 T1 v T2.

4. If Γ `n e :: T, then Γ `n+1 e :: T.

5. If In |= p, then In+1 |= p.

Furthermore, for each of the first four properties, the size of the output derivation is the same size as the

original.
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Proof. By mutual induction. In the I-Valid-n case of (1), the conclusion follows by I-Valid-n

after applying IH (5). Property (5) states that the stratified interpretations are monotonic in the

statements which evaluate to true. The type predicate case for (5) follows from IH (4). Because we

forbid negative occurrences of type predicates, monotonicity extends to arbitrary formulas.

Lemma A.2.9 (Strengthening). Suppose In |= p.

1. If p, Γ⇒n q, then Γ⇒n q.

2. If p, Γ `n U1 <: U2, then Γ `n U1 <: U2.

3. If p, Γ `n T1 v T2, then Γ `n T1 v T2.

4. If p, Γ `n e :: T, then Γ `n e :: T.

Furthermore, for each property, the size of the output derivation is the same size as the original.

Proof. By mutual induction.

Proof of (1).

Case: I-Valid-n.

In |= Embed(p, Γ)⇒ q

p, Γ⇒n q

By expanding the embedding, In |= p ∧ Embed(Γ)⇒ q.

Thus, In |= p⇒ Embed(Γ)⇒ q.

Because of the assumption, In |= Embed(Γ)⇒ q.

By I-Valid-n, Γ⇒n q.

Case: I-Valid.

Valid(Embed(p, Γ)⇒ q)

p, Γ⇒n q

By Validity, In |= Embed(p, Γ)⇒ q.

The rest of the reasoning in this case follows the previous case.

Case: I-HasType.

Valid(Embed(p, Γ)⇒ w :: U′) p, Γ `n U′ <: U

p, Γ⇒n w :: U

By I-Valid, p, Γ⇒n w :: U′.

By the assumption and IH (1), Γ⇒n w :: U′.

By IH (2), Γ `n U′ <: U.

By I-HasType, Γ⇒n w :: U.

Case: I-Cnf. Straightforward.

Proof of (2), (3), and (4). Straightforward induction.
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The following lemma intuitively captures the relationship between the type system and the

underlying refinement logic: if a closed value v can be given the type T with a derivation at

level n, then the formula Embed(T)(v) is true in the System D interpretation at level n + 1. This

property plays a crucial role in the proof of Value Substitution.

Because the following lemma works only with the empty environment, the Strengthen-

ing lemma is helpful for proving the I-Cnf case, which has a premise that uses a non-empty

environment.

Main Lemma A.2.10 (Satisfiable Typing).

1. If ⇒n p, then In+1 |= p.

2. If `n U1 <: U2, then In+1 |= x :: U1⇒ x :: U2.

3. If `n {x | p} v {x | q}, then In+1 |= p⇒ q.

4. If `n v :: T, then In+1 |= T(v).

In the first three properties, the variable x appears free in the implication. Thus, they are implicitly

quantified over all values.

Proof. By mutual induction on the size of derivations, not by structural induction. The reason

for this induction principle is that in some cases, subderivations are manipulated by Lifting and

Strengthening (which preserve derivation size) before appealing to the induction hypothesis.

Proof of (1).

Case: I-Valid.

Valid(true⇒ p)

⇒n p

By Validity, p is true in all interpretations. Thus, In+1 |= p.

Case: I-Valid-n.

In |= true⇒ p

⇒n p

By Lifting, In+1 |= true⇒ p. Thus, In+1 |= p.

Case: I-HasType.

Valid(true⇒ w :: U′) `n U′ <: U

⇒n w :: U

By I-Valid, ⇒n w :: U′.

By IH (1), In+1 |= w :: U′.

By IH (2), In+1 |= x :: U′⇒ x :: U.

By Free Variable Substitution, In+1 |= w :: U.

Case: I-Cnf.

CNF(p) = ∧i (qi⇒ Qi) ∀i. ∃q′ ∈ Qi. qi⇒n q′

⇒n p
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To establish In+1 |= p, we consider its equivalent CNF formula.

For each clause In+1 |= qi⇒ q′, we assume In+1 |= qi and then prove In+1 |= q′.

By Strengthening on each premise (with indices i and ij),⇒n q′.

