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ABSTRACT: Atmospheric rivers (ARs) result in precipitation over land and ocean. Rainfall on

the ocean can generate a buoyant layer of fresh water that impacts exchanges between the surface

and the mixed layer. These “fresh lenses” are important for weather and climate because they

may impact the ocean stratification at all timescales. Here we use in situ ocean data, co-located

with AR events, and a one-dimensional configuration of a general circulation model, to investigate

the impact of AR precipitation on surface ocean salinity in the California Current System (CCS)

on seasonal and event-based time scales. We find that at coastal and onshore locations the CCS

freshens through the rainy season due toAR events, and years with higher AR activity are associated

with a stronger freshening signal. On shorter time scales, model simulations suggest that events

characteristic of CCS ARs can produce salinity changes that are detectable by ocean instruments

(≥ 0.01 psu). Here, the surface salinity change depends linearly on rain rate and inversely on
wind speed. Higher wind speeds (𝑈 > 8 m s−1) induce mixing, distributing freshwater inputs to

depths greater than 20 m. Lower wind speeds (𝑈 ≤ 8 m s−1) allow freshwater lenses to remain at
the surface. Results suggest that local precipitation is important in setting the freshwater seasonal

cycle of the CCS and that the formation of freshwater lenses should be considered for identifying

impacts of atmospheric variability on the upper ocean in the CCS on weather event time scales.

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

2



SIGNIFICANCE STATEMENT: Atmospheric rivers produce large amounts of rainfall. The25

purpose of this study is to understand how this rain impacts the surface ocean in the California26

Current System on seasonal and event timescales. Our results show that a greater precipitation27

over the rainy season leads to a larger decrease in salinity over time. On shorter timescales,28

these atmospheric river precipitation events commonly produce a surface salinity response that is29

detectable by ocean instruments. This salinity response depends on the amount of rainfall and the30

wind speed. In general, higher wind speeds will cause the freshwater input from rain to mix deeper,31

while lower wind speeds will have reduced mixing, allowing a layer of fresh water to persist at the32

surface.33

1. Introduction34

Freshwater inputs from rainfall can have variable impacts on surface ocean salinity. Of partic-35

ular significance is the impact on upper-ocean stratification, which has been shown to limit the36

penetration depth of wind mixing and thus the vertical distribution of atmospheric fluxes (Schmitt37

2008; Chaudhuri et al. 2021; Thompson et al. 2019). This has larger implications for intensifi-38

cation of the global water cycle (SPURS-2 Planning Group 2015; Yu et al. 2020). The relative39

importance of factors that are known to impact the ocean’s response to freshwater inputs is not well40

characterized, especially in the subtropics where studies are limited. Atmospheric Rivers (ARs)41

are narrow, elongated plumes of strong poleward water vapor transport known to produce large42

amounts of precipitation over the ocean and land in the California Current System (CCS) (Ralph43

and Dettinger 2012; Ralph et al. 2013). The impact of ARs on surface ocean salinity has received44

minimal attention to date. Previously, global seasonal salinity variations in the upper ocean have45

been attributed to runoff (in coastal regions), advection in the ocean, as well as evaporation and46

precipitation (Yu 2011). Ren and Riser (2009) found that among these, in the subarctic regions47

of the Northeast Pacific (45◦N - 50◦N), precipitation was the largest contributor. However, they48

did not address the California Current System, where variations in salinity have been linked to49

variations in anomalous advection along the trajectories of the California Current, the Inshore50

Current, and the California Undercurrent on seasonal (Lynn and Simpson 1987), interannual, and51

decadal (Schneider et al. 2005) timescales. Therefore to date, seasonal variations of salinity within52

the CCS have mainly been attributed to advection (Lynn and Simpson 1987; Schneider et al. 2005).53
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Here we hypothesize that local precipitation in the CCS (including ARs) provides a significant54

contribution to seasonal freshening. Additionally, we hypothesize that precipitation from ARs55

impacts the surface ocean on shorter time scales, and may be detectable by oceanographic salinity56

sensors in some conditions.57

This study uses a combination of observations and modeling with the aim of understanding the58

surface salinity response to ARs in the California Current System by characterizing (i) the ocean59

salinity response to precipitation over the duration of the wet season; and (ii) the role of rain rate60

and wind speed in driving changes in upper-ocean salinity and stratification for characteristic AR61

events on event time scales. Section 2 reviews the background, section 3 describes the observational62

data and model used to carry out the study, and section 4 describes methods of analysis. Section63

5 focuses on the results of (i) the seasonal response, and (ii) the response on event time scales.64

Section 6 provides a discussion of the results and their implications for understanding the ocean’s65

salinity response to precipitation. Lastly, section 7 wraps up the study with conclusions.66

2. Background67

a. Salinity variability in the California Current System68

Surface salinity variability in the CCS is typically attributed to alongshore advection from the69

California Current (Lynn and Simpson 1987; Schneider et al. 2005). Situated 150–1300 km70

offshore, the California Current transports cool, fresh, nutrient-rich water southward. Within the71

coastal zone (0–150 km) there is a poleward flow of warm, saline, low-oxygen subtropical waters72

from the California Inshore Countercurrent (IC) (Bograd et al. 2001; Lynn and Simpson 1987). At73

the surface (upper 50 m), the IC has seasonality, with a poleward flow occurring in the winter and74

fall, and an equatorward flow in the spring and summer (Lynn and Simpson 1987; Rudnick et al.75

2017b). Salinity increases toward the coast, implying that an increase in offshore flow would result76

in an increase in salinity offshore (Rudnick et al. 2017b). Additionally, in a study of the temperature77

and salinity extremes found in the CCS beginning in 2017, Ren and Rudnick (2021) concluded that78

the positive salinity anomaly was a result of advection and that different source waters were found79

in the California Current from 2017-2019. During the summer, the increased salinity at the coast80

is enhanced due to coastal upwelling of cold, saline waters from depth (Auad et al. 2011). Riverine81

runoff has been linked to salinity decreases off the coast of central California (Kudela and Chavez82
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2004; Johnson et al. 1999). While, as noted in the introduction, salinity variability in the CCS has83

previously been attributed to intrinsic ocean dynamics (Lynn and Simpson 1987; Schneider et al.84

2005; Auad et al. 2011; Kudela and Chavez 2004; Johnson et al. 1999), atmospheric forcing such85

as local surface freshwater flux may also influence surface salinity and is investigated here.86

b. Salinity response to precipitation87

The response of the ocean to freshwater input is a function of rainfall, wind, background88

stratification, heat flux, and vertical velocity in the upper ocean (Drushka et al. 2016). Rainfall89

forms stably stratified upper-ocean layers, with lenses of fresher water of O(1 m to 10 m) thick.90

Changes in these freshwater lenses are driven by the interaction between buoyancy and shear forces;91

they can persist from minutes to hours depending on factors such as wind-driven surface mixing,92

lateral advection, convective overturning during nighttime cooling, and internal and surface waves93

(Brainerd and Gregg 1997; Drushka et al. 2019; Price 1979; Tomczak 1995; Wijesekera et al.94

1999). While most fresh layers disperse within a few hours, in some cases fresh layers have been95

shown to persist for tens of hours (Walesby et al. 2015). Long-lasting freshwater layers can inhibit96

turbulent vertical mixing and decrease exchanges between the mixed layer and the thermocline97

(Schmitt 2008). This can lead to the formation of diurnal warm layers (Webster et al. 1996),98

enhanced surface currents (Wijesekera et al. 1999), and the suppression of near-surface turbulent99

dissipation below lenses (Smyth et al. 1997). In addition, fresh lenses may provide unexpected100

regional variation of internal wave energy propagation, dissipation, and mixing in the thermocline101

(Schmitt 2008). While this work pertains to freshwater lenses rather than barrier layers (Soloviev102

et al. 2015), it is interesting to note that de Boyer Montégut et al. (2007) identified the presence of103

unexplained barrier layers off the California coast at 25–45◦ latitude. This study may explain the104

mechanisms behind this previously unexplained phenomenon.105

While the ocean salinity response to precipitation in the CCS has received little attention to date,106

there is a growing pool of research on the ocean’s response to freshwater input in the tropics, as107

experiments involving Surface Salinity Profilers (SSP) provide high-resolution measurements near108

the surface. Results from a SSP deployed in the western tropical Pacific in December 2011 indicate109

that the vertical salinity difference between 0.26 m and 0.11 m depth has a cubic dependence on110

rain rate, and is inversely proportional to wind speed (Asher et al. 2014). Other studies have shown111
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a linear relationship between the vertical salinity gradient and maximum rain rate (Boutin et al.112

