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Abstract

Large numbers of histopathological images have been digitized into high resolution whole slide 

images, opening opportunities in developing computational image analysis tools to reduce 

pathologists’ workload and potentially improve inter- and intra- observer agreement. Most 

previous work on whole slide image analysis has focused on classification or segmentation of 

small preselected regions-of-interest, which requires fine-grained annotation and is non-trivial to 

extend for large-scale whole slide analysis. In this paper, we proposed a multi-resolution multiple 

instance learning model that leverages saliency maps to detect suspicious regions for fine-grained 

grade prediction. Instead of relying on expensive region- or pixel-level annotations, our model can 

be trained end-to-end with only slide-level labels. The model is developed on a large-scale prostate 

biopsy dataset containing 20,229 slides from 830 patients. The model achieved 92.7% accuracy, 

81.8% Cohen’s Kappa for benign, low grade (i.e. Grade group 1) and high grade (i.e. Grade group 

≥ 2) prediction, an area under the receiver operating characteristic curve (AUROC) of 98.2% and 

an average precision (AP) of 97.4 % for differentiating malignant and benign slides. The model 

obtained an AUROC of 99.4% and an AP of 99.8% for cancer detection on an external dataset.
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1. Introduction

Prostate cancer accounts for nearly 20% of new cancer diagnosed in men, and is the most 

prevalent and second deadliest cancer in men in the United States[49]. Active surveillance 

(AS) is an important management option for patients with clinically localized low- to 

intermediate-risk prostate cancer [57]. Prostate biopsy, which plays an essential role in 

treatment planning, is performed repeatedly during the course of the AS. Each biopsy can 

result in several tissue slides that are examined and, if cancer is present, assigned Gleason 

scores (GS) by pathologists based on the Gleason grading system. The GS is determined by 

two most predominant Gleason patterns that range from 1 (G1), closely resembling normal 

glands and carrying the lowest risk for dissemination, to 5 (G5), representing 

undifferentiated carcinoma and exhibiting the highest risk for dissemination. A recent study 

proposed to revise the Gleason grading system with 5 Gleason Grade groups (GGs) to 

reduce the over-treatment of low-grade prostate cancer [17]: GG 1 (GS ≤ 6), GG 2 (G3 + 

G4), GG 3 (G4 + G3), GG 4 (GS = 8) and GG 5 (GS ≥ 9). Patients with intermediate-to 

high-risk localized prostate cancer (GG ≥ 2) may be intervened with radiotherapy and 

radical prostatectomy, with or without hormonal therapy.

Currently, the diagnosis of prostate cancer relies on pathologists to examine multiple levels 

of biopsy cores at the scanning magnification, and identify suspicious regions for high 

power examination and immunohistochemistry if necessary. This process can be tedious and 

time-consuming. More importantly, some patterns, e.g. ill-defined G4 versus tangentially 

sectioned G3, are prone to inter- and intra-observer variability. Therefore, the current clinical 

practice can be improved by computer aided diagnosis tools (CAD) that can function as 

primary screening, to localize suspicious regions, and be utilized as a second reader for 

Gleason grading. Deep learning-based CAD models have been developed and demonstrated 

promising performance in many medical imaging fields [48, 54, 13, 8, 9]. However, the 

enormous size of whole slide images (WSI), the variability in tissue appearances, and the 

artifacts incurred during staining and scanning impose many unique challenges in 

developing such CAD tools.

1.1. Related Work

Classification of small homogeneous regions of interest (ROIs) pre-selected by pathologists 

has been the main focus of most early work in WSI image analysis [19, 16, 40]. Though 

these methods have achieved good results, they cannot be easily extended to handle regions 

with heterogeneous tissue types because they require a set of manually selected tiles with the 

same cancer grade, which is non-trivial to obtain. Some work has addressed this challenge 

by developing segmentation models that can provide pixel-wise predictions for tiles with 

various tissue contents [20, 29, 28, 24, 30]. However, these models still analyzed tiles 

instead of the entire slide.

With an increasing number of scanned slides and computing power, research in WSI has 

been shifting to slide-level analysis [38, 39, 41]. For example, in a recent work by Nagpal et-
al. [39], they developed a two-stage model on a dataset containing 752 biopsy slides and 

achieved 71.7% Cohen’s Kappa for predicting benign, GG1, GG2, GG3, and GG4–5. 

However, the model relied on a large amount of expensive fine-grained annotations.
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While these papers demonstrated promising performance in slide-level predictions [38, 32, 

39], they required a large number of expensive pixel or patch-level manual annotations for 

training. Bulten et-al. utilized a semi-automated labeling technique for prostate biopsy slide 

classification [5, 4]. Specifically, the authors used a pre-trained tissue segmentation network 

to identify tissue areas, within which cancerous regions were localized by a pre-trained 

tumor detection network. Non-epithelial areas were excluded from identified cancerous 

regions with an epithelium detection model. Detected epithelial areas from slides with a 

single Gleason pattern inherited slide-level labels and formed their initial training set for a 

U-Net model. Slide-level predictions were determined by percentage of Gleason patterns 

obtained from the segmentation network. However, this framework was built upon three pre-

trained preprocessing modules, each of which still required pixel-wise annotations.

