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ABSTRACT OF THE DISSERTATION

Improving Cryptographic Constructions Using Coding Theory

by

Petros Mol

Doctor of Philosophy in Computer Science

University of California, San Diego, 2013

Professor Daniele Micciancio, Chair

Despite having evolved as two distinct research areas, cryptography and

coding theory have matured in parallel, deeply influencing each other leading to a

long and successful intertwined history. This thesis explores further the connection

between the two fields by demonstrating how borrowing appropriate tools from

coding theory can have significant implications to cryptography. Concretely, we

present three results, all motivated by cryptographic applications.

First, we prove that CCA-security, the standard security goal for public-

key encryption, is implied by Lossy Trapdoor Functions (LTDFs) with minimal

lossiness. LTDFs, introduced by Peikert and Waters (STOC 2008), have been

extremely successful in cryptography. In a surprising application of LTDFs, Peikert

and Waters show how to build CCA-secure encryption generically from LTDFs that

xi



lose a (1−1/ω(log n)) fraction of their input bits. We drastically lower the lossiness

required, showing that any LTDF that loses only a noticeable fraction of a single

bit suffices. The key idea behind our result is the use of Reed-Solomon codes to

appropriately instantiate a recent CCA-secure construction by Rosen and Segev

(TCC 2009).

Second, we present powerful and general sample preserving search to deci-

sion reductions for the Learning With Errors (LWE) problem, introduced by Regev

(STOC 2005), and used to substantially expand the scope of lattice based cryp-

tography. Such reductions are of paramount importance in cryptography, bridging

the gap between constructions, which require hard decisional problems, and hard-

ness assumptions, which rely on search problems. Our proof draws upon recently

developed techniques that generalize the list-decoding algorithm of Goldreich and

Levin (STOC 89) to Hadamard codes over larger alphabets.

In our last result, we use Learning Parity with Noise (LPN), a problem

closely related to that of decoding random linear codes, to construct a simple and

efficient 3-round symmetric authentication protocol that is secure against active

attacks. Symmetric authentication has recently attracted widespread interest due

to the existence of lightweight protocols amenable to implementation on simple

architectures, such as RFID tags. Compared to existing LPN-based protocols,

ours achieves a better security-efficiency tradeoff leading to smaller communication

complexity and key sizes for the same level of security.
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Chapter 1

Introduction

Cryptography is the mathematical study of secure communication in the

presence of adversaries. Its key goals are data confidentiality, integrity and authen-

tication. Coding theory is the rigorous study of codes and is primarily concerned

with the problem of communicating efficiently and reliably over an unreliable chan-

nel. Central to both fields is the concept of protecting information transmitted

between a sender and a receiver in the face of external conditions that hinder the

communication.

The main difference between the two fields lies in the fact that the con-

texts within which information needs to be protected are in principle disparate. In

cryptography, the external conditions are modeled by a malicious entity, the adver-

sary, who intercepts the communication between legitimate parties in an attempt

to derive information about the messages exchanged.1 The tremendous success

of modern cryptography as a field is, to a large extent, a result of proposing re-

alistic notions of security by properly modeling the power and capabilities of the

adversary. This endeavor has been greatly assisted by the concurrent evolution of

computational complexity and the formalization of computational feasibility, a key

concept that laid out the theoretical foundations for rigorous security definitions.

The de-facto context in cryptographic applications assumes the existence of adver-

saries that, while (possibly) acting arbitrarily and unpredictably, are confined to

feasible computation. This paradigm shift led to the introduction of several formal

1This description is mostly tailored to adversaries against encryption schemes for simplicity.
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notions, motivated by real-world cryptographic applications and supported by (ef-

ficient) protocols that fulfill them and paved the way for the field of provably secure

cryptography. Along with this new perception of the external environment, came

the need for new definitions, suitable for addressing the computational nature of the

adversary. A substantial step towards this goal, was taken by Goldwasser and Mi-

cali [71] who introduced the classic notion of semantic security. The latter, roughly,

requires that a cryptosystem hides all partial information of the encrypted message

from all computationally bounded adversaries offering a computational analogue of

Shannon’s “perfect secrecy”.

In the meanwhile, coding theory has adopted a different perspective. The

external environment is modeled by the channel, the physical means through which

information is transfered. While the channel can act “adversarially” by introduc-

ing errors to the messages transmitted, there is no notion of bounded computation

attached to it. Instead, the physical properties of the channel are typically modeled

in one of the following two ways: in the first model, introduced by Shannon [149],

the channel is a random process which, independently of the transmitted mes-

sages, introduces errors according to a known probability distribution. Another,

more conservative model was proposed by Hamming [74] who considers “adversar-

ial” channels that can introduce errors in arbitrary positions so long as the total

number of errors is bounded. We note that, computation, and especially feasible

computation, is immaterial to both models even when the channel adversarially

chooses which positions to corrupt (as in Hamming’s model). Regardless of the

underlying model, a central goal of coding theory is the development of (efficient)

codes (known as error correcting codes) that allow the correction of a large number

of errors while keeping the built-in redundancy of the transmitted messages to a

minimum.

Even though cryptography and coding theory have evolved as two distinct

research areas mostly owing to the aforementioned difference, the techniques and

tools developed within the two communities have matured in parallel. As a result,

since the seminal works of Shannon [149] and Hamming [74], the two fields have

deeply influenced each other, mutually borrowing ideas, leading to more than 60
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years of successful intertwined history. Below, we provide a brief overview of

examples where methods from one field contributed to the development of the

other. We focus primarily on how ideas from coding theory have been used in

cryptography, not only because, historically, the relationship of the two fields has

been unbalanced towards this direction, but mostly because this is the direction

immediately related to the contributions presented in the thesis.

Cryptography in coding theory. There have been only a few examples where

tools and ideas developed within cryptography have been used to solve problems in

coding theory. All these examples are fairly recent and rely on the computationally

bounded channel model, introduced by Lipton [102] as an intermediate model be-

tween Shanon’s binary symmetric channel [149] and Hamming’s adversarial model

[74]. According to Lipton’s model, errors are introduced in a worst-case fashion

just like in Hamming’s model but by a computationally bounded adversary who

can corrupt up to a fixed number of the codeword’s entries. Restricting the power

of the channel to feasible computation paved the way for the use of cryptographic

tools into the problem of error correction. However, the first useful result came

only (more than) a decade later by Micali et al [112] who provided formal defini-

tions on the requirements of such a channel and presented constructions of codes

that can decode from error-rates beyond the classical bounds. The idea of model-

ing the channel with computationally bounded adversaries has since proven useful

in other settings, most notably in locally-decodable codes [126, 76, 77].

The only, to our knowledge, work that deviates from the line of research

following Lipton’s computationally bounded channel model is a recent result by

Bellare, Tessaro and Vardy [19] who revisited the wiretap channel model [161] un-

der a cryptographic angle. Bellare et al introduced new, stronger and more realistic

security definitions for the wiretap channel, inspired by the classic cryptographic

notion of semantic security [71], and presented explicit constructions of schemes

that achieve the new definitions based on randomness extractors, an object with

long history in cryptography.
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Coding theory in cryptography. On the other hand, the adoption of ideas

and techniques from coding theory within cryptography has proven significantly

more fruitful, benefiting a wide range of cryptographic applications. Roughly, the

contributions of coding theory to cryptography can be divided into three cate-

gories: First, tools from coding theory have been extensively used to increase the

resilience of cryptographic protocols, leading to elegant solutions to several prob-

lems in secure computation and threshold cryptography. A recurring goal in such

protocols is the ability to reconstruct a secret when only partial (or corrupted) in-

formation is available. This setting closely resembles the typical use-case scenario

of error-correcting codes whose built-in redundancy allows to reconstruct the ini-

tial message even after the latter has been transmitted through a noisy channel.

Perhaps the most representative example, and one of the earliest applications of

error-correcting codes in cryptography, are secret sharing schemes (SSS). A secret-

sharing scheme is a protocol for distributing a secret among multiple users, so

that the secret can be reconstructed only when a sufficient number of shares are

combined together. In his seminal paper, Shamir [148] presented the first secret

sharing scheme based on polynomial interpolation, an application now broadly

viewed as a cryptographic twist on the Reed-Solomon family of codes [138] (this

was first formalized in [111]). Since then, the connection between SSS (and se-

cure computation in general) and error-correcting codes has been explored further

leading to a series of constructions based on a variety of error correcting codes

[45, 111, 89, 33, 39, 40]. Besides SSS, error-correcting codes have been used in

the construction of other cryptographic objects including local randomizers and

t-resilient functions [108], fuzzy commitments [86], extractors [157, 156, 50, 49]

and more.

The impact of coding theory on cryptography is also due to the wealth of

algorithmic ideas developed within the coding theory community over the years.

Cryptanalysis is an area that has particularly benefited from these advances, with

techniques such as Information Set Decoding (ISD) [135, 98, 99, 153, 109, 22, 14]

and statistical decoding [84, 128] being powerful additions to cryptanalysts’ tool-

box. Another fundamental concept from coding theory whose use in cryptography
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has been met with great success is the notion of list-decoding [56], an enhancement

of standard (unique) decoding where a list of multiple messages is output among

which (at most) one matches the initially transmitted message. The most promi-

nent application of list-decoding in cryptography is the construction of a universal

hard-core predicate for any one-way function by Goldreich and Levin [67] who pre-

sented an efficient list-decoding algorithm for Hadamard codes. This connection

between list-decoding and hard-core predicates was later studied in more depth by

Akavia et al. [4].

Finally, coding theory has traditionally been a great source of problems

upon the hardness of which several cryptographic protocols have relied. The use

of (hard) problems from coding theory has developed to such an extent that has

led to an entire area, known as code-based cryptography, a promising alternative

to number-theoretic cryptography for the post-quantum era. The most popular

example is McEliece’s cryptosystem [110], proposed in 1978 as one of the very

first candidates for public key encryption. Its security is based on the assumption

that the generator matrix of Goppa codes is pseudorandom. Ever since it was

proposed, the assumption was used (in various forms) in several refinements of the

initial scheme, achieving stronger notions, as well as in the construction of other

cryptographic primitives including digital signatures [41], CCA2-secure encryption

[95, 53] and oblivious transfer [54]. Another famous class of problems with long

history in cryptography are those related to the hardness of decoding random linear

codes. From this class, two problems have been particularly successful: syndrome

decoding and the celebrated Learning Parity with Noise (LPN). Applications of

syndrome decoding include identification schemes [154], pseudorandom generators

[59], hash functions [11] and more. Similarly, LPN has proven extremely useful

especially in symmetric key cryptography with applications to pseudorandom gen-

erators [8], encryption schemes [66], authentication protocols [81, 87, 94], Message

Authentication Codes [94], commitments and zero-knowledge [85] (see also [7] and

[52] for uses of LPN in public key encryption).
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1.1 Summary of Contributions

The current thesis explores further the connection between the two fields.

In particular, we demonstrate how borrowing the right machinery from coding

theory can have significant implications to cryptography. We emphasize that, while

the role of coding theory is central in all our results, cryptographic applications

remain the exclusive motivation and focus of this thesis. Therefore, we are not

concerned with defining new concepts or discovering new techniques in coding

theory. Rather, we use existing tools and ideas and present novel ways of using

them to substantially improve certain aspects of some cryptographic applications.

We remark however that, even though our starting point are problems directly

related to cryptography with no apparent connection to coding theory, the use

of the latter is an indispensable component of the solutions we propose: the use

of the appropriate tool results to improvements that would have otherwise been

either minor or even impossible.

In a snapshot, our contributions are the following (see subsequent sections

for further explanations and the corresponding chapters for full details): On the

construction front, we show how to use Reed-Solomon codes to construct (in a

black box way) CCA-secure encryption schemes from Lossy Trapdoor Functions

(LTDFs) with minimal lossiness (Chapter 3). We also present efficient authenti-

cation protocols based on the hardness of Learning Parity with Noise (LPN), a

well-studied variant of the problem of decoding random linear codes (Chapter 6).

For the same security level, our protocol features smaller key-sizes and lower com-

munication complexity over the previously known LPN-based protocols. In our

final result (Chapters 4 and 5), we describe general and powerful sample preserv-

ing search to decision reductions for the Learning With Errors (LWE) problem,

a problem that has recently attracted widespread interest in cryptography. Our

reductions rely heavily on recently developed list-decoding algorithms that extend

previously known algorithms to Hadamard codes over larger alphabets.

Structure of the thesis. In the remaining of the chapter we provide some

background and motivation for the cryptographic applications of interest and give a

more detailed overview of our contributions, pointing out, along the way, the ideas
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and techniques from coding theory that led to each result. We review some defini-

tions and background required in the rest of the thesis in Chapter 2. In Chapter 3,

we show how to achieve Chosen-Ciphertext Security from Slightly LTDFs. Chap-

ters 4 and 5 present sample preserving search to decision reductions for the LWE

problem. We conclude in Chapter 6, where we present an efficient actively-secure

symmetric key authentication protocol based on the hardness of LPN.

1.2 Chosen-Ciphertext Secure Encryption from

Slightly Lossy Trapdoor Functions

Lossy Trapdoor Functions (LTDFs) were recently introduced by Peikert and

Waters [132, 133] and have since proven to be a very powerful tool both for improv-

ing the construction of traditional cryptographic primitives and for constructing

new ones. Informally, a family of LTDFs is a standard injective trapdoor function

family with the additional property that (the description of) a member function f

from the family is computationally indistinguishable from the description f̂ of an-

other function that statistically loses information about its input. In other words,

unlike f , f̂ is non-injective, i.e., there exist inputs that map to the same image

under f̂ . Abusing terminology, we say that f (computationally) loses ` bits2 if the

effective range size of the indistinguishable function f̂ is at most a 1/2`-fraction of

its domain size.

The latter property – indistinguishability from functions that statistically

lose information about their inputs – turns out to be very useful in security reduc-

tions giving rise to the following simple proof technique: in the honest execution

of a protocol we use the injective function to get the correct functionality, while in

the security proof the “challenge” given to the adversary is formed using the lossy

function. One can then do a statistical argument to complete the proof. Using

this simple and elegant idea, Peikert and Waters showed how to use LTDFs to

construct one-way injective trapdoor functions, collision-resistant hash functions,

hard-core predicates and functions as well as CPA-secure encryption.

2We refer to ` as the lossiness of f .
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In the same paper, Peikert and Waters, provide generic constructions of

encryption schemes that are secure against Chosen-Ciphertext Attacks3 (CCA), a

security notion introduced by Rackoff and Simon [137] and now widely viewed as

the gold standard in public key encryption. CCA-secure schemes are much harder

to construct than CPA-secure ones since they should remain robust even against

powerful adversaries that can interact with the decryptor via queries. More specif-

ically, the adversary is allowed to query the decryptor on any ciphertext including

those that depend on the challenge ciphertext or on the replies to previous queries

(to rule out the trivial attack, the only exception is the challenge ciphertext itself).

To achieve CCA security from LTDFs, Peikert and Waters introduce an intermedi-

ate abstraction, namely all-but-one trapdoor functions (ABOs), and use the latter

as the building block for their CCA-secure construction. They finally show how

to construct ABOs generically from LTDFs whose lossy functions lose enough in-

formation about their inputs. In their case, “enough” turns out to be almost all

of the input bits, a property that can be difficult to achieve. Indeed, while their

DDH-based construction of LTDFs achieves the required amount of lossiness, their

latticed-based construction turns out to be insufficient for the general construction.

To get CCA security from lattice-based assumptions, the authors of [133] resort

to a complex direct construction of an ABO, which defeats the purpose of using

LTDFs as a candidate to achieve CCA-security in an elegant and generic way.

In an attempt to address the aforementioned shortcomings, Rosen and

Segev [144] introduced a computational analogue of ABO based on the notion

of one-wayness under correlated inputs. A function family is one-way under cor-

related inputs if, sampling multiple functions independently from the family and

evaluating them on correlated (non-independent) inputs still results in a function

that is hard to invert. Rosen and Segev went on to show how to achieve CCA secu-

rity from function families that are one-way with respect to specific distributions

of correlated inputs. Of course, this notion is only useful if there exist functions

that are one-way under such correlations. To that end, Rosen and Segev show that

LTDFs that are suffieciently lossy satisfy this requirement. However, the amount of

3By CCA we will always mean CCA2.
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lossiness they require turns out to be approximately as high as the amount needed

for the construction of ABO functions from LTDFs, which, as already mentioned,

is more than any constant fraction of the input bits, ruling out numerous LTDFs.

Our Results. We significantly extend the results of [132] and [144] and show that

only a non-negligible fraction of a single bit of lossiness is sufficient for building

one-way injective trapdoor functions, CPA-secure encryption, and, perhaps most

surprisingly, even CCA-secure encryption. Our results on CCA security drastically

improve upon the previous results by lowering the required lossiness from a (1 −
1/ω(log n))-fraction of all the input bits to just a 1/poly fraction of a single bit.

This solves an open problem from (the most recent version [131] of) [132] and

further supports the advanatages of the correlated product formalization of Rosen

and Segev. As an additional contribution that highlights the usefulness of our

result, we construct a family of LTDFs that loses only 1 bit of its input based on a

number-theoretic assumption. Interestingly, attempting to construct LTDFs that

lose bigger parts of the input renders the assumption wrong.

On a technical level, our results rely on two core ideas: First, we exploit the

fact that LTDFs enjoy some type of lossiness amplification. In particular, we show

a straightforward way to take an LTDF that loses less than 1 bit and construct an

LTDF that loses poly(n) bits. Second, we observe that if we instantiate an alterna-

tive construction by Rosen and Segev with the appropriate error-correcting code,

namely Reed-Solomon codes, we can achieve CCA-security from functions that are

one-way under correlated input distributions with very high entropy. Thankfully,

one-wayness under correlated input distributions with high entropy turns out to

be a much milder requirement achievable (in a black box way) by LTDFs that are

only slightly lossy.
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1.3 Sample Preserving Search to Decision Re-

ductions for the Learning With Errors Prob-

lem

The Learning With Errors (LWE) problem, introduced by Regev in [139], is

the problem of recovering a secret n-dimensional vector s ∈ Znq , given a collection

of perturbed random equations ais ≈ bi where ai ∈ Znq is chosen uniformly at

random and bi = ais + ei for some small, randomly chosen error term ei. Among

other attractive features, LWE enjoys strong security guarantees, supported by

worst-case/average-case connections [139, 129, 31], showing that any algorithm

that solves LWE (on the average) can be efficiently converted into a (quantum)

algorithm that solves the hardest (worst-case) instances of several famous lattice

approximation problems which are believed to be intractable. As a result, in

recent years, LWE has been used to substantially expand the scope of lattice based

cryptography, yielding solutions to many important cryptographic tasks, including

public key encryption secure against passive [139, 91, 130] and active [132, 129]

attacks, (hierarchical) identity based encryption [63, 37, 1, 2], digital signatures [63,

37], oblivious transfer protocols [130], several forms of leakage resilient encryption

[5, 8, 47, 69], (fully) homomorphic encryption [62, 61, 32, 30] and more.

The versatility of the LWE problem in the construction of a plethora of

cryptographic applications is due in large part to its pseudorandomness properties:

as proved in [139], if recovering (with high4 probability) the secret s from the

samples (ai, ais + ei) is computationally hard, then it is also hard to distinguish

the LWE samples (ai, ais + ei) from randomly chosen ones (ai, bi) where bi ∈ Zq is

uniformly and independently distributed. Compactly, LWE can be formulated as

the problem of inverting the one-way function family (indexed by a random matrix

A ∈ Zm×nq , where m is the number of samples) that maps the secret s ∈ Znq and

error vector e ∈ Zmq to As+e ∈ Zmq . The search to decision reduction of [139] shows

that if the LWE function family is uninvertible, then it is also a good pseudorandom

4 Due to the self-reducibility properties of the LWE problem, here “high” can be equivalently
interpreted in a variety of ways, ranging from “nonnegligible” to “very close to 1”.
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generator. However, the reduction in [139] somehow hides an important detail: the

value of m for which the function is assumed to be uninvertible is much higher than

(still polynomially related to) the value of m for which the pseudorandomness of

the function’s output is proven.

While theoretical results based on worst-case lattice problems are fairly in-

sensitive to the value of m, (i.e., the number of samples used in the LWE instance,)

this number becomes more important and relevant when considering concrete at-

tacks on the average-case hardness of LWE. Indeed, recent attacks [118, 10, 101]

indicate that, for certain ranges of the parameters, the number of available samples

can have a significant impact on the computational hardness of the LWE problem.

Fixing the number of available samples to a small value may significantly reduce

the effectiveness of attacks and increase our confidence in the concrete security of

the schemes. (See Section 5.1, Chapter 5 for a more detailed discussion on the

importance of sample-preserving reductions for LWE.)

Our Results. The discussion above motivates the following question: how big

of a blow-up in the number of samples is required to prove the pseudorandomness

of the LWE output distribution, based on the conjectured hardness of the LWE

search (secret recovery) problem? Our main result is that, perhaps surprisingly, in

most common applications of LWE in cryptography, no such blow-up is necessary

at all: there is a sample preserving reduction from solving the search LWE problem

(with nonnegligible success probability) to the problem of distinguishing the LWE

distribution from random (with nonnegligible advantage). At the core of our re-

sult is a general theorem about the pseudorandomness of bounded knapsacks over

arbitrary groups that substantially extends previous work in the area and might

be of independent interest.

1.3.1 Pseudorandom Generators from Knapsack Functions.

Let (G,+) be a finite abelian group and g = (g1, . . . , gm) ∈ Gm be a

sequence of group elements chosen uniformly at random. The group elements in

the sequence g define a linear function fg(x) that maps the integer vector x ∈ Zm
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to the group element fg(x) =
∑

i xigi. If the input x is restricted to vectors with

small entries, then for a large variety of groups G, fg is conjectured to be an

uninvertible function family, i.e., a family of functions that are hard to invert on

average when the key g is chosen uniformly at random. For example, when the

input x is restricted to the set {0, 1}m of binary vectors, inverting fg is the famous

subset-sum problem, which is conjectured to be hard to solve on average, and has

been extensively studied in cryptography. In a classic paper [83], Impagliazzo and

Naor showed that for some specific, but representative, choices of the group G,

if the subset-sum function is one-way, then it is also a pseudorandom generator,

i.e., it is computationally hard to distinguish (g, fg(x)) from a uniformly random

element of Gm+1, when g ∈ Gm and x ∈ {0, 1}m are chosen uniformly at random.

We generalize the results of [83] in two ways: First, we consider functions

over arbitrary finite groups G. Only cyclic groups of the form ZN were considered

in [83]. Second, we consider generalizations of the subset-sum function (typically

referred to as “knapsack” functions) where the input coefficients xi take values from

a set {0, . . . , s} (or, more generally {−s, . . . , s}) for any (polynomially bounded)

s, rather than just {0, 1}. Moreover, we consider arbitrary (possibly nonuniform)

input distributions. Both extensions are essential for the sample-preserving search

to decision LWE reduction, which requires the pseudorandomness of the knapsack

function family over vector groups of the form G = Zkq , and for inputs x following

a nonuniform (Gaussian) distribution over a sufficiently large set {−s, . . . , s}.
Our main technical result (Theorem 4.3.1) shows that for any finite abelian

group G and input distribution X , the output of the knapsack function is pseu-

dorandom provided the following two conditions hold: (a) fg is computationally

hard to invert with respect to input distribution X , and (b) certain folded versions

of fg (where both the key g and the output fg(x) are projected onto a quotient

group Gd = G/dG for some d ∈ Z,) have pseudorandom output. The power of our

result lies in the fact that, for many interesting groups and input distributions,

condition (b) is satisfised in a strong statistical sense (without any computational

assumptions) so that the uninvertibility of the bounded knapsack function directly

implies that knapsacks are good pseudorandom generators. We present specific
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groups and input distributions for which this holds in Chapter 4.

Techniques. Here we briefly discuss the main technical ideas behind Theorem

4.3.1. A detailed overview along with the formal proof can be found in Section 4.3,

Chapter 4. Our proof follows the blueprint of the one by Impagliazzo and Naor

[83] for the pseudorandomness of the subset-sum function. Namely, we reduce

the indistinguishability of fg to its uninvertibility in two steps using the notion

of unpredictability as an intermediate goal. However, generalizing from cyclic to

arbitrary groups and, more significantly, from binary to larger inputs requires more

advanced machinery and fresh technical insights. The core tool in proving that

uninvertibility implies unpredictability is a powerful, recently developed, algorithm

by Akavia et al. [4] (stated in Section 2.6), that essentially generalizes the list-

decoding algorithm of [67] to Hadamard codes over larger (than {0,1}) alphabets.

For the second step of the proof, we apply a non-trivial hybrid argument involving

distributions that depend on the structure of the group and show that any distin-

guisher between two consecutive hybrid distributions gives rise to a predictor for

fg. The two steps are explained in depth in Section 4.3.

1.3.2 Pseudorandomness of the LWE Function

Our results for LWE are obtained using the duality between LWE and the

knapsack function over vector groups. Specifically, the LWE problem with secret

vector s ∈ Znq andm samples, can be shown to be essentially equivalent to the knap-

sack problem over the vector group Zm−nq when the input x ∈ Zmq follows the same

distribution as the LWE error e. Therefore, search to decision reductions for the

knapsack functions can be readily translated into corresponding sample-preserving

search to decision reductions for LWE. In particular, as a direct corollary to our

main theorem, we get search to decision reductions for many interesting cases

including (among others): any prime modulus q and any polynomially bounded

error distribution, prime power modulus q = pe (for any prime p = poly(n)) and

arbitrary input distribution over Zp = {−(p − 1)/2, . . . , (p − 1)/2}, prime power

modulus q = pe (for any polynomially bounded prime p) and uniform error dis-
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tribution over Zpd for some d = O(logp n) and more (see Sections 5.1 and 5.4 for

more examples and their proofs).

These results subsume (see Section 5.2 for an in-depth comparison with

related work) several previous pseudorandomness results for LWE [139, 8] and

LPN [90] but with an important difference. While the proofs in [139, 8, 90] require

that LWE (resp. LPN) be hard to solve (invert) for a very large number of samples,

our reductions are sample preserving : the pseudorandomness of LWE (resp. LPN)

holds, provided the same problem is computationally hard to solve in its search

version with the same number of samples5.

1.4 An Actively Secure Authentication Protocol

from Learning Parity with Noise

Consider two parties P (prover) and V (verifier), sharing a secret key K,

and communicating over an insecure channel. P wishes to prove to V that he knows

the key K, but no adversary E (eavesdropper), without knowledge of K, should

be able to persuade V that he knows K. Research on this problem, known as sym-

metric authentication, has recently gained momentum, driven by the discovery of

lightweight authentication protocols suitable for implementation on RFID devices

[87, 34, 55, 122, 65, 90, 94, 48] and the existence of numerous ubiquitous-computing

applications (item-labeling, payment systems, proximity cards just to name a few)

requiring the existence of RFID tags that are capable of authenticating themselves

to a reader.

