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1. Introduction.

Dueto the effects of the assumption of aunit root in avariable on both the econometric method used and
the economic interpretation of the model examined, it is quite common to pre-test the data for unit roots.
Thisistypically done by either (or both) testing variables one by one for unit roots or by examining

cointegrating rank using Johansen (1988) tests or their asymptotic equivalent.

In testing variables one by one, commonly the t-test method of Dickey and Fuller (1979) isemployed. This
method is asympotically optimal when the datais stationary and is anatural statistic to consider. However
in the unit root case there are many other tests available have greater power. Elliott et. a (1996) showed that
thereis no uniformly most powerful test for this problem and derived tests that were approximately most
powerful in the sense that they have asymptotic power close to the envel ope of most powerful testsfor this

problem.

This paper considers amodel where there is one series that potentially has a unit root, and that this series
potentially covaries with some available stationary variables. In amodel similar to the one examined here,
Hansen (1995) demonstrated that in amodel with no deterministic termsthat no uniformly most powerful test
for aunit root in the presence of stationary covariates exists and that power gains are to be had from using
these covariates. He suggested covariate augmented Dickey Fuller (CADF) tests and showed that these
tests had greater power than tests that ignored these covariates’.

This paper extends the results in Hansen (1995) in a number of ways. First, we show that the point optimal
testsimplicit in the power envel ope derived in Hansen (1995) and computed when all nuisance parameters
are known are feasible when these parameters are not known. We also extend the results by deriving the
power envelope in the more empirically relevant cases of where constants and/or time trends are also
included in the regression. We propose tests that are feasible to construct with data and attain the power
envelope at apoint. These tests have good power at other points aswell. We then show that these are
natural teststo report in justifying the unit root assumption in the popular method of identifying structural

vector autoregressions from long run restrictions (as suggested by Blanchard and Quah (1989)).

The paper isset up asfollows. Inthe next section the model isintroduced, and the power bounds for the
problem are established. In the third section, tests which feasibly attain these power bounds at apoint are
derived and discussed. Section four examines the tests empirically using Monte Carlo methods. A fifth
section discusses the tests as they relate to identifying structural VAR’ sfrom long run restrictions. The

final section concludes. All proofsare contained in an appendix.



2. Model and Power Envel opes.

Consider the model
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finite polynomial of order k in the lag operator L. For the constructed test statistics we will assume that

A1l. |A(2)|=0 has roots outside the unit circle.

A2. g isamartingal e difference sequence satisfying amultivariate invariance principle, i.e.
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T3 L aP S [V\/1 (3 V(¥'|', where W (.) isaunivariate standard Brownian Motion on C[0,1],

V(.) isand mx1 standard Brownian Motion, S is positive definite and P denotes weak convergence.
A3. up=0,1).

Define U, (r ) = |_(1- rbu,, Uy, J with spectral density at frequency zero (scaled by 2p) W, so we have

W= A(1) *SA(1) " wherewe can partition this after the first column and row so that
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(we partition S similarly). We will further defineR? = ddwhere d = WMW W % isan mx1 vector of

correlations between the x’ s and the quasi difference of y at frequency zero. The R* value will represent the
contribution of the stationary variables asit is zero when these variables are not correlated in the long run

with the shocks to (1-r L)y, at the zero frequency and one if there is perfect correlation.

! Thereisalso adiscussion of thiswork in Caporale and Pittis (1999).



In this paper we consider five casesindexed by superscripti (i=1,2,3,4,5) for the deterministic part of the

model (where parameters are free unless otherwise stated)

Casel: b, =b, =0adb,, =b, =0.
Case2: b, =0andb,, =b, =0.
Case3. b, =0andb,, =0.

Cased: b, =0.

Case 5: Norestrictions.

Each of these cases can be characterized by the restriction (I ame) T S )b =0 whereb=[by' b,], Sisa

2(m+1)x2(m+1) matrix where S,=0 Sz-gi 09 Ss-gbm” 09 _gim 09 d Ssistheidentit
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matrix.

Thisrepresents afairly general set of modelsin which we have aVAR in the model of x and the quasi
difference of y. We wish to test that the parameter I' is equal to one (y, has aunit root) against alternatives
that thisroot islessthan one. Following the general methods of King (1980, 1988) we will examine Neyman
Pearson tests for this hypothesis. Following the application of these methods to testing for unit rootsin
Elliott, Rothenberg and Stock (1996), Elliott (1999)) we will examine Neyman Pearson tests for this
hypothesis under simplifying assumptions, and then in the following section we will derive general tests

that are asymptotically equivalent to these optimal tests.

With the assumption that A(L)=I (so that W=S) and assuming the e, are normally distributed and u,,=0 we

will examine tests against the local alternativethat c= € <Owhere r =1+ C/T and T =1+ T/ T with

¢, C fixed (wewill suppressthe dependence of r on T in the notation).

Thelikelihood ratio test statistic for the hypothesisis given by
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wherewe haveforr= 1 ,1that
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where D" isthe Moore Penrose inverse of D.
The test has rejection regions of the form {yt X L@ r)-c< b} wherebisacritical value.

Case 1. No Deterministics.

The model aboveis similar to that of Hansen (1995) when there are no deterministic terms (S, =0) in the

model. In thiscasewe have U, (r) = U, (r') and

Theorem 1.

For the model in (1) and (2) with A(L)=1, e independent N(0,S) randomvariablesand A3 holding then
with r =1+c/T and T =1+T/ T withc, T fixedasT® ¥ then the most powerful test of Hy: c=0

vs. H,: c= T <0 has asymptotic power function
P(c,c, R?) = Py *(c,&,R?) <b(c,R?)|
where
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and b(C, R?)isa constant depending on € and R?.