2014; Clayson et al. 2019; Drucker and Riser 2014; Drushka et al. 2016, 2019). However, wind113

speed was not factored into all of these studies. In the cases where wind was taken into account,114

results from a one-dimensional general ocean turbulence model (GOTM) and measurements made115

in the Intertropical Convergence Zone (ITCZ) in the eastern tropical Pacific during the second116

Salinity Processes in the Upper-ocean Regional Study (SPURS-2) showed the maximum difference117

in salinity between 1-5 m depth and the surface to be inversely proportional to wind speed (Drushka118

et al. 2016, 2019). In this study, we focus on the subtropics, where studies to date have been limited.119

c. Atmospheric rivers in the California Current System120

ARs account for a substantial amount of the global water transport, especially at mid-latitudes121

where they can supply more than 90% of meridional transport of atmospheric water vapor (Ralph122

and Dettinger 2012; Zhou and Newell 1998). ARs are characterized by high atmospheric water123

vapor content and heavy winds. Because they are associated with extreme precipitation on land124

and over the ocean, especially in coastal regions (Ralph and Dettinger 2012; Ralph et al. 2013),125

ARs often cause devastating flooding and play a large role in the global distribution of moisture126

and drought (Ralph and Dettinger 2011). ARs can occur in families consisting of several (typically127

2–6) consecutive ARs (Fish et al. 2019), contributing to the accumulation of precipitation in the128

upper ocean and on land. The AR that extends from Hawaii to the US West Coast carries moisture129

across the eastern Pacific to the coast of California. Off the coast of Monterey Bay in the CCS,130

30-48% of precipitation events greater than 5 mm day−1 occur during ARs, which are responsible131

for up to 82% of total rainfall in the CCS, as seen along California Cooperative Oceanic Fisheries132

Investigations (CalCOFI) line 66.7 in Fig. 1, and as indicated by Guan and Waliser (2015). Argo133

profiles indicate large-scale upper ocean freshening on average fromDecember to February in areas134

of the Pacific that receive frequent AR-associated rainfall (Giglio et al. 2020). Implications of AR135

events for upper-ocean stratification and salinity are important, especially as climate projections136

indicate that the moisture content of ARs and the frequency of extreme AR events and storm137

seasons are expected to increase as a result of a warming climate (Dettinger 2011; Payne et al.138

2020; Shields and Kiehl 2016).139
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Fig. 1. (a) Fraction of rain events with precipitation greater than 5 mm day−1 that are also ARs; and (b)

fraction of total precipitation that comes from ARs, within the region of the CCS. Events included occur between

September and March for the years 2007-2019. Also depicted is the trajectory traveled by CUGN Spray glider

along CalCOFI line 66.7, the location of the MBARI M1 mooring (purple) and the coastal (yellow), onshore

(cyan), and offshore (red) locations that were used during model analyses. The gray dashed line represents

CalCOFI line 66.7 off the coast of Monterey, CA.
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d. Impacts of salinity on global moisture distribution146

Changes in surface salinity have broad implications for the distribution ofmoisture and the Earth’s147

water cycle. For example, a reduction in sea surface salinity due to precipitation is hypothesized148

to lead to a positive feedback in which the formation of buoyant freshwater layers reduces vertical149

mixing in the upper ocean, which then contributes to increased SST, and in turn leads to a150

further increase in atmospheric convection and precipitation (SPURS-2 Planning Group 2015). In151

contrast, Williams et al. (2006) used climate modeling to show that freshwater lenses formed from152

an intensified hydrological cycle could produce a basin-scale negative sea surface temperature153

feedback to anthropogenic human climate change. These nuances make understanding the vertical154

upper-ocean salinity gradient important for improving air-sea coupling in models (McCulloch et al.155

2012) and understanding the role of upper ocean stratification in a changing climate. Boutin156

et al. (2013) also suggested that the impact of precipitation on salinity stratification should be157
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taken into account when assimilating satellite data under rainy conditions. Furthermore, the158

Clausius-Clapeyron relationship shows a strong, non-linear dependence of water vapor pressure on159

temperature. With this relation, a rise in temperature of about 1◦C leads to a 7% increase in vapor160

pressure, which causes changes in the water cycle as the vapor-carrying capacity of the atmosphere161

increases (Schmitt 2008). These changes will impact the global distribution of rainfall and drought,162

which is one of the most societally relevant aspects of climate change (SPURS-2 Planning Group163

2015; Yu et al. 2020).164

3. Observational Data and Model165

A combination of observations and modeling are used to determine the seasonal and event-based166

response of ocean salinity to rain events within the CCS (30◦N-42.5◦N, 128◦W-115◦W). Here167

the region is divided into three subdomains based on the distance from shore: coastal (0-50 km),168

onshore (50-150 km) and offshore (150-550 km). The distance ranges are chosen based on the169

location of California Undercurrent (strongest around 70 km offshore), the California Inshore170

Countercurrent (strongest around 150 km offshore), and the California Current (strongest at 200–171

300 km offshore) as they fall along CalCOFi line 66.7 (Rudnick et al. 2017b). The subdomains172

include data collected along the Spray glider line, and their bounds, perpendicular to the coast,173

are indicated by three colored markers in Fig. 1. Model initialization and forcing data are taken174

from observations and reanalysis fields at three coordinate locations (36.67◦N, 122.06◦W; 36.11◦N,175

123.47◦W; and 34.43◦N, 127.13◦W,which are 30 km, 150 km, and 550 km offshore fromMonterey176

Bay, respectively) within the three subdomains (coastal, onshore, and offshore). Figure 1 shows177

these locations and indicates the location of the Spray glider path along CalCOFi line 66.7 and the178

Monterey Bay Aquarium Research Institute (MBARI) M1 mooring location.179

a. Instrument Accuracy180

The accuracy specification for conductivity, temperature, depth (CTD) instruments in measuring181

salinity is equivalent to 0.003 psu. However, this value is defined in a clean, well-mixed calibration182

bath and does not take into account effects of in situ ocean measurements. For example, the183

dynamic effects of moving instruments are known to increase errors in CTD measurements to184

0.02-2.0 psu (Seabird Scientific 2016). This is consistent with observation errors for in situ salinity185
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data that are found to be typically on the order of± 0.01 psu after post-processing for quality control186

(Vinogradova et al. 2019; Delcroix et al. 2005). These values are similar to the 0.01 psu accuracy187

reported in Argo salinity measurements after delayed-mode adjustments (Wong et al. 2020). Here,188

we use 0.01 psu as the threshold for a detectable salinity change.189

b. ERA5190

The ERA5 dataset is produced using a 4D-Var data assimilation of the European Centre for191

Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) by combining a192

vast number of historical observations into global estimates. Covering the Earth on a 31 km193

(0.28128◦) grid and resolving the atmosphere using 137 levels from the surface to 80 km height,194

the ERA5 dataset provides hourly estimates of a number of surface ocean and atmospheric variables195

from 1979 to present (Hersbach et al. 2020). In an analysis of the performance of five state-of-196

the-art global reanalyses in comparison to in situ data, ERA5 surface winds were found to have197

the best agreement with observed variability on daily and interannual time scales (Ramon et al.198

2019). The ERA5 dataset showed significant improvements in precipitation estimates compared199

to ERA-Interim, with the caveat that biases still remained in the southeastern United States and on200

the North American western coast (Tarek et al. 2020). Additionally, reanalysis products (including201

the ERA5) showed the best agreement with precipitation measurements made by local ground202

stations in a comparison of a collection of satellite, reanalysis, and gauge measurements from the203

Frequent Rainfall Observations on GridS (FROGS) dataset for two case studies (California and204

Portugal) of extreme AR events (Ramos et al. 2021). However, the ERA5 often underestimated205

heavy precipitation compared to gauge measurements, with a mean absolute percent error of 68%206

(Ramos et al. 2021).207

In this study, the ERA5 reanalysis dataset (Muñoz Sabater 2019) is used to characterize atmo-208

spheric conditions, i.e. atmospheric temperature, 𝑇𝑎(K); zonal and meridional wind speed,𝑈𝑍 and209

𝑈𝑀 (m s−1); downwelling longwave radiation and shortwave radiation, 𝐼𝐿 and 𝐼𝑆 (W m−2); specific210

humidity, 𝑆𝑝𝐻 (kg kg−1); evaporation minus precipitation, 𝐸𝑚𝑃 (m s−1); and rain rate, 𝑅 (m s−1).211

This study uses hourly data at the surface within the CCS from 2007-2019 to match the date range212

of the dataset for the Spray glider along line 66.7.213
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c. SIO-R1 AR Catalog214