Symmetric authentication can be achieved via the following simple 2-round

challenge-response protocol, using s block cipher E (such as DES or AES) with a se-

cret key K: in the first round, the verifier sends a random challenge R to the prover,

which, upon receiving R, replies with EK(R). The verifier accepts if and only if

the prover’s response is the unique correct value. Provided the block cipher is a

sufficiently strong message authentication code, this simple protocol achieves the

strongest notion of man-in-the-middle (MIM) security: Roughly speaking, MIM

5For LPN, a sample-preserving reduction was presented in [9].
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security requires that an adversary interacting at will with an arbitrary number of

both prover and verifier instances cannot later bring a further verifier instance to

accept.

Unfortunately, mainstream block-cipher designs such as AES are not well-

suited for implementation on lightweight hardware such as RFID tags which are

extremely simple devices (typically circuits with a few thousand gates). Seeking

for alternatives, Juels and Weis [87] were the first to point out that a very simple

protocol by Hopper and Blum [81] (called HB) is secure under the well-known

Learning Parity with Noise (LPN) assumption6 and can be implemented with very

low hardware complexity. Yet, HB happens to only satisfy a fairly weak notion

of security, called passive security, where an adversary observing transcripts of

honest prover-verifier interactions cannot convince a further verifier instance that

he knows the key. Every attempt to design HB-like protocols with MIM security

[34, 55, 122, 65] turned out to miss a security proof, which, very often, resulted in

the discovery of a fatal flaw [64, 127]. All provably MIM-secure protocols to date

[94, 48] are challenge-response protocols derived from the construction of a suitable

MAC7. While these elegant constructions do improve upon block-cipher based

schemes, their hardware complexity remains far from that of the HB protocol.

The need for weaker security: Active security. To overcome the above

gap, previous work has focused on an intermediate security notion, called ac-

tive security, where one asks that even an adversary which can interact with the

prover arbitrarily fails in later convincing a verifier that he knows the key. This is

the secret-key version of the standard security notion for public-key identification

schemes dating back to Fiat and Shamir [58] and has recently attracted the interest

of cryptographic community [94, 48, 78]. Simply put, active security appears to

have become a de-facto standard security notion, backed by the existence of very

6The (decisional) LPN assumption with error η asserts that for a random secret s ∈ {0, 1}n,
it is computationally hard to distinguish random independent (n + 1)-bit strings from samples
(a, 〈a, s〉+ e), where a ∈ {0, 1}n is random and e ∈ {0, 1} is 1 with probability η.

7With one exception, perhaps, being the protocol where the verifier sends the encryption of
a random plaintext to the prover under a OW-CCA-secure encryption scheme, and the prover
returns its decryption; to the best of our knowledge, however, no efficient instantiations of this
paradigm are known.
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efficient protocols achieving it, its widespread acceptance in the public-key setting,

and the inherent hardness of achieving anything stronger such as MIM security

efficiently.

Our Results. We focus on the problem of achieving active security and, in par-

ticular, on the construction of protocols that are secure under the LPN assumption.

Such protocols are very attractive in practice mainly due to the following two rea-

sons: first, they are suitable for implementation on lightweight devices thanks to

their low communication and computation complexity. Second, they are based on

LPN, a standard, well-studied problem related to the problem of decoding random

linear codes from coding theory which is known to be NP-hard in the worst-case

[20]. Yet, we only know of two such schemes to date: The HB+ [87] protocol and

the recent two-round protocol by Kiltz et al [94]. From the perspective of con-

crete security, both however suffer from drawbacks: On the one hand, no “tight”

security reduction to LPN is known for HB+: if LPN is ε-hard for secret length n

and complexity t, we can only prove that an active attacker with time complexity

(roughly) t cannot break security of HB+ for key length 2n with probability larger

than
√
ε. This looseness in the security reduction is undesirable. Kiltz et al [94] did

take a substantial step towards solving this issue by presenting a protocol which

enjoys a tight reduction to LPN in terms of the advantage ε, yet, if we assume as

above that LPN is ε-hard for secret-size n, for their protocol to be ε-secure too,

even under the most optimistic instantiation of their parameters, their key size

becomes larger than 4n bits and the communication complexity is larger than the

one of HB+.

We hence ask the question: Can we obtain the best of both worlds? In other

words, under the assumption that LPN is ε-hard for secret-size n, can we have an ε-

secure protocol with key size and complexity comparable to HB+? We answer this

in the affirmative as long as we are interested in basic active security (only involving

2-phase adversaries, see Section 6.3 for the formal security definition). Concretely,

we propose a new generic approach to obtain an efficient 3-round authentication

protocol based on any weak MAC, i.e., a MAC which can be evaluated on random

messages and which must be unforgeable on fresh, random messages.
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When instantiated with an LPN-based weak MAC, our protocol is ex-

tremely simple and works as follows (omitting concrete parameters and technical

details): The prover and the verifier share two binary vectors s1, s2 serving as their

secret key. The prover first selects a random binary matrix A1 and sends it to the

verifier. The verifier then picks another random binary matrix A2 and a binary

vector e1 of low Hamming weight and sends (A2,A1s1 + e1) to the prover. Upon

receiving a pair (A2, z1), the prover checks whether z1 −A1s1 has low Hamming

weight, and if so, picks another binary low-weight vector e2, and sends A2s2 + e2

back to the verifier. Finally, the verifier, on input z2, accepts if and only if z2−A2s2

has low weight. In terms of efficiency, our protocol has communication complexity

only minimally larger than HB+, but enjoys a tight reduction to LPN. In addition,

for the same security level, it has lower communication complexity and at least 2

times smaller keys than the protocol of Kiltz et al.



Chapter 2

Preliminaries

Notation. We use Z,N,C for the sets of integer, natural and complex numbers

respectively, and T for the set of complex numbers of unit magnitude. We use

lower case letters for scalars, upper case for sets, bold lower case for vectors and

bold upper case for matrices. We also use calligraphic letters for probability distri-

butions and (possibly randomized) algorithms. For any s ∈ N, [s] is the set of the

first s nonnegative integers, i.e., [s] = {0, 1, . . . , s−1}. For asymptotic statements,

we will use n (or λ when n is reserved for other quantities) to denote the security

parameter.

2.1 Probability Background

We write x ← X both for the operation of selecting x according to a

probability distribution X and for sampling the output x of a probabilistic al-

gorithm X . We use set comprehension notation to describe sets and probabil-

ity distributions alike. E.g., {(x, x′) | x ← X , x′ ← X} denotes the proba-

bility distribution obtained by drawing two samples from X independently at

random. For any set X, value x ∈ X and probability distribution X over X,

Pr [ x← X ] is the probability associated to x by the distribution X . The uni-

form distribution over a set X is denoted U(X), and the support of a distri-

bution X is denoted [X ] = {x ∈ X | Pr [ x← X ] > 0}. If an element x is

18
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sampled uniformly at random from a set X, we will sometimes write x
$← X in-

stead of x ← U(X) for brevity. The collision probability of X is the probability

Col (X ) = Pr [ x = x′ | x← X , x′ ← X ] =
∑

x∈[X ] Pr [ x← X ]2 that two indepen-

dent, identically distributed samples from X take the same value.

Whenever we compare two probability distributions, we implicitly assume

that they are defined over the same set. The statistical distance between distri-

butions X and Y defined over a (countable) set X is the quantity ∆(X ,Y) =

1
2

∑
x∈X |Pr [ x← X ]− Pr [ x← Y ]|. The statistical distance is a metric over the

set of discrete probability distributions, i.e., it is a symmetric positive function,

and it satisfies the triangle inequality. It also satisfies ∆(f(X ), f(Y)) ≤ ∆(X ,Y)

for any (possibly randomized) function f . Two distributions X ,Y are ε-close if

∆(X ,Y) < ε. They are (t, ε)-indistinguishable if ∆(D(X ),D(Y)) < ε for any prob-

abilistic predicate D : X → {0, 1} (called the distinguisher) computable in time at

most t. Otherwise, X ,Y are (t, ε)-distinguishable. When Y = U(X) is the uniform

distribution, we use ∆U(X ) = ∆(X ,U(X)) as an abbreviation and say that X is ε-

random (resp. (t, ε)-pseudorandom) if it is ε-close to (resp. (t, ε)-indistinguishable

from) U(X).

Entropy and Bounds. We use Berη for the Bernoulli distribution with parame-

ter η, i.e., Berη is a distribution over bits such that Pr [ 1← Berη ] = η. Accordingly,

Bermη is the distribution over {0, 1}m where each bit is independently distributed

according to Berη. For some of our bounds, it will be useful to work with the binary

entropy function, defined as H2(p) = −p · log2 p− (1− p) · log2(1− p) as well as the

(binary) relative entropy function with parameters p and q defined as

D(p || q) = p · log2

(
p

q

)
+ (1− p) · log2

(
1− p
1− q

)
.

We will use the following form of the Chernoff bound. Let X1, . . . ,Xm be indepen-

dent random binary variables such that E [ Xi ] = q ∀ i ∈ [m]. If X =
∑m

i=1 Xi, then

for any p > q,

Pr [ X > p ·m ] ≤ 2−D(p || q)·m . (2.1)
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For a random variable X with distribution X , we define its min-entropy as

H∞(X) = − log(max
x∈[X ]

Pr [ x← X ]).

where maxx∈[X ] Pr [ x← X ] = 2−H∞(X) denotes the predictability of the random

variable X.

Another useful notion of entropy is the average min-entropy (defined in

[49]) of a random variable X (given another random variable Y with distribution

Y) which is defined as follows:

H̃∞(X|Y) = − log
(
E

y←Y

[
2−H∞(X | Y=y)

] )
= − log

(
E

y←Y

[
max
x∈[X ]

Pr [ x← X | Y = y ]

] )
The average min-entropy expresses the average maximum probability of predicting

X given Y. The following lemma gives a useful bound on the remaining entropy of

a random variable X conditioned on a value of Y.

Lemma 2.1.1 ([49], Lemma 2.2b). Let X,Y,Z be random variables such that Y

takes at most 2k values. Then

H̃∞(X | (Y,Z)) ≥ H̃∞((X,Y) | Z)− k ≥ H̃∞(X|Z)− k.

In particular, if X is independent of Z then H̃∞(X | (Y,Z)) ≥ H∞(X)− k.

The following lemma (proved in [49]) provides the conditions under which

one can derive almost uniform bits from weakly random sources with high entropy.

Lemma 2.1.2 (The Generalized Leftover Hash Lemma). Let H : X → Y be

a universal family of hash functions and h a random variable with uniform distri-

bution over H. For any random variables X ∈ X and Z (independent of h),

∆((h, h(X),Z)), (h,U(X),Z)) ≤ 1

2

√
2−H̃∞(X|Z) · |Y |

Function families. A function family F = (F,X ) is a collection F = {fi : X →
R}i∈I of functions indexed by i ∈ I with common domain X and range R, together

with a probability distribution X over the domain X ⊇ [X ]. For simplicity, we

always assume that the set of functions is endowed with the uniform probability
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distribution U(F ), though the extension to general distributions (while not useful

here) is rather straightforward. Each function family (F,X ) naturally defines a

probability distribution

F(F,X ) = {(f, f(x)) | f ← U(F ), x← X} (2.2)

obtained by selecting a function uniformly at random and evaluating it at an input

randomly chosen according to X .

A function family F = (F,X ) is (t, ε)-invertible if there exists a (probabilis-

tic) algorithm I running in time at most t such that

Pr [ x′ = x | f ← U(F ), x← X , x′ ← I(f, f(x)) ] ≥ ε

We then say that I is a (t, ε)-inverter for F. If no such inverter exists, we say

that F is (t, ε)-uninvertible. A (t, ε)-pseudorandom generator family1 is a function

family (F,X ) such that the associated distribution F(F,X ) defined in (2.2) is

(t, ε)-pseudorandom.

Asymptotics. We use n as a (security) parameter that controls all other quan-

tities. Unless otherwise stated, any other parameter (say m) will be polynomially

related to n, that is 1/nc1 ≤ m ≤ nc2 for some constants c1, c2. We use stan-

dard asymptotic notation O(·),Ω(·), o(·), ω(·), etc. We write negl(n) = n−ω(1) for

the set of negligible functions and poly(n) = nO(1) for the set of polynomially

bounded functions. In the asymptotic computational complexity setting, one of-

ten considers probability ensembles, i.e., sequences X = (Xn)n∈N of probability

distributions over possibly different sets Xn ⊇ [Xn]. Two probability ensembles

X = (Xn)n∈N and Y = (Yn)n∈N are statistically close (denoted X 's Y) if Xn and

Yn are ε(n)-close for some negligible function ε(n) = negl(n). The ensembles X
1 Notice that the functions in a pseudorandom generator family are not pseudorandom func-

tions, as they do not accept any input besides the (randomly generated) seed x ← X . Each
function f ∈ F works like a pseudorandom generator which, on input a random seed x ← X ,
produces an output f(x) which is indistinguishable from a random element of the range R.
Throughout the thesis, by pseudorandom family, we will always mean a pseudorandom generator
family. We also remark that the term “pseudorandom generator” is used in a loose sense, as we
do not require f to “stretch” the seed x into a longer string or generate any pseudo-entropy. The
function f may even compress the seed into a shorter string, and produce a distribution f(x)
which is statistically close to uniform over the range of f .
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and Y are computationally indistinguishable (denoted X 'c Y) if Xn and Yn are

(t(n), ε(n))-indistinguishable for any t(n) = poly(n) and some ε(n) = negl(n) under

a sequence (Dn : Xn → {0, 1})n∈N of distinguishers computable in uniform polyno-

mial time. Definitions for function families are also extended in the obvious way

to function family ensembles F = (F,X ) = (Fn,Xn)n∈N in the asymptotic setting

by taking ε(n) = negl(n) and t(n) = poly(n), and considering uniform sequences of

distinguishing algorithms. In particular, a function family ensemble F = (Fn)n∈N

is uninvertible if Fn is (t(n), ε(n))-uninvertible for any t(n) = poly(n) and some

ε(n) = negl(n). It is pseudorandom if the associated distribution ensemble F(F,X )

is (t(n), ε(n))-pseudorandom, i.e., it is (t(n), ε(n))-indistinguishable from the uni-

form distribution U(Fn ×Rn) for any t(n) = poly(n) and some ε(n) = negl(n).

2.2 Cryptographic Definitions

Trapdoor Functions. We define injective trapdoor functions (TDFs) and also

two different security roperties for TDFs: one-wayness and lossiness. Note that

this somewhat departs from papers on lossy trapdoor functions in that we first

define an injective trapdoor function as a syntactic object and then define security

properties of the syntactic object, instead of mixing the two into one definition.

Definition 2.2.1 (Injective Trapdoor Functions). A collection of injective trapdoor

functions is a tuple of PT algorithms F = (G,F, F−1) such that the (probabilistic)

algorithm G outputs a pair (s, t) consisting of a function index s and a correspond-

ing trapdoor t. The deterministic algorithm F , on input a function index s and

x ∈ {0, 1}n outputs fs(x). Finally, algorithm F−1, given the trapdoor t, computes

the inverse function f−1
s (·).

Definition 2.2.2 (One-Way Trapdoor Functions). Let λ be a security parameter

and F = (G,F, F−1) be a collection of injective trapdoor functions with domain

{0, 1}n(λ). Let X (1λ) be a distribution over {0, 1}n(λ). We say F is one-way with

respect to X if for all PPT adversaries A and every polynomial p(·) it follows that
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for all sufficiently large λ

Pr
[
A(1λ, s, F (s, x)) = F−1(t, F (s, x))

]
<

1

p(λ)
,

where (s, t)
$← G(1λ) and x

$← X (1λ).

Definition 2.2.3 (Lossy Trapdoor Functions). Let λ be a security parameter

and F = (G,F, F−1) be a collection of injective trapdoor functions with domain

{0, 1}n(λ). We say that F is (n(λ), `(λ))-lossy if there exists a PPT algorithm Ĝ

that, on input security parameter 1λ, outputs ŝ and t̂ such that

• The first outputs of G and Ĝ are computationally indistinguishable.

• For any (ŝ, t̂) output by Ĝ, the map F (ŝ, ·) has image size at most 2n−`.

In the definition above, we call ` the lossiness. Also, will sometimes call a

TDF that is lossy a lossy trapdoor function (LTDF).

Public-Key Encryption. A public-key encryption scheme is a triplet AE =

(K, E ,D) of PPT algorithms. The key generation algorithm K, on input the se-

curity parameter 1λ, outputs a pair of keys (pk, sk). The encryption algorithm E
gets as its input the public key pk and a message m ∈M (for some message space

M) and outputs a ciphertext c. The decryption algorithm D on input the secret

key sk and a ciphertext c, outputs a message m or ⊥ (failure). It is required

that Pr [D(sk, E(pk,m)) 6= m ] = negl(λ), where the probability is taken over the

randomness of K, E and D.
A standard security requirement for a public key cryptosystem AE =

(K, E ,D) is indistinguishability of ciphertexts under a chosen plaintext attack

(IND-CPA) [70]. We define IND-CPA security as a game between and adver-

sary A and an environment as follows. The environment runs K(1n) to get a

keypair (pk, sk) and flips a bit b. It gives pk to A. A outputs a pair of messages

m0,m1 ∈ M with |m0| = |m0|. The environment returns the challenge ciphertext

c
$← E(pk,mb) to A and A returns a guess bit b′.

We say that A wins the above game if b′ = b. Likewise, we define the

IND-CPA advantage of A as

Advind-cpa
A,AE (λ) = 2 · Pr [A wins ]− 1 .
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We say that AE is CPA-secure if Advind-cpa
A,AE (λ) is negligible in λ for all PPT ad-

versaries A.
Additionally, we can consider a stronger notion of security called indis-

tinguishability under (adaptive) chosen-ciphertext attack (IND-CCA) [124, 137] .

The IND-CCA security game is the same as above but with the additional prop-

erty that throughout the entire game the adversary has access to a decryption

oracle Dec that, on input c, outputs D(sk, c). The one restriction we place on

the adversary is that it may not query the challenge ciphertext to the decryption

oracle, as this would lead to a trivial win. We define the IND-CCA advantage of

an adversary A as

Advind-cca
A,AE (λ) = 2 · Pr [A wins ]− 1 .

We say that AE is CCA-secure if Advind-cca
A,AE (λ) is negligible in λ for all PPT ad-

versaries A.

2.3 Abelian Groups and Knapsack Function Fam-

ilies.

Abelian Groups. In this thesis, by group we always mean finite abelian group.

We also assume that certain operations involving groups, such as sampling uni-

formly at random a group element, adding two elements or multiplying a group

element with a scalar, can be efficiently performed. We use additive notation for

groups; 0G is the neutral element, |G| is the order (size) of G and MG is its ex-

ponent, i.e., the smallest positive integer e such that e · g = 0G for all g ∈ G.

We use the dot product notation x · y =
∑

i xi · yi both for the inner product of

two vectors x,y ∈ Rn with elements in a ring R, and also to take integer linear

combinations x ∈ Zn of a vector y ∈ Gn with elements in an additive group. For

x = (x1, . . . , xn) ∈ Rn and a ∈ R, we define a · x = x · a = (x1 · a, . . . , xn · a) ∈ Rn.

For any group G and (positive) integer d, Gd is the quotient group G/dG
where dG is the subgroup {d · g

∣∣ g ∈ G}, in analogy with the usual notation

Zd = Z/dZ for the group of integers modulo d. Likewise, for any element g ∈ G,
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g mod dG (or just g mod d) is the image of g under the natural homomorphism

from G to Gd. For any integer vector w = (w1, . . . , wr) ∈ Zr, we write gcdG(w) =

gcd(w1, . . . , wr,MG) for the greatest common divisor of the elements of w and the

group exponent. We recall that any finite abelian group G is isomorphic to a

product of cyclic groups Zk1 × . . . × Zk` where ki|ki+1 for all i, and k` = MG. If

G' Zk1 × . . . × Zk` , then Gd ' Zd1 × Zd2 × · · · × Zd` where di = gcd(d, ki) for

i = 1, . . . , `. In particular

|Gd| = Π`
i=1di and |dG| = |G|

|Gd|
=
∏̀
i=1

ki
di
. (2.3)

Lemma 2.3.1. For any group G = Zk1 × . . . × Zk` and integer vector w ∈ Zr,
{w · g | g← U(Gr)} = U(d ·G) where d = gcdG(w). In particular,

Pr
[

w · g = 0G
∣∣ g← U(Gr)

]
= 1/|dG| =

∏
i

gcd(d, ki)/ki .

Proof. We want to analyze the probability distribution W = {w · g | g← U(Gr)}
for a fixed w ∈ Zr such that gcdG(w) = d. The function φw : g 7→ w · g maps Gr

to [W ] = {w · g | g ∈ Gr} = dG. Let G0 = {g | w · g = 0G} be the kernel of

this function. Then, φw partitions Gr into equivalence classes (cosets) of the form

g + G0. All cosets have the same size |g + G0| = |G0|, and therefore φw maps the

uniform distribution over Gr to the uniform distribution over φw(Gr) = dG. This

proves that W = U(dG). The bound on Pr [ w · g = 0G ] follows from (2.3).

Knapsack Families. We consider generalized knapsack function families with

domain the integer vectors Zm, input distributions X over Zm and range any

abelian group G. More formally, a knapsack function family is defined as follows:

Definition 2.3.2 (Knapsack Function Family). For any m ∈ N, group G and

input distribution X over Zm, the knapsack family Knap[G,X ] = (FKnap,X ) is the

function family with input distribution X and set of functions FKnap = {fg : [X ]→
G}g∈Gm indexed by g ∈ Gm and defined as fg(x) = g · x ∈ G.

Typically, the input distribution X = Sm is given by m independent, iden-

tically distributed samples (x1, . . . , xm), chosen from some probability distribution
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S over a finite (and polynomially sized) subset of the integers [S] ⊂ Z. We will

often use g instead of fg to describe a member function drawn from FKnap. We

also often consider folded knapsack families Knap[Gd,X ] over quotient groups Gd.

For brevity, when G and X are clear from the context, we will simply write Knap

(resp. Knapd) instead of Knap[G,X ] (resp. Knap[Gd,X ]). The following lemma

shows that the distribution F(Knapd) associated to a folded knapsack function

family is closely related to the distribution

Fd(Knap) = {(g, g + h) | (g, g)← F(Knap), h← U(dG)}. (2.4)

Lemma 2.3.3. For any knapsack family Knap and d ∈ Z, ∆U(Fd(Knap)) =

∆U(F(Knapd)). Moreover, Fd(Knap) is pseudorandom if and only if F(Knapd)

is pseudorandom.

Proof. The lemma follows from the existence of two efficiently computable (ran-

domized) transformations µ, µ′ that appropriately map distributions over Gm ×G
to distributions over Gm

d ×Gd and vice versa.

• Let µ : Gm × G → Gm
d × Gd be the function µ(g, g) = (g mod d, g mod d).

It is straightforward to verify that µ maps U(Gm ×G) to U(Gm
d ×Gd) and

Fd(Knap) to F(Knapd).

• In the other direction, let µ′ : Gm
d ×Gd → Gm×G be the randomized trans-

formation that on input (h, h) produces an output distributed according to

{(h + d · g, h + d · g) | (g, g) ← U(Gm+1)}. Again, it is easy to see that µ′

maps U(Gm
d ×Gd) to U(Gm ×G) and F(Knapd) to Fd(Knap).

It follows that

∆U(F(Knapd)) = ∆(µ(Fd(Knap)), µ(U(Gm ×G))) ≤ ∆U(Fd(Knap))

and similarly

∆U(Fd(Knap)) = ∆(µ′(Fd(Knap)), µ′(U(Gm ×G)) ≤ ∆U(F(Knapd)) .

This proves ∆U(Fd(Knap)) = ∆U(F(Knapd)). Since the transformations µ and µ′

are efficiently computable, they can also be used to turn any efficient distinguisher

for Fd(Knap) into an efficient distinguisher for F(Knapd), and vice versa.
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We will need the following variant of the Leftover Hash Lemma [82], gener-

alized to arbitrary abelian groups. The original Leftover Hash Lemma [82], applies

to any universal (or ε-universal) hash function family over arbitrary sets. Our

version of the lemma is specific to knapsack functions, but relaxes the universality

requirement.

Lemma 2.3.4. [Leftover Hash Lemma, variant] For any knapsack function

family Knap = Knap[H,X ] over a finite abelian group H,

∆U(F(Knap)) ≤ 1

2

√ ∑
1<d |MH

|Hd| · Col (Xd) (2.5)

where Xd = X mod d = {x mod d | x← X}, and d ranges over all divisors of the

group exponent MH strictly greater than 1 (MH included).

Proof. Let Z be any distribution over a set Z. The following standard computation

provides an upper bound on the statistical distance between Z and U(Z) in terms

of the collision probability Col (Z) .

∆U(Z) =
1

2

∑
z∈Z

∣∣∣∣Pr [ z ← Z ]− 1

|Z|

∣∣∣∣ ≤ 1

2

√
|Z|

√√√√∑
z∈Z

(
Pr [ z ← Z ]− 1

|Z|

)2

=
1

2

√
|Z|
√∑

z∈Z

Pr [ z ← Z ]2 − 2

|Z|
+

1

|Z|
≤ 1

2

√
|Z| · Col (Z)− 1.(2.6)

We bound Col (F(Knap)) as follows, where all probabilities are computed over the

random choice of h,h′ ← U(FKnap) and x,y← X :

Col (F(Knap)) = Pr [ (h = h′) ∧ (h · x = h′ · y) ]

= Pr [ h = h′ ] · Pr [ h · (x− y) = 0 ]

=
1

|H|m
· Pr [ h · (x− y) = 0 ] . (2.7)

We finally compute Pr [ h · (x− y) = 0 ] by conditioning on the value of d =

gcdH(x − y). Since gcdH(x − y) divides MH (by definition), we can restrict d
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to the divisors of MH.

Pr [ h · (x− y) = 0 ] =
∑
d|MH

Pr
[

h · (x− y) = 0
∣∣ gcdH(x− y) = d

]
·Pr [ gcdH(x− y) = d ]

≤
∑
d|MH

1

|dH|
· Col (Xd)

=
1

|H|
+
∑

1<d|MH

1

|dH|
· Col (Xd) .

In the inequality above we used Lemma 2.3.1 and the fact that

Pr [ gcdH(x− y) = d ] ≤ Pr [ d | x− y ] = Pr [ x mod d = y mod d ] = Col (Xd) .

The bound in the lemma follows easily by combining (2.6), (2.7) and (2.8), and

by using |Hd| · |dH| = |H|.

2.4 Error Correcting Codes

We review some basic definitions and facts from coding theory. We restrict

our attention only to the material that is required for the security proof of our CCA

construction (Chapter 3) and refer the reader to [107] for a detailed treatment of

the subject.

Let Σ be a set of symbols (alphabet) with |Σ| = q. For two strings x,y ∈ Σw,

the Hamming distance dH(x,y) is defined as the number of coordinates in which

x differs from y. Consider now a map (encoding) ECC : Σk → Σw. A code C is

simply the image of such a map (that is C ⊆ Σw), with |C| = qk. The minimum

distance of a code C is defined as

d(C) = min
x,y∈C
x 6=y

{dh(x,y)}

We will use [w, k, d]q to denote a code C with block length w (C ⊆ Σw), information

length k = logq |C|, minimum distance d(C) = d and alphabet size |Σ| = q.

