The angular intensity correlation functions $C(1)$ and $C(10)$ for the scattering of light from randomly rough dielectric and metal surfaces.
The Angular Intensity Correlation Functions $C^{(1)}$ and $C^{(10)}$ for the Scattering of Light from Randomly Rough Dielectric and Metal Surfaces

Tamara A. Leskovaa, Ingve Simonsenb,c, Alexei A. Maradudinc

aInstitute of Spectroscopy, Russian Academy of Sciences, Troitsk, Russia

bDepartment of Physics, The Norwegian University of Science and Technology, Trondheim, Norway

cDepartment of Physics and Astronomy and Institute for Surface and Interface Science, University of California, Irvine, CA, USA

We study the statistical properties of the scattering matrix $S(q|k)$ for the problem of the scattering of light from a randomly rough one-dimensional surface, defined by the equation $x_3 = \zeta(x_1)$, where the surface profile function $\zeta(x_1)$ constitutes a zero-mean, stationary, Gaussian random process, through the effects of $S(q|k)$ on the angular intensity correlation function $C(q,k|q',k')$. The existence of both the $C^{(1)}$ and $C^{(10)}$ correlation functions is consistent with the amplitude of the scattered field obeying complex Gaussian statistics in the limit of a long surface. We show that the deviation of the statistics of the scattering matrix from circular Gaussian statistics and the $C^{(10)}$ correlation function are determined by exactly the same statistical moment. As the random surface becomes rougher, the amplitude of the scattered field no longer obeys complex Gaussian statistics but obeys complex circular Gaussian statistics instead. In this case, the $C^{(10)}$ correlation function should vanish. This result is confirmed by numerical simulation calculations.

1. INTRODUCTION

The scattering of light from randomly rough surfaces has attracted attention over many years. The majority of the theoretical and experimental studies of such scattering has been devoted to coherent interference effects occurring in the multiple scattering of electromagnetic waves from randomly rough surfaces and the related backscattering enhancement phenomenon. Recent attention has been directed toward theoretical [1-12] and experimental [2,7,8,12,13] studies of multiple-scattering effects on higher moments of the scattered field, in particular on angular intensity correlation functions. These correlation functions describe how the speckle pattern, formed through the interference of randomly scattered waves, changes when one or more parameters of the scattering system are varied.

The interest in these correlations has been stimulated by the expectation that, just as the inclusion of multiple-scattering processes in the calculation of the angular dependence of the intensity of the light that has been scattered incoherently from, or incoherently through, a randomly rough surface, led to the prediction of enhanced backscattering [14] and enhanced transmission [15], their inclusion in the calculation of higher-order moments of the scattered or transmitted field would also lead to the prediction of new physical effects. This expectation was prompted by the results of earlier theoretical [16,17] and experimental [18-20] investigations of angular intensity correlation functions in the scattering of classical waves from volume disordered media. In a theoretical investigation [9] it was predicted that three types of correlations occur in such scattering, viz. short-range correlations, long-range correlations, and infinite-range correlations. These were termed the $C^{(1)}$, $C^{(2)}$, and $C^{(3)}$ correlations, respectively. The $C^{(1)}$ correlation function includes both the “memory effect” and the “reciprocal memory effect” [9,10], so named because of the wave vector conservation conditions they satisfy. Both of these effects have now been observed in volume scattering experiments [16,17]. The $C^{(2)}$ correlation function has also been observed in volume scattering experiments [18,19], as has the $C^{(3)}$ correlation function [20].

Until recently, only the $C^{(1)}$ correlation function had been studied theoretically and experimentally [1-8]. In a recent series of papers devoted to theoretical studies of angular correlation functions of the intensity of light scattered from one-dimensional [9,10] and two-dimensional [10] randomly rough metal surfaces the long–range $C^{(2)}$ and infinite–range $C^{(3)}$ correlation functions were calculated, and two additional types of correlation functions, a short–range correlation function, named $C^{(10)}$, and a long–range correlation function, named $C^{(11.5)}$, correlation functions were predicted. In very recent experimental work [12] the envelopes of the $C^{(1)}$ and $C^{(10)}$ correlation functions were measured experimentally for the scattering of p-polarized light from weakly rough, one-dimensional gold surfaces. The $C^{(1.5)}, C^{(2)},$ and $C^{(3)}$ correlation functions have yet to be observed experimentally.

The question arises as to whether it possible to determine the relative magnitudes of the different correlation functions from a knowledge of the experimental parameters of the surface roughness and its statistical properties. This question has been raised earlier in [12,16], but not answered definitively. We therefore address it here for the case of a one–dimensional random surface defined by the equation $x_3 = \zeta(x_1)$, on the basis of the single assumption that
the surface profile function $\zeta(x_1)$ is a single-valued function of x_1 that constitutes a zero-mean, stationary, Gaussian random process.