Thisisapart from a scale factor the same as that reported in Hansen (1995). A number of features are
noteworthy. Firstly, the dependence of thetest on T indicates that no uniformly most powerful test is
available for this problem, power depends on the choice of the alternative. Second, the test isthe sum of
nonstandard functionals of Brownian motions and a mixed normal term. Third, the test depends on the
parameter R?, which summarizes the extent to which the covariates are correlated with the correctly
differenced y, at the zero frequency. A value of R*=0 indicates the case where d=0for al i, the case where
none of the x variables are correlated with the y variable at the zero frequency (so the second line of the limit
expression iszero). Inthiscasetheresult in Theorem 1isequivalent to Theorem 1 of Elliott et. al (1996),
thus the most powerful tests coincide asymptotically with tests which do not use the information in the

covariates.

Figure 1a examines the power envelopes® derived in Theorem 1 (these replicate the results of Hansen (1995)).
As can be seen, the power envelope when R?=0 is the lower bound power - thisis the relevant envelope if
no covariate information is employed (as derived in Elliott et. al. (1996)) and is equivalent to the case where
no useful covariateinformation isavailable. When R?is greater than zero, the power attainable increases
abovethislower bound. Thisindicatesthat using covariates has the potential to greatly increase the power
of tests for aunit root, asindicated by Hansen (1995). The closer is R? to one, the more powerful the optimal

test*.
Cases 2-5: Constant and/or Time Trends I ncluded.

The moreinteresting cases practically are those where b is not fully known.
Theorem 2.

For the modelsin (1) and (2) with A(L)=I, g independent N(0,S) random variables, A; holding with
r=1+c/T and T =1+ T/ T withc, T fixedasT® ¥ then the most powerful test of Hy: c=0vs. Hy:

c= C <O0invariant to deterministic terms have asymptotic power functions
P(c,c,R?) = Prly '(c,c, R?) <b' (T, R?)|

where

2We also have anotational differencein that our R? is defined in Hansen (1995) as 1-R%. We changed the
notation to accord with the usual use of R%.

% The power envelope s the power of atest with alternative C =c for each ¢ (thusis adifferent test at each
aternative, and isthe envelope of power functions of the point optimal tests).

* The asymptotic results are not appropriate at R>=1, which is readily seen from the limit expression which
would not be finite at this point.



case2: y °(c,C,R?*) =y *(c,C,R?)
Case 3:
y }(c,c,R?) =(c? - ZCE)O'Vlc (I )ad - Z GV, (1 )dw, (1)
-2 (1)dl +2 (1 )W, (1
+(C* - cc)g 2:6/\/() +CJ—0,V() (1)

Case4:

*(c,C,R*)=(C?- 2cC) YV, ( )dl - 2CV, (1) dw (1) + W, @)?

2

®e ® R? ¢éc?
1 g(l' C)ch(l) +C gl Rz —e_( —)lec C(C C))d ch u+_
hg R é . . ) -

ST R0 ML) S g +

@
& R?

+(c? - 2cc)§ - _@/v1c (1)%d +2¢ J—ON1° (1 )ydw, (1)
Caseb5:

y °(c,C,R*) =(C? - 2cC) Yo (1 )*dl - 2E N, (1 )dW4 (1 )

o:

62

HW, 07 - (- W @+ G W, )d | e

Q-

+(C2? - 2cc)§ 2_@yvlc(l) d +2¢ /_(}'Vlc(l )dW, (1 )

—2

and h = §.+—- ¢

9
3 S DIR

2 2

> where b'(C, R”) are constants depending on T and R*aswell as

the casei.

Figures 1b through to 1d asymptotically approximate the power envelopes for cases 3 through 5
respectively (case 2 is equivalent to case 1). When R?=0, the stationary covariates do not help in the testing
procedure and the power of the invariant tests are equivalent to those derived in Elliott et. al. (1996). This

means that in case 3 there is no loss of power asymptotically when b, is unknown, and in cases 4 and 5



thereisaloss of power compared to case 1 where the deterministic terms are known (Cases 4 and 5 have
identical power functions when R?=0, and correspond to the case in Elliott et. al. (1996) of theinclusion of a

constant and time trend).

When R?is nonzero, power functions are affected by not knowing the deterministic part of the model. We
also have that the optimal test depends on R?, the extent to which the stationary covariates are correlated
with (1-r L)y, inthelong run. Comparing Figures lato 1b we see the effect of not knowing the constant
terms. Thiseffect isrelatively small, for example when R?=0.5 and c=-5 the power envelope in the constants
known case is 70% whilst when the constants are unknown this power is 62%. However both these powers
are substantially above that of the case where no covariates are employed, where the power envelope

attains a power of 32%.

Asin the case where there are no covariates, the effect on the power envelopes for the case where the trend
terms (coefficients on time trends) are not known is quitelarge. In the case mentioned above, where R*=0.5
and c=-5themaximal power in case 4 is 33%, far below the 62% when only coefficients on the constants are
known. When the coefficient on the trend in the x, regressions is known, this power risesto 36%. Notice
though that the maximal power in this case even when constants and coefficients on the time trend are
estimated is (just) above that for the case where stationary covariates are ignored and the coefficient on the
timetrend isknown. In general the power losses from not knowing the coefficient on the trendsin the x,

regressions is small, between zero (when R?is small) and 6% or so (when R?islarge).

Thereisclearly the potential for much to be gained in terms of power from exploiting stationary covariatesin
constructing tests for aunit root. The construction of tests that achieve these gainsis addressed in the
next section.

3. Feasible Tests.

In this section we will derive families of teststhat asymptotically attain the power bounds derived above at

pre-specified points.

