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BOUNDARY LAYER CONTROL BY MEANS OF STRONG INJECTION

by

Ruey-Jen Yang -

ABSTRACT

The gas mixture prbduced by a coal gasifier contains components
which have serious corrosive effects on the walls of the pipe flow

system. To reduce these, a non-corrosive gas is injected into the

-stream of the coal gas products, in a direction parallel to the

pipe wall. The interaction between the injected stream and the

original pipe flow is investigatedvanalytically'and is an example
of the so-calied.Wéll Jet Problem.

The model adopted is that of a two-dimensioral incompresgible
tufbulent free mixing layer, Withvthe corrosive gas HZS forming the

upper stream and moving faster than the injected non-corrosive gas

in the lower stream, the latter bounded by the solid wall of the

pipe. This wall jet flow can be divided into three diétinct regions.

In the first, farthest upstream, the upper (main) stream interacts

with the lower injected stream in a free mixing process, while a

turbulent boundary layer devéiops along the pipe wall bounding the
lower stream. Ih-the second region the lower half of the free
mixing layer interacts with the wall turbulent boundafy layer. In
the third region, stream mixing has been completed and all diffusion

takes place in a thickeﬁed turbulent boundafy iayer.



The orthonormal version of the numerical method of integral
relations is applied to solve the momentum and species mean
turbulent boundary layer equations; along with eddy viscosity
modeling. Numerigdl results show that the ratio of the distance,
where the mass concentration of st diffuses to the wall surface -
to the slot height of injection, is of the order 0(100) for a given
velocity ratio of two free streams in the mixing layer. The shear
stress at the wall surface increases in the streamwise direction in
the second region. This results from the larger momentum of the

upper stream causing the sublayer of the wall boundary layer in the

lower stream to become thinner.

Approved:

Mm (s 2.11.5)

Maurice Holt, Chairman
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I. INTRODUCTION

The current interest in energy conversion technology has focused
attention onthe production of synthétic naturél gas from coal. Gasv
mixtures, in a coal gasification process, cohtéin'hydrogen, carbon
dioxide, carbon monoxide, steam and hydrogen sulfide; 6f those,
hYdrogen'sulfide can cause véry serious pipe corrosion. Fufthermore,
solid particles contained in the gas stream may be-projected against
a pipe wall causing erosion. ih order to protect the pipe wall'ffom
attack by corrosive gas and damaging particles, an attempt is made to
inject a non-corrosive fluid;‘at fhe pipe entry, to form a thin layer
on the inner pipe wall. Thus tﬁe corrosive gas and solid particles
cén be '"washed awéy"'orA"bIOWn off" the wall.for a time.

Mass injection into a turbulent boundary layer By_tangential’
injection has'bgen studied for many years. “In the past decade, the

practical applications of this technique include reduction of skin

friction on an airfoil, prevention of boundary layer separation over

a surface subject to adverse pressure gradient and protectionvof =
surface exposed to high-temperature'environment enéountered in
combustion chambers, gas turbines, rocket nozzles, and high-speed
flight vehicles. Recent works on this subject can be found in
LaRue and Libby (1977, 1980j, Cary, Bushnell and Hefner (1979)

and Brune (1981). The flow condition at the initial stage con;
sidered by those authors is thé conflueﬁt turbulent boundary layer
forming when a turbulent flow above a splitter plate mixes with a
fully developed tﬁrbulent channel flow beneath it;

In this work, we choose a simplified model shown in Fig. 1.



The first stream is assumed to be hydrogen sulfide, HZS’ the most
corrosive component in the gas mixture from a coal gasifier. The
‘'second stream is the injected fluid, for example, steam. Both
streams are assumed to be of uniform density and flow at constant
low speeds.  The flow is isothermal, two-dimensional, and the
boundary layer effecté on both sides of the splitter pléte can be
neglected. ' In other words, a model which is a two-dimensional
incompressible turbulent free mixihg layer in the presence of a
wall is used in this analyéis. A flow of this type involves the
interaction of a free mixing'layer and a wall boundary layer. Three
zones can be physically perceived. Firstly; at the end of the splitter
plate the upper and lower streams begin to mix; in the meantime, a
wall boundary layer ié developing aiong the‘Qallg Also, before the
two layers merge together, an embedded potential core exists in
between. Recently, Pot (1979) conducted an experiment to observe
the phenomena of the interaction betweén a tﬁrbulent wake and a
tufbulent wall layer. He found that the wake and the wall layer
dgvelop independently before the two layers merge. Therefore, in
the_present work, we assume that the free mixing layer and the wall
layer are not to be iﬁfluenced by eachvothér in the first region.
Secondly, just downstream of the position where these two layers
merge, there is a domain within which the two viscous regions
interaét. 'Thus the'mixing layer gradualiy dissolves into a new
boundary layer type flow. Thirdly, far downstream from the origin
of mixing, the stream mixing has been completed. In this zone the
flow can be treated in terms of conventional turbulent boundary
layer theory.

The purpose of this work is to- find the: location where the
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concentration of the first stream diffuses to the wall. The species
equation is decoupled from the momentum equation as a result of the

assumption made, in which both streams are regarded as incompressible

fluids with the same density, and are isothermal. Thus, the species

equation can be solved separately after the momentum equation is
solved.

The Method of Integral Relations (MIR), ineroduced by Dorodnitsyﬁ
(1960) provides a simple and accuraﬁe means’ of solving laminar
boundary layer flqws. No appfoximatidns are made to the equations.
Approximatione are made in representing unknown 'integrands appearing
in the basic integral relations. in two—dimensional boundary layer
flows, the approximation is based on the representation of the stream-
wise velocity gradient in the transverse diiectionias'a-simple-algebraic
function of the streamwise velocity itself. Such a representation
should reflect the physical character of the flow. If polynomials
are used, the order of the approximation depends on the degree of the
polynomials. In principle this can be as high as desired,.but in
practice the order of approximation is limited by the inversion of
the resulting matrix, which becomes progressively more ill-conditioned,
and the amount of algebra required.. However, these disadvantages have
been largely overcome in the orthonormal version of MIR (Fletcher and
Holt, 1975). As indicated by Yeung and Yang (1981), high order
approximations should be used to solve turbulent boundary layer flows
due to the highly inflected velocity profiles of the flows. We
employ the orthonormal version of MIR in the present analysis.

