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Connecting the Dots: Translating the Vaginal Microbiome 
Into a Drug
Laurel A. Lagenaur,1 Anke Hemmerling,2 Charles Chiu,3 Steve Miller,3 Peter P. Lee,1 Craig R. Cohen,2 and Thomas P. Parks1

1Osel, Inc., Mountain View, California, USA, 2Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, California, USA, and 
3Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA 

A Lactobacillus-dominated vaginal microbiota (VMB) has been associated with health and considered an important host defense 
mechanism against urogenital infections. Conversely, depletion of lactobacilli and increased microbial diversity, amplifies the risk of 
adverse gynecologic and obstetric outcomes. A common clinical condition that exemplifies dysbiosis is bacterial vaginosis (BV). BV 
is currently treated with antibiotics, but frequently recurs, due in part to persistent dysbiosis and failure of lactobacilli to repopulate 
the vagina. New treatment options are needed to address BV. The VMB is relatively simple and optimally dominated by one or several 
species of Lactobacillus. Lactobacillus crispatus is strongly associated with vaginal health and depleted in dysbiosis. Replenishing the 
dysbiotic VMB with protective L. crispatus CTV-05 is a promising approach to prevent recurrent infections and improve women’s 
health. Here we discuss confirmation of this approach with the microbiome-based biologic drug, LACTIN-V (L. crispatus CTV-05), 
focusing on prevention of BV recurrence.

Keywords.  LACTIN-V; Lactobacillus crispatus CTV-05; bacterial vaginosis (BV); vaginal microbiota (VMB); live biotherapeutic 
product (LBP); women’s health.

THE VAGINAL MICROBIOTA AND WOMEN’S HEALTH

The role of the vaginal microbiota (VMB) in the female repro-
ductive tract health is well established [1–3]. Lactobacillus ac-
idophilus was once considered the major vaginal species until 
the 1980s when molecular identification methods showed it to 
be a complex of multiple species. Subsequently, Lactobacillus 
crispatus, Lactobacillus gasseri, and Lactobacillus jensenii were 
identified as major species of the VMB [4, 5], and more recently 
Lactobacillus iners emerged as another prevalent species [6, 7], 
although its role in vaginal health is still under debate [8]. Newer 
culture-independent techniques, using DNA sequencing tech-
niques, revealed the same 4 Lactobacillus species dominating 
separate bacterial community state types (CSTs), as well as 
a heterogeneous CST that is not dominated by Lactobacillus  
[6, 7].

Although every woman harbors a unique bacterial com-
munity, the VMB is optimally dominated by H2O2-producing 
lactobacilli, which create a low-pH [9], noninflammatory en-
vironment [3]. Lactic acid produced by lactobacilli acidifies 
the vagina and suppresses the growth of many opportunistic 
pathogens [10, 11]. L.  crispatus is the most prevalent H2O2-
producing Lactobacillus species of the female reproductive 

tract and L.  crispatus-dominated bacterial communities ex-
hibit the lowest vaginal pH, lowest proinflammatory cytokine 
levels, and lowest risk of gynecologic and obstetric complica-
tions [10–14].

VAGINAL DYSBIOSIS

Bacterial vaginosis (BV) is a common ecological disorder of the 
VMB characterized by increased microbial diversity with expan-
sion of mainly anaerobic bacteria and loss of H2O2-producing 
lactobacilli [15, 16]. BV affects 15%–50% of reproductive-aged 
women globally and can recur in 20%–75% within 3  months 
following standard antibiotic treatment [17, 18]. Dysbiosis can 
be associated with increased levels of proinflammatory cyto-
kines [19] and increased numbers of activated CD4+ T lympho-
cytes [20]. Cervicovaginal bacterial communities are major 
modulators of the host inflammatory response [11]. Several 
negative sequelae accompany proinflammatory dysbiosis, such 
as increased risk of sexually transmitted infections (STIs) [21, 
22], including human immunodeficiency virus (HIV) [23], 
pelvic inflammatory disease [24], preterm birth [25], and en-
hanced progression of cervical cancer human papillomavirus 
(HPV) [26].

