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Abstract
Flexible interactions between brain regions enable neural systems to adaptively transfer and process information. However,
the neural substrates that regulate adaptive communications between brain regions are understudied. In this human fMRI
study, we investigated this issue by tracking time-varying, task-evoked changes in functional connectivity between
localized occipitotemporal regions while participants performed different tasks on the same visually presented stimuli. We
found that functional connectivity between ventral temporal and the primary visual regions selectively increased during the
processing of task-relevant information. Further, additional task demands selectively strengthen these targeted connectivity
patterns. To identify candidate regions that contribute to this increase in inter-regional coupling, we regressed the task-
specific time-varying connectivity strength between primary visual and occipitotemporal regions against voxel-wise activity
patterns elsewhere in the brain. This allowed us to identify a set of frontal and parietal regions whose activity increased as a
function of task-evoked functional connectivity. These results suggest that frontoparietal regions may provide top-down
biasing signals to influence task-specific interactions between brain regions.

Key words: cognitive control, frontal cortex, functional connectivity, parietal cortex

Introduction
The human brain is a complex system comprised of interconnected
brain regions that are organized into distributed functional net-
works (Power et al. 2011; Yeo et al. 2011). This organizational struc-
ture offers a number of distinct information processing advantages.
For instance, local neural responses can be transmitted across the
network via structural connections, allowing the network to simul-
taneously support both local and integrated processes (Bullmore
and Sporns 2012). These communication patterns are reflected in
the dynamic activity among both local and distributed brain regions,
which en masse define the spatiotemporal organization of brain
activity (Honey et al. 2009). Past research suggests that these spatio-
temporal patterns of brain activity can be adaptively modulated to
enable flexible brain information processing, facilitating the execu-
tion of a range of complex behaviors (Shine and Poldrack 2017).

At the local level, neural responses within a functional brain
region often exhibit task-dependent changes. For example,
attending to sensory stimuli amplifies evoked-response ampli-
tudes associated with the attended stimuli (Kastner et al. 1999;
O’Craven et al. 1999; Druzgal and D’Esposito 2001), decreases
evoked-response amplitudes associated with the distractor sti-
muli (Gazzaley et al. 2005), and sharpens tuning properties in
cortical areas that represent the attended information (Fischer
and Whitney 2009; Serences et al. 2009; Chen et al. 2012).

At the network level, inter-regional communication has been
hypothesized to represent a key mechanism for brain informa-
tion processing (Bullmore and Sporns 2009), and can be quanti-
fied by calculating the statistical dependency between activity in
different brain regions (otherwise known as functional connec-
tivity). Accordingly, it was proposed that information flow can
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be selectively routed according to behavioral goals via feedback
(or top-down) signals (Miller and Cohen 2001). In support of this
hypothesis, attending to or memorizing visual stimuli has been
shown to increase functional connectivity between early visual
cortices that encode elementary visual features and higher level
visual areas that represent more complex stimulus properties
(Gazzaley et al. 2004; Al-Aidroos et al. 2012; Saalmann et al.
2012). Further, performing different behavioral tasks leads to dif-
ferent functional network configurations (Cole et al. 2014;
Krienen et al. 2014; Mattar et al. 2015; Cohen and D’Esposito
2016), which likely reflect selective network reorganization in
response to specific information processing demands.

The prefrontal cortex (PFC) and the posterior parietal cortex
have been proposed to provide top-down biasing signals to
influence sensory and motor processes (Miller and D’Esposito
2005; Cole et al. 2013). For example, attending to visual objects
increases neural synchrony between lateral PFC and brain
regions that represent the attended objects (Baldauf and
Desimone 2014), whereas memorizing visual objects increases
functional connectivity between frontoparietal regions and
occipitotemporal brain regions that represent the to be memo-
rized objects (Chadick and Gazzaley 2011; Kay and Yeatman
2017). Causal evidence indicates that increases in connectivity
between the PFC and distributed brain regions likely reflect the
PFC’s role in exerting biasing signals to modulate evoked responses
within local functional brain regions. For example, patients with
PFC lesions showed increased distractor-related evoked responses
in posterior cortices (Knight et al. 1999), and temporary disruption
of PFC function with transcranial magnetic stimulation (TMS) in
healthy individuals reduces stimulus-evoked responses ampli-
tudes and decreases the discriminability of multivariate response
patterns of activity within functional brain regions (Higo et al.
2011; Zanto et al. 2011; Lee and D’Esposito 2012).

In summary, the PFC and the parietal cortex can transmit
top-down biasing signals to a targeted specific brain region and
influence local evoked responses. In addition, functional con-
nectivity between brain regions can be flexibly configured in
response to specific information communication demands.
Although several mechanisms have been proposed to explain
top-down modulations of local evoked responses (Desimone
and Duncan 1995; Cohen and Maunsell 2009; Serences et al.
2009), few studies have explored how biasing signals can adaptively
modulate information flow along neural pathways at the network
level. Previous studies have used structural equation modeling and
dynamic causal modeling to model the contribution of feedforward
inputs from early-level visual areas into higher-level areas along the
visual pathways (e.g., middle temporal visual area and the posterior
parietal cortex), and found that the posterior parietal cortex and the
lateral PFC could enhance feedforward inputs to amplify responses
in connected regions (Buchel and Friston 1997; Friston and Buchel
2000; Stephan et al. 2008). These studies however only test a limited
number of cortical regions given the modeling constraint, and used
a single stimulus category (motion dots).