This reporf is divided into three main parts. The first part
discusses the numerical solution of the turbulent boundary layer flow

and the orthonormal version of MIR is described in detail. The



numerical results are in very good agreement with experimental data.
The second part discusses the numerical solution of the turbulent
free mixing layer. Here MIR showsvits advantage in that the approach
yields a unique solution and this is independent of the third
boundary condition (Ting, 1959). Comparisons betweén the -numerical
fesults'and experimental data are also made. The third part dis-
cusses the numerical solution of the interaction between the
turbulent wall layer and the turbulent free mixing layef. The

location where the mass concentration of H.S diffuses to the wall

2

surface is found and some interesting physical phenomena are cited.
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II. ANALYSIS OF THE TURBULENT WALL LAYER

2.1 Introduction

In'the vast body of litetaturerdealing with turbulent boundary
layer calculations, two major mgthods have been emploYed: the so-
called integral method and the differential method. In this chapter,
we investigate a particular solution procéduré for the two-dimensional
incompressible turbulent boundary layer using the Method of Integral
Relations.(MIR). In particular, the effiéiency and versatility of
thi; method, as applied to turbulent boundary layer calculations, is
studied. |

The method of integral relations‘has previously been applied to
two—dimeﬁsional turbulent boundary.layer calculations by -Abbott and
Deiwerf (1968) and.by Murphy and Roée (1968) at the 1968 Stanford
Conference on turbulent boundary layer calculations. Uﬁfortunately,
that formulation was -found to be inferior to othervpredictidn
methods presented at the same conference. Here, we shall reformulate
the problem by using the modified version of MIR dévéloped by Fletcher
and Holt (1975). As é-result, most of the shortcomings indicated by'

Murphy and Rose are overcome.

2;2 Formulation

For a two-dimensional, incompressible, steédy flow, with the
usual boundary layer approximations, the momentum and continuity
equations, in terms of the time-averaged and fluctuating quantities,

may be written in the form:

= :
. Taken in part from the published paper by Yeung and Yang (1981).



du, L du_ ldp 3o e du

u 9x + dy - T ) dx + ay [(\) + p) ay] s (2'1)
Ju = 9v _
X By - o , (2.2)

where u and v are the mean velocity components in the x and y direc-
tions, respectively, and p is the mean pressure; p is the density of
the fluid and v its kinematic viscosity. The eddy viscosity, €, is

defined as
-pu'v' = g =— s : (2.3)

where - p-u'v' is the so-called Reynolds stress. The following non-

dimensional variables are chosen:

yRe1/2 u

U= u v » X > Y L ’ Ue-- u_

€ 5

[l ]

s (2.4)

where L and u_ are the characteristic length and velocity scales,
respectively, u, is the velocity at the outer boundary layer edge,
and the Reynolds number Re is defined as

u L

co
Re = —-\')— . (2.5)

The pressure gradient is related to the outer edge velocity by
Bernoulli's equation:

du

ExR= ued—f . ' (2.6)

1
O
[a )

Using Eqgs. (2;4) and. (2.6), the original governing equations (2.1)

and (2.2) become

R A R S ¢ Bt NN e = L N E 30
9x 3y e dx e 3y L
du_
i | (2.8)



To apply the Method of Integral Relations, we define a set of linearly

independent functions {fi(U)} such that
£(1) =0 , i=1,2,...,N , (2.9

where N is the order of approximation. Multiply Eq. (2.8) by fi and

Eq. (2.7) by fi, defined as the first derivative of fi with respect

“ - to U, add and integrate fromy =0 to y »o;:
o du_ o '
2| fuy -y = g0 - o,
ox ‘0 e dx ‘0 e oy
' du 400
1 {Oo 8 2 u 1 .

‘U‘J (1+ —)(U) ly-U——-_SJ UE dy . (2.10)
, 0 e dx ‘0 A ,

Change the variable of integration from y to U and define Z as:

z= &, (2.11)
oy
and Eq. (2.10) can be written as:

: 29 du_ (1 : '
' _a_j fuzdu = L —¢ f [(1-U%)£! - UF,]Zdy

- | 1 U - v i 1

90X dx ‘0 :

1 £,
1 1 1 € i _
e o e 0
- E Equation (2.12)'15 thé basic integral relation in the present

anal}sis.
We now further define'{fi} as a set of orthonormal functions
constructed from the Dorodnitsyn functions (l—U)k, k=1,2,3... by
the Gram-Schmidt procedure (Isaacson and Keller, 1966). Hence:
, i "
£f.(0) =L c., (1-U0)" -, , (2.13)
i k=1 ik _

and



! U
'Jo £ Tog U = Sy (2.14)

with akj being the Kronecker delta. Z is then represented by:

b L b.f.(U
+= JJ()

(2.15)

where bo’bl’bz"" are unknown coefficients to be found. Substituting
(2.15) into (2.12) and invoking (2.14), we obtain an éxplicit set of

ordinary‘differential equations in the coefficients'bo,bl,..;,b

N-1°
dbo 1 fiU db. 1 du 1 2 4
dx ‘0 dx e dx ‘0 :
1 1t
S 15O LJI(“S) 4oy
Ue Zo Ue 0 Wz ’
i=1,2,...,N-1 (2.16a)
and :
dbo 1 fNU ' 1 du (1 >
‘TI’J 15 U = U—-—ff-J [(1-UD) £ - Ugy]zdu
dx ‘0 e dx ‘0 ’
1 1 1 1 e, 1
1] 1
- U; fN(O)zfg i J0(1-+iﬂ 7—deU , . (2.16b)

e
which can be integrated subject to appropriate initial conditions at
some statidnv§¥=§i. We. shall discuss the initial conditions later.
Theabove formulation is. similar to. that in'a laminar boundary
1ayer‘(Dorodnitsyn,.1960). ‘Apart from the.difficulty of evaluating
the integfai |
J1(1-+§q Lewau
0 wozZ i ’
in which some Kind of eddy viscosity model for € has to be used, one

problem is that the approximation.of Z.given by (2.15) is not accurate.



unless N is rather large. This is mainly due to the highly inflected
velocity profile in a turbulent boundary layer as opposed to the
smooth proféle in the laminar case. Thus, Murphy and Rose (1968)
pointed out that the usual sequence (1—U)j, j=1,2,... is not quite
.satisfactory, even when a four-parameter profile is used (i.e., N=4).
Instead, they judiciously assigned much larger exponents to the

factor (1-U) and determined in the course of their numerical solution

,the optimum values of those exponents. This of course destroys the

completeness requirement of the original method of integral relations,
and it does not guarantee in principle that the approximation will
converge to the exact solution if the order of approximétion tends to
infinity. The sole purpose of their scheme is apparently better to

represent the Z profile in a turbulent boundary layer while using as

few parameters as possible, since the traditional method of integral

relations is quite impractical when too many parameters are used.

