
Notice: This Material
may be protected
by Copyright Law
(TitietZU.S.G.)

Dictionary Compression on the PRAM

Lynn M. StaufTer and Daniel S. Hirschberg
University of Cadifornia, Irvine

Irvine, CA 92717-3425
stauffer@ics.uci.edu, dan@ics.uci.edu

Technical Report 94-7

January 18, 1994

Abstract

Parallel algorithms for lossless data compression via dictionary compres
sion using optimal, longest fragment first (LFF), and greedy parsing
strategies are described. Dictionary compression removes redundancy
by replacing substrings of the input by references to strings stored
in a dictionary. Given a static dictionary stored as a suffix tree, we
present a CREW PRAM algorithm for optimal compression which runs
in 0{M -f- logAflogn) time with O(nM^) processors, where it is as
sumed that M is the maximum length of any dictionary entry. Under
the same model, we give an algorithm for LFF compression which runs
in O(log^ n) time with 0(n/log n) processors where it is assumed that
the maximum dictionary entry is of length O(logn). We also describe
an 0{M -f log n) time and 0(n) processor algorithm for greedy parsing
given a static or sliding-window dictionary. For sliding-window com
pression, a different approach finds the greedy parsing in 0(log n) time
using 0(nA/logM/logn) processors. Our algorithms are practical in
the sense that their analysis elicits small constants.





1. Introduction

We present parallel algorithms for dictionary compression using optimal,

longest fragment first (LFF), and greedy parsings. Dictionary methods, also called

textual substitution and Ziv-Lempel compression, achieve compression by replacing

strings with references to some dictionary of strings [ZL77, ZL78]. A dictionary of

characters, words, or phrases that are expected to occur frequently is maintained

and a recurring substring is converted (encoded) into a compact representation

by replacing the substring with the index of its corresponding dictionary entry.

Compression is achieved by choosing indices so that on average they require less

space than the phrases they encode. Decoding or decompression restores the

original text from its compressed representation.

In this paper, we consider algorithms for dictionary compression on the par

allel random access memory (PRAM) model of parallel computation [J92]. The

PRAM consists of a number of identical general-purpose sequential processors

that communicate through a large shared, random access memory. Variants of

the PRAM model differ in their handling of simultaneous reading and writing

of the global memory. The Concurrent-Read, Concurrent-Write (CRCW) model

allows processors to read and write the shared memory simultaneously, while the

Conciurrent-Read, Exclusive-Write (CREW) model forbids simultaneous writes.

CRCW models are further distinguished by their methods for hzmdling write con

flicts. The Common CRCW permits concurrent writes only when all processors

are attempting to write the same value to the same block; the Arbitrary CRCW

allows an arbitrary processor to succeed in a concurrent write; the Priority CRCW

assumes processors are assigned unique ordered priorities and, when several pro

cessors attempt to write to a single location, the processor with the highest priority

carries out its write instruction.

In the parallel environment, dictionary compression schemes have been de

veloped using a systolic array [GS85, SR91, SH92, SH93]. A systolic array consists

of a collection of linearly-connected processors where input enters at one end of

the array and output exits at the other [L92]. This model requires linear time to

handle input and output. These parallel compression systems are optimal for the

given model in the sense that they workon-line in linear time using a linear number

of processors. The PRAM models allow blocks of data to be read or written in a

single time step and so sublinear time data compression is possible.



We describe our algorithms in the context of text compression. Dictionary

methods can be used to compress data other than text (e.g. images) and our meth

ods extend straightforwardly. We consider lossless compression which stipulates

that the decompressed data must be identical to the original input stream. It is

further assumed that the communication channels and storage devices are noise

less. We refer the reader to [S88], [BCW90], and [W91] for a thorough coverage of
sequential text compression and to [SH93] for a survey of parallel text compression.

Dictionary compression methods can be static or adaptive. A static method

creates a fixed dictionary before compression begins. An adaptive (also called

dynamic) method allows changes to the dictionary during compression. A popular

adaptive approach based on the work of Lempel and Ziv [ZL78] (often called

LZ78 or LZ2 compression) parses the input into phrases which are compared to a

dynamic dictionary. The UNIX compress utility implements a variation of LZ78

due to Welch (referred to as LZW). The discovery of J\fC^ algorithms for LZ78
is unlikely since LZ78 and two LZ78 variations are known to be P-complete^
[D91]. The P-complete LZ78 variants implement different parsing and dictionary

update strategies [W84, S88]. Ziv and Lempel's earlier approach limits references

to a window of input characters preceding the input position being considered for

encoding [ZL77]. The dictionary is implicitly represented by a window that slides

continuously over the input. Encoding references consist of {position, length) pairs

that indicate a substring in the window. These methods are referred to variously

as LZ77, LZl, and sliding-window compression.