These derivations have the same size, so by IH (1) on each, In+1 |= q′.

Proof of (2).

Case: U-Arrow.

A `n T21 v T11 A, x : T21 `n T12 v T22

`n ∀A. x : T11→ T12 <: ∀A. x : T21→ T22

Let U1 = ∀A. x : T11→ T12 and U2 = ∀A. x : T21→ T22.

We assume In+1 |= v :: U1 and will prove In+1 |= v :: U2.

By Type Predicate Interpretation, there are two cases.

Subcase: v = λx.e and A, x : T11 `n e :: T12.

By Narrowing, A, x : T21 `n e :: T12.

By T-Sub, A, x : T21 `n e :: T22.

Thus, by Type Predicate Interpretation, In+1 |= λx.e :: U2.

Subcase:

v = c, ty(c) = {y | y = c ∧ y :: ∀A. x : T01→ T02}, and `n ∀A. x : T01→ T02 <: U1.

By Inversion, A `n T11 v T01 and A, x : T11 `n T02 v T12.

By Transitive Subtyping, A `n T21 v T01.

By Narrowing, A, x : T21 `n T02 v T12.

By Transitive Subtyping, A, x : T21 `n T02 v T22.

By U-Arrow, `n ∀A. x : T01→ T02 <: U2.

By Type Predicate Interpretation, In+1 |= c :: U2.

Case: U-Var. Trivial.

Case: U-Datatype.

type C[θA] = { f : T′}
∀i. if θi ∈ {+,=} then `n T1i v T2i ∀i. if θi ∈ {-,=} then `n T2i v T1i

`n C[T1] <: C[T2]

We consider the special case when there is exactly one type parameter A with variance

annotation θ. The type actuals are, therefore, labeled T11 and T21. The reasoning extends to an

arbitrary number of type parameters by a strong induction on the length of the sequence.

Subcase: θ = +.

Consider an arbitrary v0 such that In+1 |= v0 :: C[T11].

By Type Predicate Interpretation, v0 = C(v) and for all j, `n vj :: Inst(T′j , A, T11).

By well-formedness of the type definition, A appears only positively in every T′j .
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By Sound Variance (1), `n Inst(T′j , A, T11) v Inst(T′j , A, T21).

By T-Sub, `n vj :: Inst(T′j , A, T21).

By Type Predicate Interpretation, In+1 |= C(v) :: C[T21].

Subcase: θ = -. Similar, using Sound Variance (2).

Subcase: θ = =. Similar, using Sound Variance (3).

Proof of (3).

Case: S-Refine.

y fresh ⇒n (p[y/x]⇒ q[y/x])

`n {x | p} v {x | q}

By IH (1), since alpha-renaming does not affect validity.

Proof of (4). We only need to consider the rules that can derive a type T for a value v in the empty

environment.

Case: T-Const. By Constant Types (Valid).

Case: T-Extend. Trivially, since v = v1[v2 7→ v3], T = {x | x = v}, and T(v) = (v = v).

Case: T-Fun.

U = x : T1→ T2 x : T1 `n e :: T2

`n λx.e :: {y | y = λx.e ∧ y :: U}

By Type Predicate Interpretation, In+1 |= λx.e :: U.

Furthermore, by Validity, In+1 |= λx.e = λx.e.

Case: T-Fold.

type C[θA] = { f : T′} ∀j. `n vj :: Inst(Tj, A, T)

`n C(v) :: {x |Fold(x,C, T,v)}

We consider each of the components of the formula from Fold, defined in §2.3.2.

By Datatype Representation, In+1 |= tag(C(v)) = “dictionary”∧ (∧j sel(C(v), f j) = vj).

By Type Predicate Interpretation, In+1 |= C(v) :: C[T].

Case: T-Unfold.

`n v :: {x | x :: C[T]}

`n v :: {x |Unfold(x,C, T)}
[T-Unfold]

By IH (3), In+1 |= v :: C[T].

The goal follows by Type Predicate Interpretation and Datatype Representation.

Case: T-Sub.

`n v :: T′ `n T′ v T

`n v :: T

By IH (3), In+1 |= Embed(T′)(v)⇒ Embed(T)(v).

By IH (4), In+1 |= Embed(T′)(v).