Multiple instance leaning (MIL) [2, 15] has been utilized to address weakly-supervised 

learning challenges in tumor detection [35, 36, 44], segmentation [25, 61], and classification 

[21, 53, 37, 59, 23, 62]. Most MIL models fall roughly into two general categories [1, 12, 7]: 

instance-base and bag-based methods. Bag-based methods usually demonstrate better 

performance for tasks where global (i.e., bag-level) predictions are more important. 

Nevertheless, they suffer from a lack of interpretability, since instance predictions are often 

unavailable [23]. Ilse et-al. developed an attention-based MIL model that can visualize the 

relative contribution of instances for final prediction through a trainable attention module 

without sacrificing bag-level prediction performances [23]. The model was utilized to 

identify epithelial and malignant patches within small tiles extracted from WSI for colon 

cancer and breast cancer datasets, respectively. However, they did not address the challenge 

of classifying much larger and more heterogeneous WSIs. Moreover, they only utilized 

attention maps for visualization.

Few recent works have utilized MIL for whole slide classification [59, 60, 6, 33]. 

Campanella et-al. employed an instance-based approach to discriminate between malignant 

and benign prostate WSIs [6]. They considered the top k tiles with the highest probabilities 

from positive slides after applying the CNN model as pseudo positive training samples, 

which were updated in each training epoch. In the second stage, they investigated 

aggregation functions to produce a final slide-level prediction. The model achieved 

promising performance on three different types of largescale clinical datasets. However, the 

more difficult problem of Gleason grading was not investigated in the paper.

In this paper, we proposed a multi-resolution MIL-based (MRMIL) model for prostate 

biopsy WSI classification and weakly-supervised tumor region detection. Different from 

most existing studies, which rely on highly curated datasets with fine-grained manual 

annotations at pixel- or region-level, our model can be trained with only slide-level labels 

obtained from pathology reports. Similar to how WSIs are typically reviewed by 

pathologists, the proposed model scans through the entire slide to localize suspicious regions 

at a lower resolution (i.e., at 5x), and then zooms in on the suspicious regions to make grade 

predictions (i.e., at 10x). The main contribution of this paper can be summarized as the 

following:
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1) We developed a novel MRMIL model, which can be trained with only slide-level labels, 

for prostate cancer WSI classification and detection. 2) We trained and validated our model 

on a large dataset, containing 13,145 slides from 661 patients, which were retrieved from 

clinical cases without manual curation. To have a better understanding of our model’s 

performance, we also visualized the data representations learned by the model. 3) We tested 

on an independent test set consisting of 7,114 biopsy slides from 169 patients and an 

external dataset. The model achieved 81.8% Cohen’s Kappa (κ) and 92.7% accuracy (Acc) 

for classifying benign, low grade (i.e., GG = 1), and high grade (i.e., GG ≥ 2) slides. 

Additionally, We extended our best model for Gleason group prediction, and it obtained 

71.1% κ and 86.8% quadratic κ.

2. Method

2.1. Problem Definition

Due to the enormous size of WSIs, slides are usually divided into smaller tiles for analysis. 

However, different from works that utilized fine-grained manual annotations, our model is 

developed on then dataset with only slide-level labels (i.e., We don’t have labels for each 

tile, instead, we only have a slide-level label for a set of tiles.). Therefore, we formulate the 

WSI classification problem in the MIL framework. Specifically, a slide is considered as one 

bag. k tiles of size N×N extracted from the bag are denoted as instances within the bag, each 

of which may have different instance-level labels yi, i ∈ [1, k]. During training, only the 

label for a set of instances (i.e., bag-level) Y is available. Based on the MIL assumption, a 

positive bag should contain at least one positive instance, while a negative bag contains all 

negative instances [2, 15, 1, 12] in a binary classification scenario. We build our system 

upon a bag-level MIL model with a parameterized attention module that aggregates instance 

features and forms the bag-level representation, instead of using a pre-defined function, such 

as maximum or mean pooling [23]. Fig 1. shows the overview of our model.

2.2. Attention-based MIL with Instance Dropout

In the attention-based MIL model, a CNN is utilized to transform each instance into a d 

dimensional feature vector vi ∈ ℝd. A permutation invariant function f(·) can be applied to 

aggregate and project k instance-level feature vectors into a joint bag-level representation. 

We use a multilayer perceptron-based attention module as f(·) [23], which produces a 

combined bag-level feature vector v′ and a set of attention values representing the relative 

contribution of each instance as defined in Eq 1.

v′ = f(V) = ∑
i = 1

k
αivi

α = Softmax[uT tanh(WVT)]
(1)

where V ∈ ℝk × d contains the feature vectors for k tiles, u ∈ ℝℎ × 1 and W ∈ ℝℎ × d are 

parameters in the attention module, and h denotes the dimension of the hidden layer. The 

slide-level prediction can be obtained by applying a fully connected layer to the bag-level 

representations v′. Both the CNN feature extractor and the attention-based aggregation 

function are differentiable and can be trained end-to-end using gradient descent. The 
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attention module not only provides a more flexible way to incorporate information from 

instances, but also enables us to localize informative tiles. However, this framework 

encounters similar problems as other saliency detection models [63, 22, 51]. In particular, as 

pointed out in [23], instead of detecting the all informative regions, the learned attention 

map can be highly sparse with very few positive instances having large values. This issue 

may be caused by the underlying MIL assumption that only one positive instance needs to 

be detected for a positive bag. This can affect the performance of our classification stage 

model, which relies on informative tiles selected by the learned attention map. To encourage 

the model to select more relevant tiles, we used an instance dropout method similar to [51, 

52]. Specifically, instances are randomly dropped during the training, while all instances are 

used during model evaluation. To ensure the distribution of inputs for each node in the 

network remains the same during training and testing, pixel values of dropped instances are 

set to be the mean RGB value of the dataset [51, 52]. This form of instance dropout can be 

considered a regularization method that prevents the network from relying on only a few 

instances for bag-level classification.