The Scripps Institution of Oceanography (SIO)-generated AR catalog, the SIO-R1 AR catalog215

(Gershunov 2017), provides a record of AR activity on the North American West Coast (20.0◦-216

60.0◦N, 160◦-100◦W). The dataset indicates whether or not an AR was detected (0 or 1) for each217

6-hourly time step on a 2.5◦ resolution spatial grid (Gershunov et al. 2017). Here, this catalog is218

used to investigate the fraction of events with rainfall exceeding 5 mm day−1 that are associated219

with ARs (Fig. 1), as well as the total number of AR events during the rainy season each year.220

Here we define the AR as ‘detected’ if there is an AR in the grid cell or neighboring grid cell. To221

quantify rain events, we use ERA5 precipitation estimates at the AR locations.222

d. CUGN Spray Line 66.7223

The California Underwater Glider Network (CUGN) provides continuous sampling along Cal-224

COFI line 66.7 by one Spray glider at a time (Rudnick 2016). The glider travels from Monterey225

Bay to a distance about 500 km offshore, vertically profiling in a sawtooth pattern. Each cycle to226

500 m depth and back to the surface covers 3 km of horizontal distance and takes roughly 2.75 h.227

The quality controlled Spray glider dataset provides temperature and salinity observations from228

the glider ascent phase at discrete 10 m vertical levels, with the shallowest measurements available229

at 10 m depth (Davis et al. 2008). Finer resolution (raw) data are available, but performing quality230

control at depths shallower than 10 m is beyond the scope of this study. Salinity collected by231

the Spray glider is reported in practical salinity units (psu). Data are available from April 2007232

through present (Rudnick et al. 2017b). Here glider data are used to characterize the ocean’s salin-233

ity response to atmospheric precipitation on seasonal time scales and to initialize model runs (as234

described in sections 4.a and 4.b). Spray glider data allow us to investigate precipitation impacts235

on salinity at larger spatial scales over the CCS. One limitation of the Spray dataset for this study236

is that the temporal response of the upper-ocean salinity to precipitation is not fully captured at a237

particular location due to the fact that the glider is neither a Lagrangian nor an Eulerian platform238

and is travelling cross-shore.239
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e. MBARI M1 Mooring240

The MBARI M1 mooring (Chavez 2015) measures continuously at one location. Therefore in241

comparison to Spray it has the disadvantage of conveying no spatial information, but the advantage242

of not aliasing spatial variability into temporal fluctuations. Here we use surface measurements243

(nominal depth of 1 m) of ocean salinity at a location 20 km offshore of Monterey Bay (36.75º N,244

-122.0º W; purple marker in Figure 1) from 2007 - 2019. This dataset is used to investigate the245

seasonal response of salinity to precipitation, to compare to model output, and to make event246

composites.247

f. MITgcm 1D Model248

In this study, a one-dimensional configuration of the MITgcm (Adcroft et al. 2018), with vertical249

transport equations for momentum and heat, is used to run both seasonal (September - March)250

and event-based simulations (four-day sensitivity studies and nine-day case studies) aimed at251

characterizing the ocean’s response to precipitation from ARs on different time scales. The252

MITgcm uses the non-local K Profile Parameterization (KPP) vertical mixing scheme of Large253

et al. (1994) with a standard configuration as listed in Adcroft et al. (2018). Turbulent heat fluxes254

are computed in the model using methods from Large and Pond (1982). Details of model setup for255

each experimental run (seasonal, event sensitivity, and event case studies) are provided in Table 1256

and in the sections that follow.257

4. Methods258

a. Seasonal Time Scale259

1) Observational Methods260

The seasonal response of ocean salinity is first investigated by looking at theMBARIM1mooring261

surface (1 m) salinity measurements from 2015-2018, which are compared with model output from262

simulations run at the mooring location. Model forcing and initialization are discussed further263

in section 4.a.2. This is followed by analysis of the annual and interannual (2008 through 2019)264

salinity anomaly from the Spray glider along line 66.7 in the CCS. As part of this analysis we265

assess a one-dimensional salinity budget at a location 15 km offshore along the glider path using266
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the hypothesis that changes in salinity within the water column will be fully explained by 𝐸 −𝑃 in267

the form of an equation,268

𝑑

𝑑𝑡

©­«
∫ 𝑍

0 𝑆𝑑𝑧

𝑍

ª®¬ = (𝐸 −𝑃)𝑆ref
𝑍

(1)

Here we ignore advection and diffusion and calculate the amount of precipitation required to269

produce the rain-year salinity anomaly over a depth, 𝑍 , in the limiting case where evaporation, 𝐸270

(from ERA5), and rain, 𝑃, are the only contributing factors.271

Additionally, over the rain-year from September through March, cumulative precipitation is272

calculated from ERA5 and compared with change in salinity at 10 m depth from the Spray glider273

along line 66.7 in coastal, onshore, and offshore regions. Glider offshore distance is calculated by274

comparing Spray glider data for latitude and longitude at given time steps with the initial coordinate275

location 5 km offshore. Salinity data are binned monthly and into coastal, onshore and offshore276

subdomains for each year, and averaged over each bin. Changes in salinity from September (start277

of the rain-year) to March are calculated for each year from the averages of the binned values.278

Along the line 66.7 glider path, ERA5 precipitation data are extracted at the fixed locations used279

to represent the coastal, onshore, and offshore regions, respectively (Fig. 1). ERA5 data from each280

location are binned bymonth to calculate cumulativemonthly precipitation, fromwhich cumulative281

precipitation is calculated from September through March, to be compared with change in salinity.282

Uncertainties for salinity and rainfall between September and March are computed by calculating283

the standard error of the mean in each bin and then propagating errors through the calculations to284

produce cumulative rainfall or salinity differences.285

2) Model Setup286

The seasonal, one-dimensional MITgcm model is run over a period of 213 days (September287

1–April 1) with a 0.5 h time step. Atmospheric forcing is applied daily and taken from ERA5 daily288

mean (longwave and shortwave radiation, zonal and meridional winds, atmospheric temperature,289

and specific humidity) and daily cumulative (precipitation) values. Forcing is applied for three290

different locations representing the coastal, onshore, and offshore subdomains. Initial conditions291

are taken to be temperature and salinity depth profiles, interpolated to 0.5 m intervals, from the292

Spray glider dataset along line 66.7, which providesmeasurements at 10m intervals. The shallowest293
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Study Time scale (a) Seasonal (b) Event Sensitivity (c) Case Studies

Model Parameters (one-dimensional MITgcm)

Time step (seconds) 1800 60 60

Run time (days) / number of
time steps

213 / 10244 4 / 5760 9 / 13020

Depth (m) / dZ (m) 140 / 0.5 140 / telescoping 140 / telescoping

External forcing input inter-
val (seconds)

86400 60 3600

Number of runs 13 (September–March, 2008–
2019)

36 (six rain rates / six wind speeds) five (16 October 2016, 27 Novem-
ber 2016, 11 December 2016, 19
January 2017, 17 February 2017)

Initial Conditions (from Spray)

Salinity profile averaged over September for each
year within each offshore distance
regime (coastal, onshore, offshore)

constant from salinity average over
five coastal AR events at 10 m
depth, telescoping depths

salinity on event start date at
coastal location, interpolated to
telescoping depths

Temperature profile averaged over September for each
year within each offshore distance
regime (coastal, onshore, offshore)

temperature average over five
coastal AR events, interpolated to
telescoping depths

temperature on event start date at
coastal location, interpolated to
telescoping depths

External Forcing (from ERA5)

Rain rate daily cumulative idealized 12 h Gaussian pulse (0,
2, 3, 4, 5, & 8 mm h−1)

hourly

Wind speed daily mean idealized constant over four days
(0, 2, 4, 8, 12, & 16 m s−1)

hourly

Atmospheric temperature,
specific humidity, short and
longwave radiation

daily mean constant (𝑇𝑎 , 13.1◦C ; 𝑆𝑝𝐻,
0.008 kg kg−1; 𝐼𝑠 , -106.3 W m−2;
𝐼𝐿 , -323.2 W m−2), average over
five AR events at the coastal loca-
tion

hourly

Table 1. Model parameters for (a) seasonal (b) event sensitivity and (c) event case studies.