Once the dictionary has been selected, the input stream must be parsed to

determine which substrings axe to be replaced by dictionary indices or references.

A position in the input stream is a breakpoint if a substring starting at that position

is to be replaced by a dictionary reference. A parsing of the input determines the

set of breakpoint positions and the corresponding sequence of substrings that will

be represented by references and results in determining the sequence of dictionary

references. An optimal parsing of the input is a parsing whose resulting sequence

of dictionary references has the most succinct representation. If it is assumed that

^ The class AT is the collection of problems that are solvable by deterministic parallel algorithms
that operate in time bounded by a power of the logarithm of the input size using a polynomially-
bounded number of processors [J92].
^ If an J^C algorithm for any P-complete problem could be found then all problems in V would
have similar A'C solutions. Although it has not been proven, it is strongly believed that V ^ WC
[J92].



Input: compression ratios measure compression

Dictionary D = {press,

comp, pres, sion,

asu, com, eas, ure,

io, me, on, ra,

a, c, e, i, m, n, o, p, r, s, t, u, <blank>}

Greedy: comp/r/e/s/sion/ /ra/t/io/s/ /me/a/s/ure/ /comp/r/e/s/sion

LFF: com/press/i/on/ /ra/t/io/s/ /m/eas/ure/ /com/press/i/on

Optimal: com/pres/sion/ /ra/t/io/s/ /m/eas/ure/ /com/pres/sion

Figure 1

An example of the greedy, LFF and optimal parsings

dictionary references are of fixed-length then an optimal parsing is one with the

fewest number of references. For variable-length references, an optimal parsing is

not necessarily one with the fewest number of references. A more straightforward

approach is greedy parsing where iteratively the encoder finds the longest dictionary

phrase that matches a prefix of the uncoded portion of the input stream and the

index of that dictionary entry is used to encode the input prefix. The longest

fragment firsts or LFF, algorithm parses the input by repeatedly locating the

longest substring of the uncoded portion of the input which matches a dictionary

entry and replacing it with the corresponding dictionary reference. This process

continues until the input is completely replaced by references.

Greedy, LFF, and optimal parsing with fixed-length references are illustrated

in Figure 1. In general, the compression performance of LFF lies between greedy

and optimal parsing [SH73]. However, to determine an optimal or LFF parsing, a

sequential encoder must perform two passes over the input or be capable of looking

at arbitrarily large prefixes of the input. Consequently, greedy parsing is widely

used in sequential compression systems since it requires only limited look-ahead

and is computed on-line. In the parallel environment, the practicality of sequential

greedy parsing is no longer relevant. The PRAM model lifts the performance
limitations of optimal and LFF parsing by making the entire input string available

for computation in a single step.



In this paper, we describe parallel algorithms for static dictionary compression

subsequent to the selection of strings represented in the dictionary (see [CL82] and

[SH73] for discussions of the dictionary creation problem). We assume that the

dictionary contains d entries, each of length less than or equal to some maximum

length M. We also assume that the input string is processed in blocks of n

characters. To guarantee a feasible compressed representation, the dictionary is

required to include all members of the input character set.

The remainder of the paper is organized as follows. In Section 2, we review

previous parallel work on greedy, LFF and optimal parsing for dictionary com

pression. Section 3 presents an 0(M 4-logMlogn) time and O(nM^) processor
algorithm for optimal dictionary compression with respect to a static dictionary

satisfying the assumptions stated above. An 0(M logn) time and O(n/logn)

processor algorithm for LFF based dictionary compression with respect to a static

dictionary is given in Section 4. When M = O(logn) this algorithm runs in

O(log^ n) time. Greedy parsing is described in Section 5, for both static and
sliding-window dictionary compression. We conclude the paper with a discussion

of other aspects of parallel compression and possible extensions to this work.