However, the present orthonormal version circumvents this '"high

order" difficulty and enables one to preserve the completeness
requirément while's;iil using as many,parameters as possible to
represent faithfully the Z profile. Indeed, it haé been applied to
the two-dimensional laminar boundary layer to as high as N.=15 with
little computer expense (Fletcher and Holt, 1975). It is therefore
believed that the present formulation would be efficient even for

large values of N.

2.2.1 Turbulence Modeling

In order to calculate the last integrals in Eqs. (2.16a) and
(2.16b), a model for the eddy viscosity €/p is needed. We use the

following expression for the wall region:
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0.4u"

E—: 0.04432[e -1-0.4u" -0.08u"%] (2.17)

which was first deduced by Spalding (1961) and later found independently
by Kleinstein (1967). For the wake.region, the Clauser model (1956)

is used:

= 0.0168 Res | (2.18)

= |m

where u+f=u/uf and uT==¢Tw/p, the wall frictional velocity. Res* is
defined as
uld

Rga* =3 (2.19)

*
with § being the usual displacement thickness.

The wall shear stress, Tw,'is given by:

T, = () (5D  (2.20)

‘where the subscript 0 denotes the wall.

Experimental_data show that the wall region extends to where -
the non-dimensional velocity U assumes a value of roughly 0.7
(Bradéhaw, 1976, p. 53). In general,.we denote this value by Um.
The determination of Um will be discussed later. Hence the last
integral in Eqs. (2.16a) and (2.16b) can-be:evaluated as

| .(l U 1

' J (...)du = [ m(...)dur+ [, (...)du , (2.21)
0 0 U |

m
where (...) represents symbolically the integrand.
Before discussing the method used to‘calculate (2.21), we first

. . + . .
derive expressions of u' and y 1in terms of the present variables Z

and U. We begin with Eq. (2.20):



B ou
TW (1—1 + E)O('a_y')o
Since €=0 at y=0, we have:
T = uEe

w ay’0
USihg_the definition of Z and the nondimensional variables defined

in (2.4), it can be shown that

11

TVRe U
w __e
pqi Z0
or
— ) = — . C - (2.22)
Yo Z.Re?
Hence,
+ 1;_/, :
u =1U UeZORe (2.23)
and
1.
. URe® ‘
y = 7 y (2.24)

Thus the eddy viscosity can be written in terms of Z and U as follows:

" For 0 s U< U~
: m

=|m

< o.4u-\»/uezoRe2 T 5y
= 0.04432]e -1 -0.4U-\/UezoRe2-o.08U URe?Z |, (2.25)

and for U < U< 1

_ 1 _ ‘ ,
. 1.
% = 0.0168 UeRe2 f (1-v)zdu ; (2.26)
; 0 |

‘. * . . -
-and the displacement thickness § has been written as

* S u‘ L 1 , - v
§ = J (I*—E—Ddy = —T j (1-u)zZdu . ’ (2.27)
Jo Te Re? /0 :
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2.2.2 Evaluation of Integrals

The integrals in Eqs. (2.16a) and (2.16b) can be computed
exactly except for the shear integrals, which appear as the last term
in the equations. At present, these shear integrals are evaluated by
using a method based on the Gaussian-Legendre rule, the algorithm of

which is available in the Sandia Mathematical Library.

2.2.3 Determinatioﬁ of Um

Up to now, we have only denoted the outer boundary of the wall
region by Um' As mentioned before, experimental results indicate
that Uﬁ is roughly 0.7. However, this value of Um may not produce a
continuous curve for €/u across the whole boundary layer. To be
consistent with the present fofmulation, then, Um must be found by
determining the intersection of the €/p in the inner region with that
in the outer region. Hence, equatihg the two expressions (2.25) and
(2.26), we have:

0.4v vV ”eZoRel/z | / 52 /]
0.04432(e -1-0.4U UeZORe -0.08U UeZORe J
: : - = :
= 0,0168UeRe/2 J‘(l—U)ZdU ) (2.28)
0 .
The above equation can be solved iteratively to yieid Um' The
advantage of using Spalding's model becomes clear: this model is
explicit in U and hence makes it easier to determine Um. The solg—
tion is sought in the neighborhood of 0.7. In the case of flow with
adverse pressure gradient, the wake region becomes substantial and
Um is féund to be smaller than that of the flow with favorable
pressure gradient or without pressure gradient. Once Um is

determined, the shear integrals can be evaluated as mentioned earlier.
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2.2.4 Initial Conditions

The system of ordinary differential equations (ODE) resulting
from our formulation of the MIR mﬁst be provided with initial con-
ditions on the parameters b  and bj'at some initial station, which
can be taken as zero by suitable translation of the origin. Unlike
laminar boundary layer flows, where the initial‘conditions are |

usually given by exact solutions (similarity solution), we have to

. rely on experimental data to determine the appropriate initial

conditions. The easiest way in the present formulation is to
calculate these initial values from experimental data. In generél,
among the ekperimental data, velocity'profile U, boundary layer
thicknesé S, displacemeht thickneSS‘G*, momentum thickness 6, and
skiﬁ-friction coefficient Cf are available.‘ One then faces the
problem of choosing the most "effective* data. Our suggestion on
these choices is as follpws:

(a) The skin-frictibn coefficient, Cf, is the most effective
for ensuring the correct behavior of the velocity profile
at the wall,

(b) Second in effectiveness is §, the boundary layer thickness.
Although Eq. (2.15) satisfies the boundary conditions
3U/3y » 0 automatically as y +«, the value of the boundary
layer thickhess would not generally match the experi-

~mental data. .Hence; to match the boundary layer thick-
ness is to secure a mbre correct boundary condition at
the outer edge of the layer.