The outline of this paper is as follows. In Section 2 we introduce the angular intensity correlation function and analyze it in terms of the possible statistics of the scattering matrix. In Section 3 we illustrate the conclusions of Section 2 for the simple example of the scattering of light from the randomly rough surface of a perfect conductor. Finally, in Section 4 we present the conclusions drawn from the results obtained in this work.

2. THE ANGULAR INTENSITY CORRELATION FUNCTION

The general angular intensity correlation function $C(q,k|q',k')$ we study in this work is defined by

$$C(q,k|q',k') = \langle I(q|k)I(q'|k') \rangle - \langle I(q|k) \rangle \langle I(q'|k') \rangle,$$

(2.1)

where the angle brackets denote an average over the ensemble of realizations of the surface profile function. The intensity $I(q|k)$ entering this expression is defined in terms of the scattering matrix $S(q|k)$ for the scattering of light of frequency ω from a one-dimensional random surface by

$$I(q|k) = \frac{1}{L_1} \left(\frac{\omega}{c} \right) |S(q|k)|^2,$$

(2.2)

where L_1 is the length of the x_1-axis covered by the random surface, and the wavenumbers k and q are related to the angles of incidence and scattering, θ_0 and θ_s, measured counterclockwise and clockwise from the normal to the mean scattering surface, respectively, by $k = (\omega/c)\sin\theta_0$ and $q = (\omega/c)\sin\theta_s$. In terms of the scattering matrix $S(q|k)$ the correlation function $C(q,k|q',k')$ becomes

$$C(q,k|q',k') = \frac{1}{L_1^2 c^2} \left[\langle S(q|k)S^*(q'|k)S(q'|k')S^*(q|k') \rangle \right. \right.$$

$$\left. \quad - \langle S(q|k)S^*(q|k) \rangle \langle S(q'|k')S^*(q'|k') \rangle \right].$$

(2.3)

Since, due to the stationarity of the surface profile function, $\langle S(q|k) \rangle$ is diagonal in q and k, $\langle S(q|k) \rangle = 2\pi\delta(q-k)S(k)$, we introduce the incoherent part of the scattering matrix $\delta S(q|k) = S(q|k) - \langle S(q|k) \rangle$. Then, from the relations between averages of the products of random functions and the corresponding cumulant averages [21] and omitting all terms proportional to $2\pi\delta(q-k)$ and/or $2\pi\delta(q'-k')$, as uninteresting specular effects, Eq. (2.3) can be rewritten in the form

$$C(q,k|q',k') = \frac{1}{L_1^2 c^2} \left[|\delta S(q|k)\delta S^*(q'|k')| + |\delta S(q|k)\delta S(q'|k')| \right] \right.$$

$$\left. + \langle \delta S(q|k)\delta S(q'|k) \rangle \delta S(q'|k')\delta S^*(q'|k') \right],$$

(2.4)

where $\langle \cdots \rangle_c$ denotes the cumulant average.

Due to the stationarity of the surface profile function $\zeta(x_1)$, $\langle \delta S(q|k)\delta S^*(q'|k') \rangle$ is proportional to $2\pi\delta(q-k-q'+k')$. It gives rise to the contribution to $C(q,k|q',k')$ called $C^{(1)}(q,k|q',k')$, and describes the memory effect and the reciprocal memory effect. Similarly, $\langle \delta S(q|k)\delta S(q'|k') \rangle$ is proportional to $2\pi\delta(q-k+q'-k')$, and contributes the correlation function $C^{(10)}(q,k|q',k')$ to $C(q,k|q',k')$. The third term on the right hand side of Eq. (2.4) $\langle \delta S(q|k)\delta S^*(q|k') \delta S(q'|k') \delta S^*(q'|k') \rangle_c$ is proportional to $2\pi\delta(0) = L_1$, due to the stationarity of the surface profile function $\zeta(x_1)$, and gives rise to the long-range and infinite-range contributions to $C(q,k|q',k')$ given by the sum $C^{(1,5)}(q,k|q',k') + C^{(2)}(q,k|q',k') + C^{(3)}(q,k|q',k')$. Thus, we have separated explicitly the contributions to $C(q,k|q',k')$ that have been named $C^{(1)}(q,k|q',k')$ and $C^{(10)}(q,k|q',k')$.