The goal of our study was to use a factorial design in combina-
tion with whole-brain regression approach to comprehensively
explore potential sources of top-down biasing signals that modu-
late task-evoked functional connectivity patterns. In this human
fMRI study, we used a time-varying functional connectivity
method (Shine et al. 2015) to estimate, with high temporal resolu-
tion, patterns of task-evoked functional interactions between pri-
mary and higher-level visual areas while subjects perform distinct
tasks on the same categories of visual stimuli. Based on predic-
tions from theoretical models as well as previous empirical obser-
vations, we hypothesized that different task demands can

selectively modulate functional connectivity patterns between
occipitotemporal areas to prioritize processing of task-relevant
information. Further, by investigating the relationship between
time-varying functional connectivity and whole brain activity, we
were able to localize regions that may influence task-evoked func-
tional connectivity patterns. Due to the correlational nature of our
approach, we cannot conclude directionality, and any region we
identified as putative sources of top-down biasing signals remain
to be confirmed by future causal manipulation studies.

Methods
Subjects

In total, 29 healthy adults subjects were recruited for this study.
Four subjects were excluded due to excessive head motion,
thus, we report data from 25 subjects (aged 18–35, mean =
21.22, standard deviation [SD] = 2.44, 15 males). All subjects
were right handed, had normal or corrected to normal vision
and reported no history of a neurological or psychiatric disor-
der. All patients provided written informed consent in accor-
dance with procedures approved by the Committee for the
Protection of Human Subjects at the University of California,
Berkeley.

Data Acquisition

Imaging data were acquired using a Siemens Tim/Trio 3 T scan-
ner and a 12-channel head coil located at the Henry H. Wheeler
Brain Imaging Center at University of California, Berkeley.
Structural images were acquired using a multiecho MPRAGE
sequence (TR = 2530ms; TE = 1.64/3.5/5.36/7.22ms; flip angle =
7°; field of view = 256 × 256, 176 sagittal slices, 1mm3 voxels; 2×
GRAPPA acceleration). Functional images were acquired using
an echo-planar sequence sensitive to blood oxygenated level-
dependent (BOLD) contrast (TR = 1500ms; TE = 25ms; flip angel =
70°; field of view = 256 × 256, voxel size: 4mm3 isotropic voxels
with 29 contiguous axial slices in descending order; no accelera-
tion). Each subject completed 24 runs of functional scans, each
run lasting 2min and 33 s (102 volumes each, total = 2448
volumes; total scan time approximately 75min). An LCD projector
projected visual stimuli onto a screen mounted to the head coil.
Psychophysics Toolbox Version 3 was used to present stimuli and
record responses and via a fiber-optic motor response-recording
device.

Experimental Tasks

In this fMRI experiment, subjects performed 2 different behav-
ioral tasks on sequentially presented pictures randomly drawn
from a set of 120 pictures of human faces and buildings.
Specifically, each subject completed 8 runs of a functional locali-
zer task, and 16 runs of experimental tasks (Fig. 1). The localizer
task was used to independently identify regions of interests
(ROIs) for the connectivity analyses. We used pictures of human
faces for localizing the fusiform face area (FFA) (Kanwisher et al.
1997), pictures of buildings for the parahippocampal place area
(PPA) (Epstein et al. 1999), and both categories for localizing the
primary visual cortex (VC). For the primary experiment, we
manipulated 2 experimental factors: task (categorization task vs.
1-back task) and the stimulus categories (faces vs. buildings). The
same stimuli set was used for all tasks. In the localizer task and
the categorization task, subjects were instructed to categorize
pictures presented (a face or a building). For the 1-back task, sub-
jects were instructed to detect occasional repetitions of one
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stimulus category in the presence of competing stimuli from
another category.

Each fMRI run contained only one task condition, and sub-
jects were visually presented with detailed task instructions
prior to the start of each run. All runs began with 3 s of initial
fixation, followed by 4 task blocks (20 s each) interleaved with 3
baseline fixation blocks (20 s each), and a 10 s final fixation
block (Fig. 1A). Each block started with a 2 s initiation cue. Task
blocks consisted of 12 trials of stimuli. Each trial started with
an image presented centrally on screen for 500ms, immedi-
ately followed by a 1 s of fixation. For all tasks, subjects used
their left or right index finger to respond. Specifically, in some
runs subjects were asked to use their right index finger to
respond to faces, left index finger for buildings, and vice versa
for other runs. The response-mapping rules were randomized
and balanced across tasks and runs.

For the localizer task, pictures of human faces or buildings
were presented, and subjects were required to make a button
press with the right or left index finger to identify the category
of the picture presented (face or building). For the 1-back task,
images presented were composited pictures of semitransparent
faces overlapped with semitransparent buildings (Fig. 1). Prior to
the start of each 1-back run, subjects were visually instructed to
attend to a target category (faces or buildings), and detect the
occasional back-to-back stimulus repetitions of the attended tar-
get category. Within each block, there were 2–4 repetitions for
both stimulus categories, and the presentation sequences were
randomized separately. Therefore, subjects were instructed to
follow the response-mapping rule and make a button press only
to the repeated stimuli of the attended category (2–4 responses
per block), while ignoring luring repetitions from the potentially
distractor category. For the categorization task, images were

semitransparent faces or buildings overlaid on semitransparent
phase-scrambled faces or buildings from the opposite category.
The phase-scramble procedure ensured that elementary visual
properties of stimuli used were equivalent between the 1-back
and categorization tasks. There was no stimuli repetition in the
categorize task, instead subjects were required to follow the
response-mapping rule and make a button press with the right
or left index finger to indicate the stimulus category of every
presented picture (12 responses per block). Luminance for all
pictures was equalized using the SHINE toolbox (Willenbockel
et al. 2010). A feedback indicating the accuracy of responses
from the previous run was given at the end of each run.