BV is currently treated with antibiotics (ie, metronidazole) 
[27]. Metronidazole kills the BV-associated anaerobic bacteria 
while sparing vaginal lactobacilli, which are intrinsically re-
sistant to nitroimidazoles. However, metronidazole treatment 
alone does not restore a Lactobacillus-dominated microbiome 
and dysbiosis can persist.
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FROM PROBIOTICS TO LIVE BIOTHERAPEUTIC 
PRODUCTS

Probiotics have rapidly grown into a multibillion-dollar in-
dustry that is lightly regulated as food or dietary supplements in 
the United States [28]. This has led to a call for stricter require-
ments for scientific substantiation of putative health benefits 
conferred by microorganisms [29]. Although most probiotics 
are for gastrointestinal use, several are marketed for vaginal 
health. However, many of these products contain species that 
are not naturally present in the VMB. It is not clear whether 
these products can sustainably colonize or benefit the vaginal 
ecosystem because vaginal strains differ from those found in 
food or the gastrointestinal tract. A  number of recent meta-
analyses have been published on probiotics to treat/prevent 
BV [30–32], and while the products were generally safe, there 
was no clear or consistent indication that commercially avail-
able probiotics improve outcomes related to women’s health. 
Because probiotic products are not regulated as drugs in the 
United States, they cannot make specific health claims.

Fueled by the Human Microbiome Project [33], the roles of 
the microbiome in health have become better appreciated and 
spurred the development of microbiome-based products in-
tended to treat or prevent disease. This activity prompted the 
Center for Biologics Evaluation and Research at the Food and 
Drug Administration (FDA), to respond with a draft guid-
ance, document in 2012, addressing the early development of 
live biotherapeutic products (LBPs), thus establishing a new 
class of biologic drugs [34]. LBP was defined as a biological 
product that: (1) contains live microorganisms, such as bac-
teria; (2) is applicable to the prevention, treatment, or cure 
of a disease or condition of human beings; and (3) is not a 
vaccine.

LACTIN-V: THE FIRST VMB-BASED LBP

L. crispatus has long been associated with reproductive health 
and has strong inverse relationships with vaginal dysbiosis and 
its clinical sequelae [10, 11]. For example, depletion of vag-
inal Lactobacillus, particularly H2O2-producing strains such as 
L.  crispatus, has been associated with both BV and recurrent 
urinary tract infections (rUTI) [35, 36]. For these reasons, 
a strain of L.  crispatus was carefully selected as the active in-
gredient of LACTIN-V, which became the first VMB-based 
LBP. LACTIN-V is being developed under an Investigational 
New Drug application with the FDA as an adjuvant therapy 
to prevent recurrence of BV and rUTI following antimicrobial 
treatment.

LACTIN-V contains L. crispatus CTV-05 (CTV-05), a spe-
cific strain isolated from the vagina of a healthy woman [5, 37]. 
L.  crispatus is found naturally in the vagina of many healthy 
women and has also been detected in the rectum [38–40]. 
CTV-05 is a homofermenter of glucose to lactic acid (both d 

and l isomers), and an H2O2 producer. Unlike most commer-
cially available probiotic Lactobacillus strains, which are not 
vaginal strains, CTV-05 adheres to vaginal epithelial cells and 
is capable of colonizing the vagina [37, 41, 42]. CTV-05 has 
an antibiotic-susceptibility profile similar to other L. crispatus 
strains and is intrinsically resistant to metronidazole. In addi-
tion, CTV-05 antagonizes a number of urogenital pathogens 
in vitro (Table 1). The strain has an excellent preclinical and 
clinical safety record. There have been no reports of L. crispatus 
causing bacteremia or endocarditis, as noted with some probi-
otic lactobacilli [45].