2.3. Attention-based Tile Selection

An intuitive approach to localize suspicious regions with learned attention maps is to use the 

top q percent of tiles with the highest attention weights. However, the percentage of 

cancerous regions can vary across different cases. Therefore, using a fixed q may cause over 

selection for slides with small suspicious regions and under selection for those with large 

suspicious regions. Moreover, this method relies on an attention map, which in this context 

is learned without explicit supervision at the pixel- or region-level. To address these 

challenges, we incorporate information embedded in instance-level representations by 

selecting informative tiles from clusters. Specifically, instance representations obtained from 

the MIL model are projected to a compact latent embedding space using principle 

component analysis (PCA). We then perform K-means clustering to group instances with 

similar semantic features based on their PCA transformed instance-level representations. 

The relevance of each cluster αs can be determined by the average attention weights of tiles 

within it as defined by αs = 1
m ∑j = 1

m αj. The intuition is that clusters that contain more 

relevant information for slide classification should have higher average attention weights. 

For example, in a cancer-positive slide, clusters consisting of cancerous glands should have 

higher attention weights compared to those with benign glands and stromal regions. Finally, 

we can determine the number of tiles to extract from each cluster based on the αs and the 

total number of tiles.

2.4. Multi-resolution WSI classification

Different from most medical imaging modalities, WSIs typically contain billions of pixels, 

which make them practically impossible to feed into GPU memory directly at full 

resolution. Though the size of WSIs is enormous, most regions typically do not contain 

relevant information for slide classification, such as stroma and benign glands. Pathologists 

tend to analyze the entire slide at a relatively low resolution, usually at 5x, to find suspicious 

regions and then switch to higher magnification in these areas to render a final diagnosis. 

Our proposed MRMIL model mimics this process, containing two stages as shown in Fig 1. 
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The detection stage model, which consists of an attention-based MIL with instance dropout, 

is trained with all tiles extracted at a lower magnification (i.e., at 5x) to differentiate benign 

and malignant slides and generate attention maps. The attention-based clustering method is 

applied to select relevant tiles for the classification stage model. Selected tiles are extracted 

at the same location, but at a higher magnification (i.e. at 10x) and fed into the MIL network 

for cancer grade prediction.

3. Experiment

3.1. Dataset and data preprocessing

3.1.1. Dataset—Our dataset contains 20,229 slides from prostate needle biopsies from 

830 patients pre- or post-diagnosis (IRB16–001361). Slides’ labels extracted from their 

corresponding pathology reports. There are no additional fine-grained annotations at the 

pixel- or region-level for this dataset. Additionally, we did not rely on any pre-trained tissue, 

epithelium, or cancer segmentation networks, and did not perform extensive manual curation 

to exclude slides with artifacts such as air bubbles, pen markers, dust, etc. We randomly 

divided the dataset into 70% for training, 10% for validation, and 20% for testing, stratifying 

by patient-level GG determined by the highest GG in each patient’s set of biopsy cores. This 

process produced a test set with 7,114 slides from 169 patients and a validation set 

containing 3,477 slides from 86 patients. From the rest of the dataset, we balanced sampled 

benign (BN), low grade (LG), and high grade (HG) slides. Table 1 shows more details on the 

breakdown of slides.

3.1.2. External dataset—We evaluated our models on a public prostate dataset, 

SICAPV1, collected by the Hospital Clínico Universitario de Valencia, which contains 512 × 

512 tiles at 10x extracted from 79 slides of prostate needle biopsies with 50% overlapping 

[18]. 19 of these slides are benign, and the rest are malignant.

3.1.3. Data preprocessing—The majority of regions on WSIs are background. Thus, 

we converted slides downsampled at their lowest available magnification compressed in 

the .svs file into HSV color space and thresholded on the hue channel to produce tissue 

masks. Morphological operations such as dilation and erosion were used to fill in small gaps, 

remove isolated points, and further refine tissue masks. We then extracted tiles of size 256 × 

256 at 10x from the grid with 12.5% overlap. Tiles that contained less than 60% tissue were 

discarded from analysis. The number of tiles per slide ranges from 1 to 1,273, with an 

average of 275. To account for stain variability, we used a color transfer method [45] to 

normalize tiles extracted from the slide. The scanning objective was set at 20x (0.5 μm per 

pixel). We downsampled tiles to 5x for the detection stage model development. We divided 

the 512 × 512 tiles at 10x (as provided by the external dataset [18]) into 4 non-overlapping 

256 × 256 sub-tiles, in order to match the input size of our models. The same stain 

normalization [45] was applied. Tiles with less than 60% tissue were also removed.