(c) DiSplaéement thickness,bé*, is our third choice of data.
In'(aj and (b), we épecify the boundary conditions at the

wall and at the outer edge of the layer. By matching the

13
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displacement thickness, we expect to get a correct global
behavior of the velocity profile in the boundary'layer.

*
It was found that using the above three conditions (i.e., C_.,$,8 ,

£
for N=3) to compute the flow oﬁer a flat plate; a very satisfactory
result was obtained. In the case of higher approximations, more data
are needed. Generally, a trial-and-error procedure is needed to choose
other "effective'" data. However, one can pinpoint these data éfter
several attempts by noting that good initiél conditions should behave
as lbol >]bll >|b2|... in Eq. (2.15). Since U=0 at the wall, Eq.
{2.15) becomes

N-1 N-1  j
Zy=b.+ L b.f.(0) =b.+ £ b.(ZI c.)
0 0 j=1 33 -0 521 9 k=1 jk

(2.29)

In the course of constructing orthenormal functions from'(l-U)k'by
the Gram-Schmidt procedure, we found that
j-1

| 2. ] < [ 2 c
ro1 JK

Jkl

Intuitively, the contribution to Z from the subsequent term in Eq.
(2.29) should become smaller as the order of approximation gets
higher Therefore, as noted, we expect that good initial condltlons

should yield |b | >]b | >|b2[:> T

2.3  Results and Discussion

Flow with zero pressure gradient is tested by the present
formulation.- Flows with favorable and adverse pressure gradient
were repofted by Yeung and Yang (1981). The properties of the fluid

~are chosen to be identical to those given by Cole and Hirst (1968)

+In our calculations,; however, this condition was not always met:
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for the case ID 1400. Figures 2 to 6 show comparisons between the
predicted and measured values of the various flow quantltles
Surprisingly good results were obtalned with the approximation N=3
just by using the 1n1t1a1 condltlons that matched C ,8 and 6 . This
supports ‘the ”effect;veness” of the data Cf,é and 6 in the determina-
tion of initial conditions. The computer time of this approximation
is about 5 sec in a CDC-7600 machine. Results of the approximations
for N=4 and N=5 élsd show excellent agreement with measured values.
It should be pointed out that the CPU time for N=5 (45 sec) is
much greater than that for N=4 (8 sec). This is due to the stiffness
- of the system of ODE's in Egs. (é.léa) and (2.16b), in which the
coéfficients of Cix in Eq. (2.13) get ' larger as N increases. -
Nevertheless, the CPU times for the present formulation are smglier
than those quoted in Murphy and Rose (1968), taking into conéidera—'

tion the different computers used.
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ITI. ANALYSIS OF THE TURBULENT FREE MIXING LAYER

3.1 Introduction

The characteristics of a turbulent mixing layer initiated by the
confluence of two parallel streams has been of interest for many years
because of its broad applications in technology. Early studies of
this subject were made by Tollmien (1926), Kuethe (1935) and
Gortler (1942). These classical solutions of the problem are based
on the assumptions that the change of velocity from that of one stréam
to the other takes place in a mixing'regionAof small thicknéSs compared
to the length of mixing in the streamwise direction and that the
normal component of the veiocity, v, is small compared to the cém—‘
ponent of veiocity parallel to the main stream, u. Moreover, all of
the solutions except that of Kuethe are based on an arbitrary third
bouhdafy condition (Ting, 1959). |

Within the framework of -bouﬁdary léyer theory, the solgtion is
unique fér a flow over a plate by specifying three conditions,

'ﬁaxﬁely at y=0 (i.e., on the plate surface) u=v=0, and at y-+>,
u+u (~ denotes free.stream condition)._ HOwevér, the solution is
_nonunique for the mixing,problem since only two conditions are avail--
able, namely u->"U

as y~o, and u»+U, as y~+-». The absence of a

1 2
third boundary condition admits an infinite number of solutions to
the mixing problem. Mathematically, if gty) is a solution satisfying
the boundary conditions at y =+, so is g(y+c), where ¢ is any
constant. It is known that to compare this solution with experi-

mental data, the theoretical distribution of axial velocity must be

shifted in the transverse direction, so as to obtain a better



agreement with experimental data.

Tollmien (1926) obtained an analytical solution for the mean
velocity profile of a mixiné layer with the lower stream at rést‘
(i.e., U2==O) by applying Prandtl's mixing length hypothesis for the
turbulent shear stress. He fixed his solution by making the trans-

verse velocity v, vanish at the outer edge y +«. Kuethe (1935)

1
extended Tollmien's approach to the case of two non-zero velocity
streams, using von Karman's suggestion that the third boundary
‘condition should correspond to no external forces acting on the total

11 "2"2°

However, the proof is not convincing. Later, Gortler (1942) solved

:fluid system perpendicular to the main flow, i.e., U,v, +U =0.

the same problem as Kuethe by using Prandtl's second hypothesis for
the turbulent shear stress (i.e., the constanf eddy viscosity
hypothesis). He avoidedAthe question of the third boundary con-
dition. Instead, he fixed his solution by saying that the mean
speed (U; +U,)/2 of the stream is albng the line y=0. In addition,
he introducéd an empirical constant related to the rate of spread of
the mixing layer and to the free stream velocity ratio.  Mills (1968)
noticed that the governing equations for the mixing problem, written
in terms of Crocco Vafiables, n6 longer contain the variable v, for
which the boundary condition is not sufficient, and hence the problem
has a unique éolution. The unique solution is independent of the form
of the third boundary condition.