For our CCA construction we need a code2. whose words are as “far apart”

as possible. In particular, for a fixed k, we need a code which maximizes d/w

2For the purposes of the construction, we only need an appropriate encoding scheme and not
a full -fledged error correcting code. (The ability to decode is unnecessary for the construction.)
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under the restriction that w is polynomial in k. By the Singleton bound [150],

d ≤ w − k + 1 for any code and alphabet size which immediately gives an upper

bound 1− k−1
w

for d/w. Codes that meet the Singleton bound are called Maximum

Distance Separable (MDS) codes.

Reed-Solomon Codes. Reed-Solomon codes [138] are possibly the most famous

example of MDS codes. We describe a (simplified) construction of a family of

asymptotic Reed-Solomon codes. Let RSqw,k denote a Reed-Solomon code (or more

precisely a family of RS codes) with message length k, block length w and alphabet

size |Σ| = q (with q ≥ w). The construction works as follows:

• Generation: Pick a field Fq (for convenience we use Zq as the underlying field

where q is the smallest prime such that q ≥ w). Pick also w distinct elements

α1, ..., αw ∈ Zq (evaluation points).

• Encoding: Let m = (m0, ...,mk−1) ∈ Σk be a message and let m(x) =
∑k−1

j=0 mjx
j

be the corresponding polynomial. The encoding of the message is defined as

ECC(m) = 〈m(α1), ...,m(αw)〉 ∈ Zq

where the evaluation takes place over Zq.

The following lemma summarizes all the properties of the Reed-Solomon codes

that are relevant for the application of interest.

Lemma 2.4.1. The Reed-Solomon code RSqw,k has minimum distance d = w−k+1.

Also both the code length and the time complexity of the encoding are polynomial

in w.

2.5 Lattices and Gaussian Distributions

Gaussian-like distributions play a central role in the Learning With Errors

(LWE) problem [140]. For each sample (a, b = a · s + e), the error distribution

χ used in sampling e, is typically a Gaussian-like distribution over the integers.

Several (worst-case) lattice approximation problems can be reduced (under quan-

tum or classic polynomial time reductions [139, 129]) to LWE with Gaussian error
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distribution. Moreover, Gaussian noise is “LWE-complete” [141, 63] in the sense

that LWE with non-Gaussian error distribution can be reduced to LWE where

the error is distributed according to a (wider) Gaussian. Below, we focus on the

discrete Gaussian distribution, i.e., the conditional distribution obtained restrict-

ing a normal real random variable to take integer values. Similar results hold for

the discretized (or rounded) Gaussian distribution, i.e., the distribution obtained

by rounding the output of a real Gaussian random variable to the closest integer.

Statements and proofs for discretized Gaussians are virtually identical and hence

omitted.

Discrete Gaussian. The Gaussian function ρr,c : Rm → R with center c and

width r is defined as

ρr,c(x) = e−
π‖x−c‖2

r2 .

The discrete Gaussian with parameters r, c over a countable set S ⊂ Rm is the

distribution DS,r,c that samples each element x ∈ S with probability

Pr [ x← DS,r,c ] =
ρr,c(x)∑
y∈S ρr,c(y)

.

When the center c is omitted from the notation DS,r it is understood to be the

origin c = 0. We will be primarily interested in discrete Gaussians over the set

of integer vectors S = Zm. In that case, the vectors x ∈ Zm sampled by DZm,r

have each coordinate xi identically and independently distributed according to a

1-dimensional Gaussian, i.e.,

Pr [ x← DZm,r ] =
m∏
i=1

Pr [ xi ← DZ,r ] =
m∏
i=1

ρr(xi)

ρr(Z)
. (2.8)

Lattices. A (full-rank) m-dimensional lattice is the set Λ of integer linear com-

binations of m linearly independent vectors b1, . . . ,bm ∈ Rm, i.e.,

Λ =

{
m∑
i=1

xibi
∣∣ xi ∈ Z for i = 1, . . . ,m

}
.

The matrix B = [b1, . . . ,bm] is called a basis for the lattice Λ. The determinant

of a lattice Λ (denoted det(Λ)) is the absolute value of the matrix determinant of
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any basis B of Λ, i.e., det(Λ) = |det(B)|. The i-th successive minimum (in the `p

norm) λpi (Λ) is the smallest radius r such that Λ contains i linearly independent

vectors of `p-norm at most r. When the subscript p is omitted, we will always

mean the `2 (Euclidean) norm. The dual of a lattice Λ is the set

Λ∗ = {x ∈ Rm : ∀y ∈ Λ, 〈x,y〉 ∈ Z} .

For any ε ∈ R+, the smoothing parameter ηε(Λ) [117] is the smallest r > 0 such that

ρ1/r(Λ
∗ \ {0}) ≤ ε. We will need the following bound on the smoothing parameter.

Proposition 2.5.1 ([63, Lemma 2.6]). Let Λ be any lattice of dimension m.

For any ω(
√

logm) function, there exists ε(m) = negl(m) such that ηε(Λ) ≤
ω(
√

logm)/λ∞1 (Λ∗).

Random q-ary Lattices. Let k,m, q ∈ N be any positive integers (with k < m)

and A ∈ Zk×mq . Each matrix A ∈ Zk×mq gives rise to the following two (full-

rank) m-dimensional integer lattices that are of particular interest in lattice-based

cryptography:

Λq(A) = {z ∈ Zm
∣∣ z = AT s (mod q) for some s ∈ Zkq}

Λ⊥q (A) = {z ∈ Zm
∣∣Az = 0 (mod q)}

The first lattice is precisely the linear (q-ary) code generated by the rows of A

whereas the second lattice corresponds to the linear (q-ary) code with parity check

matrix equal to A. It is not hard to see that qZm ⊆ Λq(A),Λ⊥q (A) ⊆ Zm and

that Λq(A),Λ⊥q (A) are dual up to a scaling factor, i.e., Λq(A) = q · (Λ⊥q (A))∗ and

Λ⊥q (A) = q · (Λq(A))∗.

In order to establish the search-to-decision equivalence for LWE with dis-

crete Gaussian error distribution, we need to bound the statistical distance between

(A,Ae) and U(Zk×mq × Zkq) when A ← U(Zk×mq ) and e ← DZm,r. Lemma 2.5.2

relates this statistical distance with the smoothing parameter of the lattice Λ⊥q (A).

Lemma 2.5.2 ([63, Lemma 5.2]). Let A ∈ Zk×mq such that the columns of A

generate Zkq . Then, for any ε ∈ (0, 1/2) and r ≥ ηε(Λ
⊥
q (A)), if e ← DZm,r, the

syndrome u = Ae is within statistical distance 2ε from uniform over Zkq .
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2.6 Fourier Analysis

Fourier analysis and Gaussian distributions play an important role in basing

the average-case hardness of LWE on worst-case lattice assumptions [139, 129]. In

this thesis, we also use Fourier analysis, but in a quite different way, closer to the

use made of Fourier analysis in learning theory and in the complexity study of

boolean functions.

Below we review some basic facts from Fourier analysis focusing on the

discrete Fourier transform over finite abelian groups. We restrict the presentation

to what is needed and refer the interested reader to [3, 151] for more details.

Fourier Basics. Let H be a finite abelian group and h1, h2 : H→ C be functions

from H to the complex numbers. The inner product of h1 and h2 is defined as

〈h1, h2〉 = E
x←U(H)

[
h1(x)h2(x)

]
=

1

|H|
∑
x∈H

h1(x)h2(x)

where z̄ is the complex conjugate of z ∈ C. The `2-norm3 and `∞-norm of h are

defined as

‖h‖2 =
√
〈h, h〉 and ‖h‖∞ = max

x∈H
|h(x)|.

The set of characters of H (denoted char(H)) is the set of all the homomorphisms

from H to the complex numbers of unit magnitude T,

char(H) = {χ : H→ T
∣∣ ∀x, y ∈ H, χ(x+ y) = χ(x) · χ(y)}.

The set char(H) with point-wise addition forms a group which is isomorphic to H.
If H = Zk1 × . . . × Zk` and α = (α1, ..., α`) ∈ H, then the character χα : H → T
associated to α is defined as

χα(x) = ωα1x1
k1

. . . ωα`x`k`

where ωkj = e
i 2π
kj is the kj-th primitive root of unity and i =

√
−1 is the imaginary

unit. We will be particularly interested in functions defined over vector groups

H = Z`k, in which case χα(x) = (ωk)
∑`
i=1 αixi = ωx·α

k .

3 Notice that the definition of ‖h‖2 differs from the standard definition of the euclidean norm
of a vector by a

√
|H| normalization factor.
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Fourier Transform. The Fourier transform of a function h : H → C is the

function ĥ : H→ C defined as

ĥ(α) = 〈h, χα〉 = E
x←U(H)

[
h(x)χα(x)

]
.

The Fourier transform measures the correlation of h with the characters of H. The

energy of a Fourier coefficient α ∈ H is defined as its squared norm |ĥ(α)|2, while

the total energy of h is defined as
∑

α∈H |ĥ(α)|2. Parseval’s identity asserts that∑
α∈H |ĥ(α)|2 = ‖h‖2

2.

Learning Heavy Fourier Coefficients Let τ ∈ R+, α ∈ H and h : H → C
where H is a finite abelian group. Following the notation and terminology from [3],

we say that α is a τ -significant (or τ -heavy) Fourier coefficient of h if |ĥ(α)|2 ≥ τ.

The set of τ -significant Fourier coefficients of h is Heavyτ (h) = {α ∈ H
∣∣ |ĥ(α)|2 ≥

τ}. The following theorem states that it is possible to find Heavyτ (h) given query

access to h, and it is central in establishing the connection between the search and

decision problems associated to bounded knapsack families.

Theorem 2.6.1. [Significant Fourier Transform,[3, Theorem 3.3]] There

exists a probabilistic algorithm (SFT ) that on input a threshold τ ∈ R+ and given

query access to a function h : H→ C, returns all τ -heavy Fourier coefficients of h

in time poly(log |H|, 1/τ, ‖h‖∞) with probability4 at least 2/3.

For functions with range T as considered in this work, it is immediate to ver-

ify that ‖h‖2 = ‖h‖∞ = 1 and therefore (by Parseval’s identity)
∑

α∈H |ĥ(α)|2 = 1.

In this work, we are particularly interested in functions with very skewed Fourier

spectrum, where a noticeable fraction of the total energy of the function is concen-

trated on a small number of coefficients. Namely, there exist characters β ∈ H such

that |ĥ(β)|2 ≥ 1
poly(log |H|) . In this context, Theorem 2.6.1 says that SFT , given

query access to h : H → T, can find all its 1
poly(log |H|) -heavy Fourier coefficients in

time polynomial in log |H|.

4The success probability is taken over the internal randomness of the SFT algorithm only, and
can be amplified using standard repetition techniques. Since this is not needed in our context,
we fix the success probability to 2/3 for simplicity.



Chapter 3

Chosen-Ciphertext Security from

Slightly Lossy Trapdoor Functions

Overview of the chapter. In this chapter we prove that Lossy Trapdoor

Functions (LTDFs) with only minimal amount of lossiness imply the existence of

CCA-secure encryption schemes. Section 3.1 summarizes our result and provides

a non technical overview of the main ideas behind it. We review related work in

Section 3.2. In Section 3.3, we recall the definition of security under correlated

inputs, a notion introduced in [144] which plays an essential role in our result. We

present the generalized CCA-secure scheme of Rosen and Segev [144] in Section 3.4,

and show, as our main result, how to properly instantiate it in order to minimize

the lossiness requirement on the underlying LTDFs. We conclude in Section 3.5

where we describe the construction of a new family of LTDFs with very small

lossiness.

3.1 Results

The main result of this chapter is summarized in the following theorem.

Theorem 3.1.1. CCA-secure schemes can be constructed in a black-box way from

LTDFs1 that lose 1
poly(λ)

bits.

1 Recall that a Lossy Trapdoor Function (LTDF) family is a standard injective trapdoor

34
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A closer look at our proof. Here, we attempt to describe the core ideas from

[132] and [144] that lead to our main result. We start by giving some intuition as

to why LTDFs are sufficient for building a variety of cryptographic primitives. As

a case study, consider CPA-secure encryption. For simplicity, let F be a family

of LTDFs with inputs uniformly distributed over its domain {0, 1}n that (compu-

tationally) loses 1 bit. Now consider a new family F ′ which is simply the w-wise

product of F (for some polynomially bounded w) with inputs uniformly distributed

over the domain {0, 1}nw. Sampling members of F ′ amounts to independently

sampling w functions from F . It is easy to see that F ′ computationally loses

w = poly(λ) bits and thus (by applying the results of [132]) is one-way. Applying

generic hardcore predicates, this immediately gives us a CPA-secure encryption

scheme.

The Rosen-Segev encryption scheme [144] is similar, but with a fundamental

difference: their construction revolves around the notion of one-wayness under

correlated inputs, that is, the distributions they consider as inputs to members of

F ′ are no longer independent (or uniform). Instead, they are correlated in such a

way that any d (out of w) individual n-bit inputs are sufficient for reconstructing

the remaining ones (we call such distributions (d, w)-subset reconstructible; see

Section 3.3 for details.). This property is essential for their security proof, dictated

by the need of the simulator to correctly answer decryption queries. Rosen and

Segev focused on highly correlated distributions, where each of the w individual

member functions of F that compose F ′ is applied to the same input (that is,

d = 1). Unfortunately, for such highly correlated inputs, unless the members of F
are very lossy, the w-wise product family leaks too much information about the

input. That is the reason the CCA construction of [144] requires LTDFs that lose

almost all their bits.

Our result directly relies upon the construction from [144]. However, we

focus on distributions that are much less correlated. To that end, we first prove

a straightforward theorem bounding the amount of lossiness required of an LTDF

function family with the following additional feature: each member function f from the family
is computationally indistinguishable from the description f̂ of another function that statistically
loses information about its input.
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in order to argue that its w-wise product is one-way with respect to a correlated

input distribution Cw as a function of the min entropy µ of Cw. We then show

that, if we instantiate the error-correcting code in the Rosen-Segev construction

with Reed-Solomon codes and carefully set all the parameters involved, then we

can use a correlated input distribution Cw with sufficient min-entropy µ so that

one-wayness for Cw is implied by LTDFs that only lose about 2 bits.

Constructing Slightly Lossy LTDFs. Another contribution of our work is the

demonstration of a novel technique that allows the construction of LTDFs that lose

a small amount of bits. Our technique can be briefly described as follows: We start

with two non-injective trapdoor functions (say g and ĝ) that are computationally

indistinguishable from each other. Both functions statistically lose information

about their inputs but in different amounts (assume that ĝ loses more bits of

information). We then try to make g injective by appending to its evaluation

on an input x, enough extra information about x (denoted by h(x)). The extra

information is enough to make the pair (g, h) injective while (ĝ, h) is still lossy.

We use this technique to construct an LTDF from modular squaring that loses a

fraction of one bit under the assumption that it is hard to distinguish the product

of two primes from the product of three primes. This directly gives a CCA-secure

encryption scheme from the latter assumption which might be of independent

interest2.

3.2 Related Work

Chosen-Ciphertext Security. Since the introduction of the notion in early

nineties [124, 137], security against Chosen-Ciphertext Attacks (CCA) has been a

central pursuit of cryptographers for over twenty years. Besides being theoretically

intriguing, CCA-security is also motivated by practical attacks as first pointed out

by Bleichenbacher [23] who demonstrated the feasibility of CCA attacks against

schemes following the PKCS #1 encryption standard.

2It should be noted that this assumption is stronger than the quadratic residuosity assumption,
from which we already know how to achieve CCA security (c.f. [43]).
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Constructions of CCA-secure encryption schemes can be divided into 2 cat-

egories: On one hand, researchers have long focused on identifying the minimal

generic assumptions that imply CCA-security. This line of work has led to a hand-

ful of distinct approaches for achieving CCA-security based on simpler and (possi-

bly) more easily realizable primitives. The first approach, introduced by Naor and

Yung [124], is based on the use of Non-Interactive Zero-Knowledge (NIZK) proofs

for NP (the approach was further refined in [51, 146, 100]). A second approach,

due to Cramer and Shoup [43], is based on the concept of universal hash proof

systems. Hash proof systems and their extensions [159, 160] have proven a very

useful notions both in the construction of CCA-secure schemes but also in other

applications. Another approach, suggested by Canetti, Halevi and Katz [36], bases

the construction of CCA-secure schemes on Identity Based Encryption, an inter-

esting enhancement of standard public-key encryption in which the identities of the

users serve as their public keys. Recently, several works have focused on generically

building CCA-secure encryption from special types of Injective Trapdoor Functions

(TDFs). This line of work has led to many interesting constructions including those

from Lossy TDFs [132], TDFs secure under correlated inputs [144] and adaptive

TDFs [92]. Finally, we mention a recently proposed alternative to building CCA-

secure schemes based on the concept of Detectable Chosen Chiphertext Security

(DCCA) [80]. DCCA is an intermediate security notion meant to capture schemes

that, while not being directly CCA-secure, allow the detection of queries to the

decryption oracle that can be useful for decrypting the challenge ciphertext.

In addition to generic assumptions, a fair amount of research has been con-

cerned with the study of concrete and well-studied hardness assumptions that imply

CCA security. As a result of this research, CCA-security is known be achievable

based on the hardness of a wide range of computational problems such as Deci-

sional Diffie Hellman (DDH) [42], (Bilinear) Computational Diffie Hellman (CDH,

BCDH) [28, 38], Learning With Errors (LWE) [132, 129, 116], factoring [79], a

variant of the Learning Parity with Noise (LPN) [52] and more.

Lossy Trapdoor Functions. Our work relies heavily on the notion of Lossy

Trapdoor Functions (LTDFs) [132]. We conclude this section with a synopsis of
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the existing literature on LTDFs pointing out, whenever applicable, connections

to our work.

Since their introduction, LTDFs have been used (explicitly or implicitly)

for the construction of a plethora of cryptographic primitives such as deterministic

Public Key Encryption (PKE) schemes secure in the standard model [27], Injective

TDFs secure under correlated inputs [144], PKE schemes secure under selective-

opening attacks [16], Hedged PKE schemes [15], Leakage-Resilient Signatures [29],

Lossy Encryption [75] and more.

Also, motivated by the work of [132], numerous constructions of LTDFs

have been proposed. Rosen and Segev [143] and Boldyreva, Fehr, and O’Neill

[27] both gave a construction based on the decisional composite residuosity (DCR)

assumption, while Kiltz, O’Neill and Smith [93] recently showed that the RSA trap-

door permutation is lossy under the Φ-hiding assumption of [35]. Finally, Freeman

et al [60] proposed an LTDF that loses one bit under the Quadratic Residuosity

assumption (QR). While the DCR-based LTDF is sufficient to directly instantiate

the CCA-secure scheme of [132], the LTDFs based on Φ-hiding and QR are not

sufficiently lossy and thus cannot be used directly in the generic construction. In

light of that, our result, combined with [93] and [60], shows that CCA-security is

implied by both the Φ-hiding and the Quadratic Residuosity assumptions.

3.3 Products and Correlated Inputs

In this section we define w-wise products, prove the lossiness amplifica-

tion lemma that we use throughout the chapter, and finally present the types of

correlated input distributions we are interested in for our CCA result.

Products and Lossiness Amplification

We first define the w-wise product of a collection of functions and then show

how such a product can amplify lossiness.

Definition 3.3.1 (w-wise product, Definition 3.1 in [144]). Let F = (G,F ) be a

collection of efficiently computable functions where G,F are the function generation
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and evaluation algorithm respectively. For any integer w, we define the w-wise

product Fw = (Gw, Fw) as follows:

• The generation algorithm Gw on input 1λ invokes G(1λ) for w times inde-

pendently and outputs (s1, . . . , sw). That is, a function is sampled from Fw
by independently sampling w functions from F .

• The evaluation algorithm Fw on input (s1, . . . , sw, x1, . . . , xw) invokes F to

evaluate each function si on xi. That is,

Fw(s1, . . . , sw, x1, . . . , xw) = (F (s1, x1), . . . , F (sw, xw)).

The following lemma states that w-wise products amplify the absolute

amount of lossiness3.

Lemma 3.3.2 (Lossiness Amplification). Let λ be a security parameter. For any

family of TDFs F = (G,F, F−1) with message space n(λ), if F is (n(λ), `(λ))-

lossy, then the w(·)-wise product family Fw (defined above) built from F is (n(λ) ·
w(λ), `(λ) · w(λ))-lossy.

Proof. First, if there exists an efficient lossy key generation algorithm Ĝ that out-

puts indistinguishable function indices fromG, then by a straightforward hybrid ar-

gument it follows that Ĝw, the algorithm that runs Ĝ independently w times to get

(s1, t1), . . . , (sw, tw) and outputs (s, t) where s = (s1, . . . , sw) and t = (t1, . . . , tw),

outputs indistinguishable keys from Gw.

Second, since for each si output by Ĝ the range of F (si, ·) has size at most

2n−`, it follows that for each s output by Ĝw, the range of Fw(s, ·) has size at most

(2n−`)w = 2nw−`w which concludes the proof.

As an immediate corollary of Lemma 3.3.2, we get that (n, 1
poly(λ)

)-LTDFs

imply injective trapdoor one-way functions and CPA-secure encryptions (the proofs

of these statements are a rather straightforward combination of Lemma 3.3.2 and

the results from [132] and are hence omitted). We simply state this observation as

a corollary for completeness.

3We use the term “absolute amount of lossiness” to explicitly distinguish it from “rate of
lossiness” (aka relative lossiness) defined as k

n for a (n, k)-LTDF. It has been known [134], that
amplifying the rate of lossiness in a black-box way is impossible beyond a certain threshold.
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Corollary 3.3.3. Let p(·) be any polynomial. Then (n, 1
p(λ)

)-LTDFs imply injective

trapdoor one-way functions and CPA-secure encryption schemes.

Subset Reconstructible Distributions

While it is well-known that if F is one-way with respect to the uniform

distribution on {0, 1}n, then the product Fw is one-way with respect to the uniform

distribution over {0, 1}nw, we will be interested in the security of products when

the inputs are correlated and not necessarily uniform. Of particular interest, are

input distributions that are what we call (d, w)-subset reconstructible.

Definition 3.3.4 ((d, w)- Subset Reconstructible Distribution (SRD)). Let d, w ∈
N such that d ≤ w, S be a domain and D a distribution with support [D] ⊆ Sw. We

say that D is (d, w)- Subset Reconstructible (and denote SRDd,w) if, each w-tuple

(x1, ..., xw) ∈ [D] is fully and uniquely reconstructible from any subset {xi1 , ..., xid}
of d distinct elements of the tuple.

It is easy to see that the special case where d = 1 and S = {0, 1}n is

precisely the uniform w-repetition distribution used in the simplified construction

of the CCA secure cryptosystems in [144]. For the CPA construction, choosing

d = w would suffice, in which case the distribution contains all w-tuples (x1, ..., xw)

where each xi is chosen independently and uniformly at random from {0, 1}n. For

the CCA-construction, however, we need to choose a value for d smaller than w

(this is necessary for almost perfect simulation of the decryption oracle) but as

close to w as possible in order to minimize the required lossiness of the TDF (the

closer to 1 the value d
m

is, the less lossiness we need for the CCA construction).

Before describing how to sample efficiently from SRDd,w we note the sim-

ilarity of the above definition with two well studied notions from Coding Theory

and Cryptography, namely erasure codes and secret sharing schemes. Even though

our sampling algorithm for SRDd,w uses techniques identical to those used in the

construction of the most popular erasure codes and secret sharing schemes, we in-

troduce this new definition here since, in principle, the goals (properties) of the two

aforementioned notions are slightly different from those of a (d, w)-subset recon-
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structible distribution. In particular, the goal of an erasure code is to recover the

initial message and not necessarily the full codeword (even though the full code-

word can trivially be constructed by re-encoding the recovered initial message)

when at most w − d symbols of the codeword have been lost during transmission.

Likewise, in a (d, w)-threshold secret sharing scheme the goal is to recover a secret

s when any d out of w distinct values are known (again here there is no requirement

to recover all w values from the d known ones).

Sampling via Polynomial Interpolation. We use polynomial interpolation as

a way to sample efficiently from SRDd,w for any value of d and w. The construction

is identical to the one used by Shamir [148] for a (d, w)-threshold secret sharing

scheme. On input a prime q (with log q = O(poly(λ))) and integers d, w, the

sampling algorithm picks independently d values p0, ..., pd−1 uniformly at random

from Zq (these correspond to the d coefficients of a (d − 1)-degree polynomial

p ∈ Zq[x]). The algorithm then simply outputs (x1, ..., xw) = (p(1), ..., p(w)) where

evaluation takes place in Zq and xi’s are represented by binary strings of length at

most log q. 4 The following lemma states that the output distribution of polynomial

interpolation sampling is a (d, w)- subset reconstructible distribution with sufficient

entropy.

Lemma 3.3.5. Let w = poly(λ). Then the above algorithm is a poly(λ)-sampling

algorithm for SRDd,w. Also the min-entropy of the distribution SRDd,w is d · log q.

Proof. First notice that any distinct d values (xi1 = p(i1), ..., xid = p(id)) (with

ij ∈ [w] ∀j = 1, ..., d) uniquely determine the polynomial p and hence the whole

tuple (x1, ..., xw). Also for any set S = {i1, ..., id} ⊆ [w] of distinct indices and any

y = (y1, ..., yd) ∈ Zdq

Pr [ xi1 = y1 ∧ ... ∧ xi1d = yd ] = Pr [ Vi1,...,idp = y ] = Pr
[

p = V−1
i1,...,id

y
]

=
1

qd

where p corresponds to the vector [p0, ..., pd−1]T and Vi1,...,id is the (invertible)

Vandermonde matrix with j-th row [x0
ij
, ..., xd−1

ij
] It follows that H∞((x1, ..., xw)) =

d · log q.

4Any (fixed and public) distinct values a1, ..., aw ∈ Zq instead of 1, ..., w would work just fine.
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3.4 CCA Secure Encryption from Functions with

Small Lossiness

In this section we prove our main result: lossy TDFs that lose only a

noticeable fraction of a single bit imply CCA-secure encryption. We start by

describing the encryption scheme of Rosen and Segev [144] that shows that CCA

security is implied by the security (one-wayness) of trapdoor injective functions

under certain correlated products. We then show that (n, 2)-lossy TDFs imply

injective trapdoor functions that are secure under these correlated products. We

complete the proof by observing that, by a straightforward lossiness amplification

argument, (n, 2)-lossy TDFs can be constructed in a black-box way from LTDFs

that lose a 1
poly(λ)

fraction of a single bit.

For ease of presentation, we describe a single-bit encryption scheme. Due

to a recent result [123], this directly implies the existence of multi-bit CCA-secure

schemes. We mention however that one can get a multi-bit encryption scheme di-

rectly by simply replacing the hardcore predicate h with a universal hash function,

as in the PKE schemes of [132].