3.2. Implementation Details

We used VGG11 with batch normalization (VGG11bn) [50] as the backbone for the feature 

extractor in the MRMIL model for both detection stage and classification stage. Sizes of 
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input tiles for cancer detection and classification stages are 128 × 128 and 256 × 256, 

respectively. Thus, sizes of feature maps from the last convolutional of VGG11bn are 512 × 

4 × 4 and 512 × 8 × 8, respectively. A 1 × 1 convolutional layer was added after the last 

convolutional layer of VGG11bn to reduce dimensionality and generate instance-level 

feature maps for k tiles. Feature maps were flattened and fed into a fully connected layer 

with 256 nodes, followed by ReLU and dropout layers. This produced a k × 256 instance 

embedding matrix, which was forwarded into the the attention module. The attention part, 

which generated a k × n attention matrix for n prediction classes, consisted of two fully 

connected layers with dropout, tanh non-linear activations, and a softmax layer. Instance 

embeddings k × 256 were multiplied with attention weights k × n, resulting in a n × 256 

bag-level representation, which was flattened and input into the final classifier consisting of 

a fully connected layer. The probability of instance dropout was set to 0:5 for both model 

stages. Detailed model architectures were shown in Table 3 and 4 in the Appendix A.

The CNN feature extractor was initialized with weights learned from the ImageNet dataset 

[14]. After training the attention module and the classifier with the feature extractor frozen 

for three e pochs, we trained the last three VGG blocks together with the attention module 

and classifier for 97 e pochs. The initial learning rates for the feature extractor were set at 1 

× 10−5 and 5 × 10−5 for the attention module and the classifier, respectively. The learning 

rate was decreased by a factor of 10 if the validation loss did not improve for the last 10 

epochs. We used the Adam optimizer [26] and a batch size of one. Detection stage and 

classification stage models were trained separately using the same training hyperparameter 

(e.g., learning rate, batch size and etc). Random flipping and rotation were utilized for data 

augmentation.

For clustering-based region selection, we projected k × 256 instance embedding matrix to k 
× 32 with PCA, and utilized K-Means clustering to group tiles. The number of clusters was 

set to be 3 to encourage tiles to be grouped into LG, HG and BN clusters. As shown in 

Appendix C, tile selection with k-Means is robust to different random initialization.

Hyper-parameters were tuned on the validation set. We further extended our MRMIL model 

for GG prediction. The cross entropy loss weighted by reversed class frequency was utilized 

to address the class imbalance problem. Hyperparameters were selected using the validation 

set. Models were implemented in PyTorch 0.4.1 [42], and trained on an NVIDIA DGX-1.

3.3. Evaluation Metrics

As our test dataset contained over 75% benign slides, accuracy (Acc) alone is biased metric 

for model evaluation. In addition, we used the AUROC and AP computed from ROC and 

precision and recall (PR) curves, respectively. For cancer grade classification, we measured 

the Cohen’s Kappa (κ), κ =
po − pe
1 − pe

. p o is the agreement between observers and pe is the 

probability of agreement by chance. All metrics were computed using the scikit-learn 0.20.0 

package [43].
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3.4. Model Visualization

In addition to quantitative evaluation metrics, interpretability is important in developing 

explainable machine learning tools, especially for medical applications. In order to have a 

better understanding of our model predictions, we performed t-Distributed Stochastic 

Neighbor Embedding (t-SNE) [34] of learned bag-level representations for both stage 

models. Specifically, for each slide we utilized the flattened n × 256 feature vector before 

being forwarded to the final classification layer. The learning rate of t-SNE was set at 1.5 × 

102, and the perplexity was set at 30.

The saliency map produced by the attention module in the MRMIL model only 

demonstrated the relative importance of each tile. To further localize discriminative regions 

within tiles, we utilized Gradient-weighted Class Activation Mapping (Grad-CAM) [47]. 

Concretely, given a trained MRMIL model and a target class c, we retrieved the top k tiles 

with the highest attention weights, which were fed to the model to compute gradients and 

activations.

3.5. Model Comparison

Handcrafted features.—We converted input tiles at 10x into HSV color space and 

thresholded on the H channel to get tissue masks. Then we utilized the PyRadiomics 

package [58] to extract 90 features for each tile, including 16 first-order statistics, 23 gray 

level co-occurrence matrix-based, 16 gray level run length matrix-based, 16 gray level size 

zone matrix-based, 5 neighbouring gray tone difference matrix-based, and 14 gray level 

dependence matrix-based features. The maximum pooling was applied to aggregate tile-level 

features, which were fed into the final slide-level classifier. We experimented with Xgboost 

[11] and random forest (RF) [31] classifiers. Grid search with 3-fold cross validation was 

used to select hyperparameters for classifiers.

MIL model by Campanella et-al. [6].—We compared our model with the related recent 

work [6], which also trained slide classification models with only slide-level labels in the 

MIL framework. Different from our model, they utilized an instance-level MIL approach to 

train CNN-based feature extractors and aggregated tile-level information with an RNN. 

Specifically, a VGG11bn model pretrained on the ImageNet dataset was applied on tiles at 

10x for cancer versus non-cancer classification. The top k tiles with highest probability 

within each slide were assumed to have the same label as the slide-level label. The k was set 

at 1. These tiles were then utilized to further optimize the model. This process was iterated 

until convergence. Then the RNN model was utilized to aggregate features from the top s 
tiles for final classification. The s was set at 10. We used the implementation provided by [6] 

and hyperparameters reported in the paper to re-train the model on our dataset.