So, In+1 |= Embed(T′)(v).
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In the following lemma we lift substitution to judgements in the obvious way. For example, we

write (Γ `n e :: T)[v/x] to mean Γ[v/x] `n e[v/x] :: T[v/x].

Main Lemma A.2.11 (Stratified Value Substitution). Let `n v :: T.

1. If x : T, Γ⇒n p, then (Γ⇒n+1 p)[v/x].

2. If x : T, Γ `n U1 <: U2, then (Γ `n+1 U1 <: U2)[v/x].

3. If x : T, Γ `n T1 v T2, then (Γ `n+1 T1 v T2)[v/x].

4. If x : T, Γ `n e :: T′, then (Γ `n+1 e :: T′)[v/x].

Proof. By mutual induction. The T-Var case is interesting because singleton types must be

preserved after substitution.

Proof of (1). Case: I-Valid-n.

In |= Embed(x :T, Γ)⇒ p

x : T, Γ⇒n p

Thus, In |= T(x) ∧ Embed(Γ)⇒ p.

That is, In |= T(x)⇒ Embed(Γ)⇒ p.

By Lifting, In+1 |= T(x)⇒ Embed(Γ)⇒ p.

By Satisfiable Typing, In+1 |= T(v).

Thus, In+1 |= Embed(Γ)[v/x]⇒ p[v/x] by Free Variable Substitution.

So by I-Valid-n, Γ[v/x]⇒n+1 p[v/x].

Case: I-Valid.

Valid(Embed(x :T, Γ)⇒ p)

x : T, Γ⇒n p

Thus, Valid(T(x) ∧ Embed(Γ)⇒ p).

So In |= T(x) ∧ Embed(Γ)⇒ p by Validity.

The rest of the reasoning follows the I-Valid-n case.

Case: I-HasType.

Valid(Embed(x :T, Γ) ∧ p⇒ w :: U′) x : T, Γ `n U′ <: U

x : T, Γ⇒n w :: U

By I-Valid, x : T, Γ⇒n+1 w :: U′.

By IH (1), Γ[v/x]⇒n+1 w[v/x] :: U′[v/x].

By IH (2), Γ[v/x] `n+1 U′[v/x] <: U[v/x].

By I-HasType, Γ[v/x]⇒n+1 w :: U)[v/x].

Case: I-Cnf. By induction and equisatisfiability of CNF formulas.

Proof of (2). Straightforward induction.

Proof of (3). Straightforward induction.
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Proof of (4).

Case: T-Const.

By T-Const, Γ[v/x] `n+1 c :: ty(c).

By Constant Types (Well-formed), ` ty(c), so ty(c) has no free variables.

Thus, ty(c)[v/x] = ty(c).

Also, c[v/x] = c, which concludes the case.

Case: T-Var.

y ∈ dom(x : T, Γ)

x : T, Γ `n y :: {z | z = y}

Subcase: x 6= y.

By T-Var, Γ[v/x] `n+1 y :: {z | z = y}.
This concludes the subcase since y[v/x] = y and {z | z = y}[v/x] = {z | z = y}.

Subcase: x = y. Note that x[v/x] = v and {z | z = x}[v/x] = {z | z = v}.

Subsubcase: v = y′. Impossible, since the typing environment is empty.

Subsubcase: v = v1[v2 7→ v3]. Trivial, by T-Extend.

Subsubcase: v = c.

By T-Const, Γ[v/x] `n+1 c :: ty(c).

By Constant Types (Normal), ty(c) = {z | z = c ∧ p}.
By I-Valid, I-Cnf, and S-Refine, Γ[v/x] `n+1 {z | z = c ∧ p} v {z | z = c}.
By T-Sub, Γ[v/x] `n+1 c :: {z | z = c}.

Subsubcase: v = λx′.e0.

By Inversion, `n+1 v :: {z | z = v ∧ z :: U}.
By I-Valid, I-Cnf, and S-Refine, `n+1 {z | z = v ∧ z :: U} v {z | z = v}.
By T-Sub, `n+1 v :: {z | z = v}.
By Weakening, Γ[v/x] `n+1 v :: {z | z = v}.