Spray measurements are at 10 m, so T and S between 0 and 10 m are set to the 10-m values, under294

the assumption of a well-mixed surface layer with constant T and S in the upper 10 m. Profiles of295

T and S are binned by month and by offshore distance for each year. Initial profiles are set as the296

calculated average profiles in September for each year (2008-2019) and offshore distance regime.297

When no data are available for September in a given year/distance bin, the T and S profiles from298

October are used as initial conditions. This is the case for 2008 (coastal bin), 2012 (coastal and299

onshore bins), and 2017 (coastal bin). The model is run for the upper 140 m of the water column,300

using 280 vertical levels with 0.5 m spacing. The depth of 140 m was chosen to allow ample room301

for the downward propagation of the salinity response, as even for cases of high wind speeds, the302

salinity response to freshwater input was not found to propagate below 120 m depth. These model303

parameters are also listed in Table 1.304
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3) Model Validation305

The use of a one-dimensional model will allow for analysis without the influence of ocean306

processes such as horizontal advection, upwelling, and runoff, thus isolating the impact of rainfall307

and wind speed on upper-ocean salinity changes. We validate the model for long-term studies308

by comparing the observed and modeled March-minus-September salinity differences for all rain309

rates over the years 2008–2019 (Fig. 2). To do this, the methods discussed in section 4.a.1 for310

Spray glider data are applied to model output. A linear regression of observed to modeled salinity311

difference finds a slope of 1.25 with an 𝑟2 value of 0.52, which is statistically significant at the312

99% level. Figure 2 also shows that a 1:1 ratio between observed and modeled data falls within313

the 99% prediction interval (green shading) and is close to the upper bound of the 99% confidence314

interval (blue shading) for the linear fit. Here the prediction interval represents the estimated range315

of a future observation, while the confidence interval represents the range of values for the linear316

regression slope and indicates how well this slope has been determined. Higher cumulative rainfall317

in Fig. 2 typically corresponds to a larger rainy-season decrease in salinity, as seen in the gradient318

of the color-coded data points, where large negative salinity differences (salinity decrease) are dark319

blue (high cumulative rain), and large positive salinity differences (salinity increase) are tan (low320

cumulative rain). Spray salinity differences tend to be larger than model differences, indicated by321

the slope being slightly large than one (i.e. for every 1 unit change in modeled salinity difference,322

Spray measures a change of 1.25 units). This difference in slope could be indicative of the model323

not including horizontal advection, upwelling, or runoff.324

b. Event Studies332

1) Observational Methods333

To assess the salinity response to precipitation on an event basis, we analyze ERA5 precipitation334

at the location of the MBARI M1 Mooring surface salinity measurements. Event composites are335

created by averaging rainfall, wind speed and salinity from 85 heavy rain events as a function of336

time relative to the start date, described below. Events are included if daily cumulative precipitation337

is greater than a threshold of 5 mm and there has not been another rain event of this size within 10338

days prior to the event start date. Events are defined to start (day 0) on the first date with rainfall339

exceeding the threshold. For the MBARI M1 mooring, events are chosen within a date range from340
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Fig. 2. Observed vs. modeled March-minus-September salinity differences (psu) color coded by cumulative

rainfall (cm) for the years 2008–2019. The solid black line represents the linear regression of observed to

modeled salinity data for all rain rates, plotted with 99% confidence (blue shading) and prediction (green

shading) intervals. The slope and 𝑟2 value for the fit are indicated in the legend. The black dotted line indicates

the 1:1 relationship. Data are included from coastal, onshore, and offshore locations. With 27 data points, linear

regression coefficients are statistically different from zero at the 99% confidence level if 𝑟2 > 0.24; our results

exceed this threshold.

325

326

327

328

329

330

331

January 2007 through March 2019. Composite analysis is not carried out using data from the341

Spray glider. While the decrease in salinity in response to precipitation is visible for a few glider342

events (not shown), the motion of the Spray glider makes composites too difficult to compute in a343

consistent way.344
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2) Model Setup, Sensitivity Studies345

Event-based sensitivity studies are run in the one-dimensional configuration of the MITgcm346

for four-day periods to study the impact of AR events on the formation of freshwater lenses.347

Atmospheric forcing is applied every minute with the 60-s time steps linearly interpolated from348

hourly ERA5 fields. In order to isolate the impact of wind speed on surface mixing, values for349

radiation (𝐼𝐿 and 𝐼𝑆), specific humidity (𝑆𝑝𝐻), and air temperature 𝑇𝑎 are kept constant and set as350

the calculated average value of the ERA5 dataset over five coastal AR events from October 2016 –351

February 2017. Characteristic precipitation, wind speed, and event duration are defined based on352

commonly occurring conditions for AR events, as noted in the statistical distribution of different353

conditions for composited AR events from Table 2 in Ralph et al. (2013). Precipitation is applied354

as a 12-hour long Gaussian pulse (defined by the full width of the Gaussian at one tenth of the355

peak) with maximum rain rate (𝑅 = 0, 2, 3, 4, 5, and 8 mm h−1) occurring during the 48th hour,356

preceded and followed by a period of zero rainfall. The Gaussian pulse was chosen based on work357

of Drushka et al. (2016), who showed that for the same cumulative rainfall, the maximum rain rate358

was more important than pulse width in determining the salinity response. Wind speed is applied359

as a constant value (𝑈 = 0, 2, 4, 8, 12, 16 m s−1) over the four-day time period. The six different360

rain conditions and six different wind conditions result in a total of 36 model runs. Figure S1361

shows an example of idealized forcing and modeled ocean response for one sensitivity run. The362

model parameters for this study are also listed in Table 1.363

For event-focused simulations, the initial temperature profile is set as the interpolated profile364

averaged over five coastal AR events from October 2016–February 2017 from Spray glider data on365

line 66.7. The initial salinity profile is constant with depth to allow the vertical change in salinity366

from precipitation to be distinguished from mixing. The salinity at all depths is set to the 10 m367

salinity from Spray averaged over the same five coastal AR events. The decision to adopt a constant368

vertical salinity profile is justified by the results of sensitivity tests that indicate that variations in369

the stratification of the initial vertical salinity profile have little effect on the salinity response to370

rain events (not shown). In contrast, in a different regime in the tropics, Drushka et al. (2016)371

and Iyer and Drushka (2021) find that rain falling on saltier water will lead to a larger salinity372

stratification than rain falling on freshwater, and that the preexisting background salinity can have373

a larger impact on the salinity response to rain than the rain conditions themselves.374
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Following Drushka et al. (2016), two metrics are defined in order to characterize the ocean375

response to rainfall: the depth (𝐷𝐿) and duration (𝑇𝐿) of the fresh lens. Here the fresh-lens depth,376

𝐷𝐿 , is defined as the depth at which the salinity anomaly relative to the salinity at the first time377

step is 25% of the maximum anomaly. In contrast Drushka et al. (2016) defined 𝐷𝐿 where the378

salinity anomaly relative to a no-rain control run was 10% of the maximum anomaly. The lifetime379

of the fresh lens, 𝑇𝐿 , is defined as the time period over which the fresh-lens depth is non-zero. The380

definition of 𝐷𝐿 differs from that of Drushka et al. (2016) in order to account for AR conditions381

in the CCS, as ARs in the CCS have smaller rain rates but longer duration than rain events in the382

tropics. To compare the model simulations for different external forcing cases, we calculate the383

salinity difference Δ𝑆 as the salinity at 0.01 m depth at each time step subtracted from the 0.01 m384

depth salinity at the first time step. A positive Δ𝑆 therefore represents a decrease in surface salinity385

over time. The maximum vertical salinity difference, Δ𝑆𝑚𝑎𝑥 , is defined as the maximum value of386

Δ𝑆 within the four-day time period.387

3) Model Setup, Case Studies388

Event case studies are run using the one-dimensional configuration of the MITgcm to study the389

impact of specific AR events on the formation of freshwater lenses. The event length is set to nine390

days to match the MBARI composite studies. Five different coastal AR events are chosen: (i) 16391

October 2016; (ii) 27 November 2016; (iii) 11 December 2016; (iv) 19 January 2017; and (v) 17392

February 2017. Atmospheric forcing is applied hourly and is linearly interpolated to 60 s time steps393

by the model. Values for rain rate (𝑅), wind speed (𝑈𝑍 and 𝑈𝑀), radiation (𝐼𝐿 and 𝐼𝑆), specific394

humidity (𝑆𝑝𝐻), and air temperature (𝑇𝑎) are taken from the ERA5 dataset at the coastal location395

for a duration starting three days before and ending six days after the event date. Figure S2 shows396

an example of the forcing for one of the five runs. The initial temperature and salinity profiles are397

set as the profile for each event starting date from the Spray glider at the coastal location along398

line 66.7, interpolated to telescoping depths. As in the sensitivity studies, Δ𝑆𝑚𝑎𝑥 is calculated for399

each model run as the maximum value of the difference in salinity at 0.01 m depth between each400

time step within the nine-day time period and the first time step. Model output from case studies401

is compared to that of the sensitivity studies, as well as observational results from the MBARI M1402

mooring. The model parameters for this study are also listed in Table 1.403
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4) Model Validation404