The model isasin equations (1) and (2) with assumptions A.1, A.2 and A.3. Asinthe previous model we

consider four cases for the deterministic component of the model. For each case define

Gl (r) =z.(r)- d (r)b' (r)

where
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and W isaconsistent estimate of W™ under the null.

RunVAR's(forr= 1 ,1)
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and construct the estimated variance covariance matrices

Sy =T*aameary

t=k+1
then the proposed test is
C'@ ) =Tlr[S@*S()]- m+7))
Thistest will have asymptotic power that achieves the power bound at T under the assumptions

Theorem 3.

For the model in (1) and (2) with b=0 with assumptions A1, A2 and A3 holdingthenas T ® ¥
L'LF) Py i(cc RY)-C.

Thusthe critical valuesfor the test depend on the alternative chosen (T ) and R*. Thefeasibletest in the
case of b=0 asymptotically achieves the highest power possibleat T. We have chosen heretolet T =-7
for cases 1 and 2 and C =-13.5 for cases 3 and 4 (which follows the choice of Elliott et. al . (1996), which was
shown in this case of R?=0 to be a choice that ensures maximal power at power 50%). In principle and
practice we could choose different valuesfor € depending on R? however as R rises above zero lack of

power is becoming less problematic so it seems reasonable to usto choose C for the worst case scenario.



Asymptotic critical values for the test for selected values of R? are givenin Table 1. In practice we still
require knowledge of the valuefor R%. This can be estimated consistently from the data without knowledge
of r . The method we suggest is the following

a) estimater from aregression of y; ony.,, deterministics and lags of changesiny:.
b) runtheVAR A(L,r)z (r)=det+e(r)

(choose deterministics appropriate to the case in each of these steps).

A A A~ ~ ~ J N AN A ~
o) estimate W= A(L F) *SAL F) ™™ where S=T™* § & ()& (r)

t=k+1

. A2 —_ A -~ 1 ~
d) estimate R* =W W W, 'IW, .

We then propose using the critical value for the estimated R2. The estimate of \7\/ can be used for
constructing the local estimates of the deterministic part in equation (3). Thisisvalid asymptotically asthis
isaconsistent estimator. For values of R? between the ones given in Table 1, interpolation can be used to

estimate the critical value.
4. Evaluation of the Tests.
4.1. Large Sample Evauation.

Figures 2ato 2d examine the power of the feasible test for each of the four different cases (specification of
the deterministic part of the model). Thefigures give the results for R? = 0.1, 0.5 and 0.8. Accompanying the
power curves are the power envelopes for the case given. Infigures2aand 2b it is seen clearly that very
little power islost by using a point optimal test. The feasible point optimal test has power that lies almost
on top of the power envelope. Thisisvery similar to the results of Elliott et. al. (1996), where for the case of
R’=0 thiswas found to betrue. A similar result istrue also when R? = 0.5. Here, the difference between the
power envel ope and the asymptotic power of the feasible test is small for alternatives further from the null,
but alittle larger for alternatives closeto the null. For R? largethisis even more apparent. Overall, even
though allowing the choice of T to depend on R* may allow us to further minimize the difference between

the power curve and power envelope, we do not pursue this here.

Infigures 2c and 2d, where time trends are included in the y regression (cases 4 and 5), thereis some
difference between the power attainable by the point optimal tests and the power envelope (wherein both
these cases C =-13.5). Asin Elliott et. a. (1996) when R’ is close to zero this is not apparent, but becomes

more apparent as R® getslarge. The difference comes arerelatively close alternatives. To the extent that
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very large values for R? are probably not too relevant empirically, this may not be too much of a problem.
The suggestion from these graphs appears to be that the most useful choice of T in practice may depend
on R We also examined the power curves for the case where € =-7 to perhaps improve the closeness of
the power curvesto the envelopes for these near alternatives. When this alternative is chosen thisindeed
happens, however the tradeoff is that the power curves for R* small are not as close to the envel ope for more

distant alternatives. We recommend choosing C =-13.5 as power is more of aconcern when R? issmall.

4.2. Small Sample Evaluation.

We will examine various special case modelsin samples of 100 observations. Along with the abovetests,
we report results for the commonly applied test of Dickey and Fuller (1979) and also the P; test of Elliott et.
al (1996) aswell asthe Hansen (1995) CADF test.

Tables 2 through 4 report results of simulations of the model in (1) and (2) for each of the cases (models for
the deterministics) respectively where A(L)=I (and thisis known), g isnormally distributed with variances
equal to 1 and covariance equal to the value of dreported in the Table. Results are reported for various

values of d Sizeisgiven intherow correspondingtor =1 and (empirical) power against the indicated

alternativesin the following rows. When there are no deterministic termsin the model the DF and Pr single
equation tests do similarly well (see Elliott et. a. (1996) for adiscussion of this). Inthetest proposed here,
when R?=0 power and size are comparable to the univariate tests indicating that even in small sampleslittle
may be lost by including extraneous information and doing the system test. Asdincreases (R® increases),

sizeremainswell controlled whilst power rises considerably. Consider the case of thetrue I being equal to

0.96, the P; test has power around 23% whilst if R? =0.25 the system test has power equal to 34%, roughly a
50% gain.