The functional and anatomical architecture of the visual
system indicates that when perceiving visual objects, informa-
tion related to elementary visual features encoded in primary
VC is transmitted to anterior ventral temporal cortices that are
sensitive to high-order, categorical information (Van Essen
et al. 1992; Lerner et al. 2001; Kanwisher 2010). We hypothe-
sized that the interaction between tasks (1-back vs. categorize)
and stimuli categories (faces vs. buildings) would induce dis-
tinct task-evoked functional connectivity patterns among occi-
pitotemporal brain regions. Based on results from previous
studies (Gazzaley et al. 2004; Al-Aidroos et al. 2012), we hypoth-
esized that the stimulus category will establish a specific func-
tional interaction between the primary VC and the higher order
visual areas more selective to a stimulus category (i.e.,
increased connectivity with FFA when processing faces vs. PPA
when processing buildings; Fig. 1B). Different task conditions
(1-back vs. categorize) will further modulate the strength of this
functional connectivity. Both the categorization and the 1-back
tasks require the primary VC to feedforward elementary visual
features to higher-level visual areas (i.e., FFA/PPA) that

Figure 1. (A) Structure of the task and trial timing. (B) We hypothesized increased connectivity between VC and PPA when processing buildings, between VC and FFA

when processing faces. (C) We hypothesized that patterns and strength of connectivity will be further modulated by task demands, and our goal was to localize

potential sources that influence task-evoked functional connectivity.
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represent category-specific information. We hypothesized that
the 1-back condition will induce additional feedback and feed-
forward interactions and further modify functional connectiv-
ity in a task-specific manner. Specifically, successfully
performing the 1-back task requires memorizing visual features
of the previously presented stimuli in absence of the external
stimuli, and comparing the memorized features with those in
the newly presented picture. This could be achieved by sustain-
ing the interaction between elementary and category-specific
visual information, and induce recurrent feedback and feedfor-
ward interactions between the primary VC and FFA/PPA.
Additionally, because the categorize task utilized phase scram-
bled images for the stimuli from the opposite category, there is
less competition between categories for identifying the stimu-
lus identity. In contrast, the presence of competing distractors
from an opposite stimulus category in the 1-back task will
require biasing processes to enhance task-relevant information
and inhibit task-irrelevant information, biasing processes that
have been shown to not only modulate local brain activity
(Gazzaley et al. 2005), but also strength of functional connectiv-
ity between occipitotemporal regions (Al-Aidroos et al. 2012).
Our goal was to identify potential sources that modulate func-
tional connectivity patterns according to different task
demands (Fig. 1C).

Data Analysis

Preprocessing: Imaging data were processed using AFNI and FSL
(Cox 1996; Smith et al. 2004). Functional images were slice-time
and motion corrected (FSL’s slicetimer and MC-FLIRT), coregis-
tered to T1-weighted structural image using a boundary-based-
registration algorithm (FSL’s FLIRT), and warped to the MNI
template using FSL’s nonlinear registration (FSL’s FNIRT).
Functional data were then resampled to 2mm combining
motion correction and atlas transformation in a single interpo-
lation step. Data were then spatially smoothed with a 5mm
full-width-at-half-maximum Gaussian kernel (FSL’s SUSAN).
We then performed nuisance regression using ordinary least
squares regression (AFNI’s 3dDeconvolve) with the following
regressors: polynomial fits for removing linear drifts, 6 rigid-
body motion parameters and its derivatives, averaged signal
from white-matter and ventricles ROIs created using freesur-
fer’s tissue segmentation tool (Dale et al. 1999). To minimize
motion confounds, we calculated frame-wise displacement (FD)
(Power et al. 2012), and volumes with FD > 0.2 were removed
prior to all regression and MTD analyses to reduce variances
associated with high noise timepoints (Power et al. 2013). No
interpolation was performed. Subjects with > 25% volumes
removed in any given run were also excluded (n = 4) because
we wanted to preserve enough clean samples to properly esti-
mate the coefficient for each regressor.

ROI analyses: After preprocessing, we performed a general-
ized linear model (GLM) analysis of linear regression at each
voxel, using generalized least squares with a voxel-wise ARMA
(1,1) autocorrelation model (AFNI’s 3dREMLfit). Finite impulse
response (FIR) basis functions were used to estimate the mean
stimulus-evoked response amplitudes during task blocks, sepa-
rately for each condition (localizers, categorize and 1-back con-
ditions crossed with stimulus categories). Specifically, for every
condition, a total of 20 FIR regressors were used to model 30 s
of averaged block activities. Because each task block lasted 20 s,
this model modeled 10 s out beyond the end of each task block
to fully capture the rise and fall patterns of stimulus-evoked
activities. Using data from the localizer runs, we then defined

the FFA/PPA using the top 255 voxels (size equivalent to a
sphere with 8mm radius) that were most selective for faces
(face blocks > building blocks) and buildings (building blocks >
faces blocks) within previously defined FFA/PPA ROIs (Julian
et al. 2012). We defined the early VC ROI using the top 255 most
active voxels within an anatomically defined ROI of each indi-
vidual subject’s calcarine sulcus (Destrieux et al. 2010). To ana-
lyze differences in stimulus-evoked response amplitudes, for
each ROI we performed a 3-way within subject analysis of vari-
ance, crossing conditions (1-back vs. categorize), stimulus cate-
gories (faces vs. buildings) and time (21 volumes within each
task block).