3.4.1 The Rosen-Segev Construction

We recall the cryptosystem from [144]. The main components of the cryp-

tosystem are: a collection F = (G,F, F−1) of injective trapdoor functions, a (hard-

core) predicate h : {0, 1}∗ → {0, 1}, an efficiently computable encoding function

ECC : Σk → Σw for an error-correcting code with distance d and an one-time sig-

nature scheme Π = (Kg, Sign,Ver) whose verification keys are elements in Σk. (We

could always use a universal hash function to hash keys into this space.) Finally,

Cw(1λ) is an input distribution such that any x = (x1, . . . , xw) output by Cw(1λ)

can be efficiently reconstructed given any size d < w subset of x. The Rosen-Segev

encryption scheme works as follows:

Key Generation: On input security parameter 1λ, for each σ ∈ Σ and each

1 ≤ i ≤ w, run (sσi , t
σ
i )

$← G(1λ), the key generation for the injective trapdoor

function family. Return the pair (pk, sk) where
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pk = ({sσ1}σ∈Σ, . . . , {sσw}σ∈Σ)

sk = ({tσ1}σ∈Σ, . . . , {tσw}σ∈Σ)

Encryption : On input public key pk and one-bit message m, run Kg(1λ) to

generate (VK, SK) and sample (x1, . . . , xw) from Cw(1λ). Apply the error

correcting code to VK to get ECC(VK) = (σ1, . . . , σw). The output is c =

(VK, y1, . . . , yw, c1, c2) where VK is as above and

yi = F (sσii , xi), 1 ≤ i ≤ w

c1 = m⊕ h(sσ11 , . . . , s
σw
w , x1, . . . , xw)

c2 = Sign(SK, (y1, . . . , yw, c1)) .

Decryption: On input secret key sk and ciphertext c = (VK, y1, . . . , yw, c1, c2)

check if Ver(VK, (y1, . . . , yw, c1), c2) equals 1. If not output ⊥. Otherwise,

compute ECC(VK) = (σ1, . . . , σw) and pick d distinct indices i1, ..., id. Use the

trapdoors t
σi1
i1
, ..., t

σid
id

to compute xi1 = F−1(t
σi1
i1
, yi1), . . . , xid = F−1(t

σid
id
, yid).

Use these xi’s to reconstruct the entire vector x1, . . . , xw. If yj = F (s
σj
j , xj)

for all 1 ≤ j ≤ w output c1 ⊕ h(sσ11 , . . . , s
σw
w , x1, . . . , xw). Else output ⊥.

Rosen and Segev then proved the following theorem:

Theorem 3.4.1 (Theorem 5.1 in [142]). If Π is a one-time strongly unforgeable

signature scheme, F is one-way under a Cw-correlated product, and h is a hardcore

predicate for Fw with respect to Cw, then the above PKE scheme is IND-CCA

secure.

3.4.2 Our Result

In this section we establish the following result.

Theorem 3.4.2 (Main Theorem). CCA-secure schemes can be constructed in a

black-box way from LTDFs that lose 1
poly(λ)

bits.

The proof proceeds in two steps. In the first step (Lemma 3.4.3), we show

that lossy TDFs give rise to families of injective trapdoor functions that are secure
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under correlated product distributions with sufficiently large entropy. Moreover,

the more entropy the underlying distribution has, the less lossiness is required from

the LTDFs. In the second and final step (Lemma 3.4.5), we show that, by choosing

the appropriate error correcting code and a correlated input distribution with high

entropy in the Rosen-Segev scheme, we can achieve one-wayness under correlated

products (and hence CCA-security) starting from lossy TDFs with minimal lossi-

ness requirements. More specifically, using the uniform SRDd,w (which has high

entropy, see Lemma 3.3.5) as our underlying distribution and Reed-Solomon codes

for ECC, we show that (n, 2)-lossy TDFs suffice for CCA-secure encryption. We fi-

nally derive Theorem 4.3.1 by observing that (n, 2)-lossy TDFs can be constructed

by (n′, 1
poly(λ)

)-lossy functions (where n = poly(n′)) (see Lemma 3.3.2).

The following lemma provides an explicit bound on the required lossiness

as a function of the entropy of the correlated input distribution.

Lemma 3.4.3. Let F = (G,F, F−1) be a collection of (n, `)-lossy trapdoor func-

tions and let Fw = (Gw, Fw) be its w-wise product for w = poly(λ). Let Cw be an

input distribution with min-entropy µ. Then F is one-way under a Cw-correlated

product provided that

` ≥ n− µ

w
+
ω(log λ)

w
. (3.1)

Proof. The proof is similar with a proof from [132]. Assume for the sake of contra-

diction that there is an inverter I that succeeds at inverting Fw with probability

1/p(λ) for some polynomial p. We will show how to build a distinguisher D that

can distinguish between the lossy keys and real keys. Because of a standard hybrid

argument, it suffices to show that D can distinguish (with non-negligible advan-

tage) w = poly(λ) lossy keys (generated with Ĝ) from w = poly(λ) real keys

(generated with G). D works as follows: on input keys s = (s1, . . . , sw), it samples

x = (x1, . . . , xw) from Cw(1λ) and runs the inverter I(1λ, s, Fw(s,x)). If s are real,

i.e., they are generated using G, then I will output x with non-negligible proba-

bility. If, however, s come from Ĝ, then the probability of success for I is at most

2−H̃∞(x | (s,Fw(s,x))). But, by Lemma 2.1.1,

H̃∞(x | (s, F (s,x))) ≥ H∞(x |s)− w(n− `) . (3.2)
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Since the choice of the functions is independent from the choices of x, the first term

on the right hand side of the above equation is simply H∞(x) = µ. Combining

with (3.2), we get that

H̃∞(x | (s, F (s,x))) ≥ µ− w(n− `) ≥ ω(log λ)

where in the last inequality we used the hypothesis for `. It follows that the prob-

ability I succeeds when D is given lossy keys is upper bounded by 2−ω(log λ) =

negl(λ). Therefore, D can distinguish between keys from G and keys from Ĝ which

contradicts the fact that F is a collection of lossy functions and concludes the

proof.

Remark 3.4.4. If Cw is the uniform w-repetition distribution (which has entropy

n), then the bound from Lemma 3.4.3 matches exactly the one from [144, Theorem

3.3]. If in addition w = 1, then Lemma 3.4.3 is a restatement of the fact that any

(n, ω(log n))-LTDFs is one-way [132].

The following lemma shows that by appropriately instantiating the error

correcting code ECC and the correlated inputs distribution Cw in the Rosen-Segev

scheme, we can construct a CCA-secure scheme directly from any (n, 2)-lossy func-

tion.

Lemma 3.4.5. CCA-secure schemes can be constructed in a black-box way from

(n, 2)-lossy TDFs.

Proof. Let n = poly(λ). Let also ECC ∈ RSqw,k be a Reed-Solomon code with

k = nε (for some constant ε with 0 < ε < 1) , w = nc for some constant c > 1 + ε,

q the smallest prime such that q ≥ w and distance d = w − k + 1. Let also Cw

be the distribution SRDd,w sampled via polynomial interpolation (see Section 3.3)

for some prime p such that n − 1 ≤ log p ≤ n. Let finally F = (G,F, F−1)

be a collection of (n, 2)-lossy trapdoor functions and Fw = (Gw, Fw) be its w-

wise product. By construction (Lemma 3.3.5, Section 3.3) Cw has min-entropy

µ = H∞(Cw) = d · log p and can be sampled in time poly(w) = poly(λ). In addition,

by properties of the Reed-Solomon codes we have

d

w
=
w − k + 1

w
≥ 1− k

w
= 1− 1

nc−ε
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and hence

µ

w
=
d

w
log p ≥ (n− 1) ·

(
1− 1

nc−ε

)
= n− 1− 1

nc−ε−1
+

1

nc−ε
.

As a result,

n− µ

w
+
ω(log λ)

w
≤ n−

(
n− 1− 1

nc−ε−1
+

1

nc−ε

)
+
ω(log λ)

w

= 1 +
1

nc−ε−1
− 1

nc−ε
+
ω(log λ)

nc

< 2

for some ω(log λ)- function. Applying Lemma 3.4.3, we get that F is secure under

the aforementioned Cw-correlated product. Let h be a hardcore predicate for the

w-wise product Fw (with respect to Cw). Applying the construction of Rosen

and Segev from Section 3.4.1 and Theorem 3.4.1 we get that (n, 2)-lossy functions

imply CCA-security (in a black-box sense).

Possible Optimizations and Trade-offs. An obvious drawback of the above

construction is that the alphabet size of the ECC increases with the security pa-

rameter λ. This leads to an increase in the sizes of the public and secret key by

a factor of at least n = poly(λ) (where n is the length of the domain of F). By

replacing the Reed-Solomon code with a random linear code (RLC) with alphabet

{0, 1} we can improve the space (and time) efficiency of the scheme. However, in

this case, asymptotically we can only achieve relative distance δ′ = d
w
< 1

2
. This

translates to a much stronger lossiness requirement for the underlying family of

lossy functions. In particular, we need to start with (n, l)-lossy functions where

l ≥ n(1− δ) for some δ < 1
2

(that is, the lossy function should lose more than half

of the input bits).

Another possible optimization is to generalize the construction to encryp-

tion schemes that support longer (than a single bit) messages. For messages of

length v, a universal hash function h : {0, 1}nw → {0, 1}v can be used instead of

a hardcore predicate to pad the message. It can be proven that, by sampling the

correlated inputs as above and applying the generalized leftover hash lemma, the

distribution h(x1, ..., xw) (which is used as the padding of the message) is statisti-

cally close to the uniform over {0, 1}v. In this case the requirement for the lossiness
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becomes

` ≥ n− µ

w
+
ω(log λ)

w
+
v

w
.

As before, by picking all the parameters appropriately, we can instantiate the

multi-bit construction using as a building block (n, 1
poly(λ)

)-LTDFs.

3.5 A Slightly Lossy TDF from the 2v3Primes As-

sumption

In this section we construct a family of LTDFs that lose 1/4 bits of their

input. We start by presenting the main idea of the construction, then define the

underlying hardness assumption and conclude with the detailed construction along

with a proof that the construction yields a (n, 1/4)-LTDF.

The Idea. Our technique generalizes previous approaches for constructing LTDFs

and might serve as a paradigm for the construction of LTDFs from other hardness

assumptions. Let g be a trapdoor function (with trapdoor t) that loses ` bits (where

` ≥ 0, and ` = 0 corresponds to an injective trapdoor function). Let also ĝ be

a deterministic function such that ĝ 'c g (under some computational assumption

CA) and ĝ loses ˆ̀ bits (that is |Img(Dom(ĝ))| ≤ |Dom(ĝ)|
2ˆ̀ for some ˆ̀> `). Consider

now a function h such that len(h(x)) = ` where len denotes length (bitsize) and

(g(x), h(x)) uniquely determine the preimage x (which can be efficiently recovered

given the trapdoor t) for all inputs x. Define s = (g, h) and ŝ = (ĝ, h). Then it is

clear that s is a description of an injective trapdoor function whereas ŝ corresponds

to an (ˆ̀− `)-lossy function. Indeed |Img(ŝ)| ≤ |Img(Dom(ĝ))| · 2` ≤ Dom(ĝ)

2ˆ̀−` . Finally

the indistinguishability of ĝ and g implies that s 'c ŝ.

Hardness assumption. Our hardness assumption is similar to the 2OR3A

assumption introduced by Blum et al [26] (in a slightly different form). It roughly

says that it is hard to distinguish between products of two and products of three

primes. In more detail, let n = poly(λ) where λ is the security parameter. Consider
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the following two distributions5

2Primesn = {N = pq
∣∣ len(N) = n; p, q primes such that p ≡4 q ≡4 3} (3.3)

3Primesn = {N = pqr
∣∣ len(N) = n; p, q, r primes such that pqr ≡4 1} (3.4)

where all primes are distinct and len(N) = n implies that the most significant bit

of N is 1.

Assumption 3.5.1 (2v3Primes). For any PPT algorithm D and any polynomial

p(·) ∣∣Pr [D(2Primesn) = 1 ]− Pr [D(3Primesn) = 1 ]
∣∣ ≤ 1

p(n)

where the probability is taken over the randomness of sampling N and the internal

randomness of D.

The Construction. For our function g we use squaring modulo the product N

of two large primes p and q. This function was the basis for the Rabin cryptosys-

tem [136]. Let n = poly(λ). We define a family of injective trapdoor functions

F = (G,F, F−1) as shown in Figure 3.1.

Note that even though the modulus N has bitsize n + 1 (that is N > 2n)

the domain of F is {0, 1}n. For the proof we will need the following two standard

lemmas which we prove for completeness.

Lemma 3.5.2. Let N =
∏k

i=1 pi be a product of k distinct primes. Then the

function f(x) = x2 mod N defined over Z∗N is 2k-to-1.

Proof. Consider the isomorphism ρ : Z∗N ↔ Z∗p1 × · · · × Z∗pk defined as

ρ(x) = (xp1 , ..., xpk) where xpi = x mod pi

Let z = (zp1 , ..., zpk) ∈ QRN be an element of the image of f . Let x = (xp1 , ..., xpk) ∈
Z∗N such that x2 ≡N z. It is not hard to see that the 2k numbers x′ of the form

x′ = (±xp1 , ...,±xpk) are all distinct and such that x′2 ≡N x2.

5The requirement pqr ≡4 1 for the 3Primes distribution is essential since otherwise there exists
a trivial algorithm that distinguishes between Ns sampled according to G and those sampled
according to Ĝ.
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G(1λ): Choose two large primes p, q such that p ≡ q ≡ 3 (mod 4) and pq has

bitsize n+ 1. Let N = pq. That is N
$← 2Primesn+1. Return (s, t) where

s = N and t = (p, q).

Ĝ(1λ): Choose three large (balanced) primes p, q and r such that pqr ≡4 1

and pqr has bitsize n+ 1. Let N = pqr, that is N
$← 3Primesn+1. Return

(s,⊥) where s = N.

F (s, x): Parse s as N. On input x ∈ {0, 1}n, interpret x as an integer in

[0, 2n − 1] and compute y = x2 mod N. Let PN(x) = 1 if x > N/2 and

PN(x) = 0 otherwise. Let also QN(x) = 1 if JN(x) = 1 and QN(x) = 0

otherwise where JN(x) is the Jacobi symbol of x modulo N. Return

(y,PN(x),QN(x)).

F−1(t, y′): Parse t as (p, q) and y′ as (y, b1, b2). Compute the square roots

x1, ..., xk of y using p and q (the number of square roots is bounded by

Lemma 3.5.2). Compute PN(xi) and QN(xi) for all i ∈ [k] and output

the xi such that PN(xi) = b1 and QN(xi) = b2 (Lemma 3.5.3 says that

there exists a unique xi that is consistent with both b1 and b2).

Figure 3.1: A family of (n, 1/4)-LTDF based on the hardness of the 2v3Primes

assumption.

Conversly, let y = (yp1 , ..., ypk) be such that y2 ≡N z. Then it should be

the case that y2
pi
≡pi zpi for all i ∈ [k]. However since pi’s are all primes, each zpi

has exactly two square roots modulo pi, namely ±xpi . That means that the square

roots of z modulo N are exactly those that have the form (±xp1 , ...,±xpk) which

conludes the proof.

The following lemma is needed to prove that the family F = (G,F, F−1) is

injective.

Lemma 3.5.3. Let N = pq where p, q are primes such that p ≡ q ≡ 3 (mod N).

Let also x, y ∈ Z∗N such that x 6= ±y and x2 ≡ y2 ≡ z (mod N). Then JN(x) =
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−JN(y).

Proof. Let z = (zp, zq) where zp = z mod p and zq = z mod q. Since z ∈ QRN

there exists an element x ∈ Z∗N such that x2 ≡N z. Let x = (xp, xq). Then (see

Lemma 3.5.2), z has 4 square roots modulo N, namely (xp, xq), (−xp, xq), (xp,−xq)
and (−xp,−xq). Since y 6= ±x and y2 ≡N z, it must be the case that y equals

either (−xp, xq) or (xp,−xq). Assume wlog that y = (−xp, xq) (the other case is

completely symmetric). Using the properties of the Jacobi symbol we have

JN(x) · JN(y) = Jp(x) · Jq(x) · Jp(y) · Jq(y)

= Jp(xp) · Jq(xq) · Jp(−xp) · Jq(xq)

= −J 2
p (xp) · J 2

q (xq) = −1

where in the last but one equality we used the fact that Jp(−x) = −Jp(x) for all

x ∈ Z∗p and all primes p such that p ≡4 3.

We are now ready to prove the following theorem.

Theorem 3.5.4. Under the 2v3Primes assumption, the family F described in Fig-

ure 3.1 is a family of (n, 1
4
)-LTDFs.

Proof. We prove the properties one by one

• Injectivity/Trapdoor: Notice first that the Jacobi symbol JN(x) can be effi-

ciently computed even if the factorization of N is unknown. Hence F (s, x)

can be evaluated in polynomial time. Let now (s, t) ← G(1λ) (in particular

s = N where N is a Blum integer) and let y′ = F (s, x) = (y, b1, b2). We

distinguish between the following two cases

1. y ∈ Z∗N : Because of Lemma 3.5.2, y has 4 square roots modulo N which

can be recovered using the trapdoor (p, q) (by first recovering the pairs

of square roots modulo p and q separately and then combining them

using the Chinese Remainder Theorem). Let ±x,±z be the 4 square

roots of y modulo N. Since PN(x) = −PN(−x) ∀x only one of x,−x and

one of z,−z is consistent with b1. Assume wlog that x, z are consistent
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with b1. Using Lemma 3.5.3 and since x 6= ±z JN(z) = −JN(x) and

hence only one of x, z is consistent with b2 (recall that x, z ∈ Z∗N and

hence their Jacobi symbols are non-zero).

2. gcd(y,N) > 1 : Assume wlog that gcd(y,N) = p. It is easy to see that in

this case y has exactly 2 square roots (preimages) x and −x (which can

be recovered using the CRT) out of which, only one is consistent with b1

(in this case we only need to check which of x,−x satisfies PN(·) = b1).

This means that for all (n+ 1)-bit Blum Integers N output by G(1λ) and all

x ∈ {0, 1}n the triple (x2 mod N,PN(x),QN(x)) uniquely determines x. In

addition, given (p, q), one can efficiently recover this unique preimage which

concludes that F (defined over {0, 1}n) is a collection of injective trapdoor

functions.

• Lossiness: Let (ŝ = N,⊥)← Ĝ(1λ). Consider the following sets

S1 =

{
x ∈ {0, 1}n

∣∣∣∣ x ∈ Z∗N and x <
N

2

}
S2 =

{
x ∈ {0, 1}n

∣∣ gcd(x,N) > 1 and x <
N

2

}
S3 =

{
x ∈ {0, 1}n

∣∣ x ≥ N

2

}
Clearly S1, S2 and S3 partition {0, 1}n. Also, because of lemma 3.5.2, squaring

modulo N = pqr is an 8-to-1 function over Z∗N . That means that y takes at

most φ(N)
8

values where φ(N) is Euler’s totient function. Also for all x ∈ S1

PN(x) = 0 by definition. Hence (x2 mod N,PN(x),QN(x)) for x ∈ S1 takes

at most φ(N)
8
· 2 values, that is

|Img(S1)| ≤ φ(N)

4
. (3.5)

Also it is clear that |S2| = N−φ(N)
2

(there are N − φ(N) elements that are

not coprime with N and exactly half of them are smaller than N/2). Finally,

|S3| ≤ 2n − N
2
. That is,

|Img(S2)| ≤ |S2| ≤
N − φ(N)

2
and |Img(S3)| ≤ |S3| ≤ 2n − N

2
. (3.6)
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Combining equations (3.5) and (3.6) we get

|Img({0, 1}n)| ≤ |Img(S1)|+ |Img(S2)|+ |Img(S3)|

≤ φ(N)

4
+
N − φ(N)

2
+ 2n − N

2

= 2n − φ(N)

4
≤ 2n − 2n

5
=

4

5
2n

≤ 2n2−
1
4

where in the penultimate inequality we used the fact that (for balanced

primes p, q, r) φ(N) = (p− 1)(q− 1)(r− 1) = N −O(N
2
3 ) and hence φ(N)

4
>

N
5
> 2n

5
. Therefore the image of {0, 1}n when N is a product of 3 primes is

at most 2n

2
1
4

which means that F (ŝ, ·) loses (at least) 1
4
-bits.

• Indistinguishability: The fact that s 'c ŝ (where (s, ·)← G(1λ) and (ŝ, ·)←
Ĝ(1λ)) follows directly from the 2v3Primes assumption.

This concludes the proof that F as defined in Figure 3.1 is a family of (n, 1
4
)-lossy

functions.

Remark 3.5.5. It is interesting to note here that the above construction is an ex-

ample of a lossy function for which lossiness cannot be amplified (by much) through

the hardness assumption. That is, we can achieve higher lossines by assuming that

is hard to distinguish products of 2 primes from products of k primes (for k > 3)

but this increase in lossiness comes at the cost of strengthening the assumption

which, in fact, becomes wrong when k is “large” (for modulus N of fixed length).

Chapter 3 is, in part, a reprint of the paper “Chosen-Ciphertext Security

from Slightly Lossy Trapdoor Functions” [120], co-authored with Scott Yilek, pub-

lished in the proceedings of the 13th International Conference on Practice and The-

ory in Public Key Cryptography (PKC 2010). Both authors contributed equally

to this paper.



Chapter 4

Pseudorandom Generators from

Knapsack Functions

Overview of the chapter. In this chapter we establish the connection between

the search and decision problems associated to families of bounded knapsack func-

tions. Namely, we explore the conditions on the underlying group G and the input

distribution X under which a knapsack family, which is hard to invert, also pro-

duces pseudorandom outputs. We start by presenting our results in Section 4.1 and

then briefly discuss related work in Section 4.2. The main result of this Chapter

is Theorem 4.3.1 which provides sufficient (and in many cases necessary) condi-

tions for the pseudorandomness of the output of a knapsack function. Section 4.3

contains the formal statement and proof of Theorem 4.3.1. The implications of

Theorem 4.3.1 are laid out in Section 4.4 with emphasis on groups and input

distributions that are important in cryptographic applications.

4.1 Results

Let G be any finite abelian group and g = (g1, . . . , gm) ∈ Gm be a sequence

of m group elements. The sequence g gives rise to a linear function fg : Zm → G
defined as fg(x) =

∑
i xigi. fg can be considered as the generalization of the

subset sum function to arbitrary groups G (instead of just cyclic) and arbitrary

53
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inputs (instead of binary). In this chapter we address the following question: under

which conditions on the group G and the input distribution, the uninvertibility of

fg implies also that fg produces pseudorandom inputs?

Our main technical result (Theorem 4.3.1) shows that for any finite abelian

group G and input distribution X , the output of the knapsack function is pseudo-

random provided the following two conditions hold:

1. fg is computationally hard to invert with respect to input distribution X ,

and

2. certain folded versions of fg (where both the key g and the output fg(x)

are projected onto a quotient group Gd = G/dG for some d ∈ Z,) have

pseudorandom output.

The second condition above may seem to make the statement in the theorem

vacuous, as it asserts the pseudorandomness of fg assuming the pseudorandomness

of (certain other versions of) fg. The power of the theorem comes from the fact

that the quotient groups Gd considered are very small. So small that for many

interesting groups and input distributions the folded knapsack function fg(x) mod

dG compresses the input (rather than stretching it) and produces an output which

is statistically close to uniform. Specific groups and input distributions for which

this holds include:

• Groups whose order contains only large prime factors, larger than the max-

imum value of the input coefficients. Cyclic groups with prime order and

vector groups of the form G = Zkp for prime p fall into this category. This

result generalizes those in [83] from uniform binary input to arbitrary input

distributions.

• Distributions that, when folded (modulo small divisors of the order of G,)

maintain high entropy relative to the size of the quotient group G/dG. (See

Theorem 4.4.3.) Groups of the form G = Zk
2`

and uniform input distribution

over Zm2i (for some i < `) satisfy this requirement.
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This last parameter set is a very attractive choice in practice since both group

operations and input sampling are particularly efficient and easy to implement

using arithmetic modulo powers of 2.

4.2 Related Work

Our work relies upon and extends the work of Impagliazzo and Naor [83]

who proposed simple and efficient pseudorandom generators based on the hardness

of the subset sum problem. Roughly, the subset sum problem, parametrized by

a set S, a positive integer n and a sequence of n elements (a1, ..., an) from S, is

the problem of inverting a function f : {0, 1}n → S defined as f(x1, . . . , xn) =∑n
i=1 xiai ∈ S. The main technical contribution of [83] is a reduction showing

that, when S is a cyclic group, the hardness of inverting f implies that f is also a

good pseudorandom generator. Borrowing techniques from [83], Fischer and Stern

[59] extending the reduction to vector groups Zk2 effectively constructing efficient

pseudorandom generators based on the hardness of syndrome decoding.

We generalize the results of [83] and [59] in two ways:

• We consider functions over arbitrary finite groups G. Only groups of the

form ZN were considered in [83] (for two representative choices of N , prime

and power of 2), whereas [59] considered vector groups of the form Zk2.

• We consider generalizations of the subset sum function (typically referred to

as “knapsack” functions) where the input coefficients xi take values from a set

{0, . . . , s} (or, more generally {−s, . . . , s}) for any (polynomially bounded)

s, rather than just {0, 1}. In addition, we consider arbitrary (possibly non-

uniform) input distributions. By contrast, [83] and [59] considered only bi-

nary inputs. Moreover, in [83], the input is uniformly distributed over {0, 1}n,

while in [59] it is distributed uniformly over all n-dimensional binary vectors

with fixed Hamming weight.

Techniques. Our results rely heavily on Fourier analysis and, more specifically,

on a recently developed algorithm [4] that, given oracle access to a function f (de-
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fined over an arbitrary abelian group) “learns” its heavy Fourier coefficients. The

use of Fourier analysis in inverting (learning) functions is by no means new. In fact,

it has been extensively exploited within the learning theory community mostly in

the study of functions defined over the boolean hybercube yielding elegant learning

algorithms for a wide range of classes including decision trees [96], DNF formu-

las [24] juntas [121] and more. In Cryptography, two interesting applications of

Fourier analysis are the Kushilevitz-Mansour [96] formulation of the proof of the

Goldreich-Levin [67] hard-core predicate for any one-way function and the proof

of hard-core predicates for several number-theoretic functions [4]. Both applica-

tions draw upon an intriguing connection between hard-core predicates and locally

list-decodable codes which can be roughly summarized via the following analogy:

Each predicate P defines an error correcting code CP , the existense of an imperfect

predictor for P translates to local access to a corrupted codeword of CP while re-

covering x from f(x) (where f is presumably one-way) corresponds to list-decoding

CP .

4.3 Pseudorandomness of Knapsack Functions

This section is dedicated to the proof of the following theorem.

Theorem 4.3.1 (Main). For any s = poly(n) ∈ N, m = poly(n) ∈ N, finite

abelian group G and input distribution X over [s]m ⊂ Zm, if Knap = Knap[G,X ] is

uninvertible and Knapd = Knap[Gd,X ] is pseudorandom for all d < s, then Knap

is also pseudorandom.

Before we proceed to the proof a few remarks are in order.

Remark 4.3.2. Theorem 4.3.1 as well as all its implications (see Section 4.4)

hold true even if X is defined over {a, . . . , b}m for a, b ∈ Z (or more gener-

ally over {a1, . . . , b1} × · · · × {am, . . . , bm}) as long as the (maximum) size s =

maxi{bi − ai + 1} of the intervals is polynomially bounded. Indeed, knapsack

instances (g, fg(x)) with inputs xi ∈ {ai, ai + 1, . . . , bi} can be immediately re-

duced to instances (g, fg(y)) = (g, fg(x) − fg(a1, . . . , am)) where yi = xi − ai ∈
{0, . . . , bi − ai} ⊆ [s].
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Also, all statements remain essentially unchanged for distributions X such

that Pr{x /∈ [s]m
∣∣ x ← X} = negl(n) even if the support of X is possibly larger

than [s]m. For ease of exposition, we will omit dealing with these two technicalities

throughout the rest of the chapter.

