
UC Irvine
UC Irvine Previously Published Works

Title
Covalent inhibitors of fatty acid amide hydrolase: a rationale for the activity of piperidine 
and piperazine aryl ureas.

Permalink
https://escholarship.org/uc/item/47j164kx

Journal
Journal of medicinal chemistry, 54(19)

Authors
Piomelli, D
Palermo, G
Branduardi, D
et al.

Publication Date
2011-10-13

DOI
10.1021/jm2004283

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/47j164kx
https://escholarship.org/uc/item/47j164kx#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Covalent inhibitors of fatty acid amide hydrolase (FAAH): A
rationale for the activity of piperidine and piperazine aryl ureas
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Daniele Piomelli1,4, Andrea Cavalli1,2,*, and Marco De Vivo1,*

1Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30,
16163 Genova, Italy
2Department of Pharmaceutical Sciences, University of Bologna, via Belmeloro 6, I-40126, Italy
3Dipartimento Farmaceutico, Università degli Studi di Parma, Viale G. P. Usberti 27/A Campus,
Universitario, I-43100 Parma, Italy
4Department of Pharmacology, University of California, Irvine 92697, USA

Abstract
Recently, covalent drugs have attracted great interest in the drug discovery community, with
successful examples that have demonstrated their therapeutic effects. Here, we focus on the
covalent inhibition of the fatty acid amide hydrolase (FAAH), which is a promising strategy in the
treatment of pain and inflammation. Among the most recent and potent FAAH inhibitors
(FAAHi), there are the cyclic piperidine/piperazine aryl ureas. FAAH hydrolyzes efficiently the
amide bond of these compounds, forming a covalent enzyme-inhibitor adduct. To rationalize this
experimental evidence, we performed an extensive computational analysis centered on the
piperidine-based PF750 (1) and the piperazine-based JNJ1661010 (2), two potent lead compounds
used to generating covalent inhibitors as clinical candidates. We found that FAAH induces a
distortion of the amide bond of the piperidine/piperazine aryl ureas. QM/MM ΔELUMO-HOMO
energies indicate that the observed enzyme-induced distortion of the amide bond favors the
formation of a covalent FAAH- inhibitor adduct. These findings could help in the rational
structure-based design of novel covalent FAAHi.

Introduction
The drug discovery community is looking at covalent drugs with a renewed interest.1

Indeed, covalent drugs have been approved for several clinical indications and have made a
major positive impact on human health.2 In this scenario, fatty acid amide hydrolase
(FAAH) represents a promising target for the discovery of covalent drugs to treat pain,
inflammation and other diseases.3 FAAH is an integral membrane protein belonging to the
amidase signature family of enzymes (Figure 1)4, and it is responsible for the deactivating
hydrolysis of several endogenous fatty acid amides such as anandamide (AEA),
palmytoylethanolamide (PEA) and oleoylethanolamide.5 Therefore, the inhibition of FAAH
can be used to modulate the level of endogenous fatty acid ethanolamides,6 which in turn
has been proven to induce anti-inflammatory, antidepressant, analgesic and anxiolytic
effects.7 In addition, these actions occur in the absence of alteration in motility, sleep,
weight gain or other side effects typically observed with direct CB1 agonists.8

*Corresponding Authors: marco.devivo@iit.it, andrea.cavalli@unibo.it.
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FAAH is a serine hydrolase characterized by an unusual Ser-Ser-Lys catalytic triad (Ser241,
Ser217, Lys142) that cleaves amides and esters with similar rates.9 Over the last few years, a
number of crystal structures of FAAH bound to covalent inhibitors have been resolved.10

This experimental evidence, coupled with computational studies,11 has elucidated the
enzymatic mechanism of FAAH; First, substrate hydrolysis is initiated by activation of the
nucleophile Ser241 residue. This occurs through a proton transfer event that leads the side
chain proton of Ser241 to Lys142, shuttled via Ser217. Then, the activated Ser241 attacks
the carbonyl group of the substrate, leading to the formation of a tetrahedral intermediate.
Finally, the protonation of the leaving group by Lys142, through a proton shuttle that again
involves Ser217, facilitates the leaving group departure and formation of the acylated
enzyme (Scheme 1a).

Several classes of FAAH inhibitors12 (FAAHi) react and form a covalent bond with Ser241.
Among these molecules are potent electrophilic compounds characterized by the presence of
an activated carbonyl group. These include trifluoromethyl ketones, α-keto esters, α-keto
amides, and α-ketoheterocycles, such as OL-135. However, most of these compounds have
low target selectivity and limited efficacy in vivo.12

A class of FAAHi with a promising drug-like profile are potent and irreversible FAAHi
based on a N-cyclohexylcarbamic acid O-aryl ester template, which include the compound
URB524 (IC50 = 63 nM).8a, 13 Optimization of URB524 led to URB597 (the 3′-CONH2
derivative of URB524),14 a highly potent FAAHi in vitro (IC50 = 4.6 nM) and in vivo (ED50
= 0.15 mg/kg, in rat).8a, 15 Interestingly, a brain-impenetrant member of this class of
compounds was recently disclosed (URB937, IC50 = 26.8 ± 4.9 nM) and shown to produce
substantial analgesic effects in animal models, which is suggestive that inhibition of
peripheral FAAH activity might represent a novel approach for the treatment of pain. 16