2. Previous work

Table 1 summarizes previously known results and those presented in this

paper. Some algorithms assume that the dictionary satisfies the prefix property

(notated "Pref" in Table 1), i.e., all prefixes of each dictionary entry are present

in the dictionary. Many of the results assume that the dictionary is represented

as a suffix tree. (These results are notated by in Table 1.) A suffix tree for a

dictionary D is a trie composed of all the strings in D. Every string in D corresponds

to a path in the suffix tree in a natural way. Associated with each node in the

tree is the substring (not necessarily in D) consisting of the concatenation of the

substrings of the edges along the path from the root to the node. For our purposes,

we require that a node corresponding to a string in D stores a pointer into a table

of references. This information can be easily added in the suffix tree construction

stage which builds the suffix tree representing the static dictionary in 0(iog(dM))

time using 0{dM) processors on the Arbitrary CRCW [AILSV88].



Notation:

d = number of strings in the dictionary
M = maximum length of any dictionary entry
n = input size
Pref = prefix property
* = requires suffix tree dictionary
exp. = expected time complexity (randomized algorithm)

Parsing Model/Assumptions Processors

STATIC DICTIONARY

Optimal Common CRCW, Pref, * 0{M -f logn) 0{n') [DS92]
0{M log^ n) 0(n) [DS92]

Common CRCW, Pref O(logn) 0{n-d) [DS93]

CREW, ♦ 0(M-blog^ n) O(n^) [DS92]
0{M + logn) O(n^) [DS92]
0{M + log Af logn) 0(nM2) [§3]

Arbitrary CRCW, Pref exp. O(Iogn) O(dM-hn) [DS93]
Greedy CREW 0{M + logn) 0(n) [§5-1]

Arbitrary CRCW, * exp. O(logn) OidM + n) [DS93]
LFF CREW,* O(Mlogn) 0(n/ logn) [§4]

UNRESTRICTED SLIDING-WINDOW

Greedy CREW 0(M -f- logn) 0{n) [§5-2]
O(logn) 0{n log M/ log n) [§5.3]
0{M + logn) 0(n2) [DS92]
exp. O(logn) 0(n) [N91]

Priority CRCW 0{M + logn) 0(n) [DS93]

FIXED-SIZE SLIDING-WINDOW

Greedy CREW O(logn) 0{nM log M/ log n) [§5-3]

Table 1

Parallel parsing results for static and sliding-window compression

3. Optimal Parsing

In this section, we describe PRAM algorithms for optimal compression. We

assume that the static dictionary is arbitrary and is represented as a suffix tree.

Computing the optimal parsing can be transformed into the problem of

finding a shortest path in a graph [BCW90]. The optimal parsing can be computed

in 0{M -f log^n) time using O(n^) processors or in 0{M logn) time using
O(n^) processors using that reduction [DS92]. For input X = ri'"Xn, the
transformation views each character as a vertex in a graph eind a directed edge

from Xi to Xj is in the graph if the string x,- •••xj is in the dictionary. Weshow how



to obtain improved complexity bounds. We first consider fixed-length dictionary

references and the shortest path is in terms of the number of edges that have to

be traversed. In the case of variable-length references, edges are assigned weights

equal to the length of the corresponding dictionary reference and the shortest path

is in terms of the sum of the edge weights of the edges traversed.

The input is divided into n/M blocks, Bi,..., Block Bi consists of

M characters, The first step of the algorithm determines the

matches between strings beginning at each input position and the dictionary. This

is equivalent to adding the directed edges to the associated graph. This can be

done in 0(M) time using 0(n) processors by assigning a processor to each position

and stepping sequentially down the suffix tree. Define C to be an n x n matrix

which is updated in a sequence of 0{\og{n/M)) iterations. C is initialized using

the dictionary match information. That is, if x,- •••Xj is in the dictionary, then

C[i,j] = 1. Otherwise, C[i^j] = 0. Next, the shortest path is computed for all

pairs of positions belonging to the same or adjacent blocks. For all pairs
I-)

within one block or one pair of blocks, this can be done in O(log M) time using

O(M^) processors. For all n/M groups, this computation can be done in 0(log^ M)
time using O(nM^) processors.