Remark 4.3.3. For knapsack families Knap = Knap[G,X ] that stretch their in-

put sufficiently, Theorem 4.3.1 is an if and only if statement. Indeed, if Knap

is pseudorandom, then so is Knapd = Knap[Gd,X ] for any d, because there is

an efficiently computable regular transformation (g, g) 7→ (g mod d, g mod d) that

maps F(Knap) to F(Knapd) and U(Gm) × U(G) to U(Gm
d ) × U(Gd). Moreover,

if Knap[G,X ] stretches its input (or, more specifically, if the range [F(Knap)] is

sparse in Gm×G), then any inverter with noticeable success probability can be used

as a distinguisher for F(Knap) in a straightforward way.

4.3.1 Overview of the Proof

We prove Theorem 4.3.1 by contradiction. We show that for any finite

abelian group G and any input distribution X over [s]m ⊂ Zm (for any s = poly(n)),

if Knapd = Knap[Gd,X ] is pseudorandom for all d < s, then the existence of an

efficient distinguisher for Knap = Knap[G,X ] implies the existence of an efficient

inverter for Knap = Knap[G,X ]. The reduction proceeds into two steps and uses

the notion of the predictor. Informally, a predictor is a weak form of an inverter

algorithm that, on input a function f ∈ F , a target value f(x), a value ` and a

query vector r ∈ Zm` , attempts to recover the value of x · r (mod `), rather than

producing the entire input x (see Section 4.3.2 for a formal definition). Here ` is

an auxiliary value, unrelated to the parameters of the knapsack function family,

that describes the amount of information recovered by the weak inverter.

In the first step (Lemma 4.3.5) we show that any predictor for Knap =

Knap[G,X ] (that guesses x · r (mod `) with “good” probability for “large” `) can

be efficiently transformed into an inverter for Knap. This step uses Fourier analysis

and holds true for any (not necessarily knapsack) function family with domain

[X ] ⊆ Zm. In the second step (Proposition 4.3.10, Section 4.3.3), we prove that if

there exists a distinguisher for Knap, but no distinguisher for Knapd = Knap[Gd,X ]
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PREDICTORINVERTER DISTINGUISHER

Input : g,g · x
Goal: Find x

Input : g,g · x, r
Goal : find

x · r (mod `)

Input: g,g · x
or U(Gm+1)

Goal: Distinguish

Step 1 Step 2

Figure 4.1: Overview of the proof of Theorem 4.3.1.

for small d, then there exists a sufficiently large ` and an associated predictor for

Knap. This step is specific to knapsack families and relies on both the underlying

group G and the distribution X . Schematically, the proof is shown in Figure 4.1.

Sections 4.3.2 and 4.3.3 are devoted to the first and the second step of the reduction

respectively. The two steps combined yield Theorem 4.3.1 almost directly.

Proof. (of Theorem 4.3.1) Assume for the sake of contradiction that Knap is (t, θ)-

distinguishable for some t = poly(n) and some noticeable θ. Since Knapd is pseu-

dorandom for all d < s, it follows by Proposition 4.3.10 that Knap is (t′, ε, d∗)-

biased for some t′ = O(t + poly(n)) = poly(n), noticeable ε and polynomially

bounded d∗ ≥ s. Therefore, by Lemma 4.3.5, Knap is also (t′/δ, δ)-invertible for

some δ = 1/poly(n, log d∗, 1/ε) = 1/poly(n) which contradicts the uninvertibility

of Knap.

4.3.2 Step 1: From Uninvertibility to Unpredictability

In this section we show how a “good” predictor can be turned to an inverter.

We define two notions to measure the quality of a predictor: accuracy and bias.

The first is probably the most natural notion, and directly measures the predictor’s

success probability. The second is more technical but carries more information

about the error distribution of the predictor. The notion of bias is appropriate for

applying the Fourier analytic techniques from Section 2.6, and its role will become

evident in the proof of Lemma 4.3.5. For the special case of prime ` the two notions

are closely related, as shown in Lemma 4.3.6.
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Definition 4.3.4. For any ` ∈ N and function family F = (F,X ) with domain

[X ] ⊆ Zm and range R, an `-predictor for F is a probabilistic algorithm P that

on input (f, f(x), r) ∈ F × R × Zm` outputs a value P(f, f(x), r) ∈ Z` which is

intended to be a guess for x · r (mod `). The error distribution of a predictor P is

defined as

E`(P) = {P(f, f(x), r)− x · r mod ` | f ← U(F ),x← X , r← U(Zm` )} .

An `-predictor P is (t, ε)-accurate if it runs in time t and Pr{0← E`(P)} ≥ 1
`

+ ε,

i.e., P outputs the correct inner product x · r (mod `) with a probability which is

better (by ε) than a random guess. The bias of an `-predictor P is the quantity∣∣E [ ωk` | k ← E`(P)
]∣∣. If P runs in time t and has bias at least ε, we say that P is

(t, ε)-biased. A function family (F,X ) is (t, ε, `)-biased if it admits a (t, ε)-biased

`-predictor.

We start by proving that if a function family F = (F,X ) is uninvertible,

then it is also unpredictable. This step of the reduction is not specific to knapsack

families. Rather, it holds for any function family F with [X ] ⊆ Zm. At a high

level, the proof first reduces the problem of inverting F, i.e., recovering the input

x from y = f(x) for some f ∈ F , to the problem of learning the heavy Fourier

coefficients of a carefully chosen function h, and then uses the SFT algorithm from

Theorem 2.6.1 for the latter problem. We remark that the learning takes place

over the group H = Zm` , which is related to [X ] but is unrelated to the group G
of our knapsack function family. Lemma 4.3.5 provides sufficient conditions under

which a predictor for a function family F implies the existence of an inverter for F.

Lemma 4.3.5. For any s ∈ N, m = poly(n) ∈ N and function family F = (F,X )

defined over [X ] ⊆ [s]m ⊂ Zm, if F is (t, ε, `)-biased for some ` ≥ s, then it is also

(t/δ, δ)-invertible for δ = 1/poly(n, log `, 1/ε).

Proof. Let P be a (t, ε)-biased `-predictor for F. We use P to devise an inverter

I that on input (f, f(x)) tries to recover x using the SFT algorithm from The-

orem 2.6.1. In order to run SFT , the inverter I needs to provide answers to the

queries r ∈ Zm` made by SFT . The queries are answered invoking P on an appro-

priate input (to be defined). The goal is to present SFT with an oracle/function
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h : Zm` → C which is highly correlated with the character χx (for the unknown in-

put x), so that SFT will include x in the list of heavy Fourier coefficients. Details

follow.

The inverter I takes as input a function f ← U(F ) and a value y = f(x); it

then picks a random string coins and runs algorithm SFT (from Theorem 2.6.1)

with τ = ε2

4
. For every query r ∈ Zm` issued by SFT, I runs P on input1

(f, f(x), r; coins) and returns ω
P(f,f(x),r;coins)
` ∈ T to SFT , where ω` = e2πi/`. No-

tice that the same random string coins is used for all queries, so that the queries

of SFT are answered according to a deterministic function

hf,f(x),coins(r) = ω
P(f,f(x),r;coins)
`

from Zm` to C parametrized by f, f(x) and coins. Let L = {x1, . . . ,x|L|} ⊆ Zm` be

the (candidate) ε2

4
-heavy Fourier coefficients returned by SFT upon termination

and Sx = {xi ∈ L
∣∣f(xi) = f(x)} be the set of all values in L that map to y = f(x)

under f . I can construct Sx without knowing x, by checking if f(xi) = y for every

element xi ∈ L. If Sx is non-empty, I selects a value x′ randomly and uniformly

from Sx and outputs it. Otherwise, I fails.

The running time of I is bounded by the running time of SFT times the

running time of the predictor. Since ‖ĥf,f(x),coins‖∞ = 1, the running time of SFT

is bounded by poly(m log `, 1/ε) = poly(n, log `, 1/ε) (see Theorem 2.6.1) and hence

the overall time of the inverter is poly(n, log `, 1/ε) · t.
It only remains to analyze the success probability of I. Notice that, condi-

tioned on x ∈ L, I outputs x with probability 1/|Sx| ≥ 1/|L| ≥ 1/poly(n, log `, 1/ε).

Therefore Pr{I(f, f(x)) = x} ≥ Pr{x∈L}
|L| . In order to bound Pr{x ∈ L}, we con-

sider the Fourier transform of the function h used in answering the queries of SFT ,

and compute the Fourier coefficient corresponding to x:

ĥf,f(x),coins(x) = E
r←U(Zm` )

[
ω
P(f,f(x),r;coins)
` χx(r)

]
= E

r←U(Zm` )

[
ω

[P(f,f(x),r;coins)−x·r]
`

]
.

1The string coins is the internal randomness of P.
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Averaging over f ← U(F ), f(x) and coins we get

E
f,f(x),coins

[
ĥf,f(x),coins(x)

]
= E

f,f(x),coins,r

[
ω

[P(f,f(x),r;coins)−x·r]
`

]
= E

[
ωk` | k ← E`(P)

]
.

Notice that this is precisely the (complex) bias of the predictor. So, by Jensen’s

inequality (|E [ Z ] | ≤ E [ |Z| ]), we have

E
f,f(x),coins

[ ∣∣ĥf,f(x),coins(x)
∣∣ ] ≥ ∣∣∣∣ E

f,f(x),coins

[
ĥf,f(x),coins(x)

] ∣∣∣∣
=

∣∣E [ ωk` | k ← E`(P)
]∣∣ = ε .

This proves that the expected magnitude of the Fourier coefficient ĥf,f(x),coins(x)

is at least ε. By Markov’s inequality, Prf,f(x),coins{|ĥf,f(x),coins(x)| ≥ ε
2
} ≥ ε

2
. So,

with probability at least ε/2 (over f ← U(F ),x ← X and coins) x is a ε2

4
-heavy

Fourier coefficient of hf,f(x),coins, and hence it will be included in L with probability

at least 2/3. So overall, Pr{I(f, f(x)) = x} ≥ Pr{x∈L}
|L| ≥ (ε/2) · (2/3) · 1/|L| =

1/poly(n, log `, 1/ε).

The previous lemma uses the technical notion of bias to quantify the quality

of a prediction algorithm. For the special case of a prime `, it is sufficient to

consider an accurate `-predictor as the following lemma shows.

Lemma 4.3.6. Let F = (F,X ) be a function family with [X ] ⊂ Zm. For any

prime p, if F admits a (t, ε)-accurate p-predictor, then it also admits a (t, ε′)-biased

p-predictor where ε′ = εp/(p− 1) < ε.

Proof. Let P be a (t, ε)-accurate predictor for F. Consider now a predictor P ′,
which takes as input f, f(x) and r ∈ Zmp and tries to predict x · r (mod p) as

follows: P ′ picks y ← U(Z∗p), runs z ← P(f, f(x), yr), and returns z/y. For any k,

we have

Pr{k ← Ep(P ′)} = Pr{P ′(f, f(x), r) = x · r + k (mod p)}

= Pr{y−1P(f, f(x), yr) = x · r + k (mod p)}

= Pr{P(f, f(x), t) = x · t + yk (mod p)}



62

where t = yr has the same distribution as r. Using the accuracy bound, for k = 0

we immediately get

Pr{0← Ep(P ′)} = Pr{P(f, f(x), t) = x · t (mod p)} =
1

p
+ ε .

For k 6= 0, since y is distributed uniformly at random over Z∗p = Zp \ {0}, we have

Pr{k ← Ep(P ′)} = Pr{y = (P(f, f(x), t)− x · t)/k (mod p)}

=
1

p− 1
· Pr{P(f, f(x), t) 6= x · t}

=
1

p− 1

(
1− 1

p
− ε
)

=
1

p
− ε

p− 1
.

Using these expressions and the identity
∑p−1

k=0 ω
k
p = 0, the bias of P ′ is easily

computed as

∣∣E [ ωkp | k ← Ep(P ′) ]∣∣ =

∣∣∣∣∣
p−1∑
k=0

Pr{k ← Ep(P ′)} · ωkp

∣∣∣∣∣ =

∣∣∣∣ εp

p− 1

∣∣∣∣ > ε .

Finally P ′ runs in essentially the same time as P .

Combining the previous two lemmas, we obtain as a special case the results

of [67, 68] for learning linear functions over a field given query access to a noisy

version of the function.

Corollary 4.3.7. For any s ∈ N, m = poly(n) ∈ N and function family F = (F,X )

with [X ] ⊆ [s]m ⊂ Zm, if there exists a (t, ε)-accurate p-predictor for some prime

p and F, then F is (t/δ, δ)-invertible, for δ = 1/poly(n, log p, 1/ε).

Proof. Easily follows from Lemma 4.3.5 and Lemma 4.3.6.

4.3.3 Step 2: From Unpredictability to Pseudorandomness

In this section we prove that, for knapsack function families, unpredictabil-

ity implies pseudorandomness. In other words, we show that, under certain con-

ditions, a distinguisher D for Knap = Knap[G,X ] with noticeable distinguishing

advantage can be turned into a predictor for Knap with noticeable bias. At a high

level, the predictor works as follows: on input a modulus `, function g ∈ Gm,
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y = g · x ∈ G and r ∈ Zm` , it first makes a guess for the inner product x · r mod `;

it then uses that guess to modify the knapsack instance (g, y = g ·x) ∈ Gn×G into

a related instance (g′, y′), and finally invokes the distinguisher D on the modified

instance (g′, y′). The output of D is used to determine whether the initial guess

was correct or not. The same technique was used by Impagliazzo and Naor in [83].

However, in the restricted subset-sum setting considered in [83], the reduction is

rather straightforward: if the guess for x · r mod ` is correct, then the modified

knapsack instance (g′, y′) is distributed according to F(Knap), whereas if the guess

is wrong, the distribution of (g′, y′) is (statistically close to) uniform over Gm×G.

But these are exactly the two distributions that D can tell apart and therefore a

noticeable distinguishing advantage translates directly into an accurate (or biased)

predictor.

When considering general abelian groups and distributions X with [X ] 6⊆
{0, 1}m, several technical difficulties arise. Unlike [83], if the guess for x · r mod `

is wrong, then the distribution of (g′, y′) can be statistically far from uniform.

In fact, (g′, y′) can be distributed according to Fd(Knap) for any divisor d of the

group exponent MG. Notice that for d = 1 and d = MG we get the two “extreme”

distributions F1(Knap) = U(Gm ×G) and FMG(Knap) = F(Knap) respectively.

However, other Fd(Knap) (with 1 < d < MG) can also arise. Depending on the

order and structure of the underlying group G, and the output distribution of

the distinguisher D on the various auxiliary distributions Fd(Knap), the technical

details of the reduction differ significantly. As a warm-up, we first present a weak

form of our main theorem.

Proposition 4.3.8. For any s = poly(n) ∈ N, m = poly(n) ∈ N, finite abelian

group G and input distribution X over [X ] ⊆ [s]m ⊂ Zm, if Knap = Knap[G,X ] is

(t, δ)-distinguishable from uniform for some noticeable δ, but Knapd = Knap[Gd,X ]

is pseudorandom for all d < 2ms2, then for any prime p with s ≤ p < 2s = poly(n),

Knap is (O(t+m), ε, p)-biased for some noticeable2 ε.

Proof. Let D be a (t, δ)-distinguisher for Knap[G,X ]. To simplify notation, we

2 Here we do not seek to optimize ε as a function of δ, but we mention that the predictor in
the proof has bias at least ε ≥ δ/(2ms2).
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define βd = Pr{D(Fd(Knap)) = 1}. Notice that βMG = Pr{D(F(Knap)) = 1} and

β1 = Pr{D(U(Gm ×G)) = 1}. By hypothesis, βMG − β1 = δ (because D is a

(t, δ)-distinguisher for F(Knap)), while βd−β1 = negl(n) for all d < 2ms2 (because

Knapd is pseudorandom for all d < 2ms2).

Let p be any prime between s and 2s. We need to show that there is an

ε-biased p-predictor. Since p is prime, it is enough to find a p-predictor which

is ε-accurate, rather than ε-biased. The existence of an ε-biased predictor then

follows by Lemma 4.3.6.

The ε-accurate predictor P is shown in Figure 4.2. Intuitively, the predictor

tries to guess the inner product x · r over the integers. If the guess c is correct,

the predictor invokes the distinguisher on input FMG(Knap) = F(Knap), otherwise

it invokes D on Fd(Knap) for some d < m(s − 1)p < 2ms2. But for all such

d, F(Knapd) and therefore Fd(Knap) (by Lemma 2.3.3) is pseudorandom, so D
will behave as if it had been invoked on the uniform distribution F1(Knap). So,

the distinguisher D will determine (with advantage δ − negl(n)) if the guess c was

correct, and if not, the predictor P will output a guess other than c. Details follow.

Input: (g, y, r) // y = g · x, r← U(Zmp )
Output: guess ∈ Zp
1. Pick c← U(Zm(s−1)p)
2. Pick g ← U(G)
3. ḡ← g − r · g
4. Run D on input (ḡ, y − c · g)
5. if D outputs 1
6. guess← c mod p
7. else
8. guess← U(Zp \ (c mod p))
9. return guess

Figure 4.2: Predictor for Proposition 4.3.8 (weak predictor).

Let c′ = x · r = A · p + v (0 ≤ v < p) be the inner product x · r over the

integers. P is trying to predict v = c′ (mod p). The input to the distinguisher D
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(line 4, Figure 4.2) is (ḡ, R) where

R = y − cg = g · x− cg = g · x− c′g + c′g − cg

= g · x− (r · x)g + (c′ − c)g = ḡ · x + (c′ − c)g

By Lemma 2.3.1, the input to D is (ḡ, ḡ ·x+d ·g) = Fd(Knap) for d = gcdG(c′−c).
So, the probability that D outputs 1 is by definition βgcdG(c′−c).

For any d, let Cd be the event “gcdG(c′− c) = d”. Clearly,
∑

d|MG
Pr{Cd} =

1. Notice that since c, c′ ∈ [m(s − 1)p], we only need to consider either d = MG

(when c′ = c), or small values d < m(s − 1)p < 2ms2. (For all other values of d,

we have Pr{Cd} = 0.) The probability that P guesses correctly the inner product

x · r (mod p) is given by

Pr{guess = v} =
∑
d|MG

Pr{guess = v | Cd}Pr{Cd}. (4.1)

Conditioning on the output of D, we get that for every d,

Pr{guess = v | Cd} = αd · βd +
1− αd
p− 1

(1− βd) (4.2)

where αd = Pr{c = c′ (mod p) | Cd}. It immediately follows from the definition

that
∑

d|MG
αd Pr{Cd} = Pr{c = c′ (mod p)} = 1

p
. Notice that for d = MG we

have αMG = 1, Pr{CMG} = 1/(m(s− 1)p) and βMG = β1 + δ. For all other d (with

Pr{Cd} 6= 0,) we have βd = β1 + negl(n). Plugging (4.2) in (4.1) and simplifying,

we obtain

Pr{guess = v} =
∑
d|MG

Pr{Cd}
(
αdβd +

1− αd
p− 1

(1− βd)
)

= Pr{CMG}
(
αMGβMG +

1− αMG

p− 1
(1− βMG)

)
+

∑
d|MG,d<MG

Pr{Cd}
(
αd(β1 + negl) +

1− αd
p− 1

(1− β1 − negl)

)
≥ 1

p
+

δ

m(s− 1)p
− negl(n) .

This proves that the p-predictor is ε-accurate for ε ≥ δ/(m(s − 1)p) − negl(n) ≥
δ/(2ms2). Since p is a prime, by Lemma 4.3.6, there is also an ε-biased predictor

with essentially the same running time O(m+ t) as P .



66

Proposition 4.3.8 along with Lemma 4.3.5 already gives search to decision

reductions for some interesting knapsack families, but it requires (as an assump-

tion) the pseudorandomness of Knapd = Knap[Gd,X ] for values of d in a larger

range than what Theorem 4.3.1 specifies. The following lemma plays a crucial role

in the proof of Proposition 4.3.10, which extends Proposition 4.3.8 to hold under

the assumptions in Theorem 4.3.1.

Lemma 4.3.9. For any d ∈ N,
∑
{r2 : 1 ≤ r < d, r|d} ≤

(
π2

6
− 1
)
· d2.

Proof. Let r1 > r2 > . . . > rk = 1 be all the proper divisors of d. Clearly ri ≤ d
i+1

(the largest proper divisor of d is at most d/2, the second largest is at most d/3

and so on). It follows that

k∑
i=1

r2
i ≤

k∑
i=1

(
d

i+ 1

)2

=
k+1∑
i=2

(
d

i

)2

≤ d2

∞∑
i=2

1

i2
= d2 ·

(
π2

6
− 1

)
.

Proposition 4.3.10. For any s = poly(n) ∈ N, m = poly(n) ∈ N, finite abelian

group G and input distribution X over [X ] ⊆ [s]m ⊂ Zm, if Knap = Knap[G,X ] is

(t, δ)-distinguishable from uniform for some noticeable δ, but Knapd = Knap[Gd,X ]

is pseudorandom for all d < s, then Knap is (O(t + m), ε, d∗)-biased for some

noticeable ε and polynomially bounded d∗ ≥ s.

Proof. In order to relax the condition for pseudorandomness of Knapd from any

d ≤ 2ms2 to any d < s, we need to overcome two major technical difficulties.

First, guessing the inner product x · r over the integers, as done in [83] and Propo-

sition 4.3.8, is unlikely to work for the following reason: Even though a correct

guess for x · r results in the distribution F(Knap) = FMG(Knap) being input to

the distinguisher as desired, a wrong guess produces Fd(Knap) for some d smaller

than 2ms2 but possibly larger than s. In that case, we have no guarantee that the

distinguishing advantage between FMG(Knap) and Fd(Knap) (and therefore the

predicting advantage of P) is noticeable. We overcome this difficulty by having P
guess x · r (mod d) (instead of over the integers) for some divisor3 d of MG (with

s ≤ d < 2ms2). For such a divisor d, our predictor runs the distinguisher with

3If the interval [s, 2ms2) does not contain any divisor of MG, we can apply Proposition 4.3.8
directly.
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input Fd(Knap) whenever the guess for x · r (mod d) is correct or with Fd′(Knap)

for some d′ | d (d′ < d) when the guess for x · r (mod d) is wrong. The second

challenge is to actually prove the existence of an appropriate divisor d for which the

distinguishing gap of D between Fd(Knap) and Fd′(Knap) is sufficiently large for all

d′ |d. Notice here that d might be composite and hence a predictor that guesses x ·r
(mod d) with probability larger than 1/d + 1/poly(n) does not necessarily imply

an inverter with noticeable success probability (recall that the results of [68] hold

over fields). Here is where the power of Lemma 4.3.5 and Fourier analysis come

into the play. What we actually show, is that there exists a (possibly composite)

d∗ and an associated d∗-predictor that has bias ε for some noticeable ε. Details

follow.

We adopt the notation from the proof of Proposition 4.3.8. Namely for

a (t, δ)-distinguisher D we define βd = Pr{D(Fd(Knap)) = 1}. In addition, for

brevity, we often write a ≡c b instead of a ≡ b (mod c) and define δij = 1 if i = j

and 0 otherwise.

By assumption, βMG − β1 = δ while βd − β1 = negl(n) for all d < s.

We can further assume that there exists d̃ with s ≤ d̃ ≤ 2ms2 = poly(n) such

that βd̃ − β1 = δ̃ for some noticeable δ̃ (otherwise the proof follows directly from

Proposition 4.3.8). Let d∗ be the smallest divisor of d̃ such that4 |βd∗ − β1| ≥ d∗3δ̃
d̃3

.

Notice that d∗ has the following two useful properties: (a) d∗ ≥ s. This is true

because |βd∗ − β1| ≥ d∗3δ̃
d̃3

= 1/poly(n) whereas, by hypothesis, |βd − β1| = negl(n)

for all d < s. (b) |βd′ − β1| < d′3δ̃
d̃3

for all d′ | d∗ by definition of d∗. We will use

these properties to construct a d∗-predictor P for Knap. P is shown in Figure 4.3.

In the remaining of the proof we analyze the error distribution Ed∗(P) of P and

prove that P has noticeable bias.

Let c′ = r · x = A · d∗ + v (0 ≤ v < d∗) be the inner product of x · r over

4Such a d∗ always exists. Indeed d̃ itself satisfies this condition and is a divisor of itself.
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Input: (g, y, r) // y = g · x, r← U(Zmd∗)
Output: guess ∈ Zd∗

1. Pick c← U(Zd∗)
2. Pick g1 ← U(G), g2 ← U(G)
3. ḡ← g − r · g1

4. Run D on input (ḡ, y − c · g1 + d∗ · g2)
5. if D returns 1
6. guess← c
7. else
8. guess← U(Zd∗ \ c)
9. return guess

Figure 4.3: Predictor for Proposition 4.3.10 (strong predictor).

the integers. The input to the distinguisher D (line 4, Figure 4.3) is (ḡ, R) where

R = y − cg1 + d∗g2 = g · x− cg1 + d∗g2

= g · x− c′g1 + (c′ − c)g1 + d∗g2 = g · x− (r · x)g1 + (c′ − c)g1 + d∗g2 =

= ḡ · x + (Ad∗ + v − c)g1 + d∗g2 .

Notice that c is the initial attempt (line 1) of P to guess x · r (mod d∗) while v is

the actual value of x · r (mod d∗). If c = v then, by Lemma 2.3.1, D is invoked on

(ḡ, ḡ · x + d∗g) = Fd∗(Knap).

If c 6= v then D gets (ḡ, ḡ ·x + gcd(Ad∗+ v− c, d∗) · U(G)) = (ḡ, ḡ ·x +d′ · U(G)) =

Fd′(Knap) for some d′ | d∗ with d′ < d∗ (notice that c, v ∈ [d∗] and hence if c 6= v,

then d∗ - Ad∗ + v − c). More specifically, d′ = gcd(v − c, d∗) = gcd(c− v, d∗).
For all j ∈ [d∗] let Cj be the event “c ≡d∗ v + j”, i.e., the initial guess c

differs from actual v by j (mod d∗). Notice that, since c ∈ Zd∗ is chosen uniformly

at random, Pr{Cj} = 1/d∗ for all j ∈ [d∗]. The error distribution of P is given by

the probabilities Pr{guess ≡d∗ v + k}, k ∈ [d∗]. Conditioning on the events Cj,
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we get

Pr{k ← Ed∗(P)} = Pr{guess ≡d∗ v + k}

=
d∗−1∑
j=0

Pr{guess ≡d∗ v + k
∣∣ Cj}Pr{Cj} (4.3)

=
1

d∗

d∗−1∑
j=0

Pr{guess ≡d∗ v + k
∣∣ Cj} .

If we further condition on whether D outputs 1 or 0, it is not hard to see that

Pr{guess ≡d∗ v + k
∣∣ Cj} = δkj · βgcd(j,d∗) +

1− δkj
d∗ − 1

(1− βgcd(j,d∗)) .