The unique ability of FAAH to cleave amides and esters at similar rates suggests, however,
that not only carbamates but also ureas could act as good carbamoylating agents. Even
though the substitution of the carbamate functionality with an acyclic urea led to mostly
inactive compounds,13, 17 cyclic piperidine/piperazine-based molecules were identified by
Pfizer and Cravatt’s lab as a novel class of potent FAAHi.18 Among them is the irreversible
N-phenyl-4-(quinolin-3-ylmethyl)piperidine-1-carboxamide (PF750, 1) (IC50 = 16.2 nM)18

and the reversible piperazine-based N-Phenyl-4-(3-phenyl-1,2,4-thiadiaz ol-5-yl)-1-
piperazinecarboxamide (JNJ1661010, 2) (IC50 = 33 ± 2.1 nM).19 The piperidine/piperazine
moiety of these compounds seems to favor, somehow, the covalent interaction of the
inhibitor with Ser241. In this respect, Cravatt and coworkers have proposed that the limited
flexibility of piperidine/piperazine-based inhibitors could favor the conformational
distortion of their urea functionality at the FAAH active site, favoring the formation of a
covalent bond between the inhibitor and Ser241 (Scheme 1).18 This hypothesis, however,
has not been investigated yet, and the mechanism of piperidine/piperazine FAAHi remains
poorly understood at the atomic level.

Here, we report on a comparative study based on molecular dynamics (MD) simulations and
quantum mechanics/molecular mechanics (QM/MM) computations that aims at
characterizing the difference between cyclic and inactive acyclic ureas. Three structurally
different compounds were considered: the two potent lead compounds piperidine-based 1
and the piperazine-based 2, along with an inactive acyclic 1-Cyclohexyl-3-naphthalen-2-
ylurea, referred to here as Cpd3 (3) (IC50 = < 30,000 nM) (Figure 2).13 We have
characterized the conformational flexibility of these compounds in water solution and in
complex with FAAH. Our results support the hypothesis18 that FAAH is able to induce a
distortion of the amide bond of the piperidine/piperazine compounds. The twist of the amide
bond likely facilitates the amide bond hydrolysis, and formation of the covalent inhibitor-
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enzyme adduct.20 On the other hand, the rigidity of the planar urea moiety in the acyclic
derivative seems to prevent its good fit into the catalytic site, which might partially explain
its lack of inhibitory activity.

Computational materials and methods
Structural models

Three model systems formed by FAAH in complex with either 1, 2 and with the inactive
derivative 3 were considered for calculations (see Figure 1 and 2). All model systems were
based on the crystallographic structure of the humanized rat FAAH protein ((h/r) FAAH) in
complex with 1, solved at 2.75 Å resolution (PDB code: 2VYA).10b The X-ray structure of
the FAAH/1 complex consists of monomer A (Mnr A) and monomer B (Mnr B) formed by
574 residues in total, one Cl− ion, 84 co-crystallized water molecules and two 1 residues
(one per monomer) covalently attached to the Ser241 of FAAH through a carbamate bond.
Importantly, this structure contains active site residues of the human protein, within the
parent rat protein, including the key residues of the catalytic triad (Ser241, Ser217, Lys142)
and those of the oxyanion hole (Ile238, Gly239, Gly240, Ser241). The binding mode of 1
was constructed by adding the leaving group to the crystallographic pose. The piperazinic 2
binding pose was generated via computational docking of the ligand into the FAAH binding
site. Docking calculations were carried out using Autodock 4.221 (see Supplementary
Information, SI). The final docked structure of 2 is in agreement with its binding pose
proposed by Keith et al.19 The comparison between the binding mode of the co-crystallized
ligand 1 and the docked 2 compound shows that the urea occupies the same region of the
pocket (see SI). Due to the structural similarity between 1 and 3, the binding pose of the
latter was modeled by manually modifying 1 within the binding site (see SI).

Molecular dynamics (MD) simulations
A standard MD setup was adopted to all the three complexes, namely FAAH/1, FAAH/2,
and FAAH/3. Hydrogen atoms were added assuming standard bond lengths and angles. The
simulations were performed with deprotonated Lys142, as proposed for the catalytic
mechanism of FAAH.10a Each of the three complexes were immersed in a rectangular
TIP3P water box.22 The starting size of the solvated system was approximately 100 Å × 100
Å × 125 Å for all the three complexes, containing about 36,550 water molecules and a total
number of about 126,500 atoms. The charge of the systems was neutralized adding an exact
number of counterions (8 Cl− ions were added in each model) whose optimal positions were
located using the xLEAP program of the AMBER10 package.23 The AMBER99SB force
field24 was adopted for the protein. The ligands 1, 2, and 3 were treated with the General
Amber Force Field25 together with ad hoc charges calculated following the RESP procedure
(see SI).26 The SHAKE27 algorithm was used for all the covalent bonds that contain an H
atom, thus allowing a timestep of 2 fs for the integration of the equations of motion. All the
simulations were performed by using the NAMD 2.7 package.28 Periodic boundary
conditions were applied and the Particle-Mesh Ewald method was used to evaluate long-
range electrostatic interactions with a direct cutoff of 10 Å. All the simulations were carried
out with the following protocol. First, the systems were optimized and thermalized up to 300
K in the NVT ensemble using a Langevin bath29, in three consecutive steps: (1) the solvent
was first equilibrated, slowly increasing the temperature from 0 to 100 K and maintaining
the protein fixed, (2) the temperature was further increased up to 200 K while keeping fixed
only the coordinates of backbone atoms of the protein, (3) constraints were released and the
systems were simulated to reach the temperature of 300 K. Subsequently, 100 ns of MD
were performed for each system in the NPT ensemble in standard condition using a
Langevin Piston. Coordinates of the systems were collected every 2 ps, for a total of
~50,000 frames for each run. Statistics was accumulated during the last 98 ns of each run.
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The structural analysis here reported is obtained using data from the two FAAH monomers
that form each complex, considered as independent, for a total of ~100,000 structures.