At this point, C[iyj] is the length of the shortest path between xi and xj for

1 ^ ^ ^ ^ j ^ min{2 + M,n}. The remainder of the algorithm consists
of an iterated step. Within each iteration, the search for paths is extended to

consider all paths between positions with up to twice the number of intermediate

blocks of the previous iteration. In the first iteration the shortest path between

vertices in blocks B/ and B/+2 is computed. The maximum dictionary entry length,

M, forces the shortest path from any position in B/ to pass through a vertex in

Bi^i. Since the shortest path between every position in Bi^i and every position in

B/+2 is known, the shortest path between any x,- in B/ and Xj in B/+2 is computed
considering all positions in B^+i as intermediate vertices and taking the minimum

over the resulting paths. More formally,

C[i,j] = xmnteBi+A^ihi] + C{t,j]]

In iteration the shortest paths between blocks Bi and B/+2* passing through

block Bf^.2*-i are computed and added to matrix C. In each iteration, the minimum

computation can be completed in O(log M) time using O(M^) processors for each



group. Totaling over all n/M groups, each iteration runs in O(logM) time using

0{nM^) processors. All O(log(n/M)) iterations require 0(logA/logn) time.

Combining this with the initialization phase, the shortest path or, equiva-

lently, the optimal parsing, can be computed in in 0{M +logAf logn) time using

0(nM^) processors.

The algorithm for fixed-length dictionary references, described above, essen

tially computes the shortest path in terms of the number of edges. In the case of

variable-length references, the edge joining Xi to Xj is assigned a weight equal to

the length of the dictionary reference for dictionary entry xi -•• xj. The algorithm

above can be generalized to compute the shortest path in terms of the sum of

the weights of the edges traversed. Thus, the optimal parsing with variable-length

references can be computed in 0{M -f-logMlogn) time using 0(nM'^) processors.

4. LFF Compression

In this section, we describe MC algorithms for dictionary compression based

on the LFF parsing heuristic. We assume that the static dictionary is stored as a

suffix tree and that dictionary references axe fixed in length. Interval graphs are

introduced in Section 4.1 for use in the formulation of later algorithms.

4.1. Interval Graphs

Interval graphs are a useful discrete mathematical structure for modeling

many problems with restrictions that are linear in nature. Scheduling, VLSI layout

and biology are among the myriad of applications modeled by interval graphs.

Interval graphs consist of a set of vertices associated with intervals of a linearly

ordered set, such as the real line. Edges join vertices whose corresponding intervals

intersect or overlap.

More formally, an interval graph G=(V,E), associated with the set of intervals

I = {Ij = [oj, 6i] I ai < biyl < i < n}, consists of vertex set V = {Ij} and edge set

E = {(I^, Ij) I I,n Ij ^ 0} [080]. Interval [a, 6] is said to have left endpoint a and
right endpoint b. For the set I, define Jirst{l) as the interval whose right endpoint

is furthest to the left. Namely, first(l) = Ijt such that bk = min,{fe,}. By finding

the minimum of the right endpoints, fiTst{V) can be found in optimal O(logn)

time using O(n/logn) processors [BB87]. For each interval 1^ define the next non-

overlapping interval next{li) to be the interval ending furthest to the left among the

intervalsbeginning after intervalI,-. That is, next{li) = Ijt if bk = mmj{bj | bi < aj].



1= {A[0,3], B[2,6], C[4,7], D[5,8], E[8,10], F[9,ll]} g = (V, E)

first(I} = A

next(A) = C, next{B) = E, next(C) = E E = {(A. B), (B, C). (B, D), (C, D), (E,F)}

Figure 2

Example of corresponding interval and graph models

The parallel computation of next{li), for all i, begins by sorting the 2n endpoints

into descending order. This initial step requires 0(log n) time and 0(n) processors

[BB87, J92]. The remainder of the next computation involves a prefix minimum

operation and a few comparisons. Thus, the sorting step dictates the O(logn)

time and 0(n) processor bounds for finding next{l). An interval graph G(I) and
its corresponding interval model 1(G) are pictured in Figure 2. We shall describe

some results in terms of the interval model. Moreover, our algorithms instantiate

intervals that contain their endpoints and that do not share any common endpoint.

Many standard graph-theoretic problems known to be NP-hard for general

graphs can be solved in polynomial time on interval graphs. An independent set

in a graph consists of a set of vertices, no two of which are adjacent. For an

interval graph, an independent set corresponds to a collection of non-intersecting

intervals. In parallel on the EREW PRAM, the maximum size independent set (or

equivalently a largest cardinality set of non-overlapping intervals) can be computed

in O(logn) time and 0(n) processors [OSZ92]. This solution builds on optimal

computations oifirst and next as can be seen in the outline of the parallel maximum

independent set algorithm in Figure 3.