Table 1. Inhibition of Vaginal and Urinary Pathogens by CTV-05

Microorganism Strain No. Results: Zone of Inhibition, mma

Vaginal pathogens  

  N. gonorrhoeae F6b 61 (S)

  N. gonorrhoeae SPD 600b 62.5 (S)

  N. gonorrhoeae 7603389b 55 (S)

  N. gonorrhoeae 87016589b 55 (S)

  N. gonorrhoeae 85044571b 65 (S)

 B. fragilis 25285c 32.5 (S)

 B. fragilis 43860c 42.5 (S)

 B. fragilis 43858c 70 (S)

 S. agalactiae group B 13813c 57.5 (S)

 S. pyogenes Clinical isolated Complete inhibition

 G. vaginalis ATCC 14018 Complete inhibition

  G. vaginalis Clinical isolate 9d Complete inhibition

  G. vaginalis Clinical isolate 10d Complete inhibition

  G. vaginalis Clinical isolate 11d Complete inhibition

 Dialister sp. Clinical isolated Partial inhibition

Urinary tract pathogens  

  E. coli 3052-961 Complete inhibition

  E. coli 3100-961 63 (S)

  E. coli 3171-961 70 (S)

  E. coli 3196-961 Complete inhibition

  E. coli 3265-961 63 (S)

  E. coli 3301-971 Complete inhibition

  E. coli 3077-971 63 (S)

  E. coli 3058-981 67.5 (S) 

  E. coli 3163-981 60 (S)

  E. coli 3201-981 67.5 (S) 

  E. coli 49161c 68 (S)

  E. coli 11775c 71.5 (S)

  E. coli 29194c 62.5 (S)

  E. coli 25922c 60 (S)

 Staph. aureus 25923c 68 (S)

Abbreviations: B., Bacillus; E., Escherichia; G., Gardnerella; N., Neisseria; S., Streptococcus; 
Staph., Staphylococcus; S, sensitive.
aZone of inhibition method used an agar bilayer technique to detect inhibition by 
Lactobacillus crispatus CTV-05 against the test organisms [43, 44]. For organisms requiring 
special nutrient agars, the process was modified to use commercially prepared agar, which 
was aseptically removed from a petri dish and placed directly over an MRS agar surface 
creating a bilayer of equal thickness. All MRS agar plates were inoculated by streaking 
0.01 mL of an overnight culture of CTV-05 across the diameter of the plate. All plates were 
incubated under optimum conditions for 24, 48, or 72 hours prior to overlay.
bStrains provided by the Centers for Disease Control and Prevention.
cStrain obtained from the American Type Culture Collection.
dClinical vaginal isolates obtained from women under IRB 06157-01 with Planned 
Parenthood Mar Monte.
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LACTIN-V DEVELOPMENT

LACTIN-V was originally formulated as a vaginally adminis-
tered gelatin capsule with a potency of 5 × 108 colony-forming 
units (CFU)/capsule. The capsule was tested in phase 1 and 
phase 2 clinical trials of healthy female volunteers and women 
with rUTI or BV. Following a successful phase 1 safety study 
in healthy women with a history of rUTI [46], a phase 2 rUTI 
trial (NCT00305227) was conducted in 100 women who re-
ceived standard antibiotic treatment for uncomplicated cystitis, 
followed by LACTIN-V or placebo capsules daily for 5  days, 
then once weekly for 10 weeks [47]. Although not statistically 
significant, the rUTI incidence in the LACTIN-V arm (15%) 
was about half of that in the placebo arm (27%), similar to 
prophylactic antibiotic treatment. However, high-level vaginal 
colonization with L.  crispatus (>106 16S rRNA gene copies/
mL by quantitative polymerase chain reaction [qPCR]) in the 
LACTIN-V arm was associated with a significant rUTI re-
duction (risk ratio [RR] = 0.07; 95% confidence interval [CI], 
.02–.3). Interestingly, women receiving placebo who achieved 
comparably high levels of endogenous L. crispatus did not ap-
pear to have equivalent protection against rUTI (RR = 1.1), 
suggesting that CTV-05 was superior to the endogenous strains.