Unbound systems
The 1, 2, and 3 compounds were also simulated via classical MD in a pure water-box. 1 was
immersed in a 43.1 × 31.0 × 29.4 Å3 box, with a number of water molecules equal to 1,314
and a total number of atoms of 3,991. The piperazine 2 was immersed in a 43.3 × 31.3 ×
29.8 Å3 box of 1,348 water molecules, for a total of 4,089 atoms. The water box for the
acyclic 3 was 40.3 × 33.7 × 29.2 Å3, including 1,202 water molecules and a total number of
3,646 atoms. Same protocol, as for the above-described simulations, was adopted for
optimization and thermalization.

Analysis of structural data
The amide bond distortion was characterized by analyzing the following structural
parameters: 1) the R2N–C–N–H dihedral angle (referred to as δ, scheme 2a); 2) the improper
torsion centered on the secondary amine nitrogen (referred to as θ, scheme 2b).

For completeness, the planarity of the amino group was also analyzed using the internal
coordinates τ [3] and χN [4], originally defined by Dunitz.30 The τ and χN parameters are
function of the torsion angles defined by the amide C–N bond, as follows:

[3]

[4]

Where ω1 = O=C–N–R′; ω2 = R2N–C–N–H; and ω3 = R2N–C–N–R′, (Scheme 2). The angle
τ is a measure of the mean twisting angle between the C–N bond and it ranges from 0°
(planar amide group) to 90° (when the two planes defined by the O=C–NR2 and the R′–N–H
atoms are perpendicular). The χN parameter determines the degree of pyramidalization at the
N atom, and it may take values approximately between 0° (planar sp2 geometry) to 60°
(tetrahedral sp3 geometry). The geometrical meaning of τ and χN is shown in Scheme 2. We
consider here the absolute values for these angles reported on the 0°–90° quadrant.

Quantum mechanics/molecular mechanics (QM/MM) calculations
QM/MM calculations were performed to obtain the HOMO-LUMO energy gap
(ΔELUMO-HOMO) of the reactive complex formed by the inhibitor 1 and 2 and the enzyme.
Due to the fact that 3 is neither experimentally active nor stable during the simulations, it
was not considered for these calculations. Calculations were carried out using the two-layer
ONIOM method,31 as implemented in Gaussian09.32 This approach allows treating the
system at different levels of theory. The entire system (real) is computed with a low level of
theory (MM), while the inner layer (model) is treated at a high level of theory (QM). The
expression of the ONIOM energy, EONIOM, is given via a subtractive QM/MM scheme:

[1]

The electrostatic interaction between the two layers was taken into account via electrostatic
embedding.33

For the structures extracted from each of the MD runs, we built a QM/MM subsystem by
retaining the ligand and the 79 residues that were within 8 Å from the ligand. The QM
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region consisted of the ligand and the following residues of FAAH active site: the catalytic
triad and oxyanion hole residues Ile238, Gly239, Gly240, as well as the Met191, Phe192,
and the Asp237 residues. The N- and C-termini of the residues were capped with the
standard Ace (acetyl) and Nme (N-metyl) residues parameterized with the Amber force
field.24 A total number of 1,525 and 1,521 atoms were considered in the QM/MM
calculations of the FAAH/1 and the FAAH/2 complexes, respectively (complete list
available in SI). The QM part resulted in 178 atoms for the FAAH/1 system and 174 atoms
for the FAAH/2 system. The remaining part of the systems was treated with the
AMBER99SB force field.24 As a result, 500 snapshots were used to calculate the
ΔELUMO-HOMO by means of single point energy calculations at the ONIOM (HF/
6-311G**:Amber) level of theory, which was shown to give a good description of the orbital
energies.34

In detail, we first calculated the ΔELUMO-HOMO for 50 structural snapshots equally
distributed over the δ range (−40° to +35°). These calculations were performed for both
FAAH/1 and FAAH/2 complexes, for a total of 100 structures. Additionally, to better
address the difference between the most distorted and the planar structures, the average
ΔELUMO-HOMO was determined using 100 structural snapshots randomly extracted within a
range of 3 degrees centered on the most populated state of δ and θconformers of both
complexes, for a total of additional 200 systems that showed the twist of the amide bond as
detected during the dynamics. Namely, for the FAAH/1 complex, configurations were
selected within −7° < δ < −4°, and 4° < θ< 7°. In the case of the FAAH/2 complex, the
selected states were taken in −8° < δ < −5° and 4° < θ< 7° range (see Scheme 2 and Figure
3–4). For comparison, the average ΔELUMO-HOMO was also calculated for the less populated
configurations characterized by the planarity of the ligand amide bond (δ and θ around ~0°).
Also in this case, a set of structures from classical MD simulations of both FAAH/1 and
FAAH/2 complexes were collected within a 3 degrees window, for a total of additional 200
model systems.