4.2. IFF Parsing

Figure 4 gives a high-level description of our parallel LFF parsing algorithm.

The algorithm begins by determining the lists of lengths of matches between the

dictionary and the string beginning at each position of the input. Next, the length,

JW*, of the longest dictionary entry appearing in the input is calculated. The



Find Mciximum Independent Set

1. Compute first{l)

2. Compute next{li) for all i

3. Considering neii{\i) as a pointer, mark all nodes in the

path from first{l) to the root of the tree containing first{\)

4. Return set of marked nodes

Figure 3

Outline of the Maximum Size Independent Set algorithm

LFF parsing

1. Compute lists of dictionary match lengths at each position of input X

2. Compute maximum match length, M'

3. For each match length I — M* downto I do

a. Find a maximum collection C of non-overlapping matches of length /

b. Update match length at input positions overlapping C

Figure 4

Sketch of parallel LFF parsing algorithm

LFF parsing is then found by repeatedly locating a maximum collection of longest

fragments and updating the match information for positions which intersect the

current collection. First, we give an 0(M(log M + logn)) time and 0{n) processor

algorithm. We then improve the processor requirement to 0(n/log n).

A processor is assigned to each position of the input string X = xiX2 • • •

at the start of Step 1. Each processor computes the list m of the lengths of matches

between the dictionary and the input beginning at its assigned position. That is,

processor P,- computes list mi by comparing successive strings beginning at Xi to

the dictionary. This list is stored in an array of length M. Initially, m,[fc] is set

to zero, for A: = 1... M. For j = 1 to M, P,- determines if string xj •••Xi^j-i is in

the dictionary by iteratively going down one level in the suffix tree. If Xi •••Xj+j_i

is in the dictionary, length j is added to list mi by setting mi[j] = 1. In addition,

Pi initializes ui, the length of the longest match permitted at position i, by setting

Gi to the length of the longest match occurring at position i. Since the maximum



length of any dictionary entry is 0(Af), Step 1 runs in 0{M) time using 0{n)

processors.

M* is the maximum of the ai values. Thus, Step 2 is completed by a standard

maximum computation in O(iogn) time and 0(n/log n) processors [J92].

Observe that by treating matches as intervals, the computation in Step 3a

is equivalent to determining a maximum independent set in an interval graph. At

the start of each iteration, the maximum collection of non-overlapping matches

C is initialized. On a particular iteration of the loop, if list mi contains / then

Pi participates in the maximum independent set computation. List mi contains

/ if / < flj and mi[l] = 1. Using the algorithms described in Section 4.1, Step 3a

computes C in O(logn) time using 0{n) processors. In Step 3b, match information

is updated in O(logn) time as follows. Each processor Pj whose length I match
is in C signals the trailing positions j + 1,..., j" + / —1 covered by its match to

become inactive and also signals the / —1 preceding positions, j —I I... j —

to update their match list m as described below. This signaling can be done in

O(logM) time using pointer jumping [J92]. Inactive processors do not participate

in the remainder of the LFF computation. If P^ is signaled by P^ to update its
list mjt then P^t sets = j —k, essentially eliminating all lengths exceeding j —k

from mfc. Step 3b requires O(logM) time and uses 0(n) processors. To complete

its 0(M) iterations, Step 3 requires a total of 0(M(log Af-j-logn)) time and 0(n)

processors.

Combining the performance of the separate steps, this first LFF algorithm

runs in 0(M(log M + logn)) time using 0{n) processors and 0(nM) space. Since

processors access the dictionary simultaneously, the algorithm uses the CREW

PRAM model.

To illustrate our algorithm, consider the dictionary and input string in

Figure 1. For dictionary D, initially, m,- = {5, 4, 1} for i = 4, 31, mi = {4,

3, 1} for i =1, 28, mi = {4, 1} for i = 8, 35, mi ={3, 1} for i =21, 22, 24, mi =

{2, 1} for i =9, 10, 13, 16, 20, 36, 37 and mi ={1} for all other values of i. The

longest match length M* = 5 and for each i, ai is initialized to the largest value

in list mi. In the first pass of Step 3, / = 5 and matches at positions 4 and 31

are included in the LFF parsing. Processors 5, 6, 7, 8, 32, 33, 34, and 35 become

inactive and processors 1 and 28 update their match lists (i.e., mi = {3, 1}, ai = 3,

17128 = {3, 1} and 028 = 3). In the next pass, I = 4 and processing skips to / = 3
since there are no active processors with matches of length 4. For / = 3, positions



me as u r e

position 20 21 22 23 24 25 26

Figure 5

Example of LFF parsing algorithm using dictionary and input of Figure 1

21, 22, and 24 are candidates for C. The maximum independent set C consists of

matches at 21 and 24 (see Figure 5 where the solid intervals form the maximum

size independent set). Positions 22, 23, 25, and 26 become inactive and processor

20 recomputes m2o = {1}- This process continues for 1= 2 and / = 1 to yield the

LFF parsing in Figure 1.