MIL model by Tomczak et-al. [55]—Tomczak et-al. investigated several instance-level 

MIL models, which utilized different permutation-invariant operators to combine patch-level 

predictions for histopathological image classification, with a Noisy-Or operator achieving 

the most promising results [55]. The model was developed to distinguish benign and 

malignant patches extracted from biopsy slides of breast cancer patients. In this experiment, 
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we extended it for WSI classification. Since the Noisy-Or was mostly designed for binary 

classification, we mainly utilized it to classify benign and malignant slides.

Different aggregation methods.—Instead of using the attention module to aggregate 

tile-level features to slide-level representations, we experimented with two aggregation 

methods to combine tile-level features for slide-level representations: maximum pooling and 

mean pooling aggregation. These models were trained using all tiles at 10x.

Single stage.—To evaluate the effectiveness of the multi- resolution model in cancer 

grade prediction, we compared our model with a model trained with all extracted tiles at 5x 

only, referred as Single stage.

Blue ratio selection.—Blue ratio (Br) image conversion, as defined in Eq 2, can 

accentuate the blue channel of a RGB image and thus highlight proliferate nuclei regions 

[10].

Br = 100 × B
1 + R + G × 256

1 + R + G + B (2)

where R, G, B are the red, green and blue channels in the original RGB image. Br 

conversion is one of the most commonly used approaches in previous studies to detect nuclei 

[10, 46] and select informative regions from largescale WSIs [56, 3, 27]. To evaluate the 

attention-based ROI detection, we replaced the first stage cancer detection model with the Br 

conversion to select the top q = 25% tiles with highest average Br values, referred to as br 
selection [56, 3, 27]. We performed the Br conversion using slides at 5x (the same 

magnification as our cancer detection stage model). Examples of Br selected tiles are shown 

in B

Without instance dropout [23].—In this experiment, denoted as w/o instance dropout, 
we utilized the vanilla attention MIL model as developed in [23] and investigated whether 

instance dropout could improve the integrity of learned attention map and lead to better 

performance.

Attention-only selection.—Instead of selecting informative clusters, we only utilized the 

attention map by choosing the top q = 25% tiles with the highest attention values as the input 

for the second stage model in the att selection experiment.

For fair comparison, we utilized VGG11bn as the feature extractor for all comparison 

experiments. Results of ablation experiments using other CNN architectures as feature 

extractors are shown in Appendix D.

4. Results

Fig 2 shows both ROC and PR curves for the detection stage cancer models trained at 5x. 

The detection stage model in the MRMIL obtained an AUROC of 97.7% and an AP of 

96.7% on our internal test set. On the external dataset, it achieved an AUROC of 99.4% and 

Li et al. Page 9

Comput Biol Med. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



an AP of 99.8%. The model trained without using the instance dropout method yielded a 

slightly lower AUROC and AP on both internal and external datasets.

Since our dataset does not have fine-grained annotations, we visualized generated attention 

maps and compared them with pen markers annotated by pathologists during diagnosis. We 

masked out markers as mentioned in Section 3.1, thus they were not utilized for model 

training. Fig 4 presents the comparison between attention maps learned from models with 

and without using instance dropout during training.

To further localize suspicious regions within a tile and better interpret model predictions, we 

applied Grad-CAM on the first detection stage MIL model as shown in Fig 5. We generated 

Grad-CAM maps for not only true positives (TP), but also false positives (FP) to understand 

which parts of the tile led to false predictions. We selected two tiles with highest attention 

weights from each slide for visualization.

The MRMIL model projects input tiles to embedding vectors, which are aggregated and 

form slide-level representations. The t-SNE method enables high dimensional slide-level 

features to be visualized at a two dimensional space as demonstrated in Fig 6. Fig 6 (A) is 

the t-SNE plot for the detection stage model and (B) presents bag-level features produced by 

the classification stage model with selected high resolution tiles as inputs.

Table 2 shows model performances on BN, LG, HG classification. The proposed MRMIL 

outperformed all baseline models and achieved the highest Acc of 92.7% and κ of 81.8% as 

shown in row 12. Models with handcrafted features only obtained about 57% κ as 

demonstrated in row 3 and 4 in the Table 2. As shown in row 5, the model by Campanella et-
al. [6] got 4% lower κ compared with our MRMIL model. Models with simple mean and 

maximum pooling aggregation methods also achieved lower performance than the MRMIL 

model as reported in row 6 and 7. Row 8 to 11 demonstrated results on ablation study of the 

MRMIL model. The single stage attention MIL model trained at 5x achieved 76.3% κ. The 

br selection that relied on the Br image for tile selection only obtained an Acc of 90.8% and 

a κ of 76.0%. The w/o instance dropout model, got roughly 4% lower κ and 2% lower Acc 

compared with the MRMIL model. In addition, we combined LG and HG predictions from 

the classification model and computed the AUROC and AP for detecting cancerous slides. 