Results
MD simulations

(h/r) FAAH/PF750 (1) complex—During the NPT run, the structural stability was
evaluated calculating the root mean square deviation (RMS-d) respect to the minimized X-
ray structure. After an transient period of ~2 ns, the RMS-d for the all atoms of the protein
settled at 2.42 ± 0.16 Å, while the RMS-d for the heavy atoms was about 1.56 ± 0.20 Å. The
RMS-d of the 1 ligand remained below ~2 Å, while the 1 binding group (i.e., piperidine-urea
group) was very stable (RMS-d of the N2–C=O atoms = 0.04 Å).

The 1 binding pose closely resembles the one proposed by Mileni et al.10b The carbonyl
carbon of the ligand remained in proximity of Ser241 (C-O distance), at 2.95 ± 0.12 Å. Also,
the H-bond pattern formed by the catalytic triad Ser241-Ser217-Lys142 was very stable; the
distance between the side chain nitrogen of Lys142 and the hydroxyl oxygen of Ser217
ranged around 1.83 ± 0.27 Å, while the Ser217-Ser241 H-bonds was 2.04 ± 0.23 Å.
Throughout the simulations, 1 conserved an ordered H-bond network with the oxyanion hole
residues (Ser241, Gly240, Gly239, Ile238) and the main chain carbonyl oxygen of Met191.
Overall, we found that the main interactions between FAAH and 1 were conserved during
the simulations, which further evidenced the structural stability of the complex (see SI for
details).

Amide Bond in 1—During the simulations, 1 underwent small conformational changes
within FAAH binding site that involved primarily the piperidine moiety and a moderate
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twist of the hydrolytic amide bond. This evidence prompted us to compare the
conformational flexibility of 1 within the enzyme with that in solution. We focused on the
geometrical distortion of the amide bond during the simulations in terms of distribution of
the dihedral angle δ and improper torsion θ, as described in the methods section. The time
evolution of δ and θ during the MD is shown in Figure 3. There was a significant difference
between the structural features of 1 within the enzyme and in solution. The average δ value θ
within FAAH was equal to −6.35 (± 0.03°, standard error of the mean), while δ average was
0.41 ± 0.03° when simulated in a water box. The θvalues confirmed the out of the plane
deformation of the 1′s urea functionality within the enzyme. Indeed, the average θvalue was
equal to 5.00 ± 0.02° in complex with FAAH and 0.21 ± 0.02° in solution.

The probability distributions of δ and θ angles along the MD simulations are reported in
Figure 4. The population of 1′s conformers in FAAH was centered on a δ value of around ~
−5° while in solution δ was ~0° showing that the planarity of the C–N bond in water is
strongly influenced by the enzymatic environment. Accordingly, the distribution curve of
the θ angle of the inhibitor was centered on θ = ~6° when simulated in complex with FAAH,
while θ was ~0° when simulated in solution (see Table 1).

For completeness, we here describe the amide bond distortion during dynamics according to
the Dunitz internal coordinates τ and χN (Figure 5),30b as well. The average twist angle τ
was 12.01 ± 0.02° in FAAH and 8.51 ± 0.02° in water, while the pyramidalization at the
nitrogen, χN, was equal to 22.75 ± 0.04° in FAAH and 16.81 ± 0.04° in solution. Overall,
these data further indicate the evident distortion of the hydrolytic amide bond of 1 when in
complex with FAAH.

(h/r) FAAH/JNJ1661010 (2) complex—After the equilibration, during the ~100 ns the
RMS-d of the overall FAAH protein atoms oscillated around 2.38 ± 0.13 Å. The fluctuation
of the protein heavy atoms confirmed that FAAH conformation remained consistently stable
throughout the simulations (RMS-d = 1.49 ± 0.18 Å). The RMS-d of 2 was around 0.5 – 1
Å, while the urea functional group was highly stable (RMS-d of the N2–C=O atoms = 0.04 ±
0.01 Å).

The key binding distances were well conserved in the ligand-protein complex. The C-O
distance remained 2.90 ± 0.11 Å. The H-bond network of the catalytic triad was also well
conserved: the Ser241-Ser217 average distance was 1.98 ± 0.20 Å and the Ser217-Lys142
H-bond oscillated around ~1.80 ± 0.11 Å. The interactions between the carbonyl oxygen of
the 2 compound and the NH groups of the FAAH oxyanion hole were very stable, as well as
the H-bond between the aniline hydrogen of 2 and the main chain carbonyl oxygen of the
Met191. Data of key binding distances are reported in the SI. It is worth noting as 2 and 1
compounds showed an analogous network of binding interactions. Indeed, the orientation
within FAAH active site of the piperazine 2 is similar to the experimental pose of the co-
crystalized piperidine FAAHi 110b and PF384510c. Both compounds 1 and 2 place the
heterocyclic moiety in the FAAH acyl chain binding channel, while the leaving group
occupies the cytoplasmic access of FAAH active site. This binding orientation of the cyclic
urea-based FAAHi has been recently explored by Pfizer and Cravatt’s lab through the
modeling of benzotiophene piperidine and piperazine ureas as FAAHi.35 Their results
resemble the existing crystallographic data and further support the proposed mechanism of
FAAH inhibition.18

Amide Bond in 2—As for 1, the amide bond of 2 showed a distorted geometry when
simulated in complex with FAAH. The average δ and θ values within FAAH were −5.22 ±
0.03° and 4.61 ± 0.02°, respectively. These values differ from those obtained in solution,
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where the amide bond remained planar (δ = −0.05 ± 0.03° and θ= −0.01 ± 0.02°). Values of
δ and θ during the dynamics are shown in Figure 3.