A one-dimensional model (the MITgcm ocean column (Adcroft et al. 2018)) will allow for405

analysis without impacts from horizontal advection or runoff. In order to validate the use of the406

MITgcm for event-based studies, we first run with external forcing and initial conditions used by407

Drushka et al. (2016) for a site in the tropical Pacific and compare with the published results408

of the General Ocean Turbulence Model (GOTM) by Drushka et al. (2016). For consistency409

with GOTM outputs, in this model validation Δ𝑆𝑚𝑎𝑥 is defined as the maximum vertical salinity410

difference between 5 m and 0.01 m, following Drushka et al. (2016). MITgcm results are similar411

to GOTM results (Fig. S3). One difference is that the MITgcm KPP tends to mix deeper and412

preserves the freshwater lens for a shorter duration, except in the case of 10 m s−1 winds and413

2 mm h−1 precipitation rates (not shown). As a result, the maximum vertical salinity difference414

between 5 m and 0.01 m for a given model run is generally smaller in the MITgcm than in GOTM.415

Conversely, at higher rain rates, GOTM has greater mixing of large freshwater inputs at the surface,416

resulting in a lower maximum vertical salinity difference than in MITgcm for 2 m s−1 (not shown)417

winds and 50 mm h−1 precipitation rates. However, for most rain and wind cases a statistically418

significant 1:1 linear fit is exhibited between the two models (Fig. S3). Therefore differences419

between GOTM and the MITgcm are judged minor. Since the MITgcm is consistent with the420

one-dimensional turbulence model, we choose to use it here because it can later be extended to run421

in a three-dimensional configuration, which will aid in future work considering ocean processes422

such as horizontal advection, runoff and upwelling.423

Sensitivity experiments are run to test other parameters of the MITgcm, including the model424

time step, the KPP Richardson number threshold for mixing, and the initial stratification (not425

shown). Model results are relatively insensitive to time step and only sensitive to Richardson426

number threshold at high rain rates in combination with low wind speeds. Initial stratification is427

tested by changing the input vertical salinity profile to have different slopes within a salinity range428

of 33–34 psu in the upper 20–80 m of the water column (not shown). These changes are found to429

have little impact on the vertical changes in salinity in response to different rain rates.430
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5. Results431

a. Seasonal Response432
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Fig. 3. Time series showing salinity (psu) for MITgcm one-dimensional model runs (red, solid) and MBARI

M1Mooring (red, dashed) at 1 m depth, compared to ERA5 rain rate (mm day−1) (blue) from September through

March in 2015–2018 (a–d). The black dashed line represents the initial salinity in September for comparison.

433

434

435

While changes in the salinity of the CCS have previously been attributed mainly to advection436

(Lynn and Simpson 1987; Schneider et al. 2005), the time series for the MBARI M1 Mooring437

salinity and theMITgcmmodel output salinity at 1mdepth in comparison to ERA5daily cumulative438

precipitation both suggest that local precipitation also impacts ocean surface salinity (Fig. 3). A439

seasonal freshening is present from September to March for the years 2015–2018 in both mooring440

and model data, with the exception of 2017 for the mooring (Fig. 3). Here, the mooring data441

often show the freshening to be a response to rain events, as typically spikes in precipitation442

(10 mm day−1–35 mm day−1) are followed by decreases in salinity (0.1 psu–1.0 psu). The443

comparison of model and mooring salinities in Fig. 3 shows that the mooring has a more drastic444

salinity response immediately following rain events, while the model response is more gradual445
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(up to 0.25 psu). While Fig. 3 suggests a relationship between seasonal precipitation and salinity446

change, its inclusion here is mainly intended as an introduction to the idea that salinity changes in447

the upper ocean may be linked to precipitation. Data from the MBARI M1 mooring are further448

analyzed in sections 5.b.1 and 5.b.3.449

Fig. 4. (a) Climatological annual cycle and (b) multi-year time series of salinity anomaly as a function of

offshore distance at 10 m depth as measured by the CUGN Spray underwater glider on line 66.7. (c,d) Salinity

anomaly averaged over offshore distances from 0–50 km (red) and daily precipitation with a 30 day moving

mean at the coastal location (blue; offshore distance < 50 km): (c) annual signal averaged over 2007–2019; (d)

time series, showing interannual anomaly for salinity and a 30-day moving mean for daily precipitation. (e)

Salinity anomaly averaged over different depths (40 m, 50 m, 70 m, 100 m & 150 m) in the upper ocean at 15 km

offshore (red) and theoretical daily precipitation that would be required if local rain was the only factor leading

to a change in salinity (blue). (f) Ratio of observed cumulative precipitation from September to January of each

year to cumulative precipitation that would be required to produce the annual salinity anomaly in (e) for different

depths. Spray data from Rudnick et al. (2017a); evaporation and precipitation data from ERA5.

450

451

452

453

454

455

456

457

458

459

We also examine annual and interannual variability of salinity as measured by the Spray glider460

and precipitation from ERA5 (Fig. 4). The annual climatological salinity anomaly in Fig. 4a shows461

that at all locations there is a negative salinity anomaly (blue) during the rainy season months462

of October-April. A positive anomaly (red) is seen during the summer months May-September.463
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This pattern is stronger at the coast than offshore. The annual cycle of negative anomaly in the464

winter (Oct-Apr) and positive anomaly in summer (May-Sep) is also often visible in the full time465

series (Fig. 4b & d). For example, high precipitation in the 2016–2017 rainy season (Fig. 4d)466

coincides with a negative salinity anomaly (Fig. 4d and blue in Fig. 4b), while lower precipitation467

in the 2017–2018 season coincides with a positive, or less negative, salinity anomaly (Fig. 4d468

and red in Fig. 4b). Fig. 4e shows that the salinity anomaly averaged over the top 40 m to top469

150 m is rather insensitive to the depth range over which it is averaged (red lines), suggesting470

that processes other than local rain (e.g. runoff, advection) play a role in these salinity changes.471

However, the all-rain scenario is used here as a limiting case by applying these salinity anomalies in472

Equation (1) to calculate the amount of precipitation that would theoretically produce the anomaly473

if evaporation and rain were the only contributing factors (blue line, Fig. 4e). This information474

is then used to compute the ratio of observed cumulative local precipitation from September to475

January of each year to the theoretical cumulative precipitation that could account for the annual476

cycle of freshening. Here, Fig. 4f shows that ratio and indicates that local rain could potentially477

account for up to 100% of the annual cycle of freshening in the upper 50 m in this limiting case478

in which the system depends only on vertical mixing, with no effect due to horizontal advection.479

The precipitation required to produce the annual salinity anomaly over the depth range increases480

with increasing depth, which leads to estimated rain fraction decreasing with increasing integration481

depth. In other words, as we integrate to greater depth, a smaller portion of the salinity signal482

is expected to be due to rain. Determining the mechanisms responsible for the residual, which483

possibly include horizontal advection, runoff, upwelling, or downwelling, is outside the scope of484

this study.485

To characterize upper-ocean freshening in response to precipitation, for both glider and model493

data, we plot the March-minus-September salinity differences at 10-m depth as a function of494

cumulative rainfall at coastal, onshore, and offshore locations (Fig. 5 a–c). We also include salinity495

differences as measured from the MBARI M1 mooring at the coastal location. The quantities496

appear anti-correlated: high cumulative rainfall typically corresponds to larger salinity decreases497

(Fig. 5a–c). For glider, mooring, and model data, least squares fits show negative slopes and 𝑟2498

values that are statistically significant at the 95% level (corresponding to 𝑟2 > 0.30 for 12 years499

of data), except at the offshore location. These 𝑟2 values suggest that precipitation can explain a500
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Fig. 5. (a-c) Cumulative rainfall (cm) and (d–f) number of AR events as a function of salinity (psu) difference

betweenMarch and September for the years 2008–2019 at (a,d) offshore, (b,e) onshore, and (c,f) coastal locations.