What is more, from Eq. (2.4) we can easily estimate the relative magnitudes of the different contributions to the general correlation function. Indeed, since $2\pi\delta(0) = L_1$, when the arguments of the delta-functions vanish the $C^{(1)}(q,k|q',k')$ and $C^{(10)}(q,k|q',k')$ correlation functions are independent of the length of the surface L_1, because they contain $|2\pi\delta(0)|^2$. At the same time the remaining term in Eq. (2.4), that yields the sum $C^{(1,5)}(q,k|q',k') + C^{(2)}(q,k|q',k') + C^{(3)}(q,k|q',k')$, is inversely proportional to the surface length, due to the lack of a second delta function. Therefore, in the limit of a long surface or a large illumination area the long-range and infinite-range correlations are small compared to short-range correlation functions, and vanish in the limit of an infinitely long
surface. Thus, the experimental observation of the \(C^{(1.5)}\), \(C^{(2)}\), and \(C^{(3)}\) correlation functions requires the use of a short segment of random surface and/or the use of a beam of narrow width for the incident field. A detailed discussion of the conditions under which they may be observed will therefore be deferred to a separate paper.

The preceding results are consistent with the usual assumptions and conclusions encountered in conventional speckle theory [22,23]. Thus, when the surface profile function is assumed to be a stationary random process, and the random surface is assumed to be infinitely long, the scattering matrix \(S(q|k)\) becomes the sum of a very large number of independent contributions from different points on the surface. On invoking the central limit theorem, it is found that \(S(q|k)\) obeys complex Gaussian statistics. In this case Eq. (2.4) becomes rigorously

\[
C(q,k|q',k') = \frac{1}{L_1^2} \frac{\omega^2}{c^2} \left[|\langle \delta S(q|k)\delta S^*(q'|k') \rangle |^2 + |\langle \delta S(q|k)\delta S(q'|k') \rangle |^2 \right]
\]

(2.5)

because all cumulant averages of products of more than two Gaussian random processes vanish. The last term on the right-hand side of Eq. (2.4) therefore gives the correction to the prediction of the central limit theorem due to the finite length of the random surface.

If it is further assumed, as is done in speckle theory, where the disorder is presumed to be strong, that \(\delta S(q|k)\) obeys circular complex Gaussian statistics [22,23], then \(\langle \delta S(q|k)\delta S(q'|k') \rangle = 0\) and the expression for \(C(q,k|q',k')\) simplifies to

\[
C(q,k|q',k') = \frac{1}{L_1^2} \frac{\omega^2}{c^2} |\langle \delta S(q|k)\delta S^*(q'|k') \rangle|^2
\]

(2.6)

This approximation is often called the factorization approximation to \(C(q,k|q',k')\) [17].

We recall that if the complex random variables \(F_1\) and \(F_2\) are jointly circular complex Gaussian random variables, then the conditions

\[
\langle Re F_1 Re F_2 \rangle = \langle Im F_1 Im F_2 \rangle,
\]

(2.9)

\[
\langle Re F_1 Im F_2 \rangle = -\langle Im F_1 Re F_2 \rangle,
\]

(2.10)

have to be satisfied. To analyze how the scattering matrix transforms from a complex Gaussian random process into a circular complex Gaussian random process we represent the scattering matrix in the form \(\delta S(q|k) = \delta S_1(q|k) + i\delta S_2(q|k)\). The expressions for the averages of the products of the real and imaginary parts of \(\delta S(q|k)\) can be written in terms of \(\langle \delta S(q|k)\delta S^*(q'|k') \rangle\) and \(\langle \delta S(q|k)\delta S(q'|k') \rangle\)

\[
\langle \delta S_1(q|k)\delta S_1(q'|k') \rangle = \frac{1}{2} Re [\langle \delta S(q|k)\delta S^*(q'|k') \rangle + \langle \delta S(q|k)\delta S(q'|k') \rangle]
\]

(2.11)

\[
\langle \delta S_2(q|k)\delta S_2(q'|k') \rangle = \frac{1}{2} Re [\langle \delta S(q|k)\delta S^*(q'|k') \rangle - \langle \delta S(q|k)\delta S(q'|k') \rangle]
\]

(2.12)

\[
\langle \delta S_1(q|k)\delta S_2(q'|k') \rangle = -\frac{1}{2} Im [\langle \delta S(q|k)\delta S^*(q'|k') \rangle - \langle \delta S(q|k)\delta S(q'|k') \rangle]
\]

(2.13)

\[
\langle \delta S_2(q|k)\delta S_1(q'|k') \rangle = \frac{1}{2} Im [\langle \delta S(q|k)\delta S^*(q'|k') \rangle + \langle \delta S(q|k)\delta S(q'|k') \rangle]
\]

(2.14)