Replacing in (4.3) gives

Pr{k ← Ed∗(P)} =
1

d∗
+

1

d∗
βgcd(k,d∗) −

1

d∗(d∗ − 1)

∑
j 6=k

βgcd(j,d∗) .

Notice that

Pr{k ← Ed∗(P)} − Pr{1← Ed∗(P)} =
1

d∗ − 1
(βgcd(k,d∗) − β1) .

Using this and the fact that
∑d∗−1

k=0 ωkd∗ = 0 we get that∣∣∣∣∣
d∗−1∑
k=0

Pr{k ← Ed∗(P)}ωkd∗

∣∣∣∣∣ =
1

d∗ − 1

∣∣∣∣∣
d∗−1∑
k=0

(βgcd(k,d∗) − β1)ωkd∗

∣∣∣∣∣
≥ 1

d∗ − 1

[
|βd∗ − β1| −

d∗−1∑
k=1

∣∣βgcd(k,d∗) − β1

∣∣](4.4)

Next we bound
∑d∗−1

k=1

∣∣βgcd(k,d∗) − β1

∣∣ from above. Define Φ(d∗, r) = {1 ≤ i < d∗ :

gcd(i, d∗) = r} and let5 φ(d∗, r) = |Φ(d∗, r)|. Clearly for any divisor d′ of d∗, we

have φ(d∗, d′) ≤ d∗

d′
. So

d∗−1∑
k=1

∣∣βgcd(k,d∗) − β1

∣∣ ≤ ∑
d′ | d∗
d′<d∗

φ(d∗, d′) |βd′ − β1| ≤
∑
d′ | d∗
d′<d∗

d∗d
′3δ̃

d′d̃3
=
d∗δ̃

d̃3

∑
d′ | d∗
d′<d∗

d
′2

5This is a generalization of Euler’s totient function.
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where in the last inequality we used the fact that for all proper divisors d′ of d∗,

|βd′ − β1| < d
′3δ̃
d̃3
. Replacing back in (4.4) we finally get∣∣∣∣∣

d∗−1∑
k=0

Pr{k ← Ed∗(P)} · ωkd∗

∣∣∣∣∣ ≥ 1

d∗ − 1

[
d∗3δ̃

d̃3
− d∗δ̃

d̃3

∑
d′ | d∗
d′<d∗

d′2
]

=
d∗δ̃

d̃3(d∗ − 1)

[
d∗2 −

∑
d′ | d∗
d′<d∗

d
′2

]

≥ d∗3δ̃

d̃3(d∗ − 1)

(
2− π2

6

)
≥ 1

poly(n)

where in the penultimate inequality we used Lemma 4.3.9.

4.4 Implications and applications

Theorem 4.3.1 provides explicit and usable criteria for checking if the output

of a knapsack function family, that is (assumed to be) uninvertible, is pseudoran-

dom. Given a group G and an input distribution X , one needs only to check that

the folded knapsack families Knapd = Knap[Gd,X ] are pseudorandom. As it turns

out, for many choices of (G,X ), the folded knapsack functions Knapd compress their

input and map the input distribution X to a distribution which is statistically close

to the uniform distribution over Gd. More specifically, ∆U(F(Knapd)) = negl(n),

and Knapd is pseudorandom in a strong statistical sense. Below, we provide some

representative examples where that happens, focusing on those that are most in-

teresting in applications. But before we do that, it is instructive to digress a little

and explore a choice of (G,X ) for which uninvertibility does not imply pseudoran-

domness6. According to Theorem 4.3.1, in any such counter-example, there should

exist a divisor d of |G| such that F(Knapd) can be efficiently distinguished from

the uniform distribution.

6Strictly speaking, what we prove is: there exist group G and distribution X for which
Knap[G,X ] is widely believed to be uninvertible whereas it is provably not pseudorandom.
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Lemma 4.4.1. If there exists a group G and an input distribution X such that

Knap[G,X ] is uninvertible, then there exist a group G′ and a distribution X ′ such

that Knap[G′,X ′] is uninvertible, but not pseudorandom.

Proof. Let p be a small prime such that gcd(p,MG) = gcd(p, |G|) = 1. Notice that

MG ≤ |G| has less than log2 |G| distinct prime factors. So, we can always choose

p among the first log2 |G| primes, and p = O(log |G| log log |G|). (If |G| or MG

is known, such p can be computed by generating the sequence of all primes, and

checking each one of them for coprimality. When only an upper bound MG ≤ B

is known, and coprimality cannot be efficiently checked, one can find p probabilis-

tically by picking a prime uniformly at random among the first O(logB) primes.)

Let G′ 'G × Zp, and X ′ = pX = {px | x ← X}. First notice that

Knap[G′,X ′] is not pseudorandom: on input a function g′ = (g′1, . . . , g
′
m) ∈ G′m

and element (r′1, r
′
2) ∈ G′, a distinguisher simply outputs 1 if and only if r′2 = 0G′ .

It is easy to check that the distinguisher has advantage 1− 1/p ≥ 1/2.

However, Knap[G′,X ′] is uninvertible. Indeed, assume that there exists

a (t′, ε)-inverter I ′ for Knap[G′,X ′]. Consider the following inverter I against

Knap[G,X ]. On input g ← U(Gm) and target y = g · x ∈ G, I simply picks

b = (b1, . . . , bm)← U(Zmp ) and invokes I ′ on input g′ = (g′1, . . . , g
′
m) and y′ where

g′i = (gi, bi) and y′ = (py, 0) = g′ · (px). Notice that (g′, y′) is distributed according

to F(Knap[G′,X ′]), exactly as required by I ′. If I ′ outputs z, then I outputs z/p.

(Since gcd(p,MG) = 1, multiplication by p is an invertible function from G to G.)

The success probability of I, is Pr{I(g,g ·x) = x} = Pr{I ′(g′,g′ ·(px)) = px} ≥ ε.

This proves that I is a (t, ε)-inverter where t ≈ t′.

4.4.1 Examples of Pseudorandom Knapsack Families

In this section, we present broad choices of groups G and distributions X
that give rise to pseudorandom knapsack families. We start with groups G whose

order does not contain any factors that are within the maximum value the input

can take. In this case uninvertibility implies pseudorandomness for any input

distribution.



72

Lemma 4.4.2. Let G by any finite abelian group and p be the smallest prime factor

of |G|. For any s = poly(n) ∈ N, m = poly(n) ∈ N and input distribution X over

[X ] ⊆ [s]m ⊆ [p]m, if Knap[G,X ] is uninvertible, then it is also pseudorandom.

Proof. Consider Knapd for any d < s ≤ p. Since gcd(d, |G|) = 1 for all d < p,

we have dG = G. It follows that the range of Knapd is Gd = G/dG = {0G} and

therefore Knapd is trivially pseudorandom for every d < s. The lemma then follows

directly from Theorem 4.3.1.

Lemma 4.4.2 is already very powerful. For instance, in the standard sub-

set sum problem we have [X ] = {0, 1}m ⊆ [p]m for any prime p. In this setting,

Lemma 4.4.2 significantly extends the results from [83] and [59]. More specifically,

it asserts that any knapsack family Knap[G,X ] with [X ] ⊆ {0, 1}m is pseudorandom

provided it is uninvertible, for any abelian group G and any (not necessarily uni-

form) binary input distribution X . Lemma 4.4.2 applies directly to other choices of

(G,X ) including groups with prime order (and any distribution X ), vector groups

with prime exponent, i.e. G' Zkp and, more broadly, groups of the form Zkpe where

p is a prime and [X ] ⊆ [s]m for some s = poly(n) ≤ p.

For groups with small prime factors (smaller than s, where [X ] ⊆ [s]m),

the connection between uninvertibility and pseudorandomness is more subtle. In

order to prove search to decision reductions in such cases, the group and input

distribution need to be restricted somehow. Still, we can use our main theorem

for a wide range of groups and input distributions. In the remaining of the section

we provide a few representative examples, focusing on vector groups G = Zkq both

for simplifying the exposition and because these groups are more interesting from

a cryptographic viewpoint (see Section 5.4, Chapter 5).

For a vector group G = Zkq consider the folded knapsack function Knapd =

Knap[Gd,X ]. First notice that MG = q and dG = dZkq = gcd(d, q) ·Zkq ' Zq/ gcd(d,q).

According to Theorem 4.3.1, proving pseudorandomness of Knap[G,X ] reduces to

proving that the folded families Knapd are pseudorandom for all d < s with d | q.
In fact, below we prove that in many interesting settings the function families

Knapd are statistically random. Lemma 4.4.3 provides sufficient conditions for

pseudorandomness expressed in terms of the statistical properties of X and the
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factorization of q: for every “small” divisor d of q, the d-folded distribution Xd =

{x mod d | x← X} should have collision probability much smaller than the inverse

of the order of the quotient group |Gd| = |Zkd| = dk.

Lemma 4.4.3. For any s = poly(n) ∈ N, m = poly(n) ∈ N, q ∈ N and in-

put distribution X over [X ] ⊆ [s]m, if Knap = Knap[Zkq ,X ] is uninvertible and

Col (Xd) = negl(n)/dk for all d | q with d < s, then Knap is also pseudorandom.

Proof. For any divisor d of q, Gd = Zkq/dZkq ∼ Zkd. Given Theorem 4.3.1, it suffices

to prove that ∆U(F(Knap[Zkd,X ]) = negl(n) for all divisors d | q with d < s. For

the latter, we apply Lemma 2.3.4 with H = Gd = Zkd, and Hd̃ = Zk
d̃

to get

∆U(F(Knap[H,X ])) ≤ 1

2

√∑
1<d̃ | d

d̃k · Col (Xd̃) = negl(n)

where we used the hypothesis that Col (Xd̃) = negl(n)/d̃k for all d̃ | q with 1 < d̃ < s

and the fact that d has at most d < s = poly(n) divisors d̃.

Uniformly Folded Distributions. We now present a natural family of distri-

butions which have small collision probability when folded, and thereby result in

pseudorandom knapsack families. For a given group G, we say that a distribu-

tion X with [X ] ⊆ [s]m is uniformly folded with respect to G, if Xd 's U(Zmd ) is

(statistically close to) the uniform distribution for all d < s such that d |MG.

Lemma 4.4.4. For any s = poly(n) ∈ N, m = poly(n) ∈ N, q ∈ N, k ≤
m − ω(log n) ∈ N and distribution X over [X ] ⊆ [s]m, if Knap = Knap[Zkq ,X ]

is uninvertible and X is uniformly folded with respect to Zkq , then Knap is also

pseudorandom.

Proof. Directly follows from Lemma 4.4.3 and from the fact that if Xd = U(Zmd ),

then Col (Xd) = 1/dm.

Two examples of uniformly folded distributions are X = U(Zmq ) (with re-

spect to group G = Zkq for any q and k) and X = U(Zmpi) (with respect to group

G = Zkpe for prime p and i ≤ e). As an immediate corollary to Lemma 4.4.4, we

obtain the following.



74

Corollary 4.4.5. For any m = poly(n) ∈ N, k ≤ m − ω(log n) ∈ N, prime p,

and i ∈ N such that pi = poly(n), if Knap = Knap[Zkpe ,U(Zmpi)] is uninvertible, then

Knap is also pseudorandom.

Gaussian Distributions. Gaussian-like distributions are typically used for sam-

pling the error in LWE-based cryptographic constructions. The following lemma

establishes the search to decision reduction for knapsack function families defined

over G' Zkq with Gaussian-like input distribution. We state the result for discrete

Gaussians (defined in Section 2.5). Qualitatively similar results hold for discretized

(rounded) Gaussians.

Lemma 4.4.6. For any positive integers k,m, q such that m = poly(n) and k ≤
m − ω(log n) and for any r ∈ R+ such that7 r ≤ poly(n), if Knap[Zkq ,DZm,r] is

uninvertible and q has no divisors in the interval

((
r

ω(
√

logn )

)m/k
, r · ω(

√
log n )

)
,

then it is also pseudorandom.

Proof. By a standard tail inequality,

Pr
x←DZm,r

{∃i such that |xi| > br · ω(
√

log n)/2c − 1} = negl(n).

This means that effectively x ← DZm,r takes values in Sm where S = {−br ·
ω(
√

log n)/2c+1, . . . , br ·ω(
√

log n)/2c−1} is an interval of size s < r ·ω(
√

log n) =

poly(n). According to Theorem 4.3.1, it suffices then to prove that for every

d < r ·ω(
√

log n) that divides q, the knapsack family Knap[Zkd,DZm,r] is statistically

close to the uniform distribution over Zk×md × Zkd. Let d < r · ω(
√

log n) be any

divisor of q. By hypothesis, d < (r/ω(
√

log n ))m/k. For a vector g = (g1, . . . , gm) ∈
(Zkd)m the member function fg of Knap[Zkd,DZm,r] can be compactly represented as

fg(x) = G · x where G is a k ×m matrix whose columns are the group elements

g1, . . . , gm ∈ Zkd. Consider the lattice Λd(G) generated by the rows of G. The

following claim states that if G is sampled uniformly at random from Zk×md , then

the shortest vector of Λd(G) (in l∞-norm) cannot be very short except with very

small probability.

7In typical instantiations, r = Ω(nθ) for some constant θ > 0.
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Claim 4.4.7. Let k,m be positive integers.Then for all but at most 2−m fraction

of matrices G ∈ Zk×md ,

λ∞1 (Λd(G)) ≥ d1−k/m

4
.

Proof. (of Claim 4.4.7) For a matrix G ∈ Zk×md the shortest vector of Λd(G) can

be written as v = GT · x where x ∈ Zkd and gcd(x, d) = 1 (if gcd(x, d) = d′ > 1,

then GTx/d′ also belongs to Λd(G) and is shorter than GTx). Fix any x ∈ Zkd with

gcd(x, d) = 1. Then {GTx
∣∣G← U(Zk×md )} is randomly and uniformly distributed

over Zmd (see Lemma 2.3.1) . Also there exist at most
(

2d1−k/m

4

)m
= dm−k

2m
vectors

v ∈ Zmd such that ‖v‖∞ < d1−k/m

4
. Therefore

Pr
G

[
‖GTx‖∞ <

d1−k/m

4

]
≤ dm−k/2m

dm
= d−k/2m.

Taking the union bound over all x ∈ Zkd, we finally get that

Pr
G

[
λ∞1 (Λd(G)) <

d1−k/m

4

]
≤ 1/2m.

Let Good be the set of matrices G ∈ Zk×md whose columns generate Zkd
and for which λ∞1 (Λd(G)) ≥ d1−k/m

4
. If G ∈ Good, we can use Proposition 2.5.1

to bound the smoothing parameter of Λ⊥d (G) as follows: for all ω(
√

logm) =

ω(
√

log n) functions, there exists ε(m) = negl(m) = negl(n) such that

ηε(Λ
⊥
d (G)) ≤ ω(

√
logm)

λ∞1 (Λ⊥d (G)∗)
=
d · ω(

√
logm)

λ∞1 (Λd(G))
≤ dk/m · ω(

√
logm) ≤ r.

The penultimate inequality stems from the fact that G ∈ Good while the last

inequality holds by the hypothesis that d < (r/ω(
√

log n ))m/k. We can then use

Lemma 2.5.2 to conclude that if G ∈ Good and x ← DZm,r then Gx is within 2 ·
ε(n) = negl(n) statistical distance from uniform over Zkd. The proof of Lemma 4.4.6

then follows by observing that a random matrix G ∈ Zk×md ∈ Good except with

negligible probability. Indeed,

Pr[G /∈ Good] ≤ Pr

[
λ∞1 (Λd(G)) <

d1−k/m

4

]
+ Pr[G’s columns don’t generate Zkd]

≤ 1

2m
+

1

pm−k−1
min

= negl(n)
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where pmin is the smallest prime factor of d and m − k = ω(log n) by assump-

tion. For the last inequality, we used Theorem 5.3.1, to bound the probability the

columns of G do not generate Zkd.

When the number of columns of G is much larger than the number of its

rows, the restriction on the divisors of q can be dropped. The formal statement is

given in the following corollary which follows immediately from Lemma 4.4.6

Corollary 4.4.8. For any positive integers k,m, q such that m = poly(n) and

m− k = Ω(m) and for any r ∈ R+ such that r = ω(logm)ω(1), if Knap[Zkq ,DZm,r]

is uninvertible, then it is also pseudorandom.

Chapter 4 is, in part, a reprint of the paper “Pseudorandom Knapsacks and

the Sample Complexity of LWE Search-to-Decision Reductions” [115] co-authored

with Daniele Micciancio, published in the proceedings of the 31st Annual Cryp-

tology Conference (CRYPTO 2011). The dissertation author was the primary

investigator and author of this paper.



Chapter 5

Sample Preserving Search to

Decision Reductions for LWE

Overview of the chapter. In this chapter, we show how our results for

knapsack functions (Chapter 4) imply similar search to decision reductions for the

Learning With Errors (LWE) problem. We start in Section 5.1 with a non technical

overview of our results. We review related work in Section 5.2. Section 5.3 describes

how inverting (resp. distinguishing) LWE can be seen as the dual problem of

inverting (resp. distinguishing) a specific knapsack family with underlying group

and input distribution related to the parameters of the LWE function. We then use

this duality along with the results from Chapter 4, to present explicit parameter

sets for which search LWE can be reduced to decision LWE in a sample preserving

way (Section 5.4).

5.1 Results

The Learning With Errors (LWE) Problem. Following common notational

conventions from the existing LWE literature, we use n for the length of the secret

vector s, m for the number of samples, q for the modulus and χ for the error

distribution where n,m, q are positive integers and χ a distribution over Zq. For

77
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any q, n ∈ N, s ∈ Znq , and χ, define the distribution

As,χ = {(a, a · s + e) | a← U(Znq ), e← χ}. (5.1)

The (search) LWE problem with parameters n,m, q and χ is the problem of re-

covering s given m samples from distribution As,χ. In the decisional version of

LWE (DLWE), one is given m samples drawn independently at random either

from As,χ (for some secret s) or from U(Znq × Zq). The goal is to tell the two

distributions apart with noticeable probability. Often, it is more convenient to

work with the matrix notation of LWE (or DLWE). Given a collection of m LWE

samples (ai, bi) ← As,χ, we can combine them in a matrix A having the vectors

ai as rows, and a column vector b with entries equal to bi. That is, b = As + e

where e ← χm. Notice that once the secret s has been recovered, one can also

recover the error vector e = b−As and vice versa. So, we can equivalently define

(search) LWE as the problem of recovering both s and e from A and As + e. This

is exactly the problem of inverting the following function family.

Definition 5.1.1. Let n,m, q be positive integers and χ a probability distribution

over Zq. LWE(n,m, q, χ) is the function family (F,X ) where X = {(s, e) | s ←
U(Znq ), e ← χm}, and F is the set of functions fA indexed by A ∈ Zm×nq and

defined as fA(s, e) = As + e.

Similarly, the decision version of LWE is precisely the problem of distin-

guishing F(LWE(n,m, q, χ)) from the uniform distribution U(Zm×nq × Zmq ). Under

this notation, it can be shown that LWE(n,m, q, χ) is essentially equivalent to the

knapsack problem over the vector group Zm−nq when the input x ∈ Zmq follows

the same distribution χ as the LWE error e. This duality is by no means new,

and has been noticed and used in different settings [152, 114]. Here we observe

that the duality holds both for the search and decision variants of both problems,

which, combined with the results from Chapter 4, can be readily translated into

corresponding sample preserving search to decision reductions for LWE.1 As a

1We note that there exists a direct (i.e., without exploiting the duality with the knapsack
function) sample-preserving reduction between search LWE and its decision variant. Neverthe-
less, we choose to use the aforementioned duality for the following reasons: i) Our results for
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direct corollary to our main theorem, we get search to decision reductions for the

following interesting cases (among others):

• Binary modulus q = 2 and any error distribution. This directly proves

the pseudorandomness of the well-known Learning Parity with Noise (LPN)

problem, as already established in [25, 9, 90].

• Prime modulus q and any polynomially bounded error distribution.

• Prime power modulus q = pe (for any prime p = poly(n)) and arbitrary input

distribution over Zp = {−(p− 1)/2, . . . , (p− 1)/2}.

• Prime power modulus q = pe (for any prime p = poly(n)) and uniform error

distribution over Zpd for some d = O(logp n).

We emphasize that, besides being powerful and general, another distinctive charac-

teristic of our reductions is that they are sample preserving : the pseudorandomness

of LWE holds, provided the same problem is computationally hard to solve in its

search version with the same number of samples.

On the significance of sample preserving reductions. On the theoretical

side, cryptography based on LWE is supported by deep worst-case/average-case

connections [139, 129, 31], showing that any algorithm that solves LWE (on the

average) can be efficiently converted into an algorithm that solves the hardest

(worst-case) instances of several famous lattice approximation problems which are

believed to be intractable, like approximating the minimum distance of a lattice

within factors that grow polynomially in the dimension, and various other related

problems [105]. It should be remarked that, while such proofs of security based

on worst-case lattice assumptions provide a solid theoretical justification for the

probability distributions used in LWE cryptography, they are quite loose in their

knapsack functions are much more general. Indeed, the LWE function family can be seen as the
dual of a particular knapsack family where the underlying group is the vector group Zkq . ii) In
the general case where Zq has composite order, reducing search LWE to decision LWE directly is
not any less technical than reducing it indirectly (using the duality with knapsack families). iii)
There exist parameters for which the indirect reduction is sample-preserving whereas the direct
one is not. One such example is when q is superpolynomial but the noise is polynomially bounded.



80

parameter settings. As a result, these reductions are hardly useful in practice and,

in order to get meaningful estimates on the hardness of breaking LWE cryptog-

raphy, it is generally more useful and appropriate to conjecture the average-case

hardness of solving LWE, and use that as a starting point. (See [113, pp. 446-

450] for a discussion of this and related issues.) In fact, all recent work aimed at

determining appropriate key sizes and security parameters [118, 145, 101, 6, 103]

follows this approach, and investigates experimentally the concrete hardness of

solving LWE on the average.

Even though theoretical results based on worst-case lattice problems are

fairly insensitive to the number of samples used in the LWE instance, this number

becomes more important when considering concrete attacks on the average-case

hardness of LWE. For instance, recent algorithmic results [10] show that, when

the errors ei are sufficiently small, the LWE problem can be solved in subexponen-

tial (or even polynomial) time, provided a sufficiently large number of samples is

available. Therefore, for certain ranges of the parameters, the number of available

samples can have a significant impact on the computational hardness of the LWE

problem. Likewise, some lattice attacks perform better in practice when given

many (typically ω(n)) samples [118]. However, LWE-based encryption schemes

(e.g., see [101]) typically expose only a small number of samples (say, comparable

to the dimension n of the LWE secret s) during key generation and encryption.

It should also be noted that when the number of available samples is above

a certain threshold, one can efficiently generate an arbitrary number of additional

samples [63, 8, 141], but at the cost of increasing the magnitude of the errors. So,

for certain other ranges of the parameters the impact of increasing the number of

samples may not be as critical as in [10]. Still, even in such situations, using a

large number of samples comes at the price of lowering the quality of the samples,

which can negatively impact the concrete security and performance of LWE-based

cryptographic functions.
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5.2 Related Work

The first search to decision reduction for LWE was given by Regev [139]

for prime modulus q and (discretized) gaussian error distribution. Using the re-

duction, Regev presented the first public-key encryption scheme that is IND-CPA

secure assuming the worst-case hardness of certain lattice problems. Applebaum

et al. [8] extended the reduction to prime power modulus and any error with small

(polynomially bounded) range. Peikert [129] was the first to extend the reduction

to large (non polynomially bounded) noise for moduli with small (polynomially

bounded) factors. This reduction was further improved in [116, 97, 31]. For LPN,

a similar search to decision reduction was already given in [9] and [90].

Comparison With Our Work

As we have already mentioned, with the exception of [9], all other reductions

are not sample preserving2. We remark, however, that previous results are often

phrased as reductions from solving the LWE search problem with high probability,

to solving the LWE decision problem with nonnegligible advantage, combining

the search to decision reduction and success probability amplification into a single

statement. By contrast, our reduction shows how to solve the LWE search problem

with nonnegligible probability. Our results subsume previous work in the sense that

the LWE search problem can be solved with high probability by first invoking our

reduction, and then amplifying the success probability using standard repetition

techniques. Of course, any such success probability amplification would naturally

carry the cost of a higher sample complexity.

We remark that a close inspection of worst-case to average-case reductions

for LWE [139, 129, 31] shows that these reductions directly support the conjecture

that LWE is a strong one-way function, i.e., a function which is hard to invert even

with just nonnegligible probability. As already discussed, worst-case to average-

case reductions do not provide quantitatively interesting results, and are best used

as qualitative arguments to support the conjecture that certain problems are com-

2In fact, some of the search to decision reductions presented in [116, 97] are not even noise
preserving.
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putationally hard on average. Under the standard conjecture that search LWE is

a strong one-way function, the results in this thesis offer a fairly tight, and sam-

ple preserving proof that LWE is also a good pseudorandom generator, which can

be efficiently used for the construction of many other lattice based cryptographic

primitives. By contrast, it is not known how to take advantage of the strong one-

wayness of LWE within previous search to decision reductions, resulting in a major

degradation of the parameters. Of course, if we change the complexity assumption,

and as a starting point we use the worst-case hardness of lattice problems or the

assumption that LWE is only a weak one-way function, then our reduction will also

necessarily incur a large blow up in the sample complexity through amplification,

and lead to quantitatively uninteresting results.

Comparison of Techniques. At a high level, all previously known search to

decision reductions [139, 8, 129, 90] work in two steps: First, they exploit the

self-reducibility of LWE (with respect to the secret s) and standard amplification

techniques in order to transform a distinguisher with noticeable advantage for a

noticeable fraction of secrets s to an “almost perfect” distinguisher for arbitrary

secret s. This step incurs a large (yet polynomial) multiplicative factor in the

sample complexity of the reduction. In the second step, the value of each entry si

is guessed and the perfect distinguisher is then invoked to either confirm or refute

the guess with success probability almost 1. The latter step contributes a small

factor to the total number of samples consumed and outputs (with probability

almost 1) the correct secret s.

Our reduction proceeds in a fundamentally different way: first, it transforms

the LWE instance to a knapsack instance where the error vector e of LWE becomes

the (unknown) input for knapsack (see Section 5.3). The two steps are then merged

in one by viewing the recovery of e as a list decoding problem which we solve

using the SFT algorithm from Section 2.6. More specifically, the (hypothetical)

distinguisher is used to predict the inner product er (mod q) where q is the LWE

modulus and r ∈ Zmq . Based on the guesses for several (polynomially many)

vectors r, the SFT algorithm narrows down the search space for e to a list L

of small (polynomially bounded) size. The crucial difference is that we can use
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an imperfect distinguisher directly (without amplifying its advantage first) for the

list decoding problem. The distinguishing advantage comes into play only in the

quality of the guess er (mod q), which in turn determines the size of the list L

as well as the probability the correct e is contained in L. By using an imperfect

distinguisher, the need for advantage amplification, which accounted for the largest

multiplicative factor in the sample complexity of previous reductions, is completely

removed. As an additional benefit of using list decoding, we can recover e entirely

(as opposed to one coordinate at a time) thus completely eliminating the need for

more samples.