The population of δ angle was peaked around −6°, while in solution was centered on 0°. The
different behavior of the ligand within the enzyme and in solution can be appreciated by
looking at the population of δ and θ in Figure 4. The distribution for the 2 in complex with
FAAH was centered around θvalues of 5°/6°. In solution, the maximum of the distribution
for θ values was centered upon zero, which indicated that the most abundant population of
conformers was characterized by the planarity of the amide bond. Average values obtained
for the Dunitz τ and χN angles are here reported for completeness. Within the enzyme, τ
value was 11.16 ± 0.02°, and that the nitrogen was partially pyramidalized with an average
χN value of 22.74 ± 0.04°. In solution, the average τ and χN angles were 8.48 ± 0.02° and
16.78 ± 0.04°, respectively. This further indicated that the amide functional group was more
distorted when simulated in complex with the enzyme, compared to its behavior in solution.
Structural data are reported in Table 2.

(h/r) FAAH/Cpd3 (3) complex—The MD simulations carried out on the inactive
compound displayed a RMS-d for the whole protein of 2.33 ± 0.19 Å, while RMS-d was
1.45 ± 0.12 Å for the only heavy atoms. The RMS-d of the 3 was 1.36 ± 0.41 Å while the
urea functional group shown to be very stable (RMS-d = 0.09 ± 0.03 Å). The
carbamoylation distance was equal to 3.72 ± 0.19 Å, which was remarkably larger than that
found for the active compounds. In addition, we observed the breaking of the catalytic triad
H-bond network. In fact, the Ser241 – Ser217 distance was about 3.78 ± 0.36 Å, while the
H-bond between the Ser217 and the Lys142 increased to a value of 3.14 ± 0.91 Å, during
the simulations. Actually, along the simulations 3 moved away from Ser241, inducing the
increase of the carbamoylation distance. This occurred at different times in the two
monomers: after ~2 – 3 ns in Mnr B, and within the first picoseconds of dynamics in Mnr A
(see the SI for further details). Overall, 3 did not retain the starting interactions between its
carbonyl oxygen and the FAAH oxyanion hole, during the simulations, thus making useless
any further investigation via QM/MM calculations. Moreover, in contrast to what observed
with the active compounds, it was not possible to detect a stable H-bond interaction between
the hydrogen atoms of the urea functional group and the main chain carbonyl oxygen of the
enzymatic Met191.

Amide Bond in 3—The urea functionality conserved a planar geometry both in FAAH
and in solution. Indeed, the δ angle displayed similar values within FAAH and in solution
(δFAAH = −1.31 ± 0.03°; δwater box = −0.05 ± 0.03°). Likewise, θ assumed values equal to
1.59 ± 0.02° within the enzyme and 0.03 ± 0.02° in water. In fact, no correlation was
observed between the δ and θ angles (see the δ vs. θ correlation plot is reported in Figure 6).

δ and θ distributions resulted to be centered on zero, both when simulated in FAAH and in
solution (Figure 4). As expected, the τ and χN angles showed comparable values in FAAH
and in water. The average τ angle was around 8.20 ± 0.01° in FAAH and 8.41 ± 0.02° and in
solution. The average χN was 16.68 ± 0.08° in FAAH and 16.64 ± 0.04° in water. Other
relevant geometrical parameters are reported in Table 3. Overall, the urea geometry was
quite rigid and planar, both within FAAH and in solution, indicating that FAAH was not
able to induce the distortion of the amide bond in 3.

QM/MM calculations
The nucleophilic attack on a carbonyl carbon can be described by the Fukui frontier
molecular orbital theory.36 Accordingly, the reaction occurs when the highest occupied
bonding molecular orbital (HOMO) of the nuclephile overlaps the lowest unoccupied
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antibonding molecular orbital (LUMO) of the electrophilic species. Along the reaction
coordinate, the HOMO-LUMO gap becomes narrower and favors the reactivity. In this
study, the hydroxyl oxygen of the catalytic Ser241 is the nucleophile that transfers electrons
from its HOMO to the LUMO of the substrate (i.e. the carbonyl carbon of the ligand). We
calculated the ΔELUMO-HOMO over the range of conformations of the amide bond and the
average ΔELUMO-HOMO obtained for distorted and planar conformations, for both FAAH/1
and FAAH/2 complexes, as described in the methods section.

The most distorted conformations (−40° < δ < −35°) showed a ΔELUMO-HOMO of ~ 8.50 eV
for the FAAH/1 complex, while ~ 9.50 eV for FAAH/2 (Figure 7). When the δ angle was
close to 0° (i.e., planar conformations), the ΔELUMO-HOMO became gradually larger and it
reached a value of 10.27 eV for FAAH/1 complex and 10.25 eV for FAAH/2. The
ΔELUMO-HOMO trend, from distorted to planar conformations, is well visible in Figure 7,
which highlights a smaller gap for distorted conformations (i.e., high reactivity towards
amide bond hydrolysis).

Centering the analysis on complexes showing a distorted C–N bond (see methods section),
the average ΔELUMO-HOMO was 9.33 ± 0.18 eV for 1, while the analogue complexes
characterized by a planar amide bond had the ΔELUMO-HOMO of 9.73 ± 0.18 eV, resulting in
a ΔΔELUMO-HOMO of 0.40 eV. For complexes where 2 showed a distorted amide bond, the
average ΔELUMO-HOMO was equal to 9.65 ± 0.24 eV. In this case, the planar analogues
showed average ΔELUMO-HOMO of 10.02 ± 0.25 eV, resulting in a ΔΔELUMO-HOMO of 0.37
eV.