To improve on this approach, consider the processor requirements of the

maximum independent set computation in Step 3a (refer to Figures 3 and 4).

As mentioned earlier, the parallel maximum independent set algorithm derives

next{li) for all intervals L, 1 < i < n, by initially sorting the interval endpoints.

In order to achieve a logarithmic time bound, a linear number of processors are

required for the sorting step. However, in our application, this sorting step is not

necessary since the intervals are provided in sorted order as a consequence of the

problem set up. The processor bound for the next computation can be reduced to

0(n/log n). The final marking step in the maximum independent set edgorithm

(Step 3 in Figure 3) can be done in logarithmic time using 0(n/log n) processors

[AM91]. Thus, the maximum independent set calculation in the LFF ?ilgorithm

can be performed in O(logn) time with 0{n/\ogn) processors.

To complete the updates in Step 3b, divide the input into 0{n/ log n) groups

and assign a processor to each group. The idea is to have each processor deactivate

and update the lists of the positions in its block that are affected by the match

intervals selected in Step 3a. Positions can be affected by a match in C in two

ways. If position j is in C (i.e., string Xj ••-Xj^i-i is a match in the maximum

independent set), then positions ^+1,... must be deactivated and positions

j —/ + 1,..., j —1 must change their match list information. So, in O(logn) time

each processor determines the locations of matches within its assigned block. Step

3b continues with each processor notifying positions affected by matches within its

block.



When I < logn, any match can affect positions in at most 3 blocks since

a match can straddle at most two blocks and a third block of lowered number

positions may need to update list information. In parallel, each processor sweeps

through positions affected by matches occurring within its block in O(logn) time.

Processor P, begins at position {i —1) log rz + 1 and moves toward higher indexed

positions. Upon encountering position j in C, P, deactivates the next 1—1 positions,

j + l,..., j-f-/—1. WhenPi reaches the right endofits block at x,iog„, it terminates
the sweep if it has not detected a match in positions ilogn —/, ...,zlogn. If a

match was detected in positions zlogn — Hogn then P^ continues into the

right neighboring block until it completes the deactivation of affected positions.

Upon completing this lower to higher indices sweep of the input. Pi sweeps from

position 2logn to lower indexed positions updating the largest allowable match

lengths (a). If Pi detects a match at position j, then Pi sets aj-i = 1, aj-2 = 2,
..., = / —1 and continues the sweep at position j —I.

When I > log n, each block can contain the beginning position of at most one

match interval and a match interval can span several input blocks. Suppose position

j in block i is in C. Using pointer jumping, processor Pi notifies the blocks affected

by the match interval Xj •• in O(logM) time. Now, in 0{logn) time, each

affected processor deactivates positions and updates lists as detailed above.

Finally, consider the processor requirements of Step 1 (Step 2 is already

computed optimally with O(n/logn) processors). Using a grouping approach

similar to that described for Step 3b, the input is divided into blocks of O(logn)

positions and a processor is assigned to each block. In parallel, each processor

computes the match lists of its assigned positions. This gives am O(Mlogn) time

and 0(n/ log n) processor version of Step 1.

Combining these improvements, our algorithm computes the LFF parsing in

0(M(logM + logn)) time using 0(n/logn) processors. Consider the performance

of our algorithm when M is O(logn). In practice, this is a recisonable assump

tion since matches in text rarely exceed several characters. For example, when

compressing English text, the average match length is roughly 5 characters. Thus,

using a dictionary of 64K entries and a maximum entry length of 16 characters

does not significantly impact compression. When M is O(logn), the LFF parsing

iscomputed in O(log^ rz) time using 0(n/ log n) processors. This approach issimple
and practical since it has reasonable constant factors. Namely, the optimal parallel



list ranking used in several steps of the algorithm can be done using the algorithm

of Anderson and Miller which elicits a reasonable constant [AM91].