Panels a–c include CUGN Spray line 66.7 observations (blue), MBARI M1 mooring observsations (red, dotted)

and MITgcm one dimensional model runs (red, solid) at 10 m depth. The blue and red lines represent least

squares fits to glider, mooring, and model data with the slope and 𝑟2 values labeled in the legend. Panels d-f

show data from SIO-R1 AR catalog and CUGN Spray line 66.7 observations (blue) at 10 m depth. Blue lines

represent linear regressions, with slopes and 𝑟2 indicated in the legends.
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488

489
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491

492

significant portion of the variance in salinity difference over the rainy season at coastal and onshore501

locations (52% and 59% for the glider data, 50% for the mooring data, and 84% and 62% for the502

model output). The offshore region does not always show a salinity decrease over the course of503

the water year, and it also tends to experience a lower cumulative rainfall than coastal and onshore504

locations (15-45 cm for offshore in comparison to 20-70 cm for coastal). The model response505

differs from the observational data in that the model tends to show a smaller decrease in salinity506

over the season (Fig. 5a–c), as discussed in section 4.a.3.507

Given the one-dimensional nature of the model, external forcing would be expected to explain508

100% of the variance in salinity changes, which is not the case in Fig. 5. Here, unexplained variance509

results from not including evaporation and analyzing salinity changes only at the surface, thus not510
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capturing mixing of the freshwater input to further depths. When comparing evaporation minus511

precipitation to the salinity change integrated over all depths, 100% of the variance is explained by512

the model for all locations (not shown).513

To further investigate the role that ARs play in seasonal upper-ocean freshening, we compare514

the number of AR events to the March-minus-September 10-m salinity difference for glider data515

at the three locations (Fig. 5d–f). Years with more ARs tend to exhibit larger salinity decreases, as516

seen in Fig. 5d–f and as indicated by the negative slopes of the regressions. This is the case except517

in 2017, when an increase in salinity is seen despite a large number of ARs (Fig. 5d). Similarly518

to the relationship between cumulative rainfall and salinity difference, this trend is statistically519

significant at the 95% level, except at offshore locations, and 𝑟2 values suggest that ARs can520

explain a significant portion of the variance in salinity difference over the rainy season for coastal521

and onshore locations. At offshore locations, relationships between the number of AR events and522

salinity difference (Fig. 5d) or precipitation and salinity difference (Fig. 5a) do not exhibit 𝑟2 values523

for linear regression that are statistically significant. The lack of correlation between local rainfall524

and freshening at offshore locations could be caused by salinity changes related to processes other525

than rainfall, such as advection.526

b. Event-Based Response527

1) Event Composites528

While the results of section 5.a demonstrate that in the CCS region, the upper ocean freshens539

more during high rainfall years than it does in low rainfall years, the question of whether individual540

rainfall events are detectable in upper-ocean salinity remains. We begin examination of the ocean541

salinity response to rain events on short time scales by using event composites. Figure 6 shows542

a time series composited from 85 events that occurred at the MBARI M1 mooring location from543

January 2007–March 2019 (see Fig. S4). The rain events that are in the composite analysis are544

shown as both cumulative rain over six hours (red) and daily cumulative precipitation (blue),545

whereas salinity is plotted as a six-hourly moving mean. In Fig. 6, relative day zero represents546

the first day that rainfall exceeded a threshold of 5 mm day−1 (a result of the event compositing547

discussed in section 4.b.1). The wind speed (Fig. 6b) remains relatively constant at about 5±1m s−1548

for the duration of the composite time series, with a slight peak on relative days 0–1. Figure 6c549
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Fig. 6. Composite time series of (a) six-hourly rain (mm, red) and daily cumulative rain from day -3 to day

𝑛 (mm, blue), (b) wind speed (m s−1) with a six-hour moving mean, and (c) salinity difference (psu) between

relative day 𝑛 and relative day 0 for 85 rain events occurring at the MBARI M1 mooring location from January

2007 – March 2019. The solid line (𝜇) represents the mean of all composite events and the shading represents

the standard error of the mean (sem) among these events. The solid black line in (c) represents a salinity of zero,

which is zero on day zero because the anomaly is in reference to this day. Events are included if daily cumulative

precipitation on day zero is greater than 5 mm day−1 and there has not been another rain event within 10 days

of the event start date. Event start dates are set as the first date that rainfall exceeds the threshold; conditions

are shown from 3 days before through 6 days after this date. Rainfall and wind speed are taken from ERA5 and

salinity from the MBARI M1 Mooring.
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shows that the surface salinity measured by the M1 mooring decreases over the duration of the550

composite time series, especially during the days with peak rain (day 0 through 1). While there551

is an increase in salinity from day 1 through day 4, overall the salinity is lower at the end of the552

composite time series than at the beginning. The results from this composite study indicate that553

salinity measurably decreases in response to rain on an event basis. To assess the mechanisms554

governing this freshening pattern, we use the model to carry out event sensitivity studies.555

2) Model Sensitivity Studies of Rain and Wind Effects in Freshwater Lens Formation556

Event-based studies are performed using the one-dimensional MITgcm configured for the CCS.557

The model allows us to isolate the impacts of rain and wind on upper-ocean salinity stratification558

and to determine whether the resulting vertical salinity change will be detectable, given the559
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0.01 psu resolution of CTD instruments (as discussed in section 3.a). While the range of salinity560

responses depends on rain rate and wind speed on event time scales, this study highlights two key561

mechanisms that govern salinity changes as a function of precipitation and wind speed: (i) mixing562

of the freshwater or (ii) development of freshwater lenses at the surface.563

Fig. 7. Normalized salinity anomaly in the upper 55 m of the ocean for the four-day one-dimensional MITgcm

runs and for wind speeds from 2 to 16 m s−1 and maximum rain rates from 2 to 8 mm h−1. Each contour plot is

divided by the absolute value of the maximum salinity anomaly for the given rain rate and wind speed. Black

lines represent the freshwater lens depth, 𝐷𝐿 (m), defined as the depth at which the salinity anomaly relative to

the salinity during the first time step for each run is 25% of the maximum anomaly.

564

565

566

567

568

Figure 7 shows the salinity anomaly in the upper ocean in response to a range of model input580

conditions (wind speeds increase from 2 to 16 m s−1 from top to bottom, and rain rates increase581

from 2 to 8 mm h−1 from left to right), normalized to the maximum salinity anomaly for each given582

wind speed and rain rate. Two extreme cases are detected: (i) vertical mixing of the freshwater to583

depths greater than 20 m at high wind speeds (𝑈 > 8 m s−1) and (ii) development of freshwater584
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Fig. 8. Results from the MITgcm experiments using idealized environmental forcing in which the peak rain

rate and the wind speed are varied. (a) Peak magnitude of Δ𝑆, Δ𝑆𝑚𝑎𝑥 , as a function of rain rate for five different

wind speeds; (b) Δ𝑆𝑚𝑎𝑥 as a function of wind speed for different rain rates; (c & d) maximum (c) thickness,

𝐷𝐿 , and (d) lifetime, 𝑇𝐿 , of the fresh lens as a function of wind speed at different rain rates. Δ𝑆𝑚𝑎𝑥 is defined

as the maximum value of the salinity difference at 0.01 m depth from the salinity at the first time step within the

four-day simulation time period. In both figures (a) and (b), the colored circles show model output from event

case studies, with the colors representing wind speed and rain rate, respectively.
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570

571

572

573

574

575

lenses at the surface for low wind speeds (𝑈 ≤ 8 m s−1), where the depth of the fresh lens is585

depicted by the black lines of Fig. 7. This is consistent with results from Thompson et al. (2019),586

where stable rain layers were found to persist with wind speeds up to 9.8 m s−1. As wind speed587

increases (moving top to bottom) the freshwater lens is brought to a greater depth and remains over588

a shorter time period than at low wind speeds, except in the case of 𝑅 = 2 mm h−1 where the small589

freshwater input may impact the trend in lens depth. As rain rate increases (moving left to right)590

the freshwater input is mixed over a deeper range, except in the case of 𝑈 = 2 m s−1; additionally591

the lens has a longer duration. These results are reproduced in Fig. 8.592
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Fig. 9. Same as Fig. 8 a & b, zoomed in to enhance view of results from event case studies (colored circles).