When a constant isincluded, the P; statistic gainsin power over the Dickey and Fuller (1979) t test are very
large. Again, when R°=0 the test proposed here has similar size and power to the P; statistic indicating that
littleis |ost adding extraneous stationary covariates. In general, sizeislesswell controlled, especially for R
close to one (where the asymptotic theory would no longer be relevant, however it would not be expected
that such models would be appropriate for real world data) . There is some evidence of power losses from

not knowing the constant term. Atavalueof I =0.96 the power when the constant is known (or zero)

power is 49% compared to the unknown constant power of 45% when d=0.7 (R°=0.49). Even so, power for
the test with the constant unknown is quite high in many cases, and is far beyond that achievable when

covariates are not employed.
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Similar results are found for the partially detrended (case 4) and detrended (case 5) models. In both of these
cases we have power when using covariates to be substantially greater than when relevant covariates are
ignored (for example, in case 4 whenr =0.9, power of the test proposed here when d=0.5 (R*=0.25) is 20% for
the Dickey and Fuller test and is 49% for the test with covariates employed. Overall, thereis someloss of
power from including the time trend in the X, equations, which can be seen from comparing tables4 and 5. In

the caseof I =0.96 and d=0.5 the power drops form 52% in case 3t0 49% in case 4. Asindicated by the

asymptotic results presented above, these losses are fairly small but not insignificant.

The effect of estimating R? in the computation of the test is examined in tables 6 and 7 (for cases 3 and 5
respectively). Here the results when R? is estimated are repeated from Tables 3 and 5 on the right hand side
panels, whilst the same results using the critical value chosen using the true R® are given in the left hand
panels. Thereisvery little difference, evenin asample of 100 observations. Most of the differencesin size
and power are at the third decimal place. Itisonly for case 5 when R? isalittle larger that there is much of an

effect, but the effect is minor (in these cases there is asmall power loss from estimating R?).

Tables 8 and 9 compared the CADF test of Hansen (1995) with the feasible test derived here (again for the
leading cases 3 and 5 respectively). The CADF test augments the usual Dickey and Fuller (1979) test with
lags, |eads and the contemporaneous values of x. In thistable, with no serial correlation, this amounts to
including x as aregressor in the ADF regression and then constructing the t-test of the unit root hypothesis
asnormal. Asshown in Hansen (1995) this test also depends on R% In the comparison we use the same
value of R? to compute critical values for each of thetests. In thefirst column of the CADF results, where
RP=0, we have essentially the same results as the Dickey and Fuller (1979) test in Tables 3 and 5 that ignores

the covariates. This should be the case, the included x, variablein the ADF regression has a population
coefficient of zerointhiscase. Likewise, thefirst column of the I: (1, T) test matches with the P; test for
the reasons we have described. Thisgivesaninsight into the difference in the two approaches, the

difference between the CADF and L (1,7) issimilar to the difference between the Dickey and Fuller (1979)

approach and the Elliott et. al. (1996) approach. When R*>0, we see that the L (1,T) test outperforms the
CADF test in terms of power, although is slightly worsein size performance. The increasesin power can be
quitelarge. In the case 3 when d=03 (R2= 0.91) the power of the L (1,7) test istwo to three times that of

the CADF test for alternatives closer than 0.88. For case 5 the effects are not as dramatic, but still power

gains of 50% or so are available from using the covariates test proposed here over the CADF test.

5. Unit Root Tests and Long Run Structural VAR Estimation.



Blanchard and Quah (1989) derive amethod for identifying structural VAR’ sfrom restrictions placed on the
spectral density of the data at frequency zero when there are known unit roots in the system. Consider the

bivariate version of the model considered in this paper when we impose that therootI' is equal to unity,

7]

u
tH_
A(L)é Q_ et :
ex a
Inverting the lag polynomial gives us

éDy. u
é tQ:C(L)et
exXu

where C(L)=A(L)™. Thismodel isnot identified in the usual sense aswe can write for any invertible K matrix
C(L)e, =C(L)KK e, = D(L)h, . Sincethereexist aninfinity of choices of K the mode! isnot
uniquely identified. In this bivariate system we require asingle restriction so that the rotation K is unique

for the model to beidentified (this would be the order condition).

In such systems, y, is permanently affected by shock(s) sinceit isan integrated process. On economic
grounds, it may be interesting to identify the model such that only one of the structural shocks has a
permanent effect ony, . In Blanchard and Quah (1989) this argument meant that demand shocks could not
have a permanent effect. InKing et. a (1991) cointegration was used to imply a smaller number of
permanent shocks than total shocks. In such casesit is possible to identify the model as the cumulated sum
of the structural impulse responses, D(1), will be triangular as only one of the shocks has along run effect

ony,.

For the mode! above, the identification scheme would set d;,(1)=0 where thisisthe (1,2) component of D(1).
Since’ the spectral density of the data at frequency zero (scaled by 2p) is W = D (1) D(2)' this amounts to

taking the choleski decomposition of the estimated matrix W. Such arestriction isonly interesting and

useful in identification when the off diagonals for W are indeed nonzero, thisis the case when R*>0 also.

The crux of this approach to identification clearly isthat y, indeed does have aunit root. If instead there
were no permanent effects then we would interpret D(1) differently and would have no reason to make this

matrix triangular. So in practice a useful hypothesistest to report in undertaking this method would be a test

® We are using the usual identification from this literature so E[htht'] =1.

13



for aunit root iny,. Further, when theimposed restriction isindeed informative, then R>0 and hence we are
exactly in the cases where the tests of this paper yield power gains over univariate testing. Typically, such
testsfor aunit root to provide evidence of the validity of thisrestriction are undertaken using Dickey Fuller
(1979) tests (see Gali (1999) for example), which neither use the full information in the model nor are they the
most powerful univariate tests. The tests derived in this paper provide a natural test of the basic

identification assumption of the Blanchard and Quah identification scheme.