Case: T-Fun.

e = λy.e0 U = ∀A. y : T1→ T2 x : T, Γ, A, y : T1 `n e0 :: T2

x : T, Γ `n e :: {z | z = e ∧ z :: U}

By IH (4), Γ[v/x], y : T1[v/x] `n+1 e0[v/x] :: T2[v/x].

By T-Fun, Γ[v/x] `n+1 e[v/x] :: {z | z = e[v/x] ∧ z :: U[v/x]}.
Thus, Γ[v/x] `n+1 e[v/x] :: {z | z = e ∧ z :: U}[v/x].
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Case: T-App.

x : T, Γ `n v1 :: {z | z :: ∀A. x : T11→ T12} x : T, Γ `n v2 :: Inst(T11, A,S)

x : T, Γ `n [S] v1 v2 :: Inst(T12, A,S)[v2/y]

Let Γ′ = Γ[v/x], v′1 = v1[v/x], v′2 = v2[v/x], and T′11 = T11[v/x].

Let T′12 = Inst(T12, A,S)[v/x].

By IH (4), Γ′ `n+1 v′1 :: {z | z :: ∀A. y : T11→ T12}[v/x].

Thus, Γ′ `n+1 v′1 :: {z | z :: ∀A. y : T′11→ T′12}.
By IH (4), Γ′ `n+1 v′2 :: Inst(T′11, A,S).

By T-App, Γ′ `n+1 [S] v′1 v′2 :: T′12[v
′
2/y].

Now we expand T′12[v
′
2/y] to Inst(T12, A,S)[v/x][v2/y][v/x].

Since v and v2 are closed values, and x and y are distinct, this

is the same as Inst(T12, A,S)[v2/y][v/x][v/x].

Furthermore, this is (Inst(T12, A,S)[v2/y])[v/x].

Finally, we note that v′1 v′2 = (v1 v2)[v/x].

Thus, the derivation from T-App does indeed satisfy the goal.

Case: T-Sub.

x : T, Γ `n e :: T′′ x : T, Γ `n T′′ v T′

x : T, Γ `n e :: T′

By IH (4), Γ[v/x] `n+1 e[v/x] :: T′′[v/x].

By IH (3), Γ[v/x] `n+1 T′′[v/x] :: T′[v/x].

By T-Sub, Γ[v/x] `n+1 e[v/x] :: T′[v/x].

Cases: T-Let, T-If, T-Extend.

By IH on the premises and original rule to conclude.

Cases: T-Fold, T-Unfold.

By IH on the premises and original rule to conclude.

In the following lemma we lift instantiation to judgements in the obvious way. For example, we

write Inst((Γ `n e :: T′), A, T) to mean Inst(Γ, A, T) `n e :: Inst(T′, A, T).

Lemma A.2.12 (Type Substitution). Let ` T.

1. If A, Γ⇒n p, then Inst((Γ⇒n p), A, T).

2. If A, Γ `n U1 <: U2, then Inst((Γ `n U1 <: U2), A, T).

3. If A, Γ `n T1 v T2, then Inst((Γ `n T1 v T2), A, T).

4. If A, Γ `n e :: T′, then Inst((Γ `n e :: T′), A, T).
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Proof. By mutual induction. Even (1) is straightforward, since type variables in the environment

play no role in the embedding of formulas into the logic (they are embedded as true).

Lemma A.2.13 (Canonical Forms). Suppose `n v :: S.

1. If S = Bool, then v = true or v = false.

2. If S = {y | y :: ∀A. x : T1→ T2}, then either

(a) v = λx.e and A, x : T1 `n e :: T2, or

(b) v = c and for all v′, n, and T s.t. `n v′ :: Inst(T1, A, T), δ(c,v′) is defined and `n δ(c,v′) ::

Inst(T2, A, T)[v′/x].

Proof of (1). By Satisfiable Typing, In+1 |= tag(v) = “boolean”. Thus, v is either true or false.

Proof of (2). By Satisfiable Typing, In+1 |= v :: ∀A. x : T1→ T2. The goal follows by Type Predicate

Interpretation and Constant Types (App).

We are now ready to prove type soundness of System Dn. Soundness of the basic type system,

which is the system at level zero and is used for type checking source programs, follows as a

corollary. Compared to the proof outline in §2.4, we prove progress and preservation together.