When \(q = q'\) and \(k = k'\), the average \(\langle \delta S(q|k)\delta S(q|k) \rangle\), which is proportional to \(2\pi\delta(2q-2k)\) due to the stationarity of the surface profile function, is nonzero only in the specular direction \(q = k\). Therefore, if the surface is infinitely long, and if we omit the specular direction, from Eqs. (2.9) – (2.10), and Eqs. (2.11) – (2.14) we see that the scattering matrix is a circular complex Gaussian random process. Consequently, apart from the specular direction, the speckle contrast \(\rho = \sqrt{[\langle \delta S(q|k)\delta S^*(q|k) \rangle^2]/[\langle \delta S(q|k)\delta S^*(q|k) \rangle^2]} - 1\) is unity [22-24]. This result contradicts the well-known result of Refs. 23 and 24 that the statistics of the diffuse component of the scattered field is highly non-circular when the surface is weakly rough, and only in the limit of very rough surfaces is the circularity of the statistics restored. The contradiction stems from the representation of the amplitude of the scattered field as the convolution of a real-valued amplitude weighting function and the random phase factor in [23,24]. The assumption of a real-valued amplitude weighting function, which represents the finite width of the aperture, is identical to the assumption of a finite length of the randomly rough surface. As a result, the statistics of the scattering amplitude is nonstationary in [23,24].
the present work we are interested only in the case where the statistics of the surface profile function, as well as of the scattering matrix, is stationary.

The set of the scattering matrices $\delta S(q|k)$ is a set of jointly circular complex Gaussian random variables when

$$\langle \delta S(q|k)\delta S(q'|k') \rangle$$

vanishes. But when

$$\langle \delta S(q|k)\delta S(q'|k') \rangle$$

vanishes the correlation function $C^{(10)}$ vanishes, since, within a coefficient, $C^{(10)}(q,k|q',k') \sim |\langle \delta S(q|k)\delta S(q'|k') \rangle|^2$.

Thus, calculations and measurements of the correlation function $C(q,k|q',k')$ yields important information about

the statistical properties of the amplitude of the scattered field. If the random surface is such that only the

$C^{(1)}$ is observed, then $S(q|k)$ obeys circular complex Gaussian statistics. Finally, if the random surface is

such that $C^{(1,5)}$, $C^{(2)}$ and $C^{(3)}$ are observed in addition to both $C^{(1)}$ and $C^{(10)}$, then $S(q|k)$ is not a Gaussian random

process, but the statistics it obeys in this case are not known at the present time.

To conclude this section we introduce the the normalized angular intensity correlation functions of interest to us, which in terms of $\delta S(q|k)$ are defined by

$$\Xi^{(1)}(q,k|q',k') = \frac{|\langle \delta S(q|k)\delta S^*(q'|k') \rangle|^2}{\langle \delta S(q|k)\delta S^*(q|k) \rangle \langle \delta S(q'|k')\delta S^*(q'|k') \rangle}$$

(2.15)

and

$$\Xi^{(10)}(q,k|q',k') = \frac{|\langle \delta S(q|k)\delta S^*(q'|k') \rangle|^2}{\langle \delta S(q|k)\delta S^*(q|k) \rangle \langle \delta S(q'|k')\delta S^*(q'|k') \rangle}.$$ (2.16)

We introduce also the the envelopes $C^{(1)}_0$ and $C^{(10)}_0$ of the correlation functions $C^{(1)}$ and $C^{(10)}$, which we define by

$$C^{(1)}(q,k|q',k') = 2\pi\delta(q-k-q'+k')C^{(1)}_0(q,k|q',q' - q + k)$$

(2.17)

and

$$C^{(10)}(q,k|q',k') = 2\pi\delta(q-k+q'-k')C^{(10)}_0(q,k|q'q' + q - k).$$

3. LIGHT SCATTERING FROM A PERFECTLY CONDUCTING RANDOMLY ROUGH SURFACE IN THE FRAMEWORK OF PHASE PERTURBATION THEORY.

In this Section we study the statistical properties of the scattering matrix for the problem of the scattering of a scalar plane wave from a randomly rough infinitely long surface defined by the equation $x_3 = \zeta(x_1)$. The region $x_3 > \zeta(x_1)$ is vacuum, while the region $x_3 < \zeta(x_1)$ is a perfectly conducting medium. It is assumed that the Dirichlet boundary condition is satisfied on the surface $x_3 = \zeta(x_1)$.

The surface profile function $\zeta(x_1)$ is assumed to be a single-valued function of x_1 that is differentiable and constitutes a zero-mean, stationary, Gaussian random process defined by the properties

$$\langle \zeta(x_1) \rangle = 0, \quad \langle \zeta(x_1)\zeta(x'_1) \rangle = \delta^2 W(|x_1 - x'_1|).$$ (3.1)

In Eqs.(3.1) the angle brackets denote an average over the ensemble of realizations of $\zeta(x_1)$, and $\delta = \langle \zeta^2(x_1) \rangle^{1/2}$ is the rms height of the surface, $W(|x_1|)$ is the surface height autocorrelation function. In numerical examples we will use the Gaussian form for $W(|x_1|)$

$$W(|x_1|) = \exp(-x_1^2/a^2),$$

(3.2)

where a is the transverse correlation length of the surface roughness.