We remark that this fundamental difference (partially) explains why our

approach is unlikely to extend to the unbounded noise regime, i.e., when each

coefficient ei of the error vector e of LWE is drawn from a set with superpolynomial

size. We note that all (non sample preserving) known search to decision reductions

for large noise [129, 116, 97] rely heavily on a Chinese Reminder Theorem (CRT)

approach: using a perfect distinguisher, they first learn the secret modulo pi with

overwhelming success probability for each polynomially bounded prime factor pi of

the modulus q; they then use the CRT to recover the entire secret. In sample

preserving reductions, where only an imperfect distinguisher is available, learning

the secret modulo pi can be performed in a much looser, list-decoding sense: the

projection of the secret modulo pi is included in the corresponding lists Li but

among possibly many other elements. And the only way to check which of the list

elements corresponds to the actual projection of the secret modulo pi seems to be

by first forming the entire secret using CRT and then verifying that the result is

the target LWE secret. Thus, one has to solve a superpolynomial number of CRT

instances before recovering the correct value of the secret.

5.3 Duality Between LWE and Knapsack Func-

tions over Vector Groups

Recall that the LWE(n,m, q, χ) is the problem of recovering s ∈ Znq given m

samples from distribution As,χ defined in (5.1). Likewise, in DLWE(n,m, q, χ) one
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is given m samples drawn (independently at random) either from As,χ (for some

secret s) or from U(Znq × Zq) and the goal is to tell the two distributions apart

with noticeable probability.

In this chapter, we are interested in reductions from LWE to DLWE that

preserve all the parameters n,m, q, χ, including the number of samples m. Since

LWE(n,m, q, χ) is not a knapsack function family, in order to apply the results

from Sections 4.3 and 4.4, we exploit the duality between the LWE problem and

an associated knapsack family described in the following lemmas. Even though the

aforementioned duality has been noticed before [152, 114, 101], to our knowledge,

no detailed description of the steps that establish it has appeared in the literature.

We start by proving some supporting lemmas in Section 5.3.1 and then describe

both directions of the duality in Sections 5.3.2 and 5.3.3 respectively.

5.3.1 Supporting Lemmas

For a matrix A ∈ Rm×n where R is a commutative ring, we use row (A) =

{r1, ..., rm} and col (A) = {c1, ..., cn} denote the sets of the rows and columns of A

respectively. We use span(row (A)) for the set generated by considering R-linear

combinations of the rows of A, that is

span(row (A)) = {y ∈ Rn : ∃r ∈ Rm such that y = rA}.

If span(row (A)) = Rn we simply say that row (A) spans Rn. Likewise, span(col (A))

is the set generated by considering R-linear combinations of the columns of A. For

a set T = {t1, ..., tk} where ti ∈ Rm, T is said to be linearly independent if∑k
i=1 xiti = 0R implies that x1 = ... = xk = 0R where 0R is the identity element

of R (with respect to addition). Below we focus on the ring Zq for some (possibly

composite) positive integer q. For a matrix A ∈ Zm×nq , and a divisor d of q, we let

Ad be the (projected) matrix derived by reducing all entries of A modulo d, i.e

[Ad]ij = [A]ij (mod d). Theorem 5.3.1 gives a lower bound on the probability the

rows of a matrix A with uniform and random entries from Zq span Znq .

Theorem 5.3.1. Let m,n ∈ Z with m ≥ n and A← U(Zm×nq ) where q = Π`
i=1p

ei
i .
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Then

Pr
[

span(row (A)) = Znq
]
≥ 1− 1

pm−n−1
min

pmin is the minimum prime factor of q and the probability is taken over the entries of

A. In particular, if m−n = ω(log n), then Pr
[

span(row (A)) = Znq
]
≥ 1−negl(n).

Theorem 5.3.1 follows from the sequence of Lemmas given below.

Lemma 5.3.2. Let A ∈ Zm×np where m,n ∈ Z with m ≥ n and p is prime. Then

span(row (A)) = Znp if and only if col (A) are linearly independent.

Proof.

(⇒) Let Ax = 0 ∈ Znp . Since row (A) generates Znp , for all i = 1, ...n there exists

r ∈ Zmp such that rA = ei where ei = (0, ..., 0, 1, 0, ..., 0) is the m-dimensional

vector with its i-th entry set to 1 and the remaining set to 0. Left multiplying

Ax with r gives xi = 0 for all i = 1, ..., n which implies that col (A) are linearly

independent.

(⇐) Since p is prime (i.e. Zp is a field), the row rank of A is the same as its column

rank, that is row rank=n and therefore span(row (A)) = Znp .

The following lemma considers the case where q is a power of a prime.

Lemma 5.3.3. Let A ∈ Zm×nq where m,n ∈ Z with m ≥ n and q = pe for some

prime p. Then span(row (A)) = Znq if and only if span(row (Ap)) = Znp .

Proof.

(⇒) Let z ∈ Znp . Since span(row (A)) = Znq , there exists r ∈ Zmq such that rA ≡ z

(mod q). Let r = r0 + pr1 where r0 has all its entries in Zp. Write also A as

A = pĀ + Ap. Then

r0Ap = (r− pr1)(A− pĀ) ≡ rA ≡ z (mod p).

(⇐) We prove the inverse direction for q = pi for every i ≥ 1 using induction.

The basis step (i = 1) holds by the hypothesis. Now assume claim holds for pj

∀j ≤ i. Let z ∈ Znpi+1 . Write z = z0 + piz1 where z0 ∈ Znpi and z1 ∈ Znp . A ∈ Zm×n
pi+1

can be written as A = A0 + piA1 (with [A0]ij ∈ Zpi) and A0 can be written as
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A0 = Ap + pĀ (with [Ap]ij ∈ Zp). By induction ∃r0 ∈ Zmpi and y ∈ Zn such that

r0A0 + piy = z0. Also there exists r1 ∈ Zmp such that

r1Ap ≡ z1 + y − r0A1 (mod p) ⇒ r1(A0 − pĀ) ≡ z1 + y − r0A1 (mod p)

⇒ r1A0 = z1 + y − r0A1 + pw

for some w ∈ Zn. Now let r = r0 + pir1. Then

rA = (r0 + pir1)(A0 + piA1) = r0A + pi(r1A0 + r0A1) + p2ir1A1

≡ z0 + pi(r1A0 + r0A1 − y) (mod pi+1)

≡ z0 + piz1 (mod pi+1)

which concludes the proof.

Lemma 5.3.4. Let A ∈ Zm×nq where m,n ∈ Z with m ≥ n and q = M1 ·M2 for

positive integers M1,M2 with gcd(M1,M2) = 1. Then span(row (A)) = Znq if and

only if span(row (AM1)) = ZnM1
and span(row (AM2)) = ZnM2

.

Proof. The proof is a straightforward application of the Chinese Remainder The-

orem.

Lemma 5.3.5 bounds the probability n random vectors from Zmp are linearly

dependent.

Lemma 5.3.5. Let m,n ∈ Z with m ≥ n and p prime. Let v1, ...,vn such that

vi ← U(Zmp ). Then

Pr [ v1, ...,vn are linearly independent ] ≥ 1− 1

(p− 1)pm−n
.

Proof. For vi, Pr [ vi ∈ span(v1, ...,vi−1) ] ≤ 1
pm−i+1 . Applying the union bound, we

get

Pr [ v1, ...,vn linearly dependent ] ≤
n∑
i=1

Pr [ vi ∈ span(v1, ...,vi−1) ]

≤
n∑
i=1

1

pm−i+1
≤ 1

(p− 1)pm−n
.
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Proof. (of Theorem 5.3.1). By lemmas 5.3.2, 5.3.3 and 5.3.4, span(row (A)) = Znq
if and only if the columns of the (projected) matrices Api are linearly independent

for every i = 1, ..., `. Since pi |q, ∀i = 1, ..., `, entries of Api are uniformly, randomly

and independently distributed over Zpi for all i = 1, ..., `. Let p1 be the smallest

prime factor of q. Then, using Lemma 5.3.5 and the union bound, we get

Pr
[
∃ i : span(row (Api)) ⊂ Znpi

]
≤

∑̀
i=1

1

(pi − 1)pm−ni

=
1

pm−n−1
1

(
1

p1(p1 − 1)
+

l∑
i=2

pm−n−1
1

(pi − 1)pm−ni

)

≤ 1

pm−n−1
1

(
1

2
+

l∑
i=2

1

(pi − 1)pi

)
≤ 1

pm−n−1
1

where in the last inequality we used the fact that
∑l

i=2
1

(pi−1)pi
can be upper bound

(using elementary arithmetic) by 1/2.

5.3.2 From LWE to Knapsack

The following lemma states that an inverter for a specific knapsack family

can be turned into an inverter for the LWE function with only a negligible loss in

the success probability.

Lemma 5.3.6. For any3 positive integers n,m ≥ n + ω(log n), q and distribution

χ over Zq, there is a polynomial time reduction from the problem of inverting

LWE(n,m, q, χ) with probability ε, to the problem of inverting Knap[Zm−nq , χm] with

probability ε′ = ε+ negl(n).

Proof. The transformation from an LWE instance (A,b = As+e) into an equiva-

lent knapsack instance requires that the matrix A be nonsingular, i.e., the rows of

A generate Znq . By Theorem 5.3.1, when A ← U(Zm×nq ), this is true except with

probability at most 1/pm−n−1, where p is the smallest prime factor of q. So, for

m ≥ n + ω(log n), Pr{A is singular} = negl(n). We can therefore assume A has

been chosen at random, but conditioned on being nonsingular.

3The requirement m ≥ n + ω(log n) is a standard assumption in the context of LWE, where
typically m ≥ n+ Ω(n).
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Consider now the set of all (row) vectors g ∈ Zmq such that gA = 0 (mod q).

Under the assumption that A is nonsingular, this set is generated by the rows of a

matrix G ∈ Z(m−n)×m
q that can be efficiently computed from A using linear alge-

bra. We can further randomize G by left-multiplying it by a random unimodular

matrix U ∈ Z(m−n)×(m−n)
q . It can be checked that, if A is chosen uniformly at ran-

dom among all nonsingular matrices, then this randomized G is also distributed

uniformly at random among all matrices whose columns generate Zm−nq . As before,

the distribution of G is within negligible statistical distance from U(Z(m−n)×m
q ),

so we can treat the columns of G as random elements from the vector group

G = Zm−nq . The reduction now works as follows: On input an LWE instance

(A,b = As + e) ∈ Zm×n×Zm, it computes G ∈ Z(m−n)×m as described above and

outputs (G,y) where y = Gb = GAs + Ge = Ge. Notice that the distribution

(G,y) is statistically close to a random instance of the knapsack problem with

group G = Zm−nq and input distribution X = χm which completes the proof.

5.3.3 From Knapsack to LWE

Lemma 5.3.7 is essentially the inverse of lemma 5.3.6 stating that a distin-

guisher for LWE can be used to distinguish the outputs of a knapsack family from

random ones with only a negligible loss in the advantage. Even though the reduc-

tion is phrased in terms of decisional problems, we remark that reductions exist

also in the directions opposite to those described in Lemma 5.3.6 and Lemma 5.3.7,

but this is all we need here.

Lemma 5.3.7. For any positive integers n,m ≥ n + ω(log n), q and distribution

χ over Zq, there is a polynomial time reduction from the problem of distinguishing

F(Knap[Zm−nq , χm]) from uniform with advantage ε to the problem of distinguishing

F(LWE(n,m, q, χ)) from uniform with advantage ε′ = ε+ negl(n).

Proof. The distinguisher for the knapsack function is obtained similarly, trans-

forming a knapsack instance into a corresponding LWE one. This transformation

essentially reverses the steps taken to transform LWE into knapsack. The input

is a pair (G,y) where y is either Ge (for some e ← χm) or U(Zm−nq ). As before,
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we can assume without loss of generality (up to negligible statistical error, see

Theorem 5.3.1) that the columns of G generate Zm−nq . Next, by linear algebra, we

compute a matrix A′ ∈ Zm×nq whose columns generate the set of vectors a′ ∈ Zmq
such that Ga′ = 0 (mod q). Similar to the proof of Lemma 5.3.6, we can random-

ize A′ by right-multiplying it by a random unimodular matrix U ∈ Zn×nq to obtain

A. Let r ∈ Zmq be an arbitrary solution to the equation Gr = y (mod q) (since

span(col (G)) = Zm−nq such a vector r always exists). The reduction then works

as follows: On input (G,y) ∈ Z(m−n)×m
q × Zmq , it computes A as described above,

samples s′ ← U(Znq ) and outputs (A,As′ + r). Assume first y = Ge. Consider

an alternative way of sampling s′ where we first sample s ← U(Znq ) and then set

s′ = s− z where z is an arbitrary solution to the equation Az = r− e (notice that

G(r−e) = y−y = 0, that is, r−e is in the nullspace of G and hence there exists

z ∈ Znq such that Az = r − e (mod q)). Clearly s′ is uniformly and randomly

distributed over Znq . Also As′ + r = A(s − z) + r = As + e which is exactly the

LWE distribution with error vector e being the input to the knapsack function. If

on the other hand, y← U(Zmq ), then As′+r is uniformly and randomly distributed

over Zmq since s′ ← U(Znq ) and r is a solution to Gr = y for uniform and random

y ∈ Zmq .

5.4 Applications to LWE

Sample-preserving reductions for LWE, i.e., reductions from the problem

of inverting LWE(n,m, q, χ) to the problem of distinguishing F(LWE(n,m, q, χ))

from uniform, are immediately obtained combining the reductions described in

Lemma 5.3.6 and Lemma 5.3.7 with the results from Sections 4.3 and 4.4.1 on

Knap[Zm−nq , χm]. Similarly to the knapsack case, the reductions do not hold un-

conditionally ; rather they hold for specific, yet very broad, moduli q and error

distributions χ. Below we provide some examples of such moduli q and distribu-

tions χ. We focus on parameters that seem attractive from an application viewpoint

but emphasize that our results can be applied to much broader sets of parameters.

Throughout, it is assumed that m ≥ n+ ω(log n).
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Proposition 5.4.1. Assume there exists an efficient algorithm D that distin-

guishes between F(LWE(n,m, q, χ)) and U(Zm×nq × Zmq ) with noticeable advantage.

Then there exists an efficient algorithm I that inverts LWE(n,m, q, χ) with notice-

able success probability in any of the following cases:

(i) Binary modulus q = 2 and any error distribution χ over {0, 1}.

(ii) Prime modulus q = poly(n) and any error distribution χ over Zq.

(iii) Prime power modulus q = pe for prime p = poly(n), and χ such that [χ] ⊆
{−(p− 1)/2, . . . , (p− 1)/2}.

(iv) Prime power modulus q = pe and error distribution χ which is uniform over

Zpi for some i < e such that pi = poly(n).

(v) Any modulus q and Gaussian error distribution χ = DZ,r where ω(log n)ω(1) ≤
r ≤ poly(n) and m = O(n).

Proof. The proof for all cases follows easily by combining Lemmas 5.3.6 and 5.3.7

with the results for bounded knapsack families from Section 4.4.1. More specifi-

cally, (i), (ii) and (iii) are direct applications of Lemma 4.4.2, case (iv) is immediate

from Corollary 4.4.5 and case (v) follows from Corollary 4.4.8.

Remark 5.4.2. Case (i) provides a sample preserving search to decision reduction

for LPN. Such a reduction was already given in [9]. In contrast, other reductions

appearing in the literature [25, 90] do not preserve the number of samples. Using

q = poly(n) as in case (ii) and gaussian error distribution χ over Zq is typical in

LWE-based cryptographic applications. In fact, these parameters were used in the

first LWE-based semantically secure scheme by Regev [139] who also presented a

(non sample preserving) search to decision reduction. Case (iii) provides a sample

preserving version of the reduction proved in [8]. Finally, the search to decision

reduction for LWE with modulus and noise distribution as in cases (iv) and (v)

appear to be new; no such (even non-sample preserving) reductions have previously

appeared in the literature. Setting q = 2` and χ to be the uniform distribution over

Z2`′ for some `′ = O(log n) seems very appealing since arithmetic modulo 2 and

sampling over uniform distributions can be implemented very efficiently in practice.
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Chapter 5 is, in part, a reprint of the paper “Pseudorandom Knapsacks and

the Sample Complexity of LWE Search-to-Decision Reductions” [115] co-authored

with Daniele Micciancio, published in the proceedings of the 31st Annual Cryp-

tology Conference (CRYPTO 2011). The dissertation author was the primary

investigator and author of this paper.



Chapter 6

An Efficient Authentication

Protocol Secure Against Active

Attacks from Learning Parity

with Noise

Overview of the chapter. The main result of this chapter is an efficient, 3-

round, actively secure authentication protocol based on the hardness of the Learn-

ing Parity with Noise (LPN) problem. Section 6.1 contains an overview of our

results. A brief review of related work as well as comparison with our work can be

found in Section 6.2. We provide a formal description of our security model and

relevant definitions in Section 6.3. In Section 6.4 we present a generic construction

of an actively secure authentication protocol based on any weak message authen-

tication code. Finally, we present an efficient instantiation of the generic protocol

from LPN (Section 6.5).

6.1 Results

The main focus of this chapter is the construction of symmetric authentica-

tion protocols that are secure under active attacks. Roughly, active attacks involve

92
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adversaries that run in two phases. In the first phase, the adversary gets to see

multiple honest prover-verifier interactions, much like in a passive attack, but can

also arbitrarily interact with multiple instances of the prover in an attempt to gain

information about the key. In the second phase, the adversary tries to convince

the verifier that he knows the key. We remark that (strictly) stronger notions than

active security do exist. For instance, Man-in-the-Middle (MIM) security consid-

ers even stronger adversaries that can interact (arbitrarily) with the prover and

the verifier concurrently. Even though adopting a conservative viewpoint when

defining security goals has several benefits, it is an unavoidable fact that exist-

ing protocols with attractive implementation features fall short of achieving the

strongest notions;1 our goal is to precisely address what these protocols achieve

instead.

For achieving active security, we propose a new generic construction that

yields an efficient 3-round authentication protocol based on any weak MAC, i.e., a

MAC which can be evaluated on random messages and which must be unforgeable

on fresh, random messages. This is the weakest generic assumption on which such

a protocol can be based, with previous generic constructions being either from

stronger MACs or from a Weak PRF [48]. Given such a MAC, our three-round

protocol, which we call DM (for Double Mac), is extremely simple. The secret key

of the protocol consists of two keys K1, K2 for the underlying MAC. In the first

round, the prover sends a random message r1 to the verifier, which replies with

(MACK1(r1), r2), for a random message r2, in the second round. The prover, upon

receiving (τ1, r2), subsequently checks whether τ1 happens to be a valid tag for r1,

and if so, sends MACK2(r2) back to the verifier, which finally accepts if and only

if it receives a valid tag τ2 for r2 under key K2.

As the most compelling application of our new construction, we provide an

efficient instantiation from the Learning Parity with Noise Problem which, besides

being simpler, also achieves a better security-efficiency trade-off when compared

to previous LPN-based actively secure protocols [87, 94]. We provide a thorough

1 This phenomenon is especially pronounced in the case of RFID protocols where requiring
very strong cryptography drives the manufacturing of RFID tags to prohibitively high costs and
slows down the widespread deployment of the technology.
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qualitative and quantitative comparison in Sections 6.2 and 6.5 respectively.

6.2 Related Work

Theoretical research on authentication protocols has been initially con-

cerned with the public-key setting, where a prover P in possession of a public/secret-

key pair (pk, sk) wishes to prove its identity to a verifier V who only knows pk

(such protocols have often been called identification protocols). Starting from the

seminal work of Fiat and Shamir [58], a long series of protocols have been pro-

posed (among others, cf. e.g. [73, 147, 125, 155]) mostly leveraging techniques

from zero-knowledge proofs [72, 57].

Research on symmetric authentication has mainly been concerned with two

important aspects: On one hand, a vast body of literature has focused on privacy

concerns related to RFID protocols [12, 46, 13, 88, 158, 44] and especially trace-

ability of tags. We view privacy as an orthogonal goal and do not consider it in

this work.

The other aspect that has attracted broad interest is security, leading to

a long history of security notions and corresponding protocols. Most relevant

to active security and our work is a security notion introduced by Gilbert et al

[65] who considered an intermediate model (aka GRS-MIM model) in which an

adversary can interact with both the tag and the reader in the first phase of the

attack, but can only modify messages from the reader. Even though security in the

GRS-MIM is strictly stronger than active security, the protocols that are known to

achieve the former notion [65] are either inefficient (RANDOM −HB#) or based

on assumptions that are not well studied (HB#). It has also been questioned

whether there exist real-world attack scenarios in which an attacker can modify

messages from the reader but not from the tag – and in the full-fledged MIM case,

none of the protocols from [65] is secure [127].

LPN-based Protocols. Thanks to its extremely simple structure (involving

only simple operations over bits or binary vectors), LPN has turned out to be

a very promising candidate for the construction of efficient authentication proto-
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cols. Below we recall the two previously known LPN-based protocols which are

secure under active attacks and point out their advantages and disadvantages when

compared to ours.

The HB+ is a simple and elegant 3-round (commit-challenge-response) pro-

tocol proposed by Juels and Weiss [87]. Its main drawback is the lack of a “tight”

security reduction to LPN. Current reductions [87, 90] assert that no active attacker

with time complexity (roughly) t can break the security of HB+ for key length 2n

with probability larger than
√
ε, assuming LPN is ε-hard for secret length n and

complexity t. This is unsatisfactory. For example, if we have t = 240 and ε = 2−40,

an adversary attacking 220 independent instances of the protocol may break at

least one of them spending overall effort t′ = 260, which may still be feasible. Also,

we point out that this loss is the inevitable result of using rewinding in the se-

curity reduction, and, at least from a theoretical perspective, that this makes it

impossible to prove HB+ secure against quantum attackers (based on the quantum

hardness of LPN).

Kiltz et al [94] presented a two-round protocol based on subspace-LPN, a

variant of LPN. While their protocol enjoys a tight reduction to LPN in terms

of advantage ε, yet, due to looseness in the reduction from (standard) LPN to

subspace-LPN, if we assume as above that LPN is ε-hard for secret-size n, for their

protocol to be ε-secure too, even under the most optimistic instantiation of their

parameters, their key size becomes larger than 4n bits and the communication

complexity is larger than the one of HB+.

Even more, the security of our LPN-based protocol scales significantly bet-

ter than both HB+ and the protocol of Kiltz et al. in the face of multiple verification

attempts where, in the latter two protocols, an adversary essentially increases its

success probability by a factor which is linear in the number of interactions with

the verifier.

Of course, it is fair to note that a drawback of our protocol compared to

existing challenge-response protocols [87, 90] is that it is not, in general, strongly

actively secure, i.e., it does not remain secure against adversaries that are allowed

multiple, alternating (yet non-overlapping), interactions with the prover and the
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verifier, a clear advantage of existing challenge-response protocols. However, we

point out that, to the best of our knowledge, strong active security was never

considered prior to our work, hence indicating that (non-strong) active security is

considered sufficient in many settings.

Other Related Work. We conclude this section by briefly mentioning two re-

cent protocols proposed concurrently and independently of our work. Heyse et

al [78] presented Lapin, a simple and elegant 2-round protocol that is secure against

active attacks. The security of Lapin relies on the assumption that the Ring-LPN

problem, a structured variant of the standard LPN problem, is hard. However,

the hardness of Ring-LPN is much less understood2 than the hardness of LPN and

thus, given our current understanding of algorithmic attacks, any comparison with

LPN-based protocols is hardly meaningful (see also a recent attack by Bernstein

and Lange [21] which exploits the ring structure of Ring-LPN to drastically reduce

the resources needed for an active attack).

Another interesting LPN-based protocol was very recently proposed by

Lyubashevsky and Masny [104]. Their protocol is proved secure under MIM at-

tacks. While the paper makes significant progress towards efficient protocols that

meet the strongest security notion, their construction still suffers from certain

drawbacks such as loose security reduction to LPN and lack of security proof for

parallel executions of the protocol. So, in practical scenarios where MIM attacks

are not a threat, our scheme remains a more suitable option.

6.3 Definitions and Security Model

In this Section we provide basic definitions for secret-key authentication

protocols and describe formally a framework to model their security under active

attacks. Our framework, which inherits heavily from that of Bellare and Rogaway

[17], can be easily generalized to support various, fine-grained attack models (see

2Ring-LPN can be also seen as a special case of Ring-LWE [106] with modulus q = 2. However,
unlike Ring-LWE, Ring-LPN is not backed by a worst-case/average-case connection with (ideal)
lattices.
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(P1 ↔ P2)(x):

msg0 ← start; i← 0

y1, y2 ← ⊥; σ1, σ2 ← ε

While y1 = ⊥ or y2 = ⊥ do

If i = 0 mod 2 and y1 = ⊥ then

(y1, σ1,msgi+1)
$← P1(x, σ1,msgi)

Else if y2 = ⊥ then

(y2, σ2,msgi+1)
$← P2(x, σ2,msgi)

i← i+ 1

Ret true

Figure 6.1: Pseudocode for an interactive two-party protocol.

[119] for the full description of the framework). However, we only present a re-

stricted version of it here focusing on the security notion of interest, i.e., security

against active attacks. Throughout the entire chapter, in our security definitions

and proofs, we will often use games, as defined by Bellare and Rogaway [18], and

adopt their computational model and notational conventions.

Algorithms and protocols. Throughout this section, we model stateful ran-

domized algorithms as follows: A stateful algorithm A has an initial input, keeps

a state, and processes messages. Formally, A is a randomized algorithm A :

{0, 1}∗ × {0, 1}∗ × {0, 1}∗ → ({0, 1}∗ ∪ {⊥}) × {0, 1}∗ × ({0, 1}∗ ∪ {⊥}), where

(y, σ′,msg′)
$← A(x, σ,msg) means that starting from state σ, on initial input x,

and upon receipt of message msg, A changes its internal state to σ′, sends message

msg′ and, if y 6= ⊥, terminates with output y. Here, y = ε indicates termination

without any output.

An interactive two-party protocol, is a pair (P1,P2) of interactive algorithms,

where exactly one of P1 and P2 accepts a special designated message start. (We

assume that it is P1 in the following.) The protocol execution is defined via the

procedure shown in Figure 6.1:
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We say that (P1,P2) is well-formed if the above procedure always terminates

returning true. Moreover, it is an r-round protocol if i = r + 1 upon termination.

We denote as (y1, y2)
$← (P1 ↔ P2)(x) the process of sampling the outputs of P1

and P2 after an interaction. We also overload notation by writing Tran
$← (P1 ↔

P2)(x) for the process of sampling the transcript of the interaction between P1

and P2, i.e., the sequence consisting of the messages (msg1, . . . ,msgr) exchanged.

Notice that msg0 = start and the very last message are not part of the transcript.

Authentication protocols. A (secret-key) authentication protocol is a triple

Π = (K,P ,V) such that K is a randomized key generation algorithm that generates

a key K, while P and V are interactive algorithms, both taking as input a key K

in the range of K, and such that (P ,V) is a well-formed interactive protocol. In

addition, P always outputs ε, whereas V outputs a decision value d ∈ {A,R}.
For any real value δ ∈ [0, 1], we say that the protocol Π is δ-complete (or has

completeness δ) if Pr
[
K

$← K, (ε, d)
$← (P ↔ V)(K) : d = A

]
≥ δ. We assume

without loss of generality that the last message is sent from P to V , which then

terminates with a decision, and does not send any further messages.