Theorem A.2.14 (Stratified System Dn Type Soundness).

If `n e :: T, then either e is a value or e ↪→ e′ and `n+1 e′ :: T.

Proof. By induction on the typing derivation.

Case: T-Var.

Impossible, since the typing environment is empty.

Cases: T-Const, T-Extend, T-Fun, T-Fold.

Immediate, since e is a value.

Cases: T-Unfold.

By Satisfiable Typing and Type Predicate Interpretation, e is a value.

Case: T-If.

`n v :: Bool v = true `n e1 :: S v = false `n e2 :: S

`n if v then e1 else e2 :: S

By Canonical Forms, there are two cases.

Subcase: v = true.

By E-IfTrue, e′ = e1.

Valid(true= true), so by Strengthening, `n e1 :: S.

By Lifting, `n+1 e1 :: S.
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Subcase: v = false.

By E-IfFalse, e′ = e2.

Valid(false= false), so by Strengthening, `n e2 :: S.

By Lifting, `n+1 e2 :: S.

Case: T-App.

`n v1 :: {y | y :: ∀A. x : T11→ T12} `n v2 :: Inst(T11, A, T)

`n [T] v1 v2 :: Inst(T12, A, T)[v2/x]

By Canonical Forms, there are two cases.

Subcase: v1 = λx.e0 and A, x : T11 `n e0 :: T12. .

By Type Substitution and Value Substitution, `n+1 e0[v2/x] :: Inst(T12, A, T)[v2/x].

This concludes the subcase, since by E-App, e′ = e0[v2/x].

Subcase: v1 = c.

Since `n v2 :: T11, we also have that δ(c,v2) is defined and `n δ(c,v2) :: T12[v2/x].

By Lifting, `n+1 δ(c,v2) :: T12[v2/x].

This concludes the subcase, since by E-Delta, e′ = δ(c,v2).

Case: T-Let.

` T1 `n e1 :: T1 ` T2 x : T1 `n e2 :: T2

`n let x = e1 in e2 :: T2

By the IH, there are two cases.

Subcase: e1 is a value v.

By E-Let, e′ = e2[v/x].

By Value Substitution, `n+1 e2[v/x] :: T2[v/x].

Since ` T2, x does not appear free in T2, so T2[v/x] = T2.

Subcase: e1 ↪→ e′1 and `n+1 e′1 :: T.

By E-Compat, e′ = let x = e′1 in e2.

By Lifting, x : T `n+1 e2 :: T2.

By T-Let, `n+1 let x = e′1 in e2 :: T2.

Case: T-Sub.

`n v :: T′ `n T′ v T ` T

`n v :: T

By IH, Lifting, and T-Sub.

We write e ↪→∗ e′ to denote the multi-step evaluation relation (i.e. the reflexive, transitive closure

of the single-step evaluation relation e1 ↪→ e2).

Corollary A.2.15 (System Dn Type Soundness).



165

If `∗ e :: T, then either e diverges or e ↪→∗ v and `∗ v :: e.

Corollary A.2.16 (System D Type Soundness).

If `0 e :: T, then either T diverges or e ↪→∗ v and `∗ v :: T.

A.3 Soundness of Extensions

We now prove the soundness of the subtyping extensions presented in Chapter 4, start-

ing with several lemmas that help manipulate the structure of formulas. For clarity, we omit

polymorphic type variables on all arrows in the rest of this section.

Lemma A.3.1 (Guarded Derivations). Let Γ1 = y : T1, Γ and Γ2 = y : T2, Γ.

1. If Γ1⇒n q, then Γ2⇒n T1(y)⇒ q.

2. If Γ1 `n {x | p1} v {x | p2}, then Γ2 `n {x | p1} v {x |T1(y)⇒ p2}.

3. If Γ1 `n e :: {x | q}, then Γ2 `n e :: {x |T1(y)⇒ q}.

Proof. By induction. For (1), from the hypothesis Embed(y :T1, Γ1) = T1(y)∧Embed(Γ1) is sufficient

to discharge the goal q, so Embed(Γ2) ∧ T1(y) is also.

Lemma A.3.2 (Shuffling). Let Γ1 = y :{x | p1 ∨ p2}, Γ and Γ2 = y :{x | p2 ∨ p1}, Γ.