By way of illustration we apply the tests derived here and other common tests to the Blanchard-Quah
dataset. The datais quarterly data onincome and unemployment for the US from 1950:2 to 1987:4, where
unemployment isthe stationary variable x, and incomeisthey, variable. Table 10 appliesthe varioustests
to this data - the univariate tests are the frequently applied augmented Dickey and Fuller (1979) (DF) test,
the DF-GL Stest of Elliott et. al. (1996) and the test statistic derived here. Weinclude constants and time
trendsin both unemployment and income® so the tests are from case 5. Results are presented for lags from 1
to 8. Except for very short lag lengths (which are most likely too short and hence the tests are not correctly
sized), the DF test does not reject - it is not close to the 5% critical value. The DF-GL Stest similarly does

not come close to rejecting. The L® (4, T) test rejects at 7 lags, although is close for afew other lag

lengths. Overall wewould probably still conclude that it fails to reject, although we would be worried if the
seven lag model isrelevant (Blanchard and Quah used eight lags).

6. Conclusion.

Typically in economics correlation between the variablesis the rule rather than the exception. Often these
areimplied by theory. Either way, thisinformation can be extremely valuable in testing assumptions that are
ancillary to the modeling process. This appearsto be especially truein the case of testing for a unit root.
Hansen (1995) showed this with tests he devel oped based around the statistic of Dickey and Fuller (1979).
In arelated paper Horvath and Watson (1995) showed that power gains are available when there are known
cointegrating relationships (which are then stationary variables). We have shown here that even greater
gainsare possible. The statistics are simple to implement and yield extremely large gainsin power when the

covariates are relevant.

® Blanchard and Quah included atime trend in unemployment on the grounds that it was increasing over the
sample. They had the equivalent of atime trend with abreak for the oil shocksinincome. We do not
include a'known' break such as this, however not including the break if it were truly there (tests which
search for such abreak typically fail to reject the hypothesis of no break) biases us away from rejecting the
unit root.
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The statistics we generate, useful in many areas, are directly applicable to testing the unit root assumption
in theidentification of structural VAR’sfrom long run restrictions. These restrictions do not make sense
unlessthere is aprocess with aunit root in the model, yet typically very low power tests are used to examine
thisassumption. The tests derived here will have much better power at detecting the mistaken use of this

procedure.
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Appendix.
Lemmal. Distribution results.

Under the Assumptions of the model in (1) and (2) with A1, A2 and A3 we have

a) T'l’zuym b Wywm@

D =8 (S e )P g0 vay]

%%

whered 'V (I ) = 1/ ——W, (1), d'=w,, "W W% W, =W, - W, 'W,w.,
an,(l)
W( )= SN ((I )U are univariate independent standard Brownian Motionson C[0,1] and

W (1) = Cc‘ﬁc(' W (s)ds +W(1).
0

Proof: (a) followsas U, =TrU,, ; +V, where v, = s A(L) e (r). Thepartial sum
T23 [lT'] v, b Si\/\/mg 1(()) —Wi,;ZV\/1 (.) wheres; =[1 0] isan 1xm+1 vector with partition after
1%}

thefirst column. Theresult then follows settingr =1+c/T from Phillips (1987). Part (b) followsfrom Chan
and Wei (1988), Park and Phillips (1988). The relationship between V(I) and W (1 ) follows from the

RZ

relationd 'd = 5 -
1- R

Proof of Theorems 1 and 2.

The proof for Theorem 1 isaspecia case of that for Theorem 2 where terms relating to the deterministics are
zero, so we proceed in the general case. Throughout we user for resultsgeneral forr , T and 1.

First, define 0! (1) = z,(r) - d, ()B' (1) =& (1) - d, (r)'(B'(r)- b). and & (r) = AL, (r).

From the algebraof GLS
T

a G()ys’i( =aer)ys’el)- (SN (M) SPr(NS) (SN ()

where
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NO)Ywadwsﬂw-
et=1

D ()=Y; (;ad (r)S 'd, (r)‘%{ 1

eta

and
1/2 --
P, 0 0 0 ¢
g 0 T1/2\N1/2| 0 0 -
YT:(; * 1/2 +

0 0 T W 0

3/2 1/2.—
g 0 0 0 T "W, "'y

Thus,

L'AM) =4 e()s’e(M- ae®'s’e®
t=1 t=1 (A1)

+(SN, @)(SD; ®S) (SN; (@) - (SN (M)(SD; (MS ) (SN (7))
Noticethat for t>1

S (r)=e +(r - NS ’s'u,., (A2)

(and ise for t=1) where & = S"'g, . Using theresults §,S s, = (]-"'d_ld_)’v;'yl and
5S v2i_\y 1/2[1 - cT']'thenin case 1 where S=0 we have

U@ﬂ:émﬂsh@%éamshw

1
F

228 fuy w7 - @er)]
Tta:l yt-1"%yy et

2
y,t-1

=(C*- 2cT)(1+d'd)w,, u

1L Qo

From the limit resultsin lemma 1
L") b (& 2c5)aeg1l2 ?@/v (1)2dl 26§dv (1 )dW,(l ) _R_ M (1 )W, (1 )l"J
y - @ AT - 1c 1 - u
- RZQ é V1- R? ‘ ’ a
as stated in Theorem 1.

For the other cases, extraterms arise from the final two termsin equation (A1). Defining ¢,=T(r-1) we have
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_ ) a2 ¢O 0 4
im 1y (YTldl(r)S ” )_ gO 0 : -0
éo 0 7
and
z I
M ;g gwpzmsﬂ (Tl/ZYT_ld[TSI(r)S_UZ')_ g’.l.- cs - (1- n(;rs)d_é
: o0 9, |

Using these two results and the continuous mapping theorem (SI D; (n)S ) ® (S D(c ,d)S )
where

d'd 0 0 0
o 1, - 5F 3,
0
0

f-5F e i)dd @) - - 5p

a1
3|m

Q.l..l. O B e X

Using the continuous mapping theorem, equation (A2) and results from lemma 1 we have
N;(r) P N(c,c,,d)where

ge e, -d'e, 9
V(I d YV, (s)d +
Nc. ) = g @ - (c- ¢, )d V. (s)ds i

$of1- ¢, 9)dWi(9) - dV(9)+ (- ¢, )a+d' D)L ¢, W, (s)ds_
g OV (s) - (c- c,)d |V (s)ds i

(all integrals are zero to one). Applying theseresultsto (A1) yields

L'@m) Pyt RY)+(SNEod)(spod)s) (SNEo.d))
- (sNEe.d))(speE.ds) (sNee.d))

Theindividual resultsfollow by using the relevant S; and rearranging.