LACTIN-V capsules were tested in a phase 2 multisite ran-
domized placebo-controlled trial of 149 women treated for 
BV with topical metronidazole or clindamycin (unpublished). 
The product was administered for 5 consecutive days, then 
once weekly for 10 weeks, with follow-up clinic visits at 4, 10, 
and 16 weeks. LACTIN-V administration appeared to mod-
estly decrease the rate and incidence of recurrent BV com-
pared to placebo. The time to first BV recurrence was longer 
in the LACTIN-V arm (118.7  days) versus the placebo arm 
(98.7 days). Subjects in the LACTIN-V arm who were colon-
ized with CTV-05 were less likely to experience another BV ep-
isode than those in the placebo arm. CTV-05 colonization was 
determined by culture and repetitive element PCR (repPCR) 
[37]. In the per protocol cohort, the incidence of BV recurrence 
in CTV-05–colonized subjects was 12.5% compared to 30.3% 
in placebo, and 16% for the modified intention to treat cohort 
compared to 33.8% in placebo. Colonization in the most com-
pliant per protocol cohort was 59% compared to 42% in the 
modified intention to treat cohort. Although not statistically 
significant, these results suggested for the first time that CTV-
05 colonization may be a surrogate marker for efficacy, and that 
improving efficacy would require achieving higher colonization 
rates. Because the capsule formulation dissolved poorly in the 
vagina, likely hindering CTV-05 colonization, a specially de-
signed vaginal applicator was developed to deliver LACTIN-V 
powder directly to the vaginal mucosa.

LACTIN-V VAGINAL APPLICATOR

The new dosage form was tested in a phase 1 escalating dose trial 
to assess safety, tolerability, and acceptability of the LACTIN-V 

applicator at 3 doses ranging from 5 × 108 to 2 × 109 CFU/ap-
plicator (NCT00537576) [48]. Twelve healthy women received 
the study product for 5 consecutive days and returned for fol-
low-up visits on days 7 and 14. The adverse events (AEs) were 
mild or moderate and predominantly local (genitourinary) 
and evenly distributed across dose levels and treatment arms. 
LACTIN-V delivered at doses up to 2 × 109 CFU/applicator ap-
peared to be safe and well tolerated.

A small phase 2a trial followed to assess colonization, safety, 
tolerability, and acceptability of applicator-delivered LACTIN-V 
(NCT00635622) [42]. All participants were treated for BV 
with 0.75% metronidazole vaginal gel (MetroGel), followed 
by LACTIN-V (2 × 109 CFU/applicator) or matching placebo 
applicator daily for 5 days, then once weekly for 2 weeks. The 
participants returned for follow-up on days 10 and 28. Overall, 
61% in the LACTIN- V group were colonized with CTV-05 as 
determined by culture and repPCR. Among LACTIN-V users 
with complete adherence to the protocol, 78% were colonized 
[42]. The AEs were mild or moderate in severity and evenly dis-
tributed between the LACTIN-V and placebo arms. The appli-
cator product appeared to be safe, well tolerated, and accepted 
by the participants.

The effects of endogenous vaginal bacteria on L.  crispatus 
colonization during the phase 2a study were examined by 
qPCR for 7 BV-associated bacteria, (Leptotrichia/Sneathia sp., 
Gardnerella vaginalis, BVAB-1, BVAB-2, BVAB-3, Megasphera 
sp., and Atopobium vaginae), L.  iners, and L.  crispatus [49]. 
The concentrations of the 7 BV species declined between the 
screening and enrollment visits with successful Metrogel treat-
ment, and L.  crispatus levels generally increased upon appli-
cation of LACTIN-V (Figure  1). Overall, this study provided 
additional evidence that vaginal colonization with L. crispatus 
following LACTIN-V treatment was associated with reduced 
levels of BV-associated anaerobes, potentially reducing the 
risk of BV recurrence. A preliminary microbiome analysis of a 
subset of samples from the phase 2a study showed that women 
colonized with CTV-05 underwent a shift from a diverse VMB 
at enrollment, to a L. crispatus-dominated bacterial community 
at day 28 (Figure  2A). Results from 2 women not colonized 
with CTV-05 are also shown (Figure 2A). Figure 2B shows the 
concomitant decrease in the Shannon diversity index for the 2 
women colonized with CTV-05. Figure  2C shows a principal 
component analysis of the 4 women day 1 and day 28 post CTV-
05 treatment. For women not colonized, the Shannon diversity 
index remained high and L.  iners was the main Lactobacillus 
species present at enrollment and day 28.