Active security of authentication protocols. Let Π = (K,P ,V) be an au-

thentication protocol. To model active security of Π, we consider adversaries that

run in 2 phases (stages) and participate in the game AUTH
({T,P},{V})
Π shown in Fig-

ure 6.2. The game AUTH
({T,P},{V})
Π starts by sampling a key K

$← K, and allows

the attacker to arbitrarily interact with instances of the prover P and the verifier

V under key K, addressed via session ids sids in SIDP and SIDV , respectively, for

two understood disjoint sets of integers SIDP , SIDV ⊂ N. We remark that a session

id sid characterizes an interaction between the adversary and an instance of P (or

V) and not between an instance of P and an instance of V . Also, the same key

K is shared across all instance sid ∈ SIDP ∪ SIDV . The global variables state[sid],

decision[sid] and done[sid] maintain information associated with each sid, i.e., the

state of the corresponding instance, whether it has accepted an interaction (in

case sid ∈ SIDV) or whether it has terminated. The game consists of 2 phases and

involves respective adversaries A1 and A2 where A1 can pass on arbitrary state
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Game AUTH
({T,P},{V})
Π :

procedure main():

K
$← K;

For all sid ∈ N do

state[sid]← ε;

decision[sid]← ⊥;

done[sid]← false;

σ1
$← AT,P

1 ; // Phase 1

AV
2 (σ1); // Phase 2

If ∃sid ∈ SIDV : (decision[sid] = A)

Ret true;

Ret false;

oracle T():

Tran
$← (P ↔ V)(K)

Ret Tran

oracle P(sid,msg):

If (sid /∈ SIDP) ∨ done[sid] Ret ⊥

Else

(state[sid],msg′, y′)
$← P(K, state[sid],msg)

If y′ 6= ⊥ then

done[sid]← true

Ret msg′

oracle V(sid,msg):

If (sid /∈ SIDV) ∨ done[sid] Ret ⊥

Else

(state[sid],msg′, y′)
$← V(K, state[sid],msg)

If y′ 6= ⊥ then

done[sid]← true ; decision[sid]← y′

Ret y′

Ret msg′

Figure 6.2: General pseudocode description of Game AUTH
({T,P},{V})
Π that defines

security under active attacks. Here, Π = (K,P ,V) is an authentication protocol

and A = (A1,A2) is a 2-phase adversary.

information to A2. Over the course of the entire attack, the adversary is granted

access to the following oracles:

− The prover oracle P accepts queries of the form (sid,msg) where sid ∈ SIDP

and msg ∈ {0, 1}∗. Upon such a query, it runs P(K, state[sid],msg), obtaining

output (σ′,msg′, y). It then sets state[sid] to σ′, and if y′ = ⊥, returns msg′

to the adversary; otherwise it returns (y′,msg′). In the latter case, P does not

accept any further queries of the form (sid, ∗) until the end of the current phase.

− The verifier oracle V operates as P, using V instead of P . In addition, upon

terminating, i.e., when returning (d,⊥) for d ∈ {A,R} after a query (sid,msg),

it sets decision[sid]← d.

− The transcript oracle T samples a transcript Tran
$← (P ↔ V)(K) and returns



100

it.

Specifically, in phase 1, A1 gets access to P and T while, in phase 2, it gains access

to V. To address the randomized nature of P and V , we assume that each oracle

has access to a fresh randomness source and that oracles associated with different

sids use fresh random coins each time they are invoked.

The AUTH game finally returns true if A2 manages to make the verifier

accept in phase 2 for some sid (i.e., decision[sid] = A for some sid ∈ SIDV). It

returns false otherwise. For any adversary A = (A1,A2), we say that A makes

qP queries to P (in phase 1) if the number of distinct sid ∈ SIDP that appear across

all queries of the form (sid,msg) during phase 1 are qP. qV is defined similarly (for

phase 2). Queries to T are not interactive and hence qT is precisely the number of

calls to T during phase 1. The ({T,P}, {V})-auth advantage of A is defined as

Adv
({T,P},{V})-auth
Π (A) = Pr

[
(AUTH

({T,P},{V})
Π )A ⇒ true

]
.

Moreover, for all positive t and qT, qP, qV we define

Adv
(({T,P},{V}))-auth
Π (t, qT, qP, qV) = max

A
{Adv

({T,P},{V})-auth
Π (A)} .

The maximum here is over all adversaries A running in time t and making qT, qP

and qV queries to the corresponding oracles (during the corresponding phase).

Informally, we will say that a protocol Π is actively secure or ({T,P}, {V})-secure

if for all efficient adversaries A, Adv
({T,P},{V})-auth
Π (A) is small.

6.4 Active Security Based on Random-Message

/ Random-Challenge Secure MACs

In this section, we present a generic 3-round protocol that is secure against

active attacks. The security of our protocol is based on weak Message Authentica-

tion Codes (MAC) that are unforgeable on random messages even when evaluations

of multiple random messages are available to the adversary. More formally, for a

MAC protocol MAC = (KGen,TAG,VRFY), we define unforgeability under random

message-random challenge attacks (uf-rmrc) via the game UF-RMRC depicted on

Figure 6.3. Tag queries return pairs (m,TAGK(m)) for fresh random messages
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Game UF-RMRCMAC

procedure main:

K
$← KGen

Forge← false

C ← ∅

Run ATag,Chal,Vrfy
MAC

Ret Forge

oracle Tag():

m
$←M

τ ← TAGK(m)

Ret (m, τ)

oracle Chal():

m
$←M

C ← C ∪ {m}
Ret m

oracle Vrfy(m, τ):

If m /∈ C

Ret ⊥
C ← C \ {m}
If VRFYK(m, τ) = 1

Forge← true

Ret 1

Ret 0

Figure 6.3: The Game UF-RMRCMAC which defines security against random

message-random challenge attacks.

m. Moreover, Vrfy queries are only allowed if of the form (m, τ) for m previously

output by the random challenge generator oracle Chal, and only a single verifica-

tion query to Vrfy per valid challenge is allowed. For t, qT, qC, qV > 0, the uf-rmrc

advantage function is defined as

Advuf-rmrc
MAC (t, qT, qC, qV) = max

A
{Pr

[
(UF-RMRCMAC)A ⇒ true

]
} ,

where the maximum is over all adversaries A running in time t and making qT, qC

and qV queries to Tag, Chal and Vrfy, respectively.

The DM protocol. Our new 3-round authentication protocol, DM[MAC] =

(K,P ,V) (DM stands for Double Mac) proceeds as follows where K1, K2 are gen-

erated using KGen.

P(K1, K2) V(K1, K2)

r1
$←M r1

τ1
$← TAGK1(r1) ;

r2
$←Mr2, τ1

If VRFYK1(r1, τ1) = 1

τ2
$← TAGK2(r2) τ2 Accept iff

VRFYK2(r2, τ2) = 1
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The intuition behind the proof is fairly simple: Each prover instance commits

to a value r1, and hence, in order for the prover to do something useful for an

active adversary, such as tagging an arbitrary message under K2, the attacker

must provide a valid tag for r1 under K1. Yet, the attacker can only obtain valid

tags through the transcript oracle in the first phase, and the used r′1 values are very

unlikely to collide with one of the values the prover instances commit to. Hence,

with very high probability, the attacker never goes past the second round when

interacting with the prover. The proof of the following theorem formalizes this

intuition, but requires some care, mainly due to the interplay between the roles of

the keys K1 and K2 in the reduction.

Theorem 6.4.1. [Security of DM] For all t, qT, qP, qV > 0,

Adv
({T,P},{V})-auth
DM (t, qT, qP, qV) ≤ Advuf-rmrc

MAC (t1, qT, qP, qP)

+Advuf-rmrc
MAC (t2, qT, qV, qV) (6.1)

where t1 = t + O(qT · tTAG), t2 = t + O((qT + qV) · tTAG) and tTAG is the time to

evaluate a single tag.

Proof. The proof uses the games G0 and G1, whose main procedure and oracles are

described in Figure 6.4. In order to avoid overloading our presentation, we omit

the checks for correct input format in both games and assume that any input in

incorrect format results in ⊥. Also, throughout this proof, let us fix an adversary

A = (A1,A2) making qT queries to T, qP queries to P, qV queries to V and running

in t steps.

Game G0 is a compact representation of AUTH
({T,P},{V})
DM , without all unnecessary

steps. Therefore,

Adv
({T,P},{V})-auth
DM (A) = Pr

[
GA0 ⇒ true

]
. (6.2)

Moreover, note that the game G0, whenever a valid query msg = r2 || τ1 is made to

P in the second round, it sets the flag BAD if τ1 is a valid tag for state[sid] = r1 sent

in the first round, i.e., VRFYK1(state[sid], τ1) = 1. The second game, Game G1, is

identical to G0, with the sole difference that no query (sid,msg) with msg 6= start
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procedure main: //G0, G1

K1, K2
$← KGen

For all sid ∈ N do

state[sid] = ε; decision[sid] = ⊥
done[sid] = false

σ1
$← AP,T

1 // Phase 1

AV
2 (σ1) // Phase 2

Ret (∃sid ∈ SIDV : decision[sid] = A)

oracle V(sid,msg): // G0, G1

If (sid /∈ SIDV) ∨ done[sid] then
Ret ⊥

If state[sid] = ε then // 2nd round

τ1
$← TAGK1(msg)

state[sid]
$←M

Ret state[sid] || τ1

Else // decision
done[sid]← true

If VRFYK2(state[sid],msg) = 1 then
decision[sid]← A

Else
decision[sid]← R

Ret decision[sid]

oracle T(): // G0, G1

r1
$←M; τ1

$← TAGK1(r1)

r2
$←M; τ2

$← TAGK2(r2)
Ret (r1, (τ1, r2), τ2)

oracle P(id,msg): // G0, G1

If (sid /∈ SIDP) ∨ done[sid] then
Ret ⊥

If state[sid] = ε then // 1st round
If msg 6= start then

Ret ⊥
state[sid]

$←M
Ret state[sid]

Else // 3rd round
done[sid]← true

r2 || τ1 ← msg
If VRFYK1(state[sid], τ1) = 1 then

BAD← true

τ2
$← TAGK2(r2)

τ2 ← ⊥
Ret τ2

Ret ⊥.

Figure 6.4: Games G0 and G1 used in the proof of Theorem 6.4.1. Above,

a || b← msg denotes the operation of parsing the string msg as the concatenation

of the strings a and b of understood lengths.

made to P is accepted, i.e., they are all replied with ⊥. The following claim bounds

the difference between the probabilities A wins games G0 and G1, respectively.

Claim 6.4.2. There exists an adversary B such that

Pr
[
GA0 ⇒ true

]
− Pr

[
GA1 ⇒ true

]
≤ Advuf-rmrc

MAC (B) . (6.3)

In particular, B makes qT queries to Tag and qP queries to Chal and Vrfy, and

runs in time t′ = t+O(qT · tTAG), where tTAG is the time needed to evaluate TAG.
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Proof. First note that G0 and G1 are equivalent-until-bad. By the fundamental

lemma of game playing,

Pr
[
GA0 ⇒ true

]
− Pr

[
GA1 ⇒ true

]
≤ Pr

[
GA1 sets BAD

]
.

We now construct the adversary B for the UF-RMRCMAC game. The crucial obser-

vation here is that as long as we are only concerned about the probability of BAD

being set, we only need to look at the first phase of the game, which will in partic-

ular avoid the reduction simulating the second phase. The adversary B simulates

the interaction of the adversaryA1 in the first phase of the game AUTH
({T,P},{V})
DM as

follows: First, it selects K2
$← KGen. Upon receiving a T query from A1, B makes

a query to its Tag oracle to get a pair r1, τ1 and also computes (r2, τ2) by sampling

r2
$←M and setting τ2

$← TAGK2(r2) (recall that B can compute TAGK2(·) using

the K2 it has chosen for the simulation). It then returns (r1, (τ1, r2), τ2) as a tran-

script to A1. On every P query (sid, start), B makes a query to its Chal oracle,

which returns a message message r1. Then, B sends r1 to A1 and upon receiving

(sid, τ1, r2), for the same sid, B sends τ1 as a forgery for r1 (that is, B makes a query

(r1, τ1) to its Vrfy oracle), but returns ⊥ to A1. It is straightforward to verify that

B simulates perfectly the first phase of G1 to A1, and that the probability that

BAD is set is exactly the probability that B forges. Finally, for the simulation, B
calls its Tag oracle qT times, and its Chal and Vrfy oracles, each, qP times, and

also needs to compute qT tags by itself.

To conclude the proof, we reduce the problem of A winning the game G1 to forging

MAC in the game UF-RMRCMAC. Specifically, we build an adversary C such that

Pr
[
GA1 ⇒ true

]
= Pr

[
UF-RMRCCMAC ⇒ true

]
. (6.4)

The adversary C simulates an interaction of A = (A1,A2) with the game G1 as

follows: It first chooses K1
$← KGen. When A1 makes a query to T, C first

generates r1
$←M and τ1

$← TAGK1(r1), then samples a pair (r2, τ2) by querying

its own Tag oracle and finally returns (r1, (r2, τ1), τ2) to A. Moreover, every query

(sid,msg) to P is replied as follows: If msg = start, then C simply samples r
$←M

and returns it to A1. If msg = r′ || τ ′, C replies with ⊥. Finally, whenever A2
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Game LPNn,η

procedure main:

s
$← Zn2

d← ASample

oracle Sample():

a
$← Zn2

e← Berη

Ret (a, a · s + e)

Figure 6.5: Game LPNn,η.

makes a query (sid, r1) to V, C queries its Chal oracle, obtaining a value r2. It

then samples τ1
$← TAGK1(r1), and returns r2 || τ1. If A2 queries V again for

the same sid, with a value τ2, then C submits (r2, τ2) to Vrfy, and returns the

outcome to A2. It is not hard to see that the probability that C forges is exactly

the probability that A = (A1,A2) wins the game G1. Also, C has running time

t2 = t +O((tT + tV) · tTAG), and makes qT queries to Tag and qV queries to Chal

and Vrfy.

It is worth mentioning that the security of DM is based on a very weak

assumption. Previous generic constructions require either a much stronger MAC

allowing for chosen-message queries, and giving a challenge-response protocol di-

rectly, or a weak PRF [48], which is a strictly stronger assumption, as a weak PRF

yields a (deterministic) uf-rmrc-secure MAC. Also, in contrast to the weak-PRF

based protocol of [48], our proof avoids rewinding, hence yielding an essentially

tight reduction.

6.5 Efficient Instantiation from Learning Parity

with Noise

In this section, we instantiate DM using the Learning Parity with Noise

(LPN) assumption. In the game LPNn,η (shown in Figure 6.5), the Sample oracle,

given a secret s
$← Zn2 , returns pairs (a, as + e) for a random a ∈ Zn2 and e

$← Berη

upon each invocation, where as denotes scalar product in Z2. The (decisional)

LPN is the problem of distinguishing LPNn,η from LPNn,1/2. For t, q > 0, we



106

define the lpn advantage function as

Advlpn
n,η(t, q) = max

{
Pr
[

LPNAn,η ⇒ 1
]
− Pr

[
LPNAn,1/2 ⇒ 1

]}
(6.5)

where the maximum is taken over all adversaries A running in time t and making
q queries to the Sample oracle.

We define MACLPN = (KGen,TAG,VRFY) in Figure 6.6. MACLPN has

keyspace K = Zn2 , message space M = Zm×n2 and tag space T = Zm2 , and is

parametrized by constants η, η′ such that 0 < η < η′ < 1/2.

KGen :

s
$← Zn2 ;

Ret s

TAG(s,A) :

e
$← Bermη ;

Ret t = As + e.

VRFY(s,A, t) :

If hw(t−As) < η′ ·m then
Ret 1

else Ret 0

Figure 6.6: A uf-rmrc-secure MAC based on LPN.

The expected hamming weight of t−As is η ·m. Therefore the completeness

error of MACLPN can be upper bounded by the Chernoff bound (2.1) as

εc = Pr [ hw(e) > η′ ·m ] ≤ 2−D(η′ || η)m . (6.6)

The following lemma states that MACLPN is uf-rmrc-secure assuming LPN is hard.

Its proof uses ideas similar to the ones used in the proof that the HB protocol is

secure against passive attacks [90]. Similar ideas are also implicit in the LPN-based

randomized weak PRF construction by Applebaum et al [8].

Lemma 6.5.1. [Security of MACLPN] Let η̄ = η + η′ − 2ηη′ and η′′ such that3

0 < η̄ < η′′ < 1/2. Then, for all t, qT, qC, qV > 0,

Advuf-rmrc
MACLPN

(t, qT, qC, qV) ≤ Advlpn
n,η(t

′, q) + qV ·
(

2−D(η′′ || η̄)m + 2−(1−H2(η′′))m
)
,

where t′ = t+O(qC) and q = (qT + qC) ·m.

Proof. We use the sequence of games whose main procedure and oracles are shown

in Figure 6.7. Throughout the proof, we fix an adversary A making qT, qC and qV

queries to Tag, Chal and Vrfy respectively.

3For constants η, η′ ∈ (0, 1/2), a constant η′′ within that range always exists.
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procedure main:
//G0-G4

Let η̄ = η + η′ − 2ηη′

η′′ ∈ (η̄, 1/2)

s
$← Zn2

Forge← false

C ← ∅
Run ATag,Chal,Vrfy

Ret Forge

Chal(): //G0-G4

A
$← Zm×n2

C ← C ∪ {A}
Ret A

Tag(): //G0-G3

A
$← Zm×n2

e← Bermη
t← As + e
Ret (A, t)

Vrfy(A∗, t∗): //G0

If A∗ /∈ C Ret ⊥
C ← C \ {A∗}
e∗ ← Bermη
If hw(t∗ −A∗s) ≤ η′m

Forge← true

If hw(t∗-A∗s-e∗) > η′′m

BAD← true

Ret 1

Ret 0

Vrfy(A∗, t∗): //G1, G2

If A∗ /∈ C Ret ⊥
C ← C \ {A∗}
e∗ ← Bermη
If hw(t∗ −A∗s) ≤ η′m

Forge← true

If hw(t∗-A∗s-e∗) > η′′m

BAD← true

Forge← false

Ret 0

Ret 1

If hw(t∗-A∗s-e∗) ≤ η′′m

Forge← true

Ret 1

Ret 0

Vrfy(A∗, t∗): //G3

If A∗ /∈ C
Ret ⊥

C ← C \ {A∗}
e∗ ← Bermη
If hw(t∗-A∗s-e∗) ≤ η′′m

Forge← true

Ret 1

Ret 0

Tag(): //G4

A
$← Zm×n2

t
$← Zm2

Ret (A, t)

Vrfy(A∗, t∗): //G4

If A /∈ C
Ret ⊥

C ← C \ {A∗}
r

$← Zm2
if hw(t∗ − r) ≤ η′′ ·m

Forge← true

Ret 1

Ret 0

Figure 6.7: Sequence of games for the proof of Lemma 6.5.1.

GameG0 is equivalent to UF-RMRCMACLPN
. All extra commands in the code

of the Vrfy oracle serve as internal bookkeeping and do not affect adversary’s view.

Therefore

Advuf-rmrc
MACLPN

(A) = Pr
[
GA0 ⇒ true

]
. (6.7)

Game G1 is identical to G0 except in the way queries to Vrfy are answered. How-

ever, whenever Forge is set to true in G0, so is in G1 and thus

Pr
[
GA0 ⇒ true

]
≤ Pr

[
GA1 ⇒ true

]
. (6.8)
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Games G2, G1 are clearly equivalent-until-bad. Below, we compute the probabilty

that the BAD ← true happens in G2. Let y = t∗ −A∗s and y′ = t∗ −A∗s− e∗.

Consider a single query (A∗, t∗) to Vrfy. Then

Pr [ BAD← true ] = Pr [ (hw(y′) > η′′m) ∧ (hw(y) ≤ η′m) ]

≤ Pr
[

hw(y′) > η′′m
∣∣ hw(y) ≤ η′m

]
.

Each coordinate y′i of y′ is independent with E
e∗i

[ y′i ] = (1 − 2η)yi + η. Therefore,

(since hw(y) ≤ η′m)

E
e∗

[ hw(y′) ] = (1− 2η)hw(y) + η ·m ≤ (η + η′ − 2ηη′) ·m = η̄ ·m .

Since η′′ > η̄, by applying Chernoff bound, we get Pr [ hw(y′) > η′′m ] ≤ 2−D(η′′ || η̄)m.

Using the fundamental lemma of game playing and the union bound across qV

queries to Vrfy we get that for every A (even unbounded)

Pr
[
GA1 ⇒ true

]
− Pr

[
GA2 ⇒ true

]
≤ Pr [ BAD← true ]

≤ qV · 2−D(η′′ || η̄)m . (6.9)

G3 is essentially a compact rewriting of G2. The view of any adversary A (even

unbounded) is exactly the same in both games. Therefore

Pr
[
GA2 ⇒ true

]
= Pr

[
GA3 ⇒ true

]
. (6.10)

G4 differs from G3 with respect to both Tag and Vrfy oracles. We claim that

there exists an adversary B against LPN such that

Pr
[
GA3 ⇒ true

]
− Pr

[
GA4 ⇒ true

]
= Advlpn

n,η(B) . (6.11)

B maintains a set C (initialized to ∅) that contains all messages A for which A is

allowed to query the oracle Vrfy and replies to A’s queries as follows: For each

query to Tag by A, B makes m queries to its Sample oracle. Let {(ai, zi)}i∈[m]

be the samples returned. B then sends (A, z) to A where A is an m × n matrix

with the i-th row being ai and z = (z1, . . . , zm)T . On each Chal query by A, B
gets m more samples (A∗, z∗) and returns A∗ to A. At the same time, B adds

A∗ to C along with z∗. On a (A∗, t∗) query to Vrfy, B first checks that A∗ ∈ C
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and if so, recovers the vector z∗ that corresponds to A∗. It then checks whether

hw(t∗ − z∗) ≤ η′′m and if so, it outputs 1 and terminates. Otherwise it returns

0 to A, removes A∗ and z∗ from C and resumes the simulation. Clearly, if B is

playing in game LPNn,η, then it simulates G3 perfectly to A whereas if it is playing

in game LPNn,1/2, then it simulates G4 perfectly to A. Thus

Pr
[
GA3 ⇒ true

]
- Pr

[
GA4 ⇒ true

]
= Pr

[
LPNBn,η ⇒ 1

]
- Pr

[
LPNBn,1/2 ⇒ 1

]
= Advlpn

n,η(B) .

Moreover, for each Tag and each Chal query by A, B makes m queries to its

Sample oracle. Hence, B makes (qT + qC)m queries in total to its oracle and runs

in time t+O(qC).

Finally, the view of A in G4 is completely independent of s. Consider again a

single query (A∗, t∗) to Vrfy. It is straightforward to verify that t∗ − r is uniform

and random over Zm2 . Therefore the probabilty a verification query causes Vrfy to

return 1 is

2−m
bη′′mc∑
i=0

(
m

i

)
≤ 2−(1−H2(η′′))m .

Using the union bound,

Pr
[
GA4 ⇒ true

]
≤ qV · 2−(1−H2(η′′))m . (6.12)

Proof then follows combining (6.7), (6.8), (6.9), (6.10), (6.11) and (6.12).

Instantiating DM with MACLPN yields a protocol DMLPN whose secret key

consists of two vectors s1, s2 ∈ Zn2 . The prover first selects a random matrix

A1
$← Zm×n2 and sends it to the verifier. The verifier then selects another matrix

A2
$← Zm×n2 and a noise vector e1

$← Bermη , and sends (A2,A1s1+e1) to the prover.

Upon receiving a pair (A2, z1), the prover checks whether hw(z1 −A1s1) ≤ η′ ·m,

and if so, samples e2
$← Bermη , and sends A2s2 + e2 back to the verifier. Finally,

the verifier, on input z2, accepts iff hw(z2 −A2s2) < η′ ·m.

The overall advantage of our DMLPN protocol can be computed, combining

(6.1) and Lemma 6.5.1, as

Adv
({T,P},{V})-auth
DMLPN

(t, qT, qP, qV) ≤ (qP + qV)
[
2−D(η′′ || η̄)m + 2−(1−H2(η′′))m

]
+ Advlpn

n,η(t1, q1) + Advlpn
n,η(t2, q2) (6.13)
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Table 6.1: (Asymptotic) comparison of known LPN-based active secure protocols:

Here, n is the secret-size for the underlying LPN problem and ε is the assumed

hardness of LPN given q = (qP + qV + qT)m samples.

Protocol rounds
Complexity

Security
keysize Communication Computation

HB+ [87] 3 2n 2nm+ n Θ(n ·m) qV ·
√
ε

KP+ [94] 2 ≥ 4.2n ≥ 2.1nm Θ(n ·m) qV · ε
This work 3 2n 2nm+ 2n Θ(n ·m) ε

where q1 = (qT + qP)m, q2 = (qT + qV)m, t1 = t + O(qT + qP) · tTAG, t2 = t +

O(qT + qV) · tTAG and tTAG is the time to compute a single LPN mac. It is easy

to see that this bound is superior to the one of HB+ [87, 90], due to their use of

rewinding, which results in a loose security reduction. Comparing with KP+ [94] is

more complicated. For that, we use the bound provided in their security reduction

[94, Thm. 1]. Moreover, we need to adapt their security bound to the case where

both transcript and multiple verification queries are allowed. When the keysize of

KP+ is 2`, then the overall bound can be computed as

Adv
({T,P},{V})-auth

KP+ (t, qT, qP, qV) ≤ qV

[
(qP + qT)m

2g+1
+ (qP + qT)2−c1·` + 2−c2·m

]
+qV · Advlpn

d,η(t
′, q) (6.14)

where t′ = t + O(qP + qT), q = (qP + qT)m, c1, c2 are constants, and d, g are

parameters such that d+ g ≤ `/2.1. Also, for keysize 2`, KP+ has communication

complexity 2` + m` + m. Notice that the security of KP+ (with keysize 2`) is

based on the hardness of LPN with secret size d < `/2.1. In contrast, DMLPN

with keysize 2n relies on the hardness of LPN with secret size n. Moreover, too

small values for g affect negatively the security of KP+ and in practice one might

have to choose g = d < `/4.2. This means that, even in the most optimistic case

(` = 2.1d), for the same security level, i.e. LPN with the same secret size, DMLPN

requires a substantially smaller key than KP+ and incurs lower communication

complexity.

The comparison with both HB+ and KP+ is even more in our favor when

multiple verification queries are considered. Indeed, the bounds for HB+ and KP+
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increase linearly with the number of verification queries.

Based on the above analysis, Table 6.1 provides an a symptotic comparison

of our LPN-based authentication protocol with HB+ and KP+. In the table, we

have used LPN with fixed secret size n as the underlying hardness assumption

across all three protocols.

Chapter 6 is, in part, a reprint of the paper “Secret-Key Authentication

Beyond the Challenge-Response Paradigm: Denitional Issues and New Protocols”

[119] co-authored with Stefano Tessaro. The dissertation author was the primary

investigator and author of the relevant part of the paper.
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