Functional connectivity analyses: Our goal was to localize poten-
tial sources of top-down biasing signals that modulate task-
evoked functional connectivity patterns. Achieving this goal
requires a method that can estimate temporal changes in connec-
tivity patterns under different task conditions, which can then be
used in a regression model to localize regional changes in brain
activity that covary with temporal changes in connectivity esti-
mates. Thus, we utilized a time-varying functional connectivity
metric, Multiplication of Temporal Derivatives (MTD) (for details
see Shine et al. 2015), to estimate time varying connectivity
strength between VC and PPA/FFA under task conditions. Prior to
preforming all connectivity analyses, stimulus-evoked responses
were regressed out from the preprocessed data, and residuals
were used to assess task-evoked functional connectivity indepen-
dent of shared variances between ROIs (Norman-Haignere et al.
2012; Cole et al. 2014; Gratton et al. 2016). This additional FIR
regression was performed to minimize the influence of mean
task-related stimulus-evoked activation on task-evoked func-
tional connectivity, while retaining the residual trial-by-trial fluc-
tuations in the time-series that contributes to task-evoked
functional connectivity. A block design in combination with FIR
modeling was chosen because block design summates stimulus-
locked hemodynamic responses, which improves the power to
detect stimulus-evoked activity (Bandettini and Cox 2000; Liu
et al. 2001). Further, a data-driven FIR model does not assume the
shape of stimulus-evoked responses, which is better at capturing
different hemodynamic response profiles across brain regions.
This mixed design reduces residual variance related to stimulus-
induced evoked responses. We also modeled trail-level stimulus-
evoked activity using 5 basis functions generated by FSL’s linear
optimal basis set (Woolrich et al. 2004), and results were compa-
rable to those analyzed with FIR modeling. Across subjects, the
mean correlation between residual timecourses from FIR and
basis function models was 0.95 (SD = 0.08). Finally, for compari-
son we also performed time-varying functional connectivity anal-
ysis on data without FIR regression (Supplementary Fig. S1).

To perform MTD analysis, we first calculated the first order
temporal derivatives (dt) of each time-series extracted from
ROIs, and then normalized each data point by dividing each
derivative by the SD of the whole time-series. We then multi-
plied dt scores to calculate MTD scores between ROIs. Positive
MTD scores reflect synchronized coupling between ROIs,
whereas negative MTD scores reflect out-of-synch decoupling.
Similar to a Pearson correlation analysis, the MTD values can
be averaged across time and be interpreted as static functional
connectivity strength, whereas the time-varying MTD scores
reflect dynamic changes in functional connectivity.

Because MTD scores of a single time point could be suscepti-
ble to high-frequency noise, we further calculated moving aver-
age on MTD scores using different moving average window
lengths (Shine et al. 2015). To determine the most effective win-
dow length for detecting task-evoked functional connectivity
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(i.e., connectivity between time-series that occurred primarily
within task-blocks), we simulated time-series (Fig. 2A) that con-
tained: (1) first order correlations over the entire task (task and
resting blocks); and (2) second order correlations that occurred
only during the task blocks (i.e., task correlations). We ran 5000
iterations of this simulation and calculated the MTD across a
range of moving average window lengths from 10 to 100 volumes.
We then determined the effect size of the difference between the
task-evoked and resting correlation time-series (Fig. 2B). Moving
average window with the length of 15 volumes showed the maxi-
mal effect size for differentiating first and second order functional
connectivity. Therefore, all results were presented using a moving
average window of 15 volumes, but we also explored a range of
windows lengths (1–25). Importantly, MTD time-series for each
condition can be used as additional regressors in the GLM analysis
to localize potential sources of signals that modulate task-evoked
functional connectivity patterns. We also performed seed-based
connectivity analyses by including the mean signals extracted
from FFA, PPA, VC as additional regressors along with all MTD
regressors in the same GLM model.

Whole-brain GLM maps of each individual subject’s MTD
regressors were then submitted to group analysis contrasting
the effects of condition (1-back vs. categorize) and its interac-
tion with stimulus relevance (relevant stimuli, e.g., VC-FFA
connectivity during attend to face condition, vs. irrelevant sti-
muli, e.g., VC-PPA connectivity during attend to face condition).
Group level analysis was performed with a linear mixed effects
model at each voxel, using generalized least squares with a
local estimate of random effects variance (AFNI’s 3dMEMA). To
correct for multiple comparisons, we performed a nonparamet-
ric randomized permutation test to empirically derive the mini-
mum cluster size that reached a corrected family-wise error
rate of 0.05. Briefly, we randomly permuted the task condition
(1-back vs. categorize) and recalculated the linear mixed effect
model 1000 times. For each random permutation, we calculated
the maximum cluster size that contained spatially contiguous
voxels that exceeded the cluster forming threshold of t(24) =
2.06 (P < 0.05). We then pooled the results to derive an empiri-
cal null distribution of cluster sizes. This is the “null”