A reciprocal phase–perturbation theory for the scattering matrix $S(q|k)$ was constructed in Refs. 25 and 26. The term of lowest order in the surface profile function was shown to have the form

$$S(q|k) = \int_{-\infty}^{\infty} dx_1 e^{-i(q-k)x_1} e^{-2i\sqrt{\alpha_0(q)|\zeta_0|}(x_1)},$$

(3.3)

Since
\[\langle S(q|k) \rangle = 2\pi \delta(q - k) e^{-2\delta^2 \alpha_0(q) \alpha_0(k)}, \] (3.4)

we can write the expression for \(\delta S(q|k) \) as

\[
\delta S(q|k) = \int_{-\infty}^{\infty} dx_1 e^{-i(q-k)x_1} \left[e^{-2i\sqrt{\alpha_0(q)\alpha_0(k)}\zeta(x_1)} - e^{-2\delta^2 \alpha_0(q)\alpha_0(k)} \right]. \] (3.5)

We calculate the averages \(\langle \delta S(q|k)\delta S^*(q'|k') \rangle \) and \(\langle \delta S(q|k)\delta S(q'|k') \rangle \) using the expression \(3.3 \) for the scattering matrix. For \(\langle \delta S(q|k)\delta S^*(q'|k') \rangle \) we obtain

\[
\langle \delta S(q|k)\delta S^*(q'|k') \rangle = \int_{-\infty}^{\infty} dx_1 \int_{-\infty}^{\infty} dx_1' e^{-i(q-k)x_1+i(q'-k')x_1'} \times \left[e^{-2i\sqrt{\alpha_0(q)\alpha_0(k)}\zeta(x_1)} - e^{-2\delta^2 \alpha_0(q)\alpha_0(k)} \right] \times \left[e^{2i\sqrt{\alpha_0(q')\alpha_0(k')}\zeta(x_1')} - e^{-2\delta^2 \alpha_0(q')\alpha_0(k')} \right] \] (3.6)

\[
= e^{-2\delta^2 (\alpha_0(q)\alpha_0(k)+\alpha_0(q')\alpha_0(k'))} \int_{-\infty}^{\infty} dx_1 \int_{-\infty}^{\infty} dx_1' e^{-i(q-k)x_1+i(q'-k')x_1'} \times \left[e^{4\delta^2 \sqrt{\alpha_0(q)\alpha_0(q')\alpha_0(k')\alpha_0(k)} W(|x_1-x_1'|) - 1 \right] \] (3.7)

\[
= 2\pi \delta(q - k - q' + k') e^{-2\delta^2 (\alpha_0(q)\alpha_0(k)+\alpha_0(q')\alpha_0(k'))} \int_{-\infty}^{\infty} du \left[e^{4\delta^2 \sqrt{\alpha_0(q)\alpha_0(q')\alpha_0(k')\alpha_0(k)} W(|u|) - 1 \right] e^{-i(q'-k')u}, \] (3.8)

while for \(\langle \delta S(q|k)\delta S(q'|k') \rangle \) we have

\[
\langle \delta S(q|k)\delta S(q'|k') \rangle = \int_{-\infty}^{\infty} dx_1 \int_{-\infty}^{\infty} dx_1' e^{-i(q-k)x_1-i(q'-k')x_1'} \times \left[e^{-2i\sqrt{\alpha_0(q)\alpha_0(k)}\zeta(x_1)} - e^{-2\delta^2 \alpha_0(q)\alpha_0(k)} \right] \times \left[e^{2i\sqrt{\alpha_0(q')\alpha_0(k')}\zeta(x_1')} - e^{-2\delta^2 \alpha_0(q')\alpha_0(k')} \right] \] (3.9)

\[
= e^{-\delta^2 (\alpha_0(q)\alpha_0(k)+\alpha_0(q')\alpha_0(k'))/2} \int_{-\infty}^{\infty} dx_1 \int_{-\infty}^{\infty} dx_1' e^{-i(q-k)x_1-i(q'-k')x_1'} \times \left[e^{-4\delta^2 \sqrt{\alpha_0(q)\alpha_0(q')\alpha_0(k')\alpha_0(k)} W(|x_1-x_1'|) - 1 \right] \] (3.10)

\[
= 2\pi \delta(q - k + q' - k') e^{-2\delta^2 (\alpha_0(q)\alpha_0(k)+\alpha_0(q')\alpha_0(k'))} \int_{-\infty}^{\infty} du \left[e^{-4\delta^2 \sqrt{\alpha_0(q)\alpha_0(q')\alpha_0(k')\alpha_0(k)} W(|u|) - 1 \right] e^{-i(q'-k')u}, \] (3.11)