For instance, by zooming in on suspicious regions identified by the detection stage model, 

the MRMIL achieved an AUROC of 98.2% and an AP of 97.4%, both of which are higher 

than the detection stage only model. We present the confusion matrix for the MRMIL model 

on GG prediction in Fig 3. The MRMIL model obtained an accuracy of 87.9%, a quadratic κ 
of 86.8%, and a κ of 71.1% for GG prediction.

5. Discussion

In this paper, we developed an MRMIL model, which addressed three challenges in 

predicting slide-level Gleason grades: 1) how to select regions of interest; 2) how to train a 

model with large-scale whole slide images, which are usually very large, contain 

heterogeneous contents and only labeled at the slide-level; and 3) how to effective combine 

tile-level information for slide-level classification.
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Our detection stage model achieved promising results on both an internal test set and an 

external dataset, which demonstrates the generalizability of the model. One potential 

explanation for slightly better performances on external dataset is that our independent test 

set is relatively large (i.e. 7114 slides from 830 patients.) and is collected from clinical 

database without any data curation.

Handcrafted features-based models performed relatively well on differentiating benign and 

malignant slide with an AUC of 93.3%, however, they obtained much lower κ on the hard 

task of classifying LG, HG and BN slides. The model proposed by Campanella et-al. [6] first 

used an instance-based MIL approach, which considered tiles with highest probabilities as 

having the same label as the corresponding slide, and then utilized the RNN model to 

aggregate representations from top tiles for slide classification. In contrast, our model used a 

more flexible attention aggregation method that can detect discriminative tiles and combine 

tile-level features in the same time. The model [6] achieved comparable performance on 

detecting cancerous slides with 98.3% AUC and 97.3% AP. Yet, it showed inferior results on 

predicting LG, HG, and BN classes compared with the MRMIL model. Nagpal et-al. 
developed a two-stage model for Gleason grade prediction of prostate cancer biopsy slides 

[39]. Their first stage model, which was trained to provide tile-level Gleason pattern 

classification, was developed using 114 million labeled tiles from over 1,000 slides of 

prostatectomies and biopsies. The model obtained a κ of 71.7 % on GG1, GG2, GG3 and 

GG4/5 prediction. Our model, which does not rely on fine-grained annotations and can be 

trained with only slide-level labels, achieved a comparable performance (κ = 71.1%).

The quality of attention maps from the detection stage model is essential for selecting 

discriminative regions for the classification stage model. As shown in Fig 4, attention maps 

learned with only weak (i.e. slide-level) labels are consistent with cancerous regions 

identified by pathologists during diagnosis. This demonstrates that our detection stage model 

not only achieves strong performance in classifying malignant versus benign slides, but also 

identifies suspicious regions for classification stage models. In addition, the generated 

attention maps can be integrated into a WSI viewer to potentially help pathologists more 

quickly localize relevant areas and reduce diagnostic time. Fig 4 also shows that the original 

attention-based MIL model [23] (i.e. w/o instance dropout) only focuses on a few most 

discriminative tiles instead of entire suspicious regions. As reflected in Table 2, the w/o 

instance dropout model obtained a κ of 77.3%, which is about 4% lower than the one trained 

with instance dropout. Moreover, the performance of the model that relied on the Br image 

is inferior to the models that utilized attention maps. This demonstrates that areas with the 

most blue color may not be diagnostic relevant regions and that our attention module is able 

to extract high-level predictive representations rather than purely color features.

Grad-CAM visualization facilitates understanding of predictions from ‘black-box’ deep 

learning models, as shown in Fig 5. For TP predictions in Fig 5 (A)–(C), our model captured 

the most relevant parts in the tile, though some cancerous regions were missed. For example, 

the first tile in (B) contains densely clustered cancerous glands, but the corresponding Grad-

CAM only highlighted the most central area, and cancerous glands closer to the boundary 

were not detected. FP predictions are usually also hard cases for pathologists, with features 

that resemble prostate cancer. For example, regions highlighted by Grad-CAM in (E) contain 
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benign glands with increased number of basal cells due to tangential tissue sectioning. (F) in 

Fig 5 shows the seminal vesicle/ejaculatory duct tissue that form small outpouching glands 

with amphophilic cytoplasm, which mimic malignant glands. Our model was only trained to 

detect and grade acinar adenocarcinoma for prostate biopsies. Interestingly, as shown in (D), 

the model was able to identify intraductal carcinoma of the prostate gland (IDC-P), which is 

usually associated with high-stage invasive cancer and adverse prognosis.

From Fig 6 (A), we can see that benign slide representations are clustered together on the 

right and malignant slides form a small cluster on the left. There is no distinct separation 

between features from LG and HG slides, since the objective of the detection stage model is 

to classify cancerous versus benign slides. Fig 6 (B) shows that features of LG and HG 

slides generated from the classification stage model form their own distinct clusters, and 

representations from LG slides lie closer to benign slides in the embedding space.

To quantitatively evaluate our model performance, we performed experiments to understand 

the contribution of different model components, as summarized in Table 2. Using attention 

maps to select higher resolution tiles improved the κ of the one with br selection by 1%. 

Instance dropout further boosted the κ by over 3%. The final model MRMIL with all 

components achieved the highest κ for BN, LG, and HG classification, 98.2% AUROC for 

detecting malignant slides, and a quadratic κ of 86.8% for GG prediction, which is 

comparable to state-of-the-art models that require pre-trained segmentation networks [5].