The localization of the frontier orbitals was also analyzed. For the FAAH/1 complex,
LUMO of the distorted amide was well localized on the 1 carbonyl, being turned toward the
HOMO of the Ser241 nucleophile. On the other hand, LUMO of the planar analogue was
more delocalized and thus less prone to receive electrons from the HOMO electron-donor of
the Ser241 (Figure 8). The FAAH/2 complex showed a similar topology of the frontier
orbitals shape (Figure 8).

Overall, the QM/MM calculations showed a decreased ΔELUMO-HOMO for the protein/ligand
complexes with distorted amide bond with respect to the planar analogues. These data
reflect a greater reactivity of the distorted amides toward nucleophilic attack.

Discussion
Our results indicate that, within FAAH’s binding site, the piperidine/piperazine inhibitors
assume a specific conformation, which is characterized by a twist of the amide bond and
partial pyramidalization at the amide bond nitrogen. Importantly, this result can be used as a
simple indication of the propensity of new urea-based compounds to act as a covalent
inhibitor of FAAH.

The enzyme-induced distortion of the amide bond is evidenced by the δ and θ distribution
curves of the piperidine/piperazine compounds bound to FAAH (Figure 4). Indeed, the
amide bond of the inhibitors is planar when simulated in solution, as expected for force
field-based simulations of this functional group, while it is distorted when simulated in
complex with the enzyme FAAH (Figure 3 and 5).

As suggested by Greenberg,20 the amide bond distortion increases the sp3 character and the
basicity of the amide nitrogen, making it available for protonation and coordination. As a
consequence, distorted amides undergo nucleophilic attack more easily, compared to their
planar analogs, as shown also by several informative computational studies.37 Moreover,
recent DFT studies38 have shown that twisted amides, under different pH and solvent
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conditions, show a considerable acceleration of the hydrolysis compared to planar
analogues. Also, kinetic experiments have demonstrated a significant acceleration for the
hydrolysis of strained cyclic amides with distorted amide bond,39 such as the alkaline
hydrolysis of the benzoquinuclidine-2-one, which is 1017 times faster than its strain-free
counterpart.40 A final example is the highly twisted amide, 1-aza-2-adamantanone, which is
exceedingly reactive toward hydrolysis in neutral conditions: at least 1010 times faster than
that of a typical amide.41 These arguments support the hypothesis that FAAH-induced
distortion of the amide bond of the piperidine/piperazine FAAH inhibitors, evidenced by our
simulations, could make the amide functional group more susceptible to nucleophilic attack
by Ser241.18 In other words, the amide distortion, which diminishes the conjugation of the
nitrogen lone pair with the carbonyl, could lead to a more efficient hydrolysis of the amide
bond. This would explain the inhibitory activity of piperidine/piperazine compounds via
their prompt formation of a covalent bond with Ser241 of FAAH. Furthermore, the
increased basicity of the distorted amide could promote an easy protonation and release of
the aniline leaving group during the reaction. QM/MM simulations are in progress to
quantify the effect of the amide bond distortion in facilitating the reaction and formation of a
covalent enzyme-inhibitor adduct in FAAH’s catalytic site.

We calculated the free energy difference between the planar and most populated distorted
amide conformations, according to the Boltzmann law of distribution. This difference turned
out to be as small as ~1 kcal/mol, in agreement with the force field potential for such a slight
amide bond distortion (See SI). Such a small gap between the planar and distorted
conformations of the amide bond indicates an easy interchange between the two states.
However, we observed a statistically relevant shift of the populated states of the ligand
conformations toward distorted ones when in complex with FAAH, which favors the
inhibitor hydrolysis (Figure 4). Our QM/MM calculations suggested indeed a higher
reactivity of the distorted amides toward nucleophilic attack, relative to their planar
analogues. We detected a lower ΔELUMO-HOMO (9.33 ± 0.18 eV for 1 and 9.65 ± 0.24 eV
for 2) for distorted conformations, with respect to the planar analogues in which we found a
larger Δ ELUMO-HOMO (9.73 ± 0.18 eV for 1 and 10.02 ± 0.25 eV for 2).

We speculate that the amide bond distortion could be primarily caused by the FAAH
oxyanion hole residues (Ile238, Gly239, Gly240, Ser241), which chelate the carbonyl
oxygen of the cyclic inhibitors, while the Met191 interacts with the ligand amide hydrogen
(for detailed distances see SI). These simultaneous interactions that involve the urea
functionality seem to be the major contribution to the twist of the amide bond in the
piperidine/piperazine inhibitors. The peptide NH groups of the FAAH oxyanion hole draw
electron density away from the urea functionality, while the Met191 H-bonds to the
hydrogen of the ligand leaving group, weakening the amide bond. Furthermore, the
heterocyclic moiety of the piperidine/piperazine inhibitors is closely surrounded by the
Phe244, Tyr194, Ser193, Phe192, Val491, Ser193, Gly239, Gly216, Ser241 and Met191
residues. In this way, the enzyme generates a steric tension on the cyclic moiety of the
inhibitor that enforces the deformation of the amide bond. It follows that the conformational
flexibility of the piperidine/piperazine cycle appears to be critical for the activation of the
urea-based FAAHi toward the nucleophilic attack. Noteworthy, the recent discovery of the
piperidine and piperazine carbamates as efficacious inhibitors of the endocannabinoid
hydrolases42 emphasizes the effectiveness of the piperidine/piperazine structural motif for
generating new covalent inhibitors of FAAH. Conversely, the inactive 3 is unable to
establish favorable interactions with the FAAH oxyanion hole and shows a loss of binding.
This, coupled to lack of distortion of the amide bond, might explain the inability of 3 to
inhibit FAAH.
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Interestingly, the evidence of an enzyme-induced amide distortion reported herein can be
related to other enzymes that are hypothesized to exploit the same mechanism to favor
amide bond hydrolysis. For example, class A β-lactamases, which possess an oxyanion hole,
are thought to induce a deformation of the sp2 carbon of the endocyclic amide bond of the
substrateβ-lactam ring. This seems the major cause for β-lactam hydrolysis.43 Also, in the
case of carboxypeptidase Y, it was suggested that distortion of the peptide bond within the
substrate may be crucial for hydrolytic activity.44 In the case of the aspartic proteases, it was
suggested that enzyme-induced distortion of the substrate amide could favor the attack