It is readily seen that in contrast to \(\langle \delta S(q|k)\delta S^*(q'|k') \rangle \) the average \(\langle \delta S(q|k)\delta S(q'|k') \rangle \) vanishes with increasing roughness parameters \(\delta \) and \(\alpha \), due to the negative exponential under the integral sign in the last line of Eq. (3.11). Plots of the normalized correlation functions \(\Xi^{(1)}(q,k|q',k') \) and \(\Xi^{(10)}(q,k|q',k') \) as functions of \(\delta \) for different values of \(\alpha \) are presented in Fig. 1 (a), while plots of the envelopes of the correlation functions \(C^{(1)} \) and \(C^{(10)} \) as functions of \(\delta \) for different values of \(\alpha \) are presented in Fig. 1 (b), for fixed values of \(q, k \) and \(q' \), while \(k' \) is determined by the constraint of the corresponding \(\delta \)-function. When calculating the results presented in Figs. 1 (a) and (b) the value of \(q' \) was chosen to produce the same values of \(C^{(1)} \) and \(C^{(10)} \) in the limit of a weakly rough surface. From the plots presented in Fig. 1(a) we see that \(\Xi^{(10)}(q,k|q',k') \) vanishes even for quite moderately weakly rough surfaces for which \(\Xi^{(1)}(q,k|q',k') \) is still about unity. We note that \(C^{(1)} \) also decreases with increasing \(\delta \) (Fig. 1 (b)). Using Eqs.(2.11) - (2.14), (3.8) and (3.11) we obtain the expressions for \(\langle (\delta S_1(q|k))^2 \rangle \), \(\langle (\delta S_2(q|k))^2 \rangle \) and \(\langle \delta S_1(q|k)\delta S_2(q|k) \rangle \)

\[
\langle (\delta S_1(q|k))^2 \rangle = e^{-4\delta^2 \alpha_0(q)\alpha_0(k)} \left[\frac{L_1}{2} \int_{-\infty}^{\infty} du \cos(q-k)u \left(e^{\delta^2 \alpha_0(q)\alpha_0(k) W(|u|) - 1} - 1 \right) \right. \\
+ \left. \frac{1}{2} \pi \delta(q-k) \int_{-\infty}^{\infty} \cos(q-k)u \left(e^{-\delta^2 \alpha_0(q)\alpha_0(k) W(|u|) - 1} - 1 \right) \right], \] (3.12)

and
FIG. 1. The normalized correlation functions $\Xi^{(1)}$ (a) and $\Xi^{(10)}$ (c), and the envelopes $C_0^{(10)}$ (b) and $C_0^{(10)}$ (d) as functions of δ/λ for values of the transverse correlation length $a = 300$ nm, 500 nm, and 800 nm. The incident light was s-polarized and of wavelength 632.8 nm. The scattering medium was a randomly rough perfect conductor. Furthermore $\theta_0 = 30^\circ$, $\theta_s = 0^\circ$, and $\theta_s' = 0^\circ$. In Fig. 1a the results for the different correlation lengths considered could not be distinguished.

\[
\langle (\delta S_2(q|k))^2 \rangle = e^{-4\delta^2 \alpha_0(q)\alpha_0(k)} \left[\frac{L_1}{2} \int_{-\infty}^{\infty} du \cos(q - k) u \left(e^{2\delta^2 \alpha_0(q)\alpha_0(k) W(|u|)} - 1 \right) \right. \\
\left. - \frac{1}{2} \pi \delta(q - k) \int_{-\infty}^{\infty} \cos(q - k) u \left(e^{-2\delta^2 \alpha_0(q)\alpha_0(k) W(|u|)} - 1 \right) \right],
\]

while

\[
\langle \delta S_1(k|k)\delta S_2(k|k) \rangle = 0.
\]

In Fig. 2 we present plots of the ratio $\langle (\delta S_2(k|k))^2 \rangle / (\langle \delta S_1(k|k) \rangle^2)$ as a function of the rms height of the surface roughness δ. Since this ratio is calculated for the specular direction $q = k$, it is independent of the transverse correlation length a. From the plot presented it is easily seen that for large values of the rms height the incoherent part of the scattering matrix, $\delta S(q|k)$, becomes a circular complex Gaussian variable, even in the specular direction.
4. LIGHT SCATTERING FROM A RANDOMLY ROUGH PENETRABLE SURFACE