In case 2, we have
(sN(e.c . @) (sDE,.d)s) (SN(ec,.d))=@+d'd) e, - d'e,,)?

thus the terms offset giving the result in the Theorem.
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In case 3, we have

8¢1+d"6)-1 0 00§

—.}y _ ¢ O |, 0 0+

DC,d = m -~
soeds) =¢ 0 0*
é 0 0 0 04

and so

(sN(e.c . d)(sD( . ds) (SNE.c, d))=@+d'd) (e, - d'e,,)> +V A'V()
+e- ¢ P aa(w, ) - 2c- ¢)TVEHEW,

Pluggingin 0 and C for ¢, and taking the difference yields the result.

Case 4.
e 0 & 0 o
_ oy L 1 Dda- °—)d‘ :
Here (S,D(c,,d)S,) =(S,D(c, . d)S,) + v 12 < 2707

Where h(r) = 1+ L-C The result follows after some rearrangement.

r 121R2'
Case5.
+dd)* 0 0 09 20 0 o
?1 o) I, 01l,+ 1 E d 15 J:
H D(c ,d)S.) = m 2'm 4= Z N
w(S06.D8) =g 00 0Ians1®1z
E 0 11,0415 é c.d g cdy

Where a(r) =1+ C—g -C.

We have
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N(C,C“d—)-QO 41, 0 - 6l :N(CC @)= éagOiV(S)O&m - 6l fdjv(s)o
© 0 0 0 goadv(s)—g | KOFV(9)7,
€ -6, 012,
t(o- o)z e O G4 - 6@ QM. 2
ECFWE)*% 6 12 FPW,.)
- 2(c- ¢,)¢ & Ve %§e4 - Gfgid V(s)?
SOW,.) 56 6 12 &epdd V(9
and also
e 0 0
¢ J -
g 1 :N(CC d) = (1 ¢ )W, (D) +c B,
(é- Crd_é

Theresult follows from straightforward algebra.

Proof of Theorem 3.

First, note that
C'ar) =TkSw (Sm) - Sw))- <
S0 we need to showthatT(trlé(l)'l(é(r_)- §(1))])D y '(c,T, R?) . Toshow thiswewill show

@ A& (e )-aame=asdgmear- asam-+o,Q

t=k+1 t=k+1 t=k+1 t=k+1
where eI (r)=AL)y, (r)

® A80SHE0- Aels'enP -[SNEe HYSDE HS) (BNE D)
© ae&(fys’e(M)- da®'S'e®py (e R)

Wetake part (b) first.

We have
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&)= AL)z(r) - d,(r)B' ()]
=e(r)- AL, ()'S (S& (W, (r)'s ) (S& d.(Wy(n)

SO

S80S0 = §e@rs'a()

t=k+l
+(SN:(N)(SD; (NS ) (8 Y724 [ALd, ]S ALY, (N]V;'S )8 D; (NS) (SN (1)
}(sD, (NS ) (SY;1& [ALd, ()]s () +0,®

where N+1(r) is defined as before replacing e(r) isreplaced by u(r) and S is replaced by W and similarly for

D+(r) (these are the generalizationsto A(L)* 1) and the 0,(1) term arises from replacing the estimated W with

itstrue value.

Using the Beveridge Nelson decomposition A(L)=A(1)+A*(L)(1-L) we have

ALY, () Y+* = A, (r) Y72+ A* (ODd, ()Y
= AQd, (1) Y;+0(T ")

SO

sY;'a [ALd, )]s ALY ()Y ™S =S D, (r)S +o()
and also
YA d(NAD'S e (r) = Y7 4 d(NAD'S ALY, (1)

=Y;'A d,(NW'u,(r) + Y & d, (1) AQ)'S " A* (L) Du, (r)
=Y;*Q d, (W (r) +o, @

Thisgivestheresult

S80)sam =4 a(rysia®- (SN, (N)(SD, (NS ) (SN, (n)+0,()

t=k+1 t=k+1

Finally, following steps analogous to those in the proof of Theorem 2 we have that

(SN, (O (SD; ()S) (SN, )P (SN(ec, @)} (s D, .d)S) (SN, @).
Part (c) follows from noting that

S-l/Ze[ r)=e, +(r - r)S'lsz(L)Sl'Uy,t.l



so using the Beveridge Nelson decomposition and results above
2 -1 _ 5 . 2 118 ,,2 2 1/2
ae[(f)s et(r)_aet et+(r - I’) SlW S aUy,t.1+2(r - r)a uy,t-1§W €

Thus
g =\ -1 — g Q-1 — (2 = '~ -1 1 g 2
aesSe)-ae®Sg@®=(C"-2cc)1+d d)WWT—Za Ubia
t=1 t=1 t=1
_14d [ -1/2 T ]
- Zc?a U, Wy, [1-d']e(r)
t=1
Applying the convergence resultsin lemma 1 compl etes the result.

Finally, it remains only to show part (a), that estimating the VAR coefficients assuming the largest root for y,
isr does not matter asymptotically.

We have that
& (r)= AL, N (1)
=8 (- (R ULMa M HAULOUL0)) UL
where Uy, (r) = |00, (r) T, (r) - - a .