distribution that satisfied the null hypothesis because task con-
ditions were randomly assigned for each permutation, there-
fore, effects can only occur by chance. The value that was
greater than 95% of values in the null distribution was used to
determine the cluster size that reached a corrected family-wise
error rate of 0.05. For all group analyses, we report corrected
results using the cluster forming threshold of t(24) = 2.06 and
corrected cluster size (corrected cluster size for MTD regressors
were 688 contiguous 2mm3 voxels, for FFA/PPA seed regressors
were 701 voxels, for VC seed regressors were 849 voxels). All
unthresholded statistic maps have been uploaded to the
NeuroVault database (http://neurovault.org/collections/2474/).
The associated maps from seed-based regressors were submit-
ted to group analysis using the same procedure.

Connectivity and stimulus-evoked responses: We tested the rela-
tionship between MTD estimates and stimulus-evoked response
amplitudes by calculating its correlations across subjects. The
amplitudes of each condition’s stimulus-evoked responses were
calculated using area-under-the-curve of FIR estimates. We fur-
ther correlated subject-by-subject seed-based connectivity
strength estimates (Pearson correlations with FFA/PPA) from
selected frontoparietal ROIs with stimulus-evoked response
amplitudes. These ROIs were created by creating a 5mm radius
sphere centered on peak voxels in each significant spatial cluster
that showed significant connectivity with FFA/PPA (right inferior
precentral sulcus: x = 20, y = −8, z = 56; right insula: x = 42, y =
24, z = 0; right intraparietal sulcus: x = 26, y = −58, z = 60; left
middle frontal: x = 18, y = −36, z = 50).

Results
Behavioral Results

Behavioral performance for the categorization task was near ceil-
ing for both faces and buildings (mean accuracy for faces = 0.96,
SD = 0.08; mean accuracy for buildings = 0.96, SD = 0.06; mean
RT for faces = 543ms, SD = 99ms; mean RT for buildings =
557ms, SD = 109ms). Accuracy for detecting repetitions in the
1-back condition was below ceiling, and no significant differ-
ence was found between faces and buildings (mean accuracy
for faces = 0.71, SD = 0.16; mean accuracy for buildings = 0.74,
SD = 0.16; mean RT for faces = 745ms, SD = 112ms; mean RT
for buildings = 693ms, SD = 100ms; t-test for accuracy: t[24] =
1.07, P = 0.29; t-test for RT: t[24] = 7.39, P = 1.43 × 10−7). The
accuracy for 1-back (only including repeating stimuli) was sig-
nificantly lower when compared with the categorize task (faces:
t[24] = 6.71, P = 7.27 × 10−7; buildings: t[24] = 1.02, P = 1.02 × 10−7).
Similarly, reaction time for 1-back task was significantly slower
when compared with the categorization task (faces: t[24] = 13.59,
P = 7.17 × 10−13; buildings: t[24] = 8.39, P = 1.45 × 10−8).

Stimulus Evoked Responses

We found increased stimulus-evoked responses in VC for all task
conditions (Fig. 3A, main effect of factor volume: F[1 2084] = 9.38,
P = 0.0022), but no significant condition by category interaction
(F[1 2084] = 0.31, P = 0.56). We found significant condition by
category interactions in both the FFA and PPA (Fig. 3B,C; FFA: F
[1 2084] = 4.21, P = 0.04; PPA: F[1 2084] = 4.87, P = 0.027).
Specifically, averaged across time points within task blocks,
faces elicited stronger stimulus-evoked responses in FFA com-
pared with buildings (t[24] = 11.71, P = 1.82 × 10−11), whereas
buildings elicited a stronger responses in PPA compared with
faces (t(24) = 11.61, P = 2.18 × 10−11). Further, for both the FFA
and PPA, the 1-back condition elicited stronger stimulus-evoked

Figure 2. Simulation for determining optimal smoothing window. (A) Simulated

time-series that have r = 0.8 correlations for both task and resting blocks (first

order) or only during task blocks (second order). (B) Effect size of differentiating

between first and second order correlations.
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responses compared with the categorize condition (FFA: t[24] =
4.29, P = 0.00032; PPA: t[24] = 5.39, P = 1.95 × 10−5).

Time-Varying Functional Connectivity

Based on theoretical models and previous findings (Miller and
Cohen, 2001; Al-Aidroos et al. 2012), we predicted that func-
tional connectivity between VC and FFA/PPA should be modu-
lated by stimulus category and task conditions. That is, when
subjects attend to faces, functional connectivity between VC
and FFA should increase compared with when they attended to
buildings. In contrast, attention to buildings should increase
connectivity between VC and PPA when compared with atten-
tion to faces. Further, when compared with the categorize task,
the 1-back task should induce additional feedback and feedfor-
ward interactions between VC and FFA/PPA to maintain feature
representations and compare with the newly presented stimu-
lus, and to enhance task-relevant information in the presence
of potentially distracting stimuli from the opposite stimulus
category. Consistent with our predictions, we found that func-
tional connectivity (calculated using time-averaged MTD
scores) between task-related brain regions was modulated by
both task and stimuli relevance (Fig. 4A). Specifically, functional
connectivity between VC and PPA was stronger for the 1-back
attend to buildings condition compared with the 1-back attend
to faces condition (t[24] = 6.51, P = 1.18 × 10−6) and categoriza-
tion conditions (1-back buildings vs. categorize faces: t[24] =
5.98, P = 4.4 × 10−6; 1-back buildings vs. categorize buildings: t[24]
= 3.27, P = 0.0032). Functional connectivity between VC and FFA
was significantly stronger for the 1-back attend to faces condi-
tion when compared with the 1-back attend to buildings condi-
tion (t[24] = 4.44, P = 0.00017) and categorize building condition
(1-back faces vs. categorize faces: t[24] = 1.98, P = 0.059; 1-back
faces vs. categorize buildings: t[24] = 3.10, P = 0.003). Connectivity
between VC and FFA was stronger than VC and PPA under the
1-back attend to faces condition (t[24] = 4.17, P = 0.00034). No sig-
nificant difference was found for connectivity between VC-PPA