6. Limitations and Future Work

In this section, we discuss limitations of this work and some potential directions for future 

research. In this work, we developed a two-stage model to first detect suspicious regions and 

then classify cancer grade with selected tiles at a higher magnification. The tile selection is 

determined by the detection stage model, and there is no mechanism to adaptively update 

selected tiles according to the loss from the classification stage model. In future work, a 

recurrent network or reinforcement learning can be incorporated to dynamically resample 

suspicious regions during training.

We only developed the model for acinar adenocarcinoma detection and classification for 

prostate biopsies. Other prognostically relevant histopathological types, such as ductal 

adenocarcinoma and IDC-P, need to be investigated in future studies.

In this study, we merely qualitatively evaluated our attention maps by visually inspecting 

learned maps for slides with pen markers. Though our model was able to identify similar 

regions as indicated by pen markers, quantitative evaluation with manual region-level 

annotations could provide a better metric for the attention module.

Additionally, besides achieving promising κ and Acc, a successful CAD tool should be able 

to facilitate clinical diagnosis. In future work, we will investigate different approaches to 

evaluate the effectiveness of our model as a CAD tool.
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7. Conclusion

In this paper, we developed a novel MRMIL model that consists of a detection stage and a 

grade classification stage. The model can be trained with weak supervision from slide-level 

labels and localize cancerous regions. We provided visualization of saliency maps at both 

the slide- and tile-level, and learned representations to enhance model interpretability. The 

model was developed and evaluated on a dataset with over 20k prostate slides from 830 

patients and an external dataset [18], and achieved promising performance. We believe that 

these types of models could have multiple applications in the clinic, including allowing 

pathologists to increase their efficiency, empowering more general pathologists to perform at 

the level of experts, and performing “second reads” of biopsy slides for quality assurance.
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A.: Detailed Model Architecture

Table 3 shows the detailed architecture for the first stage cancer detection stage model, and 

Table 4 shows the architecture for the classification stage model. Two stage models were 

trained separately.

Table 3.

Cancer detection stage model architecture.

Module Layers Number of filter Filter size Output size

Input - - 3 × 128 × 128

VGG11bn

Conv + BN + ReLU 64 3 × 3 64 × 128 × 128

Max Pool 64 2 × 2 64 × 64 × 64

Conv + BN + ReLU 128 3 × 3 128 × 64 × 64

Max Pool 128 2 × 2 128 × 32 × 32

Conv + BN + ReLU 256 3 × 3 256 × 32 × 32

Conv + BN + ReLU 256 3 × 3 256 × 32 × 32

Max Pool 256 2 × 2 256 × 16 × 16

Conv + BN + ReLU 512 3 × 3 512 × 16 × 16

Conv + BN + ReLU 512 3 × 3 512 × 16 × 16

Max Pool 512 2 × 2 512 × 8 × 8

Conv + BN + ReLU 512 3 × 3 512 × 8 × 8

Conv + BN + ReLU 512 3 × 3 512 × 8 × 8

Max Pool 512 2 × 2 512 × 4 × 4

Instance feature embedding Conv 256 1 × 1 256 × 4 × 4

FC + ReLU + Dropout - - 256

Attention module FC + Tanh + Dropout - - 512

FC - - 1
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Module Layers Number of filter Filter size Output size

Classifier FC - - 1

Table 4.

Cancer detection stage model architecture.

Module Layers Number of filter Filter size Output size

Input - - 3 × 256 × 256

VGG11bn

Conv + BN + ReLU 64 3 × 3 64 × 256 × 256

Max Pool 64 2 × 2 64 × 128 × 128

Conv + BN + ReLU 128 3 × 3 128 × 128 × 128

Max Pool 128 2 × 2 128 × 64 × 64

Conv + BN + ReLU 256 3 × 3 256 × 64 × 64

Conv + BN + ReLU 256 3 × 3 256 × 64 × 64

Max Pool 256 2 × 2 256 × 32 × 32

Conv + BN + ReLU 512 3 × 3 512 × 32 × 32

Conv + BN + ReLU 512 3 × 3 512 × 32 × 32

Max Pool 512 2 × 2 512 × 16 × 16

Conv + BN + ReLU 512 3 × 3 512 × 16 × 16

Conv + BN + ReLU 512 3 × 3 512 × 16 × 16

Max Pool 512 2 × 2 512 × 8 × 8

Instance feature embedding Conv 256 1 × 1 256 × 8 × 8

FC + ReLU + Dropout - - 256

Attention module FC + Tanh + Dropout - - 512

FC - - 1

Classifier FC - - 1
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B.: Blue Ratio Conversion

Figure 7. 
Br conversion. We performed Br conversion for slides at 5x. The first two rows demonstrate 

tiles from a benign slide and the bottom two show ones from a malignant slide. (A) are 3 

tiles with the highest average tile-level Br values, and (B) are ones with the lowest Br values. 

We can see that the br conversion is able to highlight regions with most nuclei.