The colored circles show model output from event case studies, with the colors representing wind speed and rain

rate, respectively. The black dotted line represents the salinity difference of 0.01 psu that is detectable by CTD

instruments .
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579

The dependence of the vertical salinity gradient on rain and wind speed is shown in Fig. 8. In593

Fig. 8a & b, the maximum vertical salinity difference, Δ𝑆𝑚𝑎𝑥 (defined in section 4.b.2), increases594

as a function of rain rate and decreases as a function of wind speed. Modeled freshwater lens depth595

(𝐷𝐿) and duration (𝑇𝐿) are shown as a function of wind speed and rain rate in Fig. 8c-d. Here,596

an increased wind speed corresponds to deeper mixing, bringing freshwater to a greater depth,597

therefore decreasing stratification and decreasing the magnitude of Δ𝑆𝑚𝑎𝑥 . At low wind speeds598

there is minimal mixing, and changes in salinity are confined to the surface (<20 m) and are not599

prominent at depth, leading to a larger Δ𝑆𝑚𝑎𝑥 (Fig. 8a & b). In this case, a freshwater lens is600

formed at the surface, and stratification is enhanced. Figures 8a & b (reproduced in Fig. 9) also601

show model output from five event case studies (the colored circles), which fall within the same602

range for Δ𝑆𝑚𝑎𝑥 as the output from the sensitivity studies with similar rain rates and wind speeds.603

The black dotted line in Fig. 9 represents the salinity change that is detectable by CTD instruments604

(0.01 psu). Almost all of the events in the sensitivity studies exceed this threshold, with the only605

exception being for a rain rate of 2 mm h−1 in combination with a wind speed of 16 m s−1.606

The results show a relationship between wind, rainfall, and salinity similar to that suggested607

by Drushka et al. (2016): Δ 𝑆𝑚𝑎𝑥 = 𝐴𝑅𝑚𝑎𝑥𝑈
𝑏, where constants 𝐴 and 𝑏 are solved for using608

model outputs. Here, rain rates of 0 mm h−1 and wind speeds of 0 m s−1 are omitted from the609
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regression because the fit is representative of cases where rain and wind are present. For the610

MITgcm model runs, 𝐴 = 0.32 ± 0.05 psu (mm h−1)−1 and 𝑏 = 1.44 ± 0.06. Uncertainties of611

linear regression parameters are calculated usingMonte Carlo methods (Fig. S5). The values of the612

regression parameters are within five standard deviations of values found by Drushka et al. (2016):613

𝐴 = 0.11 ± 0.03 and 𝑏 = 1.1 ± 0.03. The values of these coefficients are also similarly related to614

those found in studies done without the wind dependence both by Drucker and Riser (2014), who615

found a value 𝐴 = 0.14 psu (mm h−1)−1 averaged over the tropics, and by Boutin et al. (2014), who616

found region-dependent values of 𝐴 that ranged from 0.14 to 0.22 psu (mm h−1)−1 at moderate617

wind speeds. Differences in these coefficients likely arise as a result of the difference in duration618

of the applied rain pulse (12 h here for AR studies in CCS versus 1 h for studies in the tropics).619

While this relationship has been applied in the tropics for the references listed above, we find it620

does well in representing AR events in the CCS, with an 𝑟2 of 0.97 (Fig. S5). It should be noted621

that this equation is appropriate for one-dimensional models that do not include advection, and622

may not work well in cases where advection is significant. However, case studies in the following623

section (section 5.b.3) show this equation does well in representing the magnitude of the salinity624

response to AR events in comparison to in situ measurements (Figs. 9 & 10).625

Freshwater lenses reach depths of 5–50 m, depending on rain rate and wind speed (Fig. 8c). The626

depth of the fresh lens increases with wind speed for all rain rates, except in the cases of 2 mm h−1627

and 3 mm h−1 rain rates where wind is greater than 8 m s−1. These exceptions likely occur because628

the freshwater input is too small to cause salinity changes at increasing depths during mixing.629

Additionally, the fresh lens depth increases with higher rain rates, as indicated by the ordering of630

the green lines, with the lowest rain rate (light green, 2 mm h−1) having the smallest 𝐷𝐿 and the631

highest rain rate (dark blue, 8 mm h−1) the largest 𝐷𝐿 . This is true except in the cases of low wind632

speed and high rain rate (𝑈 = 2, 4 & 8 m s−1 and 𝑅 = 8 mm h−1), where the magnitude of the633

salinity response is comparatively large (Δ𝑆𝑚𝑎𝑥 = 1.3, 0.55 & 0.2 psu). These events fall outside634

the trend for 𝐷𝐿 because for each particular combination of wind speed and rain rate these metrics635

are defined based on the maximum salinity anomaly relative to the salinity at the first time step,636

which for these extreme cases is much higher than the average salinity anomaly for a particular637

rain rate or wind speed. Freshwater lenses last anywhere from 10–50 h, depending on rain rate638

and wind speed (Fig. 8d). The duration of the freshwater lens, 𝑇𝐿 , shows a pattern of decreasing639
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with increasing wind speed and decreasing rain rate. For wind speeds greater than 8 m s−1 the lens640

duration has a much smaller range of 10–15 h.641

Results for the fresh lens depth, 𝐷𝐿 , are in agreement with the the 20 m mean stable layer depth642

in central Indian Ocean found by Thompson et al. (2019). These results also show similar trends to643

the tropical results of Drushka et al. (2016). One difference is that for these studies of characteristic644

AR events in the CCS, the depth and duration of the freshwater lens are much larger than studies645

done in the tropics. This is likely a result of the fact that AR events in the CCS have a much longer646

rainfall duration than rain events in the tropics (12 h versus 1 h). This is confirmed by runs done647

in the CCS with 24 h rain pulses (not shown), where 𝐷𝐿 and 𝑇𝐿 increased even more from the648

12 h rain pulse case. It should be noted that 𝐷𝐿 and 𝑇𝐿 are highly sensitive to the lens definition,649

as discussed in section 4.b.2. Decreasing the percentage of the maximum salinity anomaly that650

defines the depth leads to overall increases in 𝐷𝐿 and 𝑇𝐿 . This makes sense because a less drastic651

salinity anomaly is expected to reach greater depths for a longer duration. As an example of this652

sensitivity, for a rain rate of 8 mm h−1 and𝑈 = 12 m s−1, when 𝐷𝐿 is defined as the depth at which653

the salinity anomaly is 15% of the maximum anomaly, rather than 25%, it reaches a maximum of654

80 m instead of 53 m. Correspondingly, the time, 𝑇𝐿 , reaches a maximum of 95 h instead of 50 h.655

3) Model Case Studies663

Event case studies are performed using the one-dimensional MITgcm configured for the CCS at664

the start of each of five different AR events (Table 1). The model allows us to isolate the impacts of665

atmospheric forcing on upper-ocean salinity stratification and to determine whether the resulting666

vertical salinity change may be detectable, given the 0.01 psu resolution of CTD instruments (as667

discussed in section 3.a). The results from three case studies are shown in Fig. 10, where the668

different columns (i.e. a&d, b&e and c&f) represent each of the three different events. The top row669

(a–c) shows the rain rate (blue) and wind speed (red) from ERA5 at the coastal location that was670

used as forcing for the model. The second row (d–f) shows the response of salinity difference (Δ𝑆)671

from the first time step at 0.01 m depth for the model (red, solid) and 1 m depth for the MBARI672

M1 mooring (orange, dotted). The magnitude of the model and mooring Δ𝑆 responses are similar,673

while their temporal structure is not. The mooring often has a slower response that lasts a longer674

duration. These differences are likely due to the fact that the model is one-dimensional and solely675
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Fig. 10. Results from case studies for three AR events in the CCS. (a–c) Time series of rain rate (mm h−1,

blue) and wind speed (m s−1, red) that was used as model forcing from ERA5 at the coastal location; (d–f) time

series showing the salinity difference (Δ𝑆, psu) from the first time step at 0.01 m depth for the model output (red,

solid) and at 1 m depth for the MBARI M1 mooring (orange, dotted). The black dotted line in (d–f) indicates

the salinity difference of 0.01 psu that is detectable by CTD instruments . The start date for event 1 (a,c) is

16-OCT-2016; event 2 (b,e) is 27-NOV-2016; and event 3 (c,f) is 11-DEC-2016. The model runs were initialized

three days before this date, and run until six days after.
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659
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661

662

shows a salinity response to rain, while the mooring captures runoff and advection of waters from676

other locations that were impacted by the rain events, and thus changes continue to occur once the677

local rain has stopped. Here, the black dotted line indicates Δ𝑆 values that are detectable by CTD678

instruments (0.01 psu), showing that all three AR events produced measurable changes in salinity.679

Additionally, Fig. 9 shows the results from five modeled case studies overlaid on results from the680

model sensitivity studies (colored circles), as a function of both rain rate and wind speed. The681

black dotted line indicates Δ𝑆 values that are detectable by CTD instruments (0.01 psu). All of the682

the case studies shown produce salinity changes greater than the measurable threshold. The Δ𝑆683

values for the case studies fall within the range of the sensitivity studies for a given rain rate and684

wind speed, as discussed in section 5.b.2. Overall, the salinity difference, Δ𝑆, in the modeled case685

studies is consistent with outputs from the model sensitivity studies for characteristic AR events,686

as well as with observations at the MBARI M1 mooring.687
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6. Discussion688