5. Greedy Parsing

Greedy parsing sequentially scans the input, locating and removing the

longest dictionary entry occurring as a prefix of the uncoded portion of the in

put. In this section, we consider both static and sliding-window dictionaries. We

describe an algorithm for determining the greedy parsing given a static dictionary

in 0{M + log n) time using 0(n) processors. Later in this section we describe two

algorithms for sliding-window compression. Using an approach similar to the one

taken for the static dictionary model, the first approach yields an 0{M logn)

time and 0(n) processor algorithm on the CREW. The second algorithm runs in

O(logn) time using 0{nM log M / logn) processors on the CREW.

5.1. Static Dictionary

For greedy parsing, we must determine the longest match between the input

beginning at each position and the dictionary. We assume that the dictionary is

in the form of a suffix tree. Using 0{M) time, a processor assigned to each input

position can determine the longest match information by stepping down the suffix

tree, beginning at the root.

By assigning a processor to each input position, the breakpoint positions in

the parsing are marked as follows. Position 1 is automatically a breakpoint and, by

viewing the match lengths as pointers (i.e., if the match length at position i is

processor is pointing at position z+j), the standard pointer doubling technique is

used to mark all breakpoints on the path from position 1 to position n in logarithmic

time [J92]. Thus, the greedy parsing can be computed in 0{M -I-logn) time using

0{n) processors.

5.2. Sliding-window Dictionary with unrestricted window

In sliding-window compression, the dictionary is implicitly represented for

each input position by the characters preceding the position. Many variations of

sliding-window compression are possible by imposing restrictions on the size of the

window and the set of allowable dictionary strings. When the size of the window is

unrestricted, better compression is possible but often at the expense of increased

complexity. We describe an algorithm for sliding-window compression with an



unrestricted window. This algorithm uses a suffix tree representation of the input

string to carry out compression. In Section 5.3, we describe an algorithm that

obtains largest match information based on a fixed-sized window consisting of the

previous M characters.

Our algorithm for sliding-window compression with an unrestricted window

uses an approach similar to the one described above for static dictionary com

pression. Here, a suffix tree representation of the input string is used to compute

the longest match information. The suffix tree is augmented to store the index at

each node of the earliest occurrence of the node's corresponding substring^. It is
not necessary to store the indices of each occurrence of the node's corresponding

substring since the earliest occurrence is included in the window of each input string

occurring after it. As the longest match computation for a particular input position

proceeds, only nodes storing indices less than the input position are considered.

Using the augmented suffix tree, the longest match between an input position and

the strings in its window can be computed in 0(M) time. Thus, all positions can

determine their longest match in 0{M) time using 0{n) processors.

At this point, the greedy parsing is obtained by marking the input positions

in the path from position 1 to n (as described earlier). This marking requires

0(log n) time. So, the greedy parsing is computed in 0(M+log n) time using 0(n)

processors. Using the method shown in Section 5.3, the greedy paxsing for an unre

stricted sliding window can be computed in time O(log n) using 0{n^ logM/ logn)
processors.

5.3. Sliding-window Dictionary with fixed-sized window

For input string X = xi--'Xn and a fixed-sized window of size M, the

dictionary at character Xi consists of the previous M characters, Xi-M ''' ^i-i-

Our algorithm for greedy parsing using a fixed-sized sliding-window proceeds in 3

phases. In Phase 1, the length of the longest match between the string beginning

at X| and the strings beginning at each position in X|'s window is computed for all

i, 1 < i < n. Observe that the matches for Xi are required to begin in x^'s window

but may overlap a prefix of the string beginning at Xi. Define £ to be an n x M

table which is updated in a series of logM rounds to compute the longest match

information. At the end of round k, 1 < k < logM, j] stores the length of the

longest match between the prefixes of strings x,- •••x,_|.2k_i and Xi-j •••Xj_j_j_2fc_i.

^ Naor describes this augmentation in [N91].



Initially, A: = 0 and each input character is compared to each character in its

window. In constant time, processors Pi,i,..., Pi,M compare xi to each character in

a:,'s window. If xi = xi-j then Pij sets Xo[^j] = 1- Otherwise, Pi^ sets = 0.