C.: K-Means Clustering

We used PCA to project n × 256 instance-level embedding vectors of n tiles to n × 32 (i.e., 

the number of components is set to be 32). For K-means clustering, the k was set to be 3 to 

encourage tiles to be grouped into benign, low-grade and high-grade clusters. Our attention 

clustering-based selection method was robust to different initializations. Specifically, we re-

ran the K-means clustering with different random seeds for 10 times, and computed mean 

intersection over union (IoU) for selected tiles. Our method achieved a mean IoU of 97.65%.
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Table 5

Model performance on BN, LG, and HG slides classification

MRMIL with different backbones
BN, LG, HG classification Cancer detection

Cohen’s Kappa (%) Acc (%) AUROC (%) AP (%)

VGG11bn 81.8 92.7 98.2 97.4

VGG13bn 79.9 92.0 97.8 96.9

ResNet34 78.7 91.6 96.9 95.3

D.: Different CNN Architectures for the Feature Extractor

We performed experiments to evaluate our MRMIL model performances with different 

network backbones. Experiments were performed by replacing the feature extract in both 

model stages with different CNN architectures. As shown in the Table 5, the VGG11bn 

achieved the best performance. Our model performances were affected around 2% by using 

different backbones. For example, VGG13bn obtained a κ of 79.9%, which was 1.9% lower 

than the VGG11bn architecture. We are going to investigate and incorporate other powerful 

CNN feature extractors into our framework to further improve model performances in the 

future work.
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Highlights

• We developed a multi-resolution multiple instance learning model that can 

localize suspicious regions at a relatively lower magnification, and then 

perform fine-grained classification at a higher magnification.

• Instead of relying on expensive manual annotations, the proposed model can 

be trained with slide-level labels retrieved from routine pathology reports and 

can detect regions of interest with learned attention maps.

• We validated our model on an independent test set of 7,114 biopsy slides and 

an external test set of 79 slides collected by the Hospital Clínico Universitario 

de Valencia. The model achieved promising results on both datasets.
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Figure 1: 
Overview of the proposed whole slide image detection and classification model. The model 

consists of two stages: a cancer detection stage at a low magnification and a cancer 

classification stage at a higher magnification for suspicious regions. Both stages contains a 

CNN feature extractor, which is trained in the MIL framework with slide-level labels. 

Specifically, the detection stage model is trained with all tiles extracted from slides at 5x to 

differentiate between benign and malignant slides. The attention module in the detection 

stage model produces a saliency map, which represents relative importance of each tile for 

predicting slide-level labels. Then we use the K-means clustering method to group tiles into 

clusters based on tile-level features. The number of tiles selected from each cluster is 

determined by the mean of cluster attention values. Discriminative tiles identified by the 

detection stage model are then extracted at 10x and fed into the classification stage model 

for cancer grade classification.
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Figure 2: 
ROC and PR curves for detection stage models on our test set and external dataset. In the 

detection stage, models were trained to distinguish malignant and benign slides with all tiles 

extracted from slides at 5x.
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Figure 3: 
Confusion matrix for Gleason grade group prediction.
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Figure 4: 
WSIs overlaid with attention maps generated from the first stage cancer detection model. 

Pen marks as mentioned in Section 3.1 indicate cancerous regions. The first row shows 

attention maps from the model with instance dropout, while the second row is from the 

model without using instance dropout.
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Figure 5: 
Visualization of discriminative regions within tiles for TP and FP predictions. For each slide 

(A)-(F), we selected the top two tiles with the highest attention weights from the model, 

which were then forwarded to the model to generate activations and gradients for Grad-

CAM.
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Figure 6: 
t-SNE visualization of slide-level features. Black dots denote benign, purple dots indicate 

LG, and orange dots represent HG slides. (A) is the slide-level representations from the 

detection stage model. There is distinct separation between benign and cancerous slides. (B) 

shows the slide-level features from the classification stage model. We can see a better 

separation between LG and HG slides.
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Table 1

Number of slides for each Grade group.

Train Validation Test Total

No. BN slides 3,225 2,579 5,355 11,159

No. GG 1 slides 3,224 412 807 4,443

No. GG 2 slides 1,966 307 587 2,860

No. GG 3 slides 648 95 148 891

No. GG 4 slides 306 17 129 452

No. GG 5 slides 269 67 88 424

No. Patients 575 86 169 830
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Table 2

Model performance on BN, LG, and HG slides classification

BN, LG, HG Classification Cancer Detection

Experiment Name Model Details Cohen’s Kappa 
(%)

Acc (%) AUROC (%) AP (%)

Handcrafted + RF 90 radiomics features + RF at 10x 57.0 81.5 93.1 83.9

Handcrafted + Xgboost 90 radiomics features + Xgboost at 10x 55.9 80.9 93.3 83.9

Campanella et-al. [6] MIL + RNN at 10x 77.2 90.7 98.3 97.3

Tomczak et-al.[55] Noisy-Or aggregation at 10x n/a n/a 97.4 96.0

Mean aggregation Mean aggregation at 10x 77.1 90.8 97.9 96.6

Max aggregation Max aggreagtion at 10x 79.5 91.9 97.4 96.3

Single stage Single resolution MIL at 5x 76.3 92.5 97.4 95.8

Br selection [3, 27, 56] Multi-resolution + Br 76.0 90.8 95.9 94.3

W/o instance dropout [23] Multi-resolution + Att 77.3 91.0 97.3 96.0

Att selection Multi-resolution + Att + instance dropout 80.7 92.4 98.4 97.4

MRMIL Multi-resolution + Att + instance dropout + 
clusters

81.8 92.7 98.2 97.4
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