1. If Γ1⇒n p, then Γ2⇒n p.

2. If Γ1 `n U1 <: U2, then Γ2 `n U1 <: U2.

3. If Γ1 `n T1 v T2, then Γ2 `n T1 v T2.

4. If Γ1 `n e :: T, then Γ2 `n e :: T.

Proof. By induction.

Lemma A.3.3 (And Introduction).

1. If Γ `n T v {x | p} and Γ `n T v {x | q}, then Γ `n T v {x | p ∧ q}.

2. If Γ `n e :: {x | p} and Γ `n e :: {x | q}, then Γ `n e :: {x | p ∧ q}.

Proof. By induction.

Lemma A.3.4 (Conjunction Weakening). Let Γ1 = y :{x | p1}, Γ and Γ2 = y :{x | p1 ∧ p2}, Γ.

1. If Γ1⇒n q, then Γ2⇒n q.

2. If Γ1 `n U1 <: U2, then Γ2 `n U1 <: U2.
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3. If Γ1 `n T1 v T2, then Γ2 `n T1 v T2.

4. If Γ1 `n e :: T, then Γ2 `n e :: T.

Proof. By induction.

Lemma A.3.5 (Reverse Or Elimination). Let Γ1 = y :{x | p1}, Γ and Γ2 = y :{x | p2}, Γ and Γ3 =

y :{x | p1 ∨ p2}, Γ.

1. If Γ1⇒n q and Γ2⇒n q, then Γ3⇒n q.

2. If Γ1 `n U1 <: U2 and Γ2 `n U1 <: U2, then Γ3 `n U1 <: U2.

3. If Γ1 `n T1 v T2 and Γ2 `n T1 v T2, then Γ3 `n T1 v T2.

4. If Γ1 `n e :: T and Γ2 `n e :: T, then Γ3 `n e :: T.

Proof. By induction, assuming the presence of the I-Dnf rule.

We now have all the formula-manipulating lemmas we need to prove soundness of the meet and

join operators. Note that of the lemmas above, only Reverse Or Elimination requires that I-Dnf be

included in the subtyping rules.

The following lemma states three properties of the meet operator. Only the first is required

for soundness (in particular, for the Satisfiable Typing lemma). The remaining two are similar

to the usual properties one would expect of a meet operator: that it computes a lower bound

and that it computes the greatest lower bound. Proving the last property depends on Reverse Or

Elimination, so the meet can only be considered maximal when I-Dnf is included in the system.

Theorem A.3.6 (Sound Meet). Suppose U1 uU2 = U.

1. If In |= w :: U1 and In |= w :: U2 then In |= w :: U.

2. `n U <: U1 and `n U <: U2.

3. If `n U′ <: U1 and `n U′ <: U2, then `n U′ <: U.

Proof. We consider only the case for arrows; the other cases are straightforward.

U1 = x :{y | p1} → {y | q1}

U2 = x :{y | p2} → {y | q2}

U = x :{y | p1 ∨ p2} → {y | p1(x)⇒ q1 ∧ p2(x)⇒ q2}
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Proof of (1). By Type Predicate Interpretation, there are two cases.

Case: w = λx.e, x :{y | p1} `n−1 e :: {y | q1}, and x :{y | p2} `n−1 e :: {y | q2}.

By Guarded Derivations, x :{y | p1 ∨ p2} `n−1 e :: {y | p1(x)⇒ q1}.
By Guarded Derivations, x :{y | p2 ∨ p1} `n−1 e :: {y | p2(x)⇒ q2}.
By Shuffling, x :{y | p1 ∨ p2} `n−1 e :: {y | p2(x)⇒ q2}.
By And Introduction, x :{y | p1 ∨ p2} `n−1 e :: {y | p1(x)⇒ q1(x) ∧ p2(x)⇒ q2}.
By Type Predicate Interpretation, In |= w :: U.

Case: w = c. Omitted.

Proof of (2).

We will prove `n U <: U1; proving `n U <: U2 is similar.

By U-Arrow, we must show:

i. `n {y | p1} v {y | p1 ∨ p2}, and

ii. x :{y | p1} `n {y | p1(x)⇒ q1 ∧ p2(x)⇒ q2} v {y | q1}.
The former follows from S-Refine and I-Valid.