of water on the polarized carbonyl.45 Later, x-ray data of the aspartic proteinase
endothiapepsin in complex with a potent difluorostatone-containing tripeptide renin
confirmed this hypothesis.46 In the process of protein splicing, x-ray and NMR experiments
have suggested that the loss of amide planarity could facilitate the catalytic mechanism, by
destabilizing the scissile amide bond.47 Finally, a recent x-ray structure of the matrix
metalloproteinase MMP-8 in complex with an N-hydroxylurea inhibitor showed a highly
out-of-plane distortion of the amide bond, which undergoes hydrolysis.48 In this scenario,
our findings further clarify, with unprecedented detail, how the enzyme can induce specific
conformations of the amide bond to facilitate its hydrolysis.

Conclusions
We have presented a comparative MD and QM/MM study to rationalizing the mechanism
used by the piperidine/piperazine urea-based compounds to inhibit FAAH. Three
compounds were considered: two potent lead molecules, namely the piperidine 1 and the
piperazine 2, and the inactive 3. The structural flexibility of these compounds was analyzed
either when in complex with FAAH or when in water solution

MD simulations revealed a distortion of the amide bond of the piperidine/piperazine urea-
based inhibitors when in complex with FAAH. This enzyme-induced conformational change
may be a key step for FAAH inhibition. In fact, the linear inactive urea-based 3 does not
show persistent deformations of the amide bond.

QM/MM calculations were used to evaluate the energy difference between the HOMO and
LUMO orbitals (ΔELUMO-HOMO). Results confirmed that distorted amides are more reactive
toward the nucleophilic attack, in comparison to planar conformation. This further indicates
that the enzyme-induced distortion facilitates the amide hydrolysis.

Overall, our work corroborates the hypothesis18 that the inhibitory activity of the piperidine/
piperazine aryl ureas originates from their flexibility. The results show indeed that FAAH is
able to induce a distortion of the amide bond of piperidine/piperazine inhibitors, which
prompts the formation a covalent enzyme-inhibitor adduct. In other words, here we provide
a simple receipt to evaluate the propensity of new urea-based compounds to act as a covalent
inhibitor. Therefore, we believe these findings could be used for the rational design of more
potent inhibitors bearing a cyclic urea-based moiety more prone to distortion of the amide
bond.
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Abbreviations

AEA anandamide

Mnr A monomer A

Mnr B monomer B

ΔELUMO-HOMO HOMO-LUMO energy gap

FAAH fatty acid amide hydrolase

(h/r) FAAH humanized rat FAAH protein

FAAHi FAAH inhibitors

PEA palmytoylethanolamide
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Figure 1.
X-ray structure of the h/r FAAH protein in complex with the PF750 inhibitor (PDB code:
2VYA).10b The FAAH protein consists of two monomers: Mnr A is represented with blue
ribbons and Mnr B is shown in yellow. The catalytic triad (Ser241-Ser217-Lys142) and the
oxyanion hole (Ile238, Gly239, Gly240) residues are depicted in blue (Mnr A) and yellow
sticks (Mnr B). PF750 is shown with green sticks.
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Figure 2.
The piperidine urea 1 (IC50 = 16.2 nM),18 the piperazine urea 2 (IC50 = 33 ± 2.1 nM),19 the
acyclic urea 3 (IC50 = < 30,000 nM).13
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Figure 3.
Dihedral angle δ (first row) and improper torsion θ (second row) value fluctuation during the
100 ns of MD simulation of 1 (first column), 2 (second column) and 3 (third column). Black
and red thin lines are instantaneous values in Mnr A and Mnr B, respectively, while green
thin lines are those in water. The running average values are calculated over 200 ps for δ and
θ (blue and yellow thick lines for Mnr A and Mnr B, respectively). The maroon thick line
represents the average value measured in water solution.
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Figure 4.
Probability distributions of the δ (first column) and θ (second column) angles shown for 1
(first row), 2 (second row) and 3 (third row) in complex with FAAH and in water solution.
The δ and θ frequency distributions are indicated with blue and red colors for the selected
compounds bound to FAAH Mnr A and FAAH Mnr B respectively. The δ and θ
distributions in water are shown in green. The population of the δ and θ angles was
evaluated by using a bin size of 1°.
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Figure 5.
Twisting angle τ (first row), and the out-of-plane bending angle χN (second row) value
fluctuation during the 100 ns of MD simulation by 1 (first column), 2 (second column) and 3
(third column). Black and red thin lines instantaneous values in Mnr A and Mnr B,
respectively, while green thin lines are those in water. The running average values are
calculated over 200 ps for τ and χN (blue and yellow thick lines for Mnr A and Mnr B,
respectively). The average τ and χN angles in water are shown in maroon.
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Figure 6.
Correlation diagrams between δ and θ angles for 1, 2 and 3 in complex with FAAH and in
water. The δ vs θ correlation line is shown with blue (Mnr A) and red (Mnr B). In solution,
the δ vs θ correlation line is in green. 1: the δ and θangles are linearly correlated both in
FAAH and solution (R2