The purpose of this study has been to evaluate the impact of atmospheric forcing on surface689

ocean salinity in the CCS. A one-dimensional ocean model can help isolate the salinity response690

to rainfall events in comparison to other intrinsic ocean dynamics. While changes in salinity in691

the CCS have previously been largely attributed to southward horizontal advection of low salinity692

water from the northeast Pacific (Lynn and Simpson 1987; Schneider et al. 2005), this analysis693

has shown that the salinity changes could also be attributed to freshwater inputs in the form of694

precipitation from atmospheric rivers on both seasonal and event timescales.695

a. Seasonal Response696

Seasonal freshening in the CCS depends on cumulative rainfall. Results in section 5.a compare697

ERA5 rainfall to salinity from observational data (mooring and underwater glider) and one-698

dimensional model output. While intrinsic ocean processes should be captured by observations,699

most are not represented by the one-dimensional model. Despite this omission, the model nonethe-700

less shows a statistical relationship between cumulative rainfall and salinity difference (Fig. 5).701

These analyses support the idea that local rainfall may be one of several mechanisms playing a702

role in the seasonal salinity response, and that it is a significant enough component to account for703

anomalously fresh or salty years.704

We find that there is a stronger salinity signal in coastal locations for both observations and705

model outputs. As discussed in section 5.a, this could be attributed to the fact that there is a higher706

cumulative rainfall at coastal locations. Additionally, processes omitted by the model, including707

upwelling, runoff and advection, could all play a role in the observational results. For example,708

Auad et al. (2011) suggest that upwelling of cool, saline water enhances coastal salinity increases709

in the summer, which could contribute to a larger positive salinity anomaly in summer (September)710

and a larger difference in March minus September salinity. Freshwater input from riverine runoff711

has also been linked to decreases in surface salinity measurements. AR precipitation events occur712

more often on land than over the ocean (Fig. 1a), which might lead to runoff. Riverine input from713

the Salinas River that discharges into Monterey Bay has been linked to decreases in surface salinity714

as measured by the MBARI M1 Mooring (Kudela and Chavez 2004). River discharge from the715
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Sacramento/San Joaquin River system 100 km north of the M1 Mooring has also been linked to716

low salinity measurements off the coast of Monterey Bay (Johnson et al. 1999).717

Southward advection of freshwater in the low-salinity tongue of the California Current has been718

previously described as the main source of salinity changes in the CCS (Auad et al. 2011; Lynn719

and Simpson 1987; Schneider et al. 2005). While we do not find evidence against this, when720

looking at the seasonal cycle of CCS advection there are a few instances of anomalous salinity721

that may not be linked to advection. For example, the low surface salinity anomaly seen 50 m722

offshore along CalCOFI line 66.7 during the winter months (Fig. 4.2.3.1 in Rudnick et al. 2017b)723

is unexplained by the strong poleward current at this location and time which would be expected to724

carry saltier water from further south. On longer timescales (5–10 years), Schneider et al. (2005)725

found that negative anomalies in salinity storage averaged over the top 150 m corresponded to726

increased precipitation, but also noted that patterns in salinity anomaly imply freshwater fluxes that727

are larger than the observed precipitation or evaporation anomalies. This is supported by Fig. 4f,728

which shows that the observed precipitation is 3–30% of the precipitation that would be required729

to produce the salinity anomaly in the upper 150 m if all other terms in the salinity balance are730

ignored. While this may be the case for the salinity changes in the upper 150 m, we have shown the731

observed precipitation can explain up to 100% of the seasonal salinity change in the upper 40 m.732

While some of the salinity changes may be linked to runoff, upwelling, or advection, the one-733

dimensional nature of the model omits these ocean dynamics that might have a visible impact734

on mooring and glider data. Nonetheless, the model still shows a seasonal salinity response to735

freshwater inputs from rain, as discussed in section 5.a.736

b. Event-Based Response737

On event time scales, certain combinations of rain rate and wind speed can lead to the formation738

of freshwater lenses. Freshwater lenses may inhibit mixing of surface waters and increase upper-739

ocean stratification, which has a variety of implications for the exchange of heat and moisture740

between the ocean and atmosphere, as discussed in section 2.d (SPURS-2 Planning Group 2015;741

Williams et al. 2006). Understanding the structure and evolution of these lenses is important for742

understanding the possible impacts on air–sea exchanges.743
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The wind speed and rain rate dependences of ocean surface salinity are investigated using event744

composites and one-dimensional model sensitivity studies. We show that salinity decreases in745

response to rain events (section 5.b). Furthermore, model results show that the salinity change746

during a rain event depends linearly on the rain rate, and is inversely proportional to wind speed747

(section 5.b.2). This suggests that for low wind speeds, freshwater inputs are trapped at the surface748

and lead to the formation of freshwater lenses, while high wind speeds cause freshwater from rain749

to mix as deep as 50 m and prevent the formation of long-lasting fresh lenses.750

Many events characteristic of ARs in the CCS produce measurable changes in salinity. As751

discussed in section 5.b, there is only one instance where the sensitivity studies do not produce a752

salinity changed that exceeds the 0.01 psu detectable limit (low rain rate in combination with high753

wind speed). Additionally, all modeled and observed case studies produce measurable salinity754

changes. Case studies show that single AR events can produce salinity decreases of up to 0.1 psu755

that last up to 50 hours (Fig. 8). These salinity anomalies are comparable to the decreases in salinity756

over the entire rainy season, which are shown to be as high as 0.8 psu for observations, and 0.4 psu757

for one-dimensional models where effects from advection, runoff and upwelling are excluded (Fig.758

5). It should be noted that while a single AR event may not cause a large, long-lasting drop in759

salinity, there is a range of salinity change depending on the strength of the given AR. Additionally,760

ARs often occur in series with several in a row, which may lead to a larger integrated effect over761

time. Statistics from a composite analysis of 91 AR events from Table 2 of Ralph et al. (2013)762

indicate that the average maximum rain rate for these events is 4.09 mm h−1 and the average wind763

speed is 12.8 m s−1. Based on our results, these events would produce salinity changes above764

the measurable threshold, implying that AR events should be detectable by CTD measurements of765

ocean salinity.766

7. Conclusion767

Seasonal freshening in the CCS depends on cumulative rainfall and atmospheric river events,768

in addition to other intrinsic ocean dynamics that previous studies have identified. At coastal and769

onshore locations, the CCS freshens throughout the rainy season due to AR events, and years with770

higher AR activity are associated with a stronger freshening signal (Fig. 5).771
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Event studies indicate that freshening in the CCS depends on wind speed in addition to rain rate.772

Low winds lead to conditions that cause freshwater lens formation, while high wind speeds mix773

freshwater input from rain through the mixed layer. Results from our one-dimensional model show774

that freshwater lens formation in the CCS is possible in the event of heavy rain and low winds. For775

events that are characteristic of ARs in the CCS, these lenses are formed often and can last anywhere776

from 10–50 h. The one-dimensional model simulations also suggest that events characteristic of777

ARs in the CCS tend to produce changes in salinity that are greater than the measurable CTD limit778

of 0.01 psu, as indicated in Figs. 9 & 10.779

Because of the dependence of salinity on both rain and wind, further investigation in the CCS780

would require local, high-resolution observations of both variables, as was done in the SPURS-2781

experiment, in order to develop a more complete understanding. With observations it would also782

be possible to validate the use of the one-dimensional MITgcm to represent salinity changes on an783

event time scale, as was done for the seasonal studies (e.g. Fig. 2 in section 4.a.3).784

As discussed in section 5.b.2, the freshwater lens is highly sensitive to definition. The definitions785

for 𝐷𝐿 and 𝑇𝐿 that were shown to work with GOTM for the salinity response to rain events in the786

tropics (Drushka et al. 2016) were altered slightly for results in the CCS, as discussed in section787

4.b.2. In another study, Thompson et al. (2019) derived an estimate of the stable layer depth based788

on wind speed and buoyancy frequency. Future work could explore different forms of the definition789

specific to the CCS.790

While this study has provided evidence that freshwater inputs from rain contribute to variability791

in ocean surface salinity, the relative importance of horizontal advection, runoff, and external792

atmospheric forcing has not been addressed. Advection could contribute to the evolution of793

freshwater lenses by causing increased mixing and by introducing new water into the region.794

Future studies could address these shortcomings by considering a three-dimensional ocean model795

that will show the relative importance of horizontal advection and runoff. Additionally, large-scale796

surface advective salinity transport could be estimated from observations. Future work could also797

look at the response of properties other than salinity, for example temperature or biogeochemical798

properties, and thus elucidate the impact of precipitation events on the climate state.799
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