and VC-FFA under the 1-back attend to buildings condition (t[24] =
0.17, P = 0.86). These results were consistent across a range of
smoothing windows we explored, ranging from 1TR to 25 TRs
(Fig. 4B), and were further consistent with connectivity strength
estimated using Pearson correlations (Fig. 4C). Furthermore, we
did not find any significant correlations between evoked-
response amplitudes and MTD estimates. MTD estimates for
1-back conditions were moderately correlated with subject’s
accuracy on the 1-back task (1-back attend to face: r[24] = 0.37,
P = 0.075; 1-back attend to buildings r(24) = 0.44, P = 0.031).

Relationship Between Task-Evoked Time-Varying
Functional Connectivity and Regional Activity

To localize potential sources of top-down biasing signals for modu-
lating task-evoked functional connectivity, we entered each condi-
tion’s time-varying MTD scores as additional regressors into a
whole-brain GLM analysis and contrasted 1-back versus categori-
zation conditions. We found that a distributed set of frontoparietal
regions that showed increased activity that was positively associ-
ated with changes in task-evoked connectivity for processing task-
relevant stimuli (i.e., averaging MTD estimates of VC-FFA for
attend faces condition and VC-PPA for attend buildings conditions).
These regions included bilateral superior frontal sulcus, the left
middle frontal gyrus, bilateral dorsal medial frontal cortex, bilateral
precuneus, and bilateral intraparietal sulcus (Fig. 5A). This indi-
cates that increased activity in these frontal and parietal regions is
associated with increases in connectivity strength between VC and
higher order visual areas for processing the attended visual stimuli
as a function of task-demands. No significant clusters of activation
associated with processing of task-irrelevant stimuli were found
after correcting formmultiple comparisons.

Seed-Based Functional Connectivity

It is possible that the frontoparietal brain regions identified in
the previous analysis were simultaneously interacting with

Figure 3. Stimulus-evoked responses. Y axis indicates stimulus-evoked response magnitude, X axis indicates the duration of task blocks. Shaded areas represent 1 SE

(standard error).
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FFA/PPA and VC, but not specifically modulating functional
connectivity strength between FFA/PPA and VC. To rule out this
possibility, we performed additional seed-based functional
connectivity analyses to localize brain regions that showed
task-driven changes in connectivity (contrasting 1-back vs. cat-
egorize conditions) with FFA/PPA/VC. For functional connectiv-
ity analysis with FFA and PPA (Fig. 5B), we found increased
connectivity with bilateral inferior precentral sulcus, the right
inferior frontal gyrus, bilateral insular, the left intraparietal sul-
cus, bilateral occpitotemporal cortices, and the thalamus. We
further found decreased connectivity with bilateral superior
frontal sulcus, bilateral central sulcus, the dorsal medial PFC,
bilateral inferior parietal cortex, bilateral medial occipital cor-
tex, bilateral superior temporal cortex, and bilateral medial
parietal cortex. For functional connectivity analysis with VC
(Fig. 5C), we found increased connectivity with bilateral occipi-
tal, inferior temporal, posterior parietal, thalamus, and caudate.
We further found decreased connectivity with bilateral central

and precentral sulcus, superior temporal, superior frontal, insu-
lar, and medial parietal cortices. Importantly, except the intra-
parietal sulcus, most brain regions that showed increased
functional connectivity with FFA/PPA/VC (Fig. 5B,C) exhibited
little overlap with brain regions that showed a positive associa-
tion with time-varying functional connectivity patterns (Fig.
5A). Instead, brain regions that showed decreased functional
connectivity with FFA/PPA overlapped with brain regions that
showed a positive association with time-varying functional
connectivity patterns. No significant correlations were found
between seed-based connectivity estimates and behavioral
performance.

Control Analyses

To further investigate the effect of regressing out variance
associated with stimulus-evoked responses, we repeated the
time-varying functional connectivity analysis on data without
FIR regression. We found that for both with and without FIR
regression of stimulus-evoked responses, the results showed
similar task by stimuli modulations of functional connectivity
strength between VC and FFA/PPA. However, task differences
were slightly weaker without FIR regression (Supplementary
Fig. S1A). When comparing whole-brain regression map associ-
ated with task-evoked functional connectivity patterns, we
found that both with and without FIR regression, results
showed increased activity in the bilateral intraparietal sulcus
and precuneus associated with task-evoked changes in func-
tional connectivity between VC and FFA/PPA. In addition, anal-
ysis without FIR regression showed additional significant
clusters in the left central and postcentral sulcus, and the right
posterior temporal regions. Unlike our main analysis with FIR
regression (Fig. 5A), data without FIR regression did not show
increased activity in the PFC (Supplementary Fig. S1B).