The results of the preceding Section enable us to make several conclusions when studying the scattering of light from a randomly rough surface of a penetrable medium. For simplicity we consider here the scattering of s-polarized light from a medium characterized by a dielectric function $\epsilon(\omega)$. As is well known (see, e.g. [27-29]) if the surface profile function is such that the conditions for the applicability of the Rayleigh hypothesis are satisfied the scattering amplitude $R(q|k)$ obeys the reduced Rayleigh equation. Rewritten in terms of the scattering matrix $S(q|k)$ it has the form

$$S(q|k) = 2\pi \delta(q-k)R_0(k) + \int_{-\infty}^{\infty} \frac{dp}{2\pi} M(q|p)S(p|k), \tag{4.1}$$

where for the case of the scattering of s-polarized light,

$$R_0(k) = \frac{\alpha_0(k) - \alpha(k)}{\alpha_0(k) + \alpha(k)}, \tag{4.2}$$

$$\alpha_0(k) = \sqrt{\frac{\omega^2}{c^2} - k^2}, \quad \alpha(k) = \sqrt{\epsilon(\omega)\frac{\omega^2}{c^2} - k^2}, \tag{4.3}$$

$$N(q|k) = -(\epsilon - 1)\frac{\omega^2/c^2}{\alpha_0(q) + \alpha(q)} \sqrt{\frac{\alpha_0(q)}{\alpha_0(k)}} \frac{J(\alpha(k) + \alpha_0(k)|p - k)}{\alpha(p) + \alpha_0(k)}, \tag{4.4}$$

$$M(q|k) = -(\epsilon - 1)\frac{\omega^2/c^2}{\alpha_0(q) + \alpha(q)} \sqrt{\frac{\alpha_0(q)}{\alpha_0(p)}} \frac{J(\alpha(p) - \alpha_0(k)|p - k)}{\alpha(p) - \alpha_0(k)}, \tag{4.5}$$

and

$$J(\gamma|Q) = \int_{-\infty}^{\infty} dx_1 e^{-iQx_1} \left(e^{-i\gamma(x_1)} - 1\right). \tag{4.6}$$
We can write the solution of Eq. (4.1) formally as

\[S(q|k) = R_0(k)2\pi\delta(q - k) + \int_{-\infty}^{\infty} \frac{dp}{2\pi} M(q|p)F(p|k) + \int_{-\infty}^{\infty} \frac{dp}{2\pi} M(p|p')F(p'|k) + \cdots, \tag{4.7} \]

where

\[F(q|k) = N(q|k) + M(q|k)R_0(k), \tag{4.8} \]

and we keep all terms in the infinite iterative series. Both \(N(q|k) \) and \(M(q|p) \) contain the surface disorder only in the functions \(J(\gamma|Q) \). Therefore, having in hand the recipe for calculating the average of the product of any number of functions \(J(\gamma|Q) \), we can calculate, in principle, both \(\langle \delta S(q|k)\delta S(q'|k') \rangle \) and \(\langle \delta S(q|k)\delta S^*(q'|k') \rangle \). The basics of such calculations were described in Ref. [30].

To calculate the averages \(\langle \delta S(q|k)\delta S(q'|k') \rangle \) and \(\langle \delta S(q|k)\delta S^*(q'|k') \rangle \) we multiply the series (4.7) for \(S(q|k) \) by the corresponding series for \(S(q'|k') \), and average the product term-by-term. From the result we subtract the product \(\langle S(q|k)\rangle \langle S(q'|k') \rangle \). In a similar fashion we calculate the average \(\langle \delta S(q|k)\delta S^*(q'|k') \rangle \) by multiplying the series (4.7) for \(S(q|k) \) by the complex conjugate of the corresponding series for \(S(q'|k') \), averaging the product term-by-term, and subtracting the product \(\langle S(q|k)\rangle \langle S^*(q'|k') \rangle \) from the result. In the product \(\langle \delta S(q|k)\delta S^*(q'|k') \rangle \) the contribution of \(n \)th order in the functions \(J(\gamma|Q) \) and \(J^*(\gamma|Q) \) contains \(n - 1 \) terms of the form

\[
\sum_{m=1}^{n-1} \left\{ \prod_{r=1}^{m} J(\gamma_r|Q_r) \prod_{s=1}^{n-m} J^*(\gamma'_s|Q'_s) \right\} - \left\{ \prod_{r=1}^{m} J(\gamma_r|Q_r) \prod_{s=1}^{n-m} J^*(\gamma'_s|Q'_s) \right\}
\]

(4.9)

To obtain a nonzero contribution, for each value of \(m \) at least one \(J(\gamma_r|Q_r) \) must be contracted with at least one \(J^*(\gamma'_s|Q'_s) \). Therefore, each term in this sum contains at least one factor with a positive exponential of the form \(\exp \{ \delta^2(\gamma|W(|u|)) \} - 1 \). In contrast, when calculating \(\langle \delta S(q|k)\delta S^*(q'|k') \rangle \) the contribution of the \(n \)th order in the functions \(J(\gamma|Q) \) contains the sum

\[
\sum_{m=1}^{n-1} \left\{ \prod_{r=1}^{m} J(\gamma_r|Q_r) \prod_{s=1}^{n-m} J(\gamma'_s|Q'_s) \right\} - \left\{ \prod_{r=1}^{m} J(\gamma_r|Q_r) \prod_{s=1}^{n-m} J(\gamma'_s|Q'_s) \right\}
\]

(4.10)
In this case, to obtain a nonzero contribution, for each value of \(m \) at least one \(J(\gamma_s Q_s) \) must be contracted with at least one \(J(\gamma'_s Q'_s) \). Therefore, each term in this sum contains only negative exponentials of the form \(\exp\{-\delta^2 \gamma' W(|u|)\} \cdot 1 \). Owing to this lack of the positive exponential, \(\langle \delta S(q|k) \delta S(q'|k') \rangle \) vanishes when the roughness parameters increase.