The Method of Integral Relations (MIR) originally developed by
Dorodnitsyn (1960), and later modified by Flefcher and Holt (1975),
has been applied successfully by Yeﬁng and Yang (198i) to calculate

the two-dimensional incompressible turbulent boundary layer. In this

17

chapter, we discuss the application of MIR to the turbulent plane mixing
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problem. Similar to Mills' formulation, MIﬁ renders the governing
equations for mixing problems in a form containing no v by
judiciously selecting a set of weighting functions. Thus, a
unique solution exists and is independent of the third boundary
condition. Unlike Mills' method which needs successive approxima-
tion, after using a transformation to weaken the singularity at the

outer edges of the mixing layer, the present method overcomes the

singularity by appropriate weighting functions.

3.2 Formulation

It was observed by Brown and Roshko (1§74) that density effects
on the spreading angle of turbulent ﬁlane mixing between two streams
of different gases were relatively small; the sfrong effects were due
to compressibility. Thus a turbulent mixing of two semi-infinite
sfreams of a homogeneous incompressible fluid, shed from a splitter
plate, is assumed for the present study. It is well known that the
contribution of molecular transport in all equations governing a
fully developed free turbulent mixing of two streams at larger
Reynolds number can be neglected. With this information the usual
time-averaging techniques and assumptions associated with the
boundary layer approximation of the mixing process lead, for. two-

dimensional, isobaric, steady flow, to the. equations:

Ju . 9V _
x Ty -0 (3.1)
du du _ 3 ou
Yax T Vay T oy O ¥y’ (3.2)
om om _ 3 .. Om
Uax tVay Tay Py o (-3
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where u and v are the mean velocity components in the x and y direc-
tions, respectively; the origin is taken as the point at which mixing

begins; m is the mean mass concentration of the upper stream, and Voo

and Dt are defined, in analogy with molecular diffusion, as’
- utv' =V Ju/dy , , (3.4)
- m'v!' =‘Dt om/3dy o (3.5)

where u',v' and m' are fluctuating quantities. The coefficients v
and D, need empirical relations which will be discussed later. The
vboundary conditions for Eqs. (3.1), (3.2) and (3.3) are
,y+oo , l.),-»U1 s m—»Ml',,
y - , u-=1U , m~>20

2

It is convenient to work with the following non-dimensional

variables:

[y
!

= (W-U,)/(U-U) , A=U,/U |
(3.6)
v

(v-—Uz)/(Ulu-Uz) > M m/M1

Using (3.6), the governing equation§ (3.1), (3.2), (3.3) and the cor-

responding boundary conditions become

-a-—x + W = 0 > . (3'7)
A, dU Ay _ 1 3 U '
A, OM A M _ 1 3 . aM
Cr1 RV Ry i, Py (3.9)
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(3.10)

Using the assumptions Ve =Dt and M is a function of U only, one can
easily show that M=U from Eqs. (3.8), (3.9) and (3.10). Although
the spread of species concentration is not the same as that of
momentum in the turbulent mixing problem, the above assumptions are
not bad for the short distance in which we are interested along the
streamwise direction. This is because the boundary layer thickness
grows linearly with respect to x, as is well known in the literature
(see for example, Townsend, 1976). Therefore, once the velocity
préfile has been determined, the species concentration profile can
also be obtained through M=U.

Let {fi(U)} be a set of linearly independent functions which
satisfy fi(O)F=fi(i) =0, where i=1,2,...,N, and N denotes the order
of approximafion. Mﬁltiply Eq. (3.7) by £, and Eq. (3.8) by fi,
defined as the first derivative of fi with fespect to U, add and

’ integrate from y +-® to y >:

3 A =1 noU, 2
ﬁ . fl(U + -m-)dy = U—ITU—Z' f‘jm \)tfi ('57) d}’ . (311)

Change the Vafiable-of'integratiOn fromy to U and define Z as

3U, -1
Z= (5

Then, Eq. (3:11) can be written as

1 1
) A _ -1 T
5 IO fi (U + ———I—X)Zdu = _—Ul_Uz fo \)tfi = du . (3.12)

Notice that the above equation is exact since we have not made any

~assumption for V at y =+, V is cancelled through fi(O) =fi(1) =0.
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Since V no longer appears in the present formulation, the traditional
third boundary condition for the mixing problem does not exist.

Z has a singularity of the following'type: |
due to the behavior of velotity prqfile at. both edges of the mixing
layer, i.e., 1/2 apprbaches.zero as U-?O and U~1. In order to make
the integral on the right-hahd side of Eq. (3.12) finite, the
functions fi.are chosen as Uk(l-U)k or the combination of
Uk(l-U)k, k_¥1,2,... This is consistent with the conditions which
we:impoased on fi before, i.e., fi(0)==fi(i) =0.

To apply the orthonormal version of MIR, we represent

N-1
ao-+ r a.f.
Ay j=1 1)
1-A U(1-0) ’

Z(U + (3.13)

where a,a ses@y_q are unknown coefficients to be found, and {fi}

1
is a set of orthonormal functions constructed from Uk'(l—U)k by the
Gram-Schmidt proceduré‘(Isaacson and Keller, 1966). Hence:

L K
£f.(U) = d. Uk(l—U)
1 k=1 ik

and

1 .
A au
JO fifJ Wl—:ﬁ)_ = 61] . (3.14)

‘with Sij being the Kronecker delta. Substituting Eq.‘(3.13) into

Eq. (3.12) and invoking Eq. (3.14), we obtain an explicit set of

A\
ordinary differential equations in the coefficients 3 58150058y gt

21
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dao fl fi . dai _ -1 Jl o au
| dx 0 U(1-u) dx Ul—U2 0 t7i Z
i=1,2,...,N-1 N (3.15)
and
da 1 £ 1 : ‘
(o] f N -1 I o dU
— dU = ——r v £ — , (3.16)
dx 0 U(1-0) UI—U2 0 t°'N Z

which can be integrated subject .to appropriate initial conditions at

some station x==xi. We shall discuss the initial conditions later.

3.2.1 Turbulence Modeling

Prandtl (1942) proposed a model, Eq. (3.4), which is analogous
to the Newtonian law of friction in laminar flow. He assumed that
the coefficient of turbulent viscosity, vt, is constant over a cross

section of the free mixing layer. He obtained

V. = KG(UI-UZ) s (3.17)

S/

where & is the width of the mixing zone; « is an empirical constant
which is eqﬁal to 0.0044. In terms of the present variables Z and U,
Eq. (3.17) becomes
1
Ve = K(UI-UZ) JO Zzdu . \(3.18)

It is clear that‘vt is a function of x only.