Using nM processors, table L is initialized for all pairs {i,j) in 0(1) time. In round

k, \ < k < log M, matches of length up to 2^ are built from matches of lengths up
to For X,, if Lk-i[i,j] = 2*^"^ then the match between Xi -••Xj+2fc-i_i and

is concatenated with the match between the string beginning

at x^+2''-i string in x,'s window beginning at Observe that

is the jth chtiracter in Xi^.2fc-i's window. Otherwise, if Lk~i[i,j] < 2^"^
then the maximum match between the string beginning at x, and the string in

Xi's window beginning at x,_j cannot be extended. Thus, the following recurrence

represents the computation in round k:

Lk[iJ] =
j]++ 2*^ \j], if Lk-i[i,j]—2r\k—l

Lk~i[iJ]^ if Lk^i[i,j\<2^

and each round can be completed in constant time by assigning a processor to each

(z, j) pair. So, Phase 1 requires O(logM) time and nM processors.

In Phcise 2, the longest match of the string starting at Xi among all strings

beginning in its sliding-window can be computed in O(logM) time using 0{M)

processors by a standard maximum computation of the values in the ith row of

table L. Using 0{nM) processors, the longest match information can be computed

for all positions xi, ..., x„.

In the final phase, standard pointer doubling techniques (as mentioned above)

are used to determine the parsing containing the set of longest matches that begins

at location 1. Phase 3 can be completed in O(log n) time using 0(n) processors.

Thus, using the sliding-window, we can find the greedy parsing in time

0(logM -blogn) using O(nM) processors. When M = O(logn), this solution

takes O(logn) time and 0(n log n) processors.

It is possible to reduce the number of processors by spending additional time

in Phases 1 and 2. By Brent's Theorem [GR88], increasing the time in Phases 1

and 2 to O(logn) reduces the processor requirements to 0(nM logM/log n).

Using this method, the greedy parsing for an unrestricted sliding window can

be computed in time O(logn) using 0(n^ log M/log n) processors by noting the
following. Phase 1 C2in be performed in logM time using processors or, by

Brent's Theorem, in the claimed time-processor bounds. Phase 2 requires a prefix



maximum computation (as opposed to a maximum over a fixed-size window) which

can be done in time O(logn) using 0(n) processors.

6. Other Considerations

In this section, we describe how to produce the compressed output from the

parsing, decompression, and possibilities for further research.

We have addressed the parsing problem in dictionary compression. After the

input string has been parsed, the compressed output consists of the concatenation

of the dictionary references corresponding to the substrings in the parsing. A

processor, assigned to the start position of each substring in the parsing (i.e., each

breakpoint), can determine where in the output stream to write its corresponding

dictionary reference by performing a prefix sum computation. This can be done

optimally in parallel in time O(logn) using 0(n/logn) processors [GR88].

Decompression replaces each dictionary reference in the compressed string

by its corresponding dictionary entry. If dictionary references are all of fixed-

length, the parsing of the compressed stream into individual dictionary references

is straightforward (the zth reference starts after stream byte c(i —1), where each

reference is c bytes in length). If Pi is assigned to the eth reference, it can determine

in time 0{M) the length of its represented string and, using a prefix sum compu

tation, the location for each represented string in the original input stream can be

computed in O(logn) time. In 0{M) time, each processor writes its represented

string to the recovered original stream. For variable-length dictionary references,

assigning processors to dictionary references in the output stream, requires addi

tional work. Let r be the maximum length of any dictionary reference. Assign

a processor to each output byte and in 0{r) time each processor can determine

its complete dictionary reference in a way similar to recognition of references in

sequential decompression. By treating the reference length information as point

ers, the parsing of the output stream into dictionary references can be done using

pointer doubling in O(logn) time and 0{n) processors. Now, the decompression

problem is the same as for fixed-length references and the method above combined

with the preprocessing yields the recovered original stream in 0(r + M logn)

time using 0{n) processors.

Our AfC algorithms for LFF parsing work for static dictionaries with a log

arithmic bound on the length of dictionary entries and fixed-length dictionary



references. j\fC algorithms for LFF parsing with arbitrary length entries and ref

erences are a natural extension to investigate.

Since dynamic dictionary compression of the Lempel and Ziv variety is P-

complete, dynamic methods differing from this approach are of interest. List

compression, where a dictionary of words is maintained using a self-organizing

heuristic, seems amenable to parallelization. Also, parallel parsing strategies other

than those used for sequential compression may lead to improved parallel systems.
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