FAAH = 0.60; R2
H2O = 0.60). The δ vs θ regression lines are

distinctly shifted with respect to those in solution: within FAAH the y-intercept is ~ −9.7°,
while in solution the y-intercept crosses the axis origin (~ 0.3°). This further indicates the
structural deformation of the amide bond of the inhibitor in complex with FAAH. 2: the δ
and θ angles are linearly correlated (R2

FAAH = 0.59; R2
H2O = 0.62). The y-intercept is ~

−13.1°, while is about ~ −0.1° in water. 3: there is no correlation between the δ and θ angles.
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Figure 7.
ΔELUMO-HOMO plotted against the dihedral angle δ for the FAAH/1 (upper graph) and the
FAAH/2 (lower graph) complexes. 50 structures equally distributed over the δ range (−40°
to +35°) were considered for each complex.
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Figure 8.
Shape of the frontier orbitals for the FAAH/1 (first row) and the FAAH/2 (second row)
complexes. Two representative snapshots characterized by the distorted (a and a′) and
planar (b and b′) amide bond are shown for 1 and 2, respectively. The FAAH residues
Ile238, Gly239, Gly240, Ser241, Ser217 are indicated in cyan, 1 is green and 2 is orange.
The HOMO orbital of the Ser241 nucleophile is depicted in blue, while the LUMO orbital of
the electrophile (i.e. the 1 and 2 carbonyl) is shown in red.
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Scheme 1.
(a)Mechanism of substrate hydrolysis by FAAH (shown for a generic amide substrate). (b)
Proposed mechanism of FAAH inhibition by the piperidine/piperazine ureas (shown for
1).18 FAAH residues are depicted in green, the leaving group is depicted in orange. The
enzyme-induced conformational change in the piperidine/piperazine urea diminishes the
conjugation of the nitrogen lone pair with the carbonyl and allows the nucleophilic attack by
the Ser241. This leads to a covalent enzyme-inhibitor adduct.
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Scheme 2.
Descriptors used for the analysis of the amide bond distortion. (a) Dihedral angle δ = R2N-
C-N-H, (b) improper torsion θ centered on the secondary amine nitrogen, (c) mean twisting
angle τ = (ω1 + ω2)/2 and (d) χN = ω2 - ω3 + π(mod2π).30b
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Table 1

Average over the last ~98 ns of MD simulation for the 1 inhibitor within FAAH and in water.

δ θ τ χN

Mnr A −6.42 (±0.03) 6.63 (±0.03) 13.01 (±0.03) 23.15 (±0.05)

Mnr B −6.29 (±0.03) 3.38 (±0.02) 11.01 (±0.03) 22.34 (±0.05)

FAAH −6.35 (±0.03) 5.00 (±0.02) 12.01 (±0.02) 22.75 (±0.04)

Water box 0.41 (±0.04) 0.21 (±0.02) 8.51 (±0.02) 16.81 (±0.04)

δ: R2N–C–N–H dihedral angle.θ: improper torsion centered on the secondary amine nitrogen. τ: mean twisting angle between the C–N bond. χN:

out-of plane bending angle, measure of the degree of pyramidalization at the N atom. The standard error of the mean is reported in brackets. Angles
are expressed in degrees.
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Table 2

Average over the last ~98 ns of MD simulation for the 2 inhibitor within FAAH and in water.

δ θ τ χN

Mnr A −5.87 (±0.03) 4.24 (±0.03) 11.32 (±0.03) 23.15 (±0.05)

Mnr B −4.57 (±0.03) 4.97 (±0.02) 11.01 (±0.02) 22.35 (±0.05)

FAAH −5.22 (±0.03) 4.61 (±0.02) 11.16 (±0.02) 22.74 (±0.04)

Water box −0.05 (±0.03) −0.01 (±0.02) 8.48 (±0.02) 16.78 (±0.04)

δ: R2N–C–N–H dihedral angle.θ: torsion improper centered on the secondary amine nitrogen. τ: mean twisting angle between the C–N bond. χN:

out-of plane bending angle, measure of the degree of pyramidalization at the N atom. The standard error of the mean is reported in brackets. Angles
are expressed in degrees.
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Table 3

Average over the last ~98 ns of MD simulation for 3 within FAAH and in solution.

δ θ τ χN

Mnr A 1.31 (±0.03) 1.53 (±0.03) 8.18 (±0.02) 16.62 (±0.04)

Mnr B 1.30 (±0.03) 1.63 (±0.02) 8.22 (±0.02) 16.74 (±0.04)

FAAH 1.31 (±0.03) 1.59 (±0.02) 8.20 (±0.01) 16.68 (±0.03)

Water box −0.05 (±0.03) 0.03 (±0.02) 8.41 (±0.02) 16.64 (±0.04)

δ: R2N–C–N–H dihedral angle.θ: torsion improper centered on the secondary amine nitrogen. τ: mean twisting angle between the C–N bond. χN:

out-of plane bending angle, measure of the degree of pyramidalization at the N atom. The standard error of the mean is reported in brackets. Angles
are expressed in degrees.
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