Another potential concern is that the results presented in
Figure 5A could be driven by covariations in residual stimulus-
evoked activities that were not properly removed in our FIR
regression. To demonstrate the specificity of our results, we
selected 2 ROIs for further analysis (right inferior frontal: x =
−40, y = 26, z = 23, right posterior parietal, anterior to the intra-
parietal cluster presented in Fig. 5A: x = −29, y = −51, z = 49).
These 2 ROIs showed significant stimulus-evoked responses
but did not showed increased activities in Figure 5A. We
repeated the time-varying functional connectivity analysis, and
regressed task-evoked functional connectivity patterns
between those 2 ROIs against whole-brain activity (similar to
those performed for Fig. 5A). This analysis yielded a distinct
map (Supplementary Fig. S2), and only showed significant
increases in the right insular, anterior frontal, and superior
parietal cortices. This result suggests that regions presented in
Figure 5A were specifically interacting with task-evoked func-
tional connectivity patterns between VC and FFA/PPA, and not
likely driven by covariations in residual stimulus-evoked
activities.

Discussion
In this study, we investigated neural mechanisms underlying
top-down biasing signals that modulate task-evoked, time-
varying functional connectivity. In doing so, we found that
task-related changes in functional connectivity patterns selec-
tively interact with ongoing activity in a distributed system of
frontal and parietal cortical regions. As such, our results sug-
gest that these frontoparietal regions may be the source of

Figure 4. Task-evoked functional connectivity. (A) Box-plots of functional con-

nectivity strength (MTD scores) between VC and FFA/PPA under different exper-

imental conditions. Box plot percentiles (5th and 95th for outer whiskers, 25th

and 75th for box edges, and median for horizontal line with the median) were

calculated across subjects separately for each condition. Single dots represent

values outside of 5th and 95th percentiles. (B) MTD scores across a range of

smoothing window sizes. Thick solid lines represent the mean MTD values of

each condition. Shaded areas represent 1 SE. (C) Box-plots of Pearson correla-

tions calculated between VC and FFA for different conditions.
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signals that bias information communication along functional
pathways in response to task demands. This network level
mechanism likely compliments other local mechanisms such
as bias competition (Desimone and Duncan 1995), noise corre-
lation (Cohen and Maunsell 2009), and tuning change (Serences
et al. 2009), in support of flexible and adaptive behaviors.

Previous studies of patients with focal brain lesions or
healthy individuals following TMS have provided ample evi-
dence that frontal and parietal cortices provide top-down bias-
ing signals that influence activity in posterior sensory cortices
(Armstrong and Moore 2007; Ruff et al. 2008; Feredoes et al.
2011; Higo et al. 2011; Zanto et al. 2011; Lee and D’Esposito
2012; Gregoriou et al. 2014; Heinen et al. 2014; Lorenc et al.
2015). For example, TMS of dorsal lateral PFC (Feredoes et al.
2011), inferior frontal cortex (Zanto et al. 2011, Lee and

D’Esposito 2012), frontal eye fields (Heinen et al. 2014), and
intraparietal sulcus (Ruff et al. 2008) can modulate activity in
occipitotemporal regions. In addition, stimulating the frontal
cortex modulates the discriminability of the neural population
code in occipitotemporal cortices (Armstrong and Moore 2007;
Lee and D’Esposito 2012; Lorenc et al. 2015). Likewise, lateral
PFC lesions reduce the attentional effect on stimulus-evoked
response amplitudes and neural synchrony in V4 (Gregoriou
et al. 2014). Studies have further demonstrated that frontal
regions can selectively interact with specific brain regions in a
task dependent manner (Gregoriou et al. 2009; Morishima et al.
2009; Baldauf and Desimone 2014). In aggregate, these studies
suggest that one major function of frontoparietal cortices is to
modulate the response amplitudes and tuning in functional
brain regions. These empirical findings support the theory of

Figure 5. Potential sources of top-down biasing signals. (A) Regions that showed significant task modulations in interactions with task-evoked connectivity patterns

between VC and FFA/PPA. This map was generated using a smoothing window of 15 volumes. (B) Regions that showed significant task-related changes in functional

connectivity with local FFA/PPA activity. (C) Regions that showed significant task-related changes in functional connectivity with local VC activity. For all graphs, clus-

ter forming threshold P < 0.05, corrected family-wise error rate = 0.05.
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biased-competition (Desimone and Duncan 1995), which pro-
poses that selection of goal-relevant information in specialized
brain regions are enhanced by top-down biasing signals.