(i.e. theregressorsin the VAR to be run). Note that
€ogr - )y,.,0U
iU

é T
etl(r)u etl(r)u eg O bﬂ
¢ fueiat 0
U,r)=¢€ : u=¢@ 0+ G=U () +(r - 1)y,
e . ue . ag
é a é a © U

r- r)yt k- 1
0 zﬁl
where Vi =, - sldt'k;(r) (i.e.y, detrended under the hypothesis that r =r).

81 k(r)u gIt 1(r )H

@ﬁﬁ

Now,
4 MF (= A 4R

(T ULMEMITEAULEOULE) T8 ULME)
and
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(T8 UL MU )) =TT UL UL T2 - 1T 28 VY,
+2T(r - T2V, U, 4(r)

.30 ~
The second of thesetermsiso,(1) astypical termsinvolve T 3 a ytz_i . These convergeto zero as

T Y2§! is0y(1). Thisfollowsas

T—llzyti :T_llzuy,t-l_ SlT—llzdt(Ei ) bi)
=T V2, , - sTV2d,Y;Y(SD; (1)S) (SN(1))
=T V2u,,, - W, 2(T)s,(SD;(r)S) (SN;(r))+0,(2)

yy

where s; is (2m+2)x1 with the (m+2) element one and is zero everywhere else. Similar resultsfollow for the
cross product terms. So we have

S i =i (= g~i ~i 1y g"i—"i—- g"i Al 1\
agmeE(MN-agew=a&meEr-ade
t=k+1 t=k+1 t=k+1 t=k+1

(T2 UL O8O A ULOUL ) T4 U8 1)
T 23U L ME N ULV L)) T2 UL (E () +o,)

and the third and fourth terms cancel obtaining the result in (a).
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Figure la:

Power, no constant

Figure 1b:
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Figure 1c:

Power, constant and trend in y, constant only in x

Figure 1d:
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Figure 2a:

Power and envelope no constant
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Figure 2c:

Power and envelope constant and trend in y, constant only in x
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Figure 2d:

3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18

09 1

0.8 T

07+

0.6 T

0.5 1

0.4

0.2

0.1+

envelope 0.1

envelope 0.5

envelope 0.8

3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18

28



Table 1: Asymptotic Critical Values (Distributionin Theorem 3)

R 0 01 0.2 0.3 04 05 0.6 0.7 0.8 0.9
Cases12 334 341 35 37 415 479 588 784 1212 25.69
Case3 334 341 35 370 39% 441 512 637 917 17.99
Case4 570 579 598 638 699 797 963 126 1903 39.62
Cae5 570 57/ 600 640 707 815 1000 1336 20.35 41.87

Notes: Critical valueswere computed using 1500 steps as approximations to the Brownian Motion termsin
the limit theorem representations and 60000 replications. The critical values reported are for tests of size 5%
with T =-7for cases 1, 2and 3and C =-13.5for cases4 and 5.

Table 2: Small Sample results - No Deterministics (case 1)

DF PT L2 1 7)

d= 0 0 0 03 05 0.7 09

R= 0 0 0 0.09 025 049 0.81
r

1 005 0048 0.051 0.049 005 005 0044

098 0.117 0.113 0.119 0132 0.153 0.195 0.306

0.96 0.237 0.229 0.239 0.276 0342 0493 0.848

094 0407 0.39% 0407 0463 0576 0.782 0992

092 0.5%4 0.581 059 0.655 0.774 0.926 0.999

09 0.758 0.744 0.748 0.807 0.89% 0977 1

0.88 0.878 0.865 0.867 0.905 0.954 0.993 1

0.86 0947 0939 0.936 0957 0.981 0.998 1

Notes: Based on 20000 replications of the model with T=100, normal errors as discussed in thetext. The
system test isimplemented with R? estimated.

Table 3: Small Sample results - Constant Included (case 3)

DF PT L3 1,7)
d= 0 0 0 03 05 0.7 09
R = 0 0 0 0.09 025 049 0.81
r
1 0.054 0.059 0.064 0.061 0.06 0.054 0.039
0.98 0.075 0.138 0.145 0.154 0.167 0.192 0.254
0.96 0.105 0.273 0.285 0.308 0.355 0.445 0.716
094 0.159 0453 0.466 0499 0572 0.709 0.946
092 0.235 0.64 0.648 0.685 0.759 0.875 0.991
0.9 0.332 0.795 0.797 0.825 0.879 0951 0.998
0.88 0.448 0.899 0.897 0914 0943 0.981 1
0.86 0573 0.956 0951 0.959 0974 0.992 1

Notes: As per Table 2 with a constant included.
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Table 4: Small Sample results - Constant Included in both, Timein'Y regression (case 4)

DF PT L4 1,7
d= 0 0 0 03 05 0.7 09
R= 0 0 0 0.09 025 0.49 0.81
r
1 0.057 0.039 0.053 0.054 0.054 0.049 0.024
098 0.062 0.049 0.065 0071 0.082 0.09% 0094
0.96 0.078 0076 0.099 0.115 0.142 0.192 0.305
094 0.106 0.119 0.152 0.179 0.239 0.356 0.663
092 0.147 0.184 0.227 0.274 0.368 0.559 0.906
09 0.204 0.27 0325 0.389 0518 0.744 0981
0.88 0277 0.377 0442 0519 0.663 0.868 0995
0.86 0.365 0503 0.564 0.646 0.783 0.937 0.999

Notes: As per Table 2 with a constant included in both regressions and atime trend in the y, regression (for
the L* (1, statistic) and a constant and time trend included in the univariate unit root tests.