3.2.2 Location of the Dividing Streamline
Using Eqs. (3.1) and (3.2), and noting that the transverse
velocity componént v is zero while the tangential shear stress is

continuous along the dividing streamline, one can obtain:

0
Jm u(Ul—u)dy + J u(U,-u)dy = 0
0 -0

3,
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Here the dividing streamline is chosen as the x-axis passing through
the origin. Denote Ud as the dimensionless velocity component along
the x-axis and use the present variables U and Z. Then the above
relation becomes:

1 2 1 1 2 y (L

UZdU + =— ZdU = U ZdU + —= uzdu . (3.19)
1-X1. 1-A
Ud - Ud 0 0

An iteration procedure has to be used to obtain U, which is a

d
function of x. Once Ud is found, the location y can be calculated

from the following relation:

U
y = f Zdu . _ (3.20)

3.2.3 Initial Conditions

Initiélfvalues Qf {ao,a*,...,aN_l} at an initial station Xi;
have to be specified in ordér to integrate the system of ordinary
differential equations (3.15) and (3.16). It may be deduced from
the'momeﬁtum eqpation that a turbulent‘mixing layer between twd
constant velocity incompressible free streams‘éah be seif-preserving
(see for example, Townsend, 1976). Thus, the initial condition can
be selected fairly arbitrarily, say from experimental data or from
the approximate analytical solutions, provided that they do not
contradict boundary_conditions‘at‘y = o when the Self-preser#ing
solution is of interest. |

Gortler's solution gives a good approximation to the Shape of
the observed mean velocity profile, although it has to be shifted
bodily in the fransvefse'direction in order to fit the experimental
data. However, this shift is independent of the siopé, oU/3y, of the

mean velocity profilé for a given U value. Here Gortler's solution
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is illustrated to obtain the necessary conditions. Gortler's
solution gives

U= 1/2(1 + _J € 4 dQ) , & = GY/X s (3.21)
v /o

where 0 is a constant which has the following empirical relation

(Birch and Eggers, 1972):

00(1+A)
O 1 - % U
Thus, the slope of U gives
1 _u_ 1o -&° 4
_Z'-:-a_y:_,n.;e . (3,22)

Comparing Eqs. (3.13) and (3.22), and invoking Eq. (3.21), we obtain
N coupled algebraic equations in N unknowns, 8 585 e 58y q- Thus,
solution for the N unknowns can be found, for example, by an itera-

tion procedure.

3.3 Results and Discussion

With )\ being a parameter, several cases were tested using the
4th approximation (N =4) and results are shown in Figs. 7 and 8. A
recent review on-the experimentél data of turbulent plane mixing
layer has. been completed bvaodi (1975). Experimental data were.
marked on the same figures whenever appropriate. Figure 7 shows
that thé'mixing layer penetrates more into the lower-speed stream
than it does into the higher-speed stream. This is due to the
continual deceleration of the fluid on the higher-speed side of the
mixing layer and the acceleration of the fluid on the lower-speed
Side, which results in a slight deflection of the streamlines towards

the lower-speed stream. In addition, lines of constant velocity ratio
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show the lineér dependence én distance_in the streamwise direction.
This can also be seen from similarity analysis and is confirmed by
all experimentél data;

A comparison of the mean velocity distribution.at the different
longitudinél positions showszthat the mixing layers have a region in
which geometricrsimilarity exists and in this region the mixing
layér is selfepréserving. Figure 8 shows the U profiles‘against
y* = (Y'yo;sj)/-(yo.l'yo.g)’ where Yo.5 refers to the value of y at
U=0.5, others likewise. The agreemént between the theoretical and
experimentai results is seen to be quite good. We observe that there
is almost no change in the shape of the mean velocity profile with
féspect to the velocity ratio exéept afvthg edge ofvlow U,. This
éhange in shape is also observed in experiments. In additionm, it
was shown from numerical experlments that U profiles agalnst y do
not depend on K, the emplrlcal constant for turbulent v1sc051ty Vi

Thus, the numerical values of k can be selected arbitrarily if one

wants to find the self-preserving solution of the problem.
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IV. ANALYSIS OF THE INTERACTION BETWEEN THE FREE MIXING

LAYER AND THE WALL LAYER

4.1 Formulation

The -turbulent free mixing layer merges with the turbulent'wail
layer at x==xo (see Fig. 1) and the interaction between these two
layers then begins. The velocity distribution at, and the location
of, station X, can be obtained from Chapters 2 and 3 by the assump-
tion that the free mixing layer and the wall layer develop indepen-
- dently in the x-direction and the velocity distribuﬁion of the |
merged flow at X, is simply the linear superposition'of‘the mean
velocity profiles of the two layers. The justification‘for this
assumption ié presented in Pot (1979). We assume that the boundary
layer épproximations still apply to the merged flow. Therefore, the
problem to be considered here may be formulated as follows: At a
giveﬁ station X=X the velocity profile is known; determine the
downstream development of the boundary layer with this iﬁitial
profile.

The'governing equations for the mean quantities of the merged
flow, which is still assumed to be two-dimensional, isobaric and .

incompressible, are:

ou oV _ A
E{-"’w—o > (4q1)
du, ,du_ 3 o, e du
PPV Ty (0 gl 4.2)
Bm . om _ 3 m .
Uzt Vay T3y LD#+DY) 5y (4.3).
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where u and v are tﬁe mean velocity components iﬁ the x and y
directions, respectively; m is the mean mass concentration of the
upper stream; o is-the density, v is.the Rinematic viscosity, and
D is the coefficient of mass diffusivity of the merged fluid flow.