In Fig. 3 we present plots of the envelopes \(C_{0}^{(1)} \) and \(C_{0}^{(10)} \) of the correlation functions \(C^{(1)} \) (Fig. 3(a)) and \(C^{(10)} \) (Fig. 3(b)) as functions of \(\theta_s \) for fixed values of \(\theta_0 \) and \(\theta_s \), while \(\theta'_0 \) is determined by the constraints of the corresponding \(\delta \)-functions. The calculations were carried out for the scattering of \(s \)-polarized light, of 612.7\(\mu \)m wavelength, from a weakly rough random surface of a silver characterized by the complex dielectric constant \(\epsilon = -17.2 + i0.479 \) for different values of the roughness parameters \(\delta \) and \(a \). In calculating the results presented in Fig. 3 we kept all terms in the infinite iterative series Eq. (4.7) which would give the contributions to the averages we calculate through terms of \(O(\delta^8) \) if they were to be expanded in powers of the small parameter \((\omega/c)\delta \).

In Fig. 4 we present rigorous numerical simulation calculation results [31] for the envelopes of the correlation functions \(C^{(1)} \) (Fig. 4a) and \(C^{(10)} \) (Fig. 4b). The surface parameters used here were the same as those used in obtaining Fig. 3 except that the roughness now was \(\delta = 1.278 \mu \)m (solid lines) and \(\delta = 0.1278 \mu \)m (dashed lines). It should be pointed out that for the scattering of \(s \)-polarized light from a weakly rough random metal surface there should be no memory- or reciprocal memory-effect present in \(C_{0}^{(1)} \). This is indeed confirmed by our numerical calculations where the \(C_{0}^{(1)} \) for \(\delta = 0.1278 \mu \)m (Fig. 4a, dashed line) is a smooth function of its argument, as well as by the results presented in Fig. 3a. In particular, there are no peaks at angles \(\theta = 90^\circ \) and \(30^\circ \), which are the positions of the memory- and reciprocal memory-effects. As the roughness is increased to \(\delta = 1.278 \mu \)m one sees from Fig. 4a (solid line) that the overall amplitude of the envelope \(C_{0}^{(1)} \) is increased and, more important, that two peaks have developed at the aforementioned angles. These peaks are due, in the large roughness limit, to volume waves scattered multiply at the rough surface. In Fig. 4b the corresponding results for the \(C_{0}^{(10)} \) envelopes are presented. It is observed that in the low roughness limit this envelope is structureless, and that \(C_{0}^{(1)} \) and \(C_{0}^{(10)} \) are roughly of the same order of magnitude. However, as \(\delta \) is increased, the scattering matrix \(S(q|k) \) starts to obey circular complex Gaussian statistics, and thus as discussed earlier, the envelope \(C_{0}^{(10)} \) should in principle vanish. From our numerical results for \(\delta = 1.278 \mu \)m (solid line) we indeed see that \(C_{0}^{(10)} \) is much smaller then the corresponding \(C_{0}^{(1)} \) shown in Fig. 4a. In fact \(C_{0}^{(10)} \) is just noise, consistent with this function vanishing in the large roughness limit.
5. CONCLUSIONS

In this paper we calculated the angular intensity correlation functions by means of an approach that explicitly separates out different contributions to it. We have shown that calculations and measurements of the correlation function $C(q,k|q',k')$ yields important information about the statistical properties of the amplitude of the scattered field. In particular, we have shown that the short–range correlation function $C^{(10)}$ is, in a sense, a measure of the noncircularity of the complex Gaussian statistics of the scattering matrix. Thus, if the random surface is such that only the $C^{(1)}$ and $C^{(10)}$ correlation functions are observed, then $S(q,k)$ obeys complex Gaussian statistics. If the random surface is such that only $C^{(1)}$ is observed, then $S(q,k)$ obeys circular complex Gaussian statistics. Finally, if the random surface is such that $C^{(1.5)}, C^{(2)}$ and $C^{(3)}$ are observed in addition to both $C^{(1)}$ and $C^{(10)}$, then $S(q,k)$ is not a Gaussian random process.

ACKNOWLEDGMENTS

The work of T.A. L. and A. A. M. was supported in part by Army Research Office Grant No. DAAD 19–99–1–0321. I. S. would like to thank the Research Council of Norway (Contract No. 32690/213) and Norsk Hydro ASA for financial support.