Table 5: Small Sampleresults - Constant and Time Included (case 5)

DF PT LS 1r)
d= 0 0 0 03 05 0.7 0.9
R= 0 0 0 0.09 0.25 0.49 081
r
1 0.057 0.039 0.053 0.053 0.051 0.044 0.021
0.98 0.062 0.049 0.065 0.069 0.076 0.085 0.08
0.96 0.078 0.076 0.099 0111 0131 0172 0.262
0.94 0.106 0.119 0.152 0.173 0.223 0.32 0.599
0.92 0.147 0.184 0.226 0.267 0.345 0511 0871
0.9 0.204 0.27 0.325 0.379 0.488 0.699 0971
0.88 0.277 0377 0441 0.507 0.634 0.834 0.993
0.86 0.365 0.503 0.564 0.635 0.758 0.919 0.998

Notes: As per Table 2 with aconstant and time trend included.



Table 6: Effect of estimating R on test using L°(1, F)

R? known Estimated R?
d= 0 0.3 05 0.7 0.9 0 0.3 05 0.7 0.9
R = 0 0.09 0.25 0.49 0.81 0 0.09 0.25 0.49 0.81
r
1 0063 0.06 0061 0056 0.053 0.064 0.061 0.06 0.0%4 0.039
098 0144 0152 0167 0.193 0.29 0.145 0154 0.167 0.192 0.254
096 0283 0305 0.356 045 0.758 0.285 0308 0.3%5 0.445 0.716
094 0465 0497 0573 0716 0.967 0.466 0499 0572 0.709 0.946
092 0647 0684 0761 0882 0.997 0.648 0685 0.759 0.875 0.991
09 079% 0824 0881 0.956 1 0.797 0825 0.879 0.951 0.998
088 089% 0913 0944 0984 1 0.897 0914 0943 0.981 1
086 0951 0958 0975 094 1 0.951 0959 0974 0.992 1

Notes: As per Table 3.

Table 7: Effect of estimating R? on test using L° (1, )

R? known Estimated R?
d= 0 0.3 05 0.7 09 0 0.3 05 0.7 09
R= 0 0.09 0.25 0.49 0.81 0 0.09 0.25 0.49 0.81
r
1 0053 0052 0.052 0.048 0.05 0.053 0053 0.051 0.044 0.021
098 0065 0.068 0076 0087 0131 0.065 0069 0.076 0.085 0.08
09% 009 0109 0131 0176 0342 0.099 0111 0131 0.172 0.262
094 0152 0172 0221 0327 0.686 0.152 0173 0.223 0.32 0.599
092 0225 0265 0345 0522 0923 0.226 0267 0345 0.511 0.871
09 0323 0377 0489 0714 0.989 0.325 0379 0488 0.699 0.971
0.88 044 0504 0639 0853 0999 0.441 0507 0634 0.834 0.993
086 0562 0633 0.764 0.93 1 0.564 0635 0.758 0.919 0.998

Notes: As per Tableb5.
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Table 8: CADFand L°(1, F)

CADF L3 1,7
d= 0 0.3 05 0.7 09 0 0.3 05 0.7 0.9
R = 0 0.09 0.25 0.49 0.81 0 0.09 0.25 049 0.81
r
1 0053 0055 0056 0054 0051 0.064 0.061 0.06 0.054 0.039
098 0075 0.082 0098 0135 0321 0.145 0154 0167 0.192 0.254
09 0107 0123 0162 0272 0675 0.285 0308 0355 0.445 0.716
0HA 016 0188 0262 0456 0.885 0.466 0499 0572 0.709 0.946
092 0234 028 03% 0639 0965 0.648 0685 0.759 0.875 0.991
09 0332 04 0.542 079 0991 0.797 0825 0879 0.951 0.998
088 0444 0527 0682 08389 0.998 0.897 0914 0943 0.981 1
086 0566 0654 0798 0947 099 0.951 0959 0974 0.992 1
Notes: As per table 3. The CADF refersto the test procedurein Hansen (1995). In each case the same R
estimate is used to determine the critical value.
Table9: CADFand L° (1, )
CADF LS 1)
d= 0 0.3 05 0.7 09 0 0.3 05 0.7 09
R = 0 0.09 0.25 049 081 0 0.09 0.25 049 0.81
r
1 0057 0058 0057 0053 0046 0.053 0053 0051 0.044 0.021
098 0061 0.067 0079 0106 0.219 0.065 0069 0.076 0.085 0.08
09% 0079 0093 0121 0197 0525 0.099 0111 0131 0.172 0.262
094 0105 0131 0182 0327 0.78 0.152 0173 0223 0.32 0.599
092 0147 0186 0268 0479 0916 0.226 0267 0345 0511 0.871
09 0203 0257 0375 0635 0973 0.325 0379 0.488 0.699 0971
083 0276 0345 049 0766 0992 0441 0507 0634 0834 0.993
08 0363 0451 0613 0861 0998 0.564 0635 0.758 0.919 0.998

Notes: As per table 5. The CADF refersto the test procedure in Hansen (1995)
estimate is used to determine the critical value.
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Table 10: Blanchard-Quah Modd

#lags DF DFGLS  [3(1, ) R Critical
Value

1 -3.06 -158 1621 038 6.88

2 -3.80 -1.85 2327 046 7.54

3 -2.87 -152 18.16 0.68 12.05

4 -259 -146 1570 069 1225

5 -234 -145 1821 0.72 1355

6 -234 -157 1673 065 1104

7 232 -148 19.08 0.80 19.19

8 -1.78 -1.37 17.93 0.76 16.56

Notes: The Column labelled DF gives the Augmented Dickey Fuller statistic when a constant and time trend
areincluded in the regression for the indicated lag length (the asymptotic critical valueis-3.41). The column
labeled DF-GLSisthe Elliott. et. al. (1996) augmented Dickey Fuller statistic with GL S detrending (the critical

valueis-2.89). Thecritical valuesfor the I:S (4, ) statistic arein the final column (dependent on the
estimated R? given in the fifth column).