For the latter, consider an arbitrary clause of q1, called Q.

First, we note that Valid(p1(x) ∧ (p1(x)⇒ q1 ∧ · · · )⇒ q1).

Because q1 implies all of its clauses, Valid(p1(x) ∧ (p1(x)⇒ q1 ∧ · · · )⇒ Q).

By I-Valid, x :{y | p1}, (p1(x)⇒ q1 ∧ p2(x)⇒ q2)⇒n Q.

Every clause Q of q1 is discharged.

Therefore, x :{y | p1} `n {y | p1(x)⇒ q1 ∧ p2(x)⇒ q2} v {y | q1}.

Proof of (3).

By inversion on syntactic subtyping, U′ = x :{y | p3} → {y | q3}.
Furthermore, by inversion on the hypotheses, we have:

a. `n {y | p1} v {y | p3}
b. `n {y | p2} v {y | p3}
c. x :{y | p1} `n {y | q3} v {y | q1}
d. x :{y | p2} `n {y | q3} v {y | q2}

To prove `n U′ <: U, by U-Arrow we must show:

i. `n {y | p1 ∨ p2} v {y | p3}, and

ii. x :{y | p1 ∨ p2} `n {y | q3} v {y | p1(x)⇒ q1 ∧ p2(x)⇒ q2}.
The former follows from applying Reverse Or Elimination to (a) and (b).

The latter follows from Guarded Derivations, Shuffling, and And Introduction on (c) and (d).

We prove three properties of the join operator analogous to those for the meet operator. The proof

that the join computes the least upper bound depends on the presence of I-Dnf in the system.
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Theorem A.3.7 (Sound Join). Suppose U1 tU2 = U.

1. If In |= w :: U1 or In |= w :: U2, then In |= w :: U.

2. `n U1 <: U and `n U2 <: U.

3. If `n U1 <: U′ and `n U2 <: U′, then `n U <: U′.

Proof. We consider only the case for arrows; the other cases are straightforward.

U1 = x :{y | p1} → {y | q1}

U2 = x :{y | p2} → {y | q2}

U = x :{y | p1 ∧ p2} → {y | q1 ∨ q2}

Proof of (1). By Type Predicate Interpretation, there are two cases.

Case: w = λx.e, x :{y | p1} `n−1 e :: {y | q1}, and x :{y | p2} `n−1 e :: {y | q2}.

We consider the former case; the latter case is similar.

By Conjunction Weakening, x :{y | p1 ∧ p2} `n−1 e :: q1.

By T-Sub, x :{y | p1 ∧ p2} `n−1 e :: q1 ∨ q2.

By Type Predicate Interpretation, In |= w :: U.

Case: w = c. Omitted.

Proof of (2).

By S-Refine and I-Valid, `n {y | p1 ∧ p2} v {y | p1}.
By S-Refine and I-Valid, x :{y | p1 ∧ p2} `n {y | q1} v {y | q1 ∨ q2}.
By U-Arrow, `n U1 <: U.

The proof for `n U2 <: U is similar.

Proof of (3).

By inversion on syntactic subtyping, U′ = x :{y | p3} → {y | q3}.
Furthermore, by inversion on the hypotheses, we have:

a. `n {y | p3} v {y | p1}
b. `n {y | p3} v {y | p2}
c. x :{y | p3} `n {y | q1} v {y | q3}
d. x :{y | p3} `n {y | q2} v {y | q3}

To prove `n U <: U′, by U-Arrow we must show:

i. `n {y | p3} v {y | p1 ∨ p2}, and
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ii. x :{y | p3} `n {y | q1 ∨ q2} v {y | p3}.
The former goal follows from And Introduction on (a) and (b).

The latter one from Reverse Or Elimination on (c) and (d).

Lemma (Satisfiable Typing).

Proof. Updating this proof for the new subtyping rules is simple. The case for I-HasType-Meet

(resp. I-HasType-Join) is similar to I-HasType, except that the reasoning must also appeal to

Sound Meet (1) (resp. Sound Join (1)) for the type term resulting from the meet (resp. join)

operation used to combine type terms. The I-Dnf case is straightforward, since converting to DNF

does not affect the satisfiability of a formula.
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