PHASE 2 PROOF OF CONCEPT

Recently, a larger phase 2b multisite randomized, placebo-
controlled trial of LACTIN-V to prevent BV recurrence was 
completed (NCT02766023) [51]. In this study, 228 women with 
BV were treated with Metrogel for 5 days, then randomized 2:1 
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to receive LACTIN-V (2 × 109 CFU/applicator) or a matching 
placebo applicator for 5 consecutive days, followed by twice-
weekly doses for 10 additional weeks. Follow-up clinic visits oc-
curred at weeks 4, 8, 12, and 24. The primary end points were 
the proportion of women with recurrent BV by week 12 and 
safety by week 24. Secondary end points included detectable 
CTV-05 colonization at each study visit and the proportion of 
women with recurrent BV by week 24.

In the intention-to-treat analysis, BV recurrence through the 
12-week visit was significantly less common in the LACTIN-V 
arm than in the placebo arm (30% vs 45%, respectively; 
RR = 0.66; 95% CI, .44–.87; P = .01). In addition, BV recurrence 
remained significantly less common through the 24-week visit, 
13 weeks after the last dose of LACTIN-V (39% vs 54%, respec-
tively; RR = 0.73; 95% CI, .54–.92). The local solicited genitou-
rinary AEs were mostly mild or moderate in severity, and their 
frequency and severity were similar between arms (Table  2). 
Additional information of solicited, unsolicited, and systemic 
AEs can be found in Cohen et al supplemental material [51].

CONNECTING THE DOTS

Overall, CTV-05 was detected by qPCR in 79% of women in 
the LACTIN-V arm at the 12-week visit and 48% at 24 weeks 
(Figure  3). Detectable colonization was defined as CTV-05 
levels above the lower limit of detection at the 95% detection 
threshold (6.6 × 102 CFU/mL). Among subjects with detect-
able CTV-05, the median concentration (expressed as CFU/
mL) in the LACTIN-V intervention arm ranged from 1.7 × 106 
to 6.2 × 106 at different clinic visits during the dosing regimen 
through week 12, and 5.6 × 106 at week 24, approximately 13 
weeks after the last dose of LACTIN-V. Although the proportion 

of participants with detectable colonization decreased after the 
last dose of LACTIN-V, the smaller number of women who re-
mained colonized at week 24 still had median levels of CTV-05 
comparable to those on treatment up to week 12 (Figure 3). This 
finding suggested that some women remained durably colon-
ized for at least 13 weeks following the last dose of LACTIN-V. 
When the concentrations of CTV-05 at 12 and 24 weeks were 
further analyzed in participants with or without BV recurrence, 
it was evident that women who did not experience BV recur-
rence had significantly higher CTV-05 concentrations than 
those with BV recurrence (Figure 4). Women harboring ≥106 
CFU/mL CTV-05 appeared to be protected from recurrent BV.

Furthermore, the colonization of L. crispatus was consider-
ably higher in the LACTIN-V arm than in the placebo arm at 
both week 12 (82% vs 35%, respectively) and week 24 (64% vs 
22%, respectively). Thus, without LACTIN-V treatment, only 
about one-third of women in the study population would spon-
taneously recolonize with an endogenous L. crispatus following 
Metrogel treatment.