The quantities €/p and D, are defined as

'; ——u : 3 _
=e/p =-u v'/5;- s (4.4)
D = ;m'vv/éﬂ | » (4.5)
t Sy - '

where u',v' and m' are fluctuating quantities. The modeling for

" €/p and Dt will be discussed later. The boundary conditions are
y=0 , u=0 , v=0 , 9m/dy =0 )

y > R u-=>U ’vm—rM ,

1 1
where the subébript 1 denotes the free stream condition which is

constant. Introduce the following nondimensional variables:

L

_u _'vRe2 - _ X
U= q > V= Ul » X = 1‘ 3
’1 ‘ (4.6)
Ly U,L
— _yRe™ _m !
y - L 3 » hi - Ml ’ Re - _\)

Here L is a reference length. Using Eq. (4.6), the governing equa-

tions and the corresponding boundary conditions become:

W, Ny, L N W)

U—*+'v—_=—[(1+%)i_‘% (4.8)
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D
oM oM 0 D t €, oM :
U—_+V—_=—_[(g+\)—ﬁ‘)—:] , (4.9)
X dy 9y t oy
y=0 , U=V=0 , M3y =0 ,
(4.10)

Notice that the species equation is decoupled from the momentum
equation. Therefore, the species equation can be solved separately
after the momentum equation. To solve the momentum equations by
means of MIR, which has been described in Chapter 2, we have the

following basic integral relation:

f{(O) ) J1 £

1 ‘
) f € i
— f.uzdu = - 1+ =au , (4.11)
ox Jo 1 Zo 0 Wz

where the weighting function fi(U) and the definition of Z are‘given
in Eqs. (2.9) and (2.11),'respectively. We also assume M is a
function of U only. Multiplying Eqs. (4.7), (4;8) and (4:9) by
fiM’fiM and f,, respectively, adding and then integrating the result
across the boundary layer with respect to y, and introducing the
variable Z, we get the basic integral relation for the mass concentra-

tion which reads

1

1 M £!(0) 1 D - f!
;é J fiUMZdU = - f97§———'-’[ [1 + g-+ (1 + GEJ EJ T%’é%'dU
ox /0 0 0 _ t H
1 11
€ -7
- JO(I + H) M 7 du B (4.12)

The above equation can be further simplified by noting that for U«<Uo,
where U, is the streamwise velocity component at the lower edge of
the concentration boundary layer, M is equal to zero. Thus, before

the concentration of the first stream diffuses to the wall surface,



Eq. (4.12) is. reduced to

1 1 D £l
—?:j f.UMZdU=—J L2+ a+59H 92
ox Ju ! Ju v Ve M
(o] (o]
1 ) 1
£ i '
-[U (1+3MZdu . (4.
(]

Notice that U, is a function of x, it is equal to U2/U1 at x=x,
where the free mixing layer merges with the wall layer and equal to
zero at the wall surface, where the concentration of the uppér
stream diffuses.

The interpolating function for Z is cﬁosen‘from Eq. (2.15) and
weighting functions foi fi are given by Eg. (2.13), safisfying Eq.
(2.14). The interpolating function for.M is chosen to satisfy its
physical boundary conditions, namely at U=1, M=1; and at U==U0,
M/3y =0, M=0. To the first approximation,

u-u

_ 0,2 , :
o
Substituting”expressions of Z, fi and M in Eqs. (4.11) and (4.13),
we obtain a system of ordinafy differential equations:
db (1 f.U db. fi(O) 1 c £ _
— [ G2 A [a.5ta,
dx /0 dx o} 0 H
i=1,2,...,N-1 , (4.15a)
db_ (1 fU £1(0) 1 £
__?J ___1TjU du = - Nz - J 1+ 5 TNdU , (4.15b)
dx ‘0 “o 0 H
and
du db db db
A]_ _O+A2'—_2+A—_];+"'+AN+1—N___1
dx dx dx
1 D f!
- D “ty £ -1 dM
_f-JU {1+ ot (1 + vt) u] = 40 du , (4.16)

13)‘

29
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where Al’AZ""’AN+1 are certain coefficients varying with N. For

example, if we choose N=3 then

_ 2 | |
Al = - bo(l + Uo)/6 + (3U0 - Uo -2) (blcll + b‘2c21)/30
2 3
- b,e, (1= 305 +20)/30

A, = (3-2U -U%)/12

2 o o =
A, = c.. (3-4U 4U2+2U3)/60

3 11 o) o o
A, = ¢, (3-4U_-U%+20%)/60

4 11 ) 6] o

3 .4
+ ¢y (1-2U +2U7 - U)/60

Initial conditions for the system of the ordinary differential

equations (4.15) and (4.16) are discussed later.

4.1.1 Turbulence Modeling

Pot (1979) conducted an experiment‘to investigate the behavior
of the interaction between a wake and a wall layer. He found that
the flow was not that of a normal equilibrium boundary layer during
‘the interaction process. However, many problems have been solved in
the literature by empioying the traditional Prandtl;s mixing length
concept and Van,Driest-Clauser eddy viscosity model to predict the -
same type.of flow (Cary, Bushnell.and Hefner, 1979; Miner and Lewis,
1974; Dvorak, 1973; Kacker, Pai.and Whitelaw, 1969). Reasonable
results, in comparison with experimental data, were obtained.

The turbulence structure of thé interaction between the free
mixing laYer and the wall layer is complex and so far little under-

stood. Seban and Back (1962) correlated the experimental data for
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the mean velocity profile in turbulent boundary layers with
tangential injection. They found that the mean velocity distribu-
tioﬁ was in godd co:respondence with the law of the wall and ﬁhe law
of the wake if the initial boundary layer effects on the splitter plate
at the slot was thin. Hence we have confidence to employ the
models, Eqs. (2.17) énd'(2.18), resulting from the law of the wall
and the léw of the wake to predict the type of flow cdnsidered'herein
since the effects of the initial boundary layer on both sides of the
. splitter plate are assumed to be negligible.

The magnitude of the turbulent mass diffusivity, Di, is always
of the same order of magnitude as the tufbuleﬁt eddy Viscosity, Vf,
(Bradshaw 1976, p. 233). Experimental values of the turbulent

Schmidt number S , =v /D , for the wake-wall boundary layer flow

t’.
were found to be 0.5+0.2 (Kacker, Pai and Whitelaw, 1969). Since
there is little justification for using'abparticular value or
functional variation for Sct’ we take Sct.=0'7 and vV/D=1 in the

present investigation. The last integral in Eq. (4.16) now can be

evaluated as

( (U 1 .
f’“(--'_-)dU+f (--)dU if U >U
1 U U
J (.-)du =< © m

U 1 :
- 0 f («+)dU if U < U

\ ‘U IIl °

o

where (---) represents symbolically the integrand, Um is the value
- where the wall regionfmeets the wake region and is determined by

Eq. (2.28).