In addition to context-dependent changes in local brain
responses, functional connectivity strength between task-
related regions has also been shown to exhibit task-dependent
changes (Gonzalez-Castillo et al. 2015; Gratton et al. 2016). The
principal contribution of our study is to localize potential
sources of biasing signals that modulate functional connectiv-
ity to several frontoparietal regions. These findings are further
consistent with the proposed function of lateral PFC and poste-
rior parietal cortex (Büchel et al. 1999; Friston and Buchel 2000;
Miller and Cohen 2001). There are several potential mecha-
nisms that could allow these regions to influence information
flow among different brain regions. First, inter-regional com-
munication has been proposed to be facilitated via temporal
coherence of neural oscillations (Fries 2015). Therefore, one
way to modulate inter-regional communication is to modulate
the synchronization of neural oscillations between brain
regions. It has been suggested that different classes of neural
oscillations (i.e., alpha-, beta-, gamma-band oscillations) could
be generated by distinct neurophysiological mechanisms
(Moore et al. 2010; Wang 2010), and the expression of neural
oscillations could be putatively controlled by neocortical inhibi-
tory interneurons (Cardin et al. 2009; Vierling-Claassen et al.
2010). This suggests that top-down biasing signals emanating
from frontoparietal cortices may influence cortical inhibitory
neurons, modulate properties of neural oscillations, and in turn
affect functional connectivity between brain regions.

A second potential mechanism could involve frontoparietal
regions acting on the thalamus or the thalamic reticular
nucleus (Wimmer et al. 2015), which in turn could modulate
corticocortical communication. In addition to relaying informa-
tion from peripheral sensory organs to the cerebral cortex, the
thalamus has also been proposed to mediate the exchange of
information between cortical regions through corticothalamic–
cortical pathways (Sherman 2016). For example, the pulvinar
nucleus synchronizes with distant cortical visual areas accord-
ing to attentional demands (Saalmann et al. 2012). This sug-
gests that the thalamus could receive top-down biasing signals
from frontoparietal cortices, and in turn be involved in regulat-
ing information communication between cortical regions
according in response to varying task demands. In our data, we
did not observe thalamic activity that related to functional con-
nectivity in visual regions, likely due to the reduced spatial res-
olution required by performing a whole brain analysis.

Another possibility is that changes in functional connectiv-
ity are down-stream effects induced by changes in local
evoked-response amplitudes and tuning properties. For exam-
ple, increased response amplitudes in one region could be the
primary driver of activity in a connected region. In our analyses
we removed the mean trial-evoked responses to alleviate the
potential concern that our findings are driven by correlated
increases in stimulus-evoked response amplitudes within the
overlapped receptive fields between VC/FFA/PPA, but not
changes in functional interactions. However, while FIR regres-
sion is effective in removing mean stimulus-evoked response
that is common across all task blocks, there will still be
stimulus-related activities that cannot be completely removed.
Similarly, our regression approach cannot reveal nonlinear
interactions between stimulus-driven and intrinsic brain activi-
ties. Thus, to further investigate the effect of stimulus-driven
responses on our results, we conducted several control analy-
ses. First, we correlated activity extracted from FFA/PPA/VC,

and observed that the frontoparietal regions that exhibited
increased static functional connectivity with FFA/PPA/VC (Fig.
5B,C) were different than the frontoparietal regions that corre-
lated with time-varying functional connectivity patterns (Fig.
5A). Further, to demonstrate the specificity of the frontoparietal
patterns we identified in Figure 5A were specifically covarying
with task-evoked functional connectivity between visual
regions, we repeated the same time-varying connectivity and
regression analyses on 2 frontoparietal ROIs that exhibited
task-positive responses. This analysis derived a distinct map
(Supplementary Figure 2), which suggests that the frontoparie-
tal activity we observed are likely not driven by residual
stimulus-evoked responses that are common across all task-
related ROIs. Finally, we found that estimates of time-varying
functional connectivity strength did not correlate with evoked
response amplitudes. Altogether, these results suggest the
mechanisms that modulate task-evoked connectivity may be
different from those that modulate localized evoked responses.

Since our results are correlative, we could not determine the
direction of interaction between frontoparietal regions and task-
evoked functional connectivity. It is possible that the frontoparietal
activity we observed reflects a read out mechanism for selecting
goal-relevant information, rather than a top-down biasing signal.
Given previous findings demonstrating frontoparietal regions as
the source of top-down biasing signals that modulate localized
evoked responses, it is likely that frontoparietal regions also pro-
vide a biasing signal that can modulate task-evoked functional
connectivity. TMS or lesion studies can directly test this prediction.

The frontoparietal regions we found to be correlated with
changes in functional connectivity patterns also overlapped
with brain regions previous reported as members of multiple
intrinsic functional networks, such as the putative frontoparie-
tal control network, the cingulo-opercular network, the dorsal
attention network, and the default mode network (Greicius
et al. 2003; Fox et al. 2006; Dosenbach et al. 2007; Seeley et al.
2007; Vincent et al. 2008). Each of these networks is proposed to
subserve distinct cognitive functions. For example, the cingulo-
opercular network is proposed to be involved in maintaining
task-set information (Dosenbach et al. 2008), processing stimu-
lus saliency (Seeley et al. 2007), or maintaining tonic alertness
(Sadaghiani and D’Esposito 2015). In contrast, the frontoparietal
network is proposed to be involved in trial-by-trial level adap-
tive control, such as performance feedback (Dosenbach et al.
2008), whereas the dorsal attention network is proposed to be
involved in directing attention to select goal-relevant stimuli
(Corbetta and Shulman 2002). Finally, the default mode net-
work is proposed to integrate information across perceptual
and motor systems in memory tasks (Vatansever et al. 2015). It
is likely that our task engages both sustained and transient
control processes that have been associated with these net-
works, and these control processes will in turn influence infor-
mation transfer between brain regions. Causal TMS or lesion
studies can determine if the different frontoparietal regions we
found exert distinct top-down biasing signals to differentially
modulate functional interactions under different contexts.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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