When CTV-05 dominates the VMB, it generally tracks with 
qPCR measurements of L. crispatus sp., Lactobacillus spp., total 
bacteria, and low vaginal pH. Figure  5A shows results from 
2 women who were successfully colonized throughout the 
duration of the study to week 24, while Figure  5B shows re-
sults from 2 women who were successfully colonized during 
dosing through week 12, but then lost CTV-05 after the last 
dose of LACTIN-V. When CTV-05 levels declined in Figure 5B 
there was a corresponding increase in vaginal pH. An impor-
tant mechanism for protection from BV recurrence is vaginal 
acidity, which is largely a function of lactic acid production by 
lactobacilli. In some instances, L. crispatus sp. levels were below 
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detection while total Lactobacillus spp. levels were high, and 
vaginal pH was more variable (eg, subject 594). L.  iners was 
suspected as the probable species in many of these cases, as 

observed in the phase 2a study. Metagenomic next-generation 
sequencing is being conducted to further identify the bacterial 
species present and their potential role in BV recurrence.
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Table 2. Frequency and Severity of Local Genitourinary Adverse Events

Symptoms

LACTIN-V Placebo 

% Mild % Moderate % Mild % Moderate

Abnormal vaginal discharge 41.8 25.5 34.8 34.8

Abnormal vaginal odor 35.4 21.2 21.1 30.8

External genital irritation 24.1 19.8 18.1 12.1

External genital swelling 10.6 10.6 7.5 7.5

Genital burning 18.4 15.6 10.6 18.1

Genital itching 29.7 31.9 28.7 22.7

Genital rash 9.2 5.6 6.0 4.5

Vaginal bleeding 23.4 3.5 28.7 4.5
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CURRENT STATUS, NEXT STEPS, AND FUTURE 
PROSPECTS

In the phase 2b trial, LACTIN-V significantly reduced BV recur-
rence by one-third compared to placebo. This result was partic-
ularly significant in the context of the study population because 
most of the women were at high risk of BV recurrence. About 
half the participants had experienced ≥5 prior BV episodes, 
and nearly 70% had ≥3 BV episodes. In addition, over half the 

women self-identified as African American or Hispanic/Latina, 
2 populations where BV is particularly prevalent [52].

CTV-05 colonization was closely correlated with preven-
tion of BV recurrence. It appeared that colonization levels ≥106 
CFU/mL may be protective, possibly because sufficient lactic 
acid can be produced to drive vaginal pH down and antago-
nize the growth of BV-associated bacteria. Nonetheless, some 
women who were not well colonized with CTV-05 experienced 
BV recurrence. An important ongoing therapeutic goal is to de-
termine the factors that contribute to persistent colonization of 
CTV-05 so that BV recurrence can be prevented in a greater 
proportion of women over longer time periods.

Recent studies have identified multiple factors and tem-
poral dynamics that impact the composition of the VMB and 
its ability to maintain a Lactobacillus-dominant state and pre-
vent BV. Host genetic factors may lead to a higher risk for dis-
turbances of the VMB in women of African, African American, 
and Latina ethnicity [7, 53–56]. Genetic associations in Kenyan 
women suggest a role for the innate immune system and cell 
signaling in vaginal microbiome composition and suscepti-
bility to nonoptimal vaginal microbiome [57]. In addition, 
hormonal fluctuations impact the VMB [58–62]; estrogen and 
vaginal glycogen levels are lowest during menses, and the pres-
ence of menstrual blood may increase pH and BV risk [63–66]. 
However, in the phase 2b trial neither menses nor unprotected 
sex decreased CTV-05 colonization, possibly due to the twice-
weekly dosing regimen. In addition, evidence points toward 
certain hormonal contraceptives as being potentially protective 
against BV [61, 67–72].