4.1.2 Initial Conditions

The location X, is determined by s =6w-+6f (see Fig. 1).
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Based on the nature of parabolic partial differential equations and
the assumption for the mean velocity distribution at Xy only the
initial conditions and boundary conditions in the free stream and

the wall are required and the mean velocity profile of the merged -
flow coincides with that of the superposition of both free mixing
layer and wall boundary layer at Xy the necessary initial values for

{bo,b bN—l} can be obtained by the following method. We consider

120
.the mean yelocify and Z distributions at X, as shown in Fig. 9. The
singularity of Z within 0<U<1 only exists\at x==xo'because the
interaction between the free mixing layer and the wall layer causes

a momentum change which will smooth the velocity profile, and hence

_ the Z profile after Xy Presumably, we may extrapolate the U and Z
profi;es as shown in the dashed line on the same figure, and~there;
fofe use the new profiles as initial conditions. This is possible
becapse the estimate of the locationé of the edges of the wall
boundary layer and the free mixing layer is rough, say at U=0.98

for the~wa11 layer and U=0.1 (note the definition of U for the
mixing layer is différent from that of the wall layer) for the lower
edge of the free mixing layer. The method of obtaining initial -

values for {bo,bl,.. } based on the new profile is the same as

"bN-l
that described in Chapter 2. The initial value for U, in Eq. (4.16)

is simply equal to A at x=x_.

4.2 . Results "and ‘Discussion

In this section, theoretical predictions, based on the approxi-
mation N =3, for velocity profiles, skin friction coefficients and
concentration profiles are presented and discussed; representative

integral properties are also-presented.. The calculations were
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carried out at three values of the yelocity ratio U2/U1, namely 0.9,
0.7 and 0.51; and at one value of slot height, namely s =1 cm.  The
flow conditions of the injected maés are fixed énd identical to those
given in Coles and Hirst (1968) for the case ID 1400. |
The shapes of the mean veloﬁity profiles along the streamwise
direction are shown in Figs. 10, 11 and 12. It can be seen that
there is a region in which the velocity gradienﬁ is increasing near
the wall surface. This is due to the larger_momentum of the upper
stream which_thins the sublayer of the wall boundary layer caused by
the lower stream. Consequently, the local skin friction increases
- within this region. The corresponding concentration profilés of the
upper stream are also shown in the same;figures...The distribution of
Uo’ which is the parameter determining the concentration profile, is
shown in Fig. 13. It may be noted that the larger the vaiue of the
velocity ratio, the greater is the distance to the location where

the mass concentration diffuses to the wall surface. As indicated in

Chapter 3, a smaller velocity ratio results in a larger mixing region;
thus the merging between the mixing layer and the wall layer occurs
over a shorter distance. Physically, the larger velocity ratio
produces greater momeﬁtum in the upper stréam and the lower stream
is unable to sustain the greater impingement within the same distance.
It is interesting to examine the local skin friction distribu-
tion in Fig. 14. For velocity ratio U2/U1==0.9 gnd U2/U1==0.7, the
local skin friction distributions first decrease and then increase
over a short distance, finally decreasing in the streamwise direction.
The first decrease exists because the lower stream can sustain the
impingement of the upper stream over a short distance. The increase,

as mentioned earlier, is due to the sublayer of the wall layer and
/
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results from the lower stream being thinned by the impingement of the
upper stream. The final decrease is due to the development of the
flow in the conventional turbulent boundary layer. For the velocity
ratio U2/U1:=0.51, unlike the other cases, the skin friction
increases and then decreases, owing to the fact that the lower
stream can not sustain the impingement of the upper stream under

such a velocity ratio.

Figures 15, 16 and 17 show the distributions of the integral
propeities, namely shape factor H, diéplacement thickness 6* and
momentum thickness 6. During the interaction process of the free
mixing layer and the wéll layer, the shape factor decreases due to
the decrease in displacement thickness (recall that the sublayer
next to the wall is thinned) and the increase in momentum thickness.
Finally, the shape factor approaches a constant value which is equal
to that for a conventional turbulént boundary layer over a flate
plate with zero pressure gradient.

All arguments made above are physically reasonable; however, the
predictions should be compared with experimental data. Unfortunately,
to the author's knowlédge, there is no such data éorresponding to the
type of flow considered here. It is therefore suggested that the

experiments on such flow be. conducted in the future.



V. CONCLUSION

A model for reducing the corrosive effects on a wall surface in
a coal gasification process has been established. In this, a non-
corrosive gas is injected beneath the main stream of the coal gas

products in a direction parallel to the wall surface. The solution

procedure consists of (1) solving the development of a turbulent wall

boundary layer, (2) solving the develoﬁment of a turbulent free
‘mixing layer, and (3) solving the interactioh between the wall layer
and the mixing layer. ‘

| The application of the orthonormal version of the Method of
Integral Relations (MIR) to the present investigation has been
studied. As far as the development of the turbulent wall boundary
layer is concerned, numerical results are shown to be in good agree-
ment with experimental data. In addition, a means of determining
the initial conditions from the experimental data at the initial
station has been suggested and has proven to be effective.
Regarding the development of the turbulent free mixing layer, MIR
eliminates the velocity component v from the governing equations.
The traditional third boundary condition does not appear in the
present formuiation. - Numerical results are élso shown to be in good
agreement with the available experimental data.

Numerical results of the analysis for the interaction between
the wall layer and the mixing layer are plausible. A new boundary
layer type flow is found within the distance. of the interaction.

In this, the skin friction coefficient may increaﬁe or decrease

firstly, depending on the ratio of the main stream speed to the
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injected stream speed, then subsequently increases, and finally
decreases along the streamwise direction. The‘interaction
eventually leads to the formation of the conventional turbulent
boundary layer.

Finally, the species equation is solved and the ratio of the
distance protected from attack by the corrosive gas to the slot

height is found to be of the order 0(100).
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