Sexual behavior affects BV risk. While condoms are pro-
tective [73, 74], early sexual debut [75, 76], oral sex [77], un-
treated sexual partners [67, 78–83], multiple partners [76], 
and exposure to semen [73, 74, 78, 84] all increase BV risk. BV 
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Figure 3. Detectable colonization and median concentrations of Lactobacillus 
crispatus CTV-05 in the LACTIN-V arm of the phase 2b trial at weeks 4, 8, 12, 
and 24. The grey bars indicate the overall percentage of women colonized with 
L. crispatus CTV-05 above the lower limit of detection in the LACTIN-V arm. The 
box and whiskers plots indicate maximum and minimum values of L. crispatus 
CTV-05, the horizontal lines inside the box and whiskers indicate median values 
and the diamonds indicate mean values. The circles below the box and whiskers 
bar at week 4 represent outliers. The size of each box and whiskers represents 
the interquartile range. Abbreviation: CFU, colony-forming units. Reproduced 
with permission from the New England Journal of Medicine [52].
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recurrence may be caused by reinfection from a partner [67]. 
A  polymicrobial biofilm has been identified on desquamated 
epithelial cells in male urine and semen samples, suggesting 
a potential reinfection mechanism [85]. Concurrent partner 
treatment is a promising option [86]. Vaginal cleaning practices, 
douching [87–91], and smoking [92] are also linked to BV risk. 
Many of these factors influence vaginal pH, which may alter the 
growth of lactobacilli and BV-associated bacteria. A pH of >5 is 
permissive to the growth of many nonacidophilic bacteria. One 
hypothesis is that the production of biogenic amines by certain 
taxa may allow them to competitively colonize the vagina by 
mitigating the protective effects of low pH, thus increasing the 
risk of BV development [93]. Similarly, the failure of metroni-
dazole to suppress BV bacteria (possibly due to biofilms or re-
sistant strains) following treatment appears to have a negative 
impact on CTV-05 colonization.

Although transitions between L.  crispatus and L.  iners-
dominated communities occur, temporal studies of the VMB 

have shown that they tend to be mutually exclusive, suggesting 
competition for the same niche [94]. The L.  iners-dominated 
community is relatively unstable and more likely to transition 
to BV. L.  iners may suppress CTV-05 colonization in some 
women or possibly facilitate BV-associated bacteria. In these 
cases, selective inhibition of L.  iners may potentially improve 
L. crispatus colonization and clinical benefit [95].

As part of our ongoing effort to understand factors that in-
fluence BV recurrence, DNA and RNA sequencing are being 
conducted to analyze microbial content and gene expres-
sion profiles are investigating changes in the VMB during 
LACTIN-V treatment. Ultimately, these data will be combined 
with vaginal cytokine and chemokine data and clinical meta-
data to understand why some women are colonized well with 
CTV-05, while others are not. This multiomic approach is ex-
pected to provide insights into biomarkers to potentially cus-
tomize the dosing regimen or inform on patient stratification. 
These approaches may identify molecular signatures of strains 
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of L. crispatus (or other species) that might complement CTV-
05 and be incorporated into a second-generation product. New 
insights into the VMB indicate that thousands of L. crispatus 
strains may exist, and it is possible that some may colonize 
better or have additional beneficial features [96].

While most women are readily colonized with CTV-05 after 
successful metronidazole treatment and respond favorably to 
intermittent LACTIN-V administration, others may need more 
aggressive BV treatment, or a change in the frequency or dura-
tion of LACTIN-V dosing. In the absence of an approved LBP to 
optimize the VMB and prevent recurrent BV, clinicians may po-
tentially consider recommending hormonal contraception, boric 
acid, condom-protected sex, partner treatment, and abstaining 
from vaginal douches and smoking to reduce risk of recurrence.

LACTIN-V represents the first microbiome-based LBP to 
exhibit significant efficacy in preventing BV recurrence in a 
rigorous FDA-regulated clinical trial. BV is associated with a 
number of important clinical sequelae, preterm birth, low birth 
weight in newborns, STI and HIV susceptibility, and oncogenic 
HPV progression. Successful prevention of BV and optimiza-
tion of the VMB is expected to have a positive impact on these 
and other indications, and to usher in a new approach to im-
prove women’s health.
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