

UNIVERSITY OF CALIFORNIA,

IRVINE

GPU – Accelerated Finite Element Forward Solver in Diffuse Optical Tomography

THESIS

submitted in partial satisfaction of the requirements

for the degree of

MASTER OF SCIENCE

in Biomedical Engineering

by

Turkay Kart

 Thesis Committee:

Associate Professor Gultekin Gulsen, Chair

 Professor Min – Ying Su

Professor Frithjof Kruggel

2016

© 2016 Turkay Kart

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES ... iii

LIST OF TABLES .. v

ACKNOWLEDGMENTS ... vi

ABSTRACT OF THE THESIS .. vii

CHAPTER ONE INTRODUCTION ... 1

 1.1. Optical Properties of Tissue ... 4

 1.2. Modeling of Photon Propagation in a Medium 5

 1.3. Measurement Techniques for Diffuse Optical Imaging 7

 1.4. Image Reconstruction Procedures .. 10

 1.4.1. Numerical Solution of the Forward Problem 11

 1.4.2. Inverse Problem in DOT ... 14

 1.5. Motivation of Thesis ... 17

CHAPTER TWO GPU PARALLELISM WITH CUDA AND MATLAB 19

 2.1. Parallel Computing with CUDA ... 19

 2.1.1. Introduction ... 19

 2.1.2. CUDA Programming Model 20

 2.2. MATLAB's MEX Files with CUDA .. 25

 2.2.1. Description of MEX Files ... 25

 2.2.2. C MEX File Example .. 27

 2.2.3. Building CUDA C MEX File 28

CHAPTER THREE IMPLEMENTATION OF THE FORWARD MODEL.......................... 30

 3.1. MATLAB Implementation of the Forward Model 34

 3.2. CUDA C Implementation .. 35

CHAPTER FOUR SIMULATION RESULTS AND DISCUSSION 46

 4.1. Computational Accuracy of CUDA C Implementation 48

 4.2. Computational Efficiency of CUDA C Implementation 55

CHAPTER FIVE CONCLUSION AND FUTURE WORK ... 62

 5.1. Conclusion ... 62

 5.2. Future Work ... 63

REFERENCES ... 65

iii

LIST OF FIGURES

 Page

Figure 1 Intensity changes of source and detected light over time in continuous wave (CW)

technique ... 8

Figure 2 Intensity changes of source and detected light over time in frequency-domain technique

... 9

Figure 3 Intensity changes of source and detected light over time in time-domain technique 9

Figure 4 Representation of CPU and GPU architectures .. 20

Figure 5 Representation of thread hierarchy in CUDA programming model 22

Figure 6 Data processing flow for a basic CUDA C program .. 23

Figure 7 Data processing flow for a basic CUDA C MEX File ... 28

Figure 8 Example of the discretization of the domain Ω using a 2D FEM mesh of a 25 mm

diameter medium .. 30

Figure 9 Example of a 3D FEM mesh of a 25 mm diameter cylinder .. 32

Figure 10 Data processing flow of the forward model in MATLAB ... 34

Figure 11 Data processing flow of CUDA C implementation for the forward model 36

Figure 12 An example of source and detector placement in a 3D mesh and its corresponding 2D

slice at z=0. ... 48

Figure 13 Simulation results of photon density in logarithmic scale.. 51

Figure 14 Photon density profiles of CUDA C and MATLAB implementations over a line

starting from the point (12.5, 0, 0) to the point (-12.5, 0, 0) in standard scale 52

Figure 15 Photon density profiles of CUDA C and MATLAB implementations over a line

starting from the point (12.5, 0, 0) to the point (-12.5, 0, 0) in logarithmic scale 52

Figure 16 Results of the flux at the boundary which is measured by 16 equally distant detectors

... 54

iv

Figure 17 Simulation time of CUDA C implementation for meshes with different number of

nodes ... 56

Figure 18 Simulation time of MATLAB implementation for meshes with different number of

nodes ... 57

Figure 19 The speed-up graphs with CUDA C implementation for 3D meshes with different

number of nodes .. 58

Figure 20 Simulation time of CUDA C implementation for different number of sources 59

Figure 21 Simulation time of MATLAB implementation for different number of sources 59

Figure 22 The speed-up graphs with CUDA C implementation for different number of sources 61

v

LIST OF TABLES

 Page

Table 1 Sample CUDA code that adds two vectors X and Y of size N and the resulting vector is

Z of size N. .. 21

Table 2 Sample CUDA implementation of the processing flow after getting input vectors X and

Y of the code in Table 1 .. 24

Table 3 Example code in a MEX File to read the input data of various types 26

Table 4 Implementation of the C MEX File that finds the maximum element in the input vector.

... 27

Table 5 An implementation of the operation atomicAdd() for double precision floating point

provided by CUDA Toolkit Documentation... 39

Table 6 The features of the 3D meshes used in the simulation studies such as number of nodes,

tetrahedral elements and triangular elements at the boundary .. 47

vi

ACKNOWLEDGMENTS

I owe extreme gratitude to my thesis advisor Dr. Gultekin Gulsen. This thesis would not

be possible without his knowledge and guidance. Thank you for being a true advisor who

genuinely cares and encourages to succeed. I really appreciate that you worked with me to

overcome problems that I faced in my research no matter how busy you were. Thank you for

being a good friend and for giving insightful advice for my career and life.

I would like to thank my thesis committee member and our center director, Dr. Su. Thank

you for creating productive and cooperative atmosphere for research. Her guidance and

encouragement helped me to learn different areas of clinical research.

My special thanks to Dr. Frithjof Kruggel for agreeing to be on my thesis committee.

Thank you for teaching me basics of numerical methods, which helped me during my research.

His teaching skills are admirable and I really appreciate you for leading me to have excellent

understanding of subjects.

 I would like to deeply thank all my lab members. Thank you Farouk for training me on

the Finite Element method for DOT and for preparing me 3D meshes. Thank you Alex for

explaining me the theory of DOT and for always being there to help. Thank you Hakan for

helping me to understand analytical methods used in DOT. Also, I would like to thank all other

lab members for their contributions. Finally, thank you all for being good friends.

 Last but not least, my deepest thanks to my family. Thank you for your unconditional

love, patience, and emotional support throughout my entire educational path. I truly appreciate

your guidance and continuous encouragement that help me to shape all stages of my life.

vii

ABSTRACT OF THE THESIS

GPU – Accelerated Finite Element Forward Solver in Diffuse Optical Tomography

By

Turkay Kart

Master of Science in Biomedical Engineering

 University of California, Irvine, 2016

Associate Professor Gultekin Gulsen, Chair

Diffuse Optical Tomography (DOT) is a recently emerging imaging modality that

provides optical properties of a tissue. One of main challenges in DOT is the fact that it requires

modeling of light propagation in tissue, which is a time consuming and computationally

intensive task. However, this process can be accelerated by parallelizing the application. A

graphics processing unit (GPU) has the suitable architecture for this task. Therefore, the main

goal of this work is to implement a GPU-based solver for the forward problem of DOT. A Finite

Element method is utilized to solve the diffusion approximation of the photon transport model in

the project. CUDA's parallel architecture and MATLAB software are combined for the

implementation of GPU-based forward solver. Several simulations are performed to test

computational accuracy and efficiency of the solver. The results show that GPU-based

implementation provides a significant speed-up with high accuracy.

1

CHAPTER ONE

INTRODUCTION

 In clinical settings, there is a variety of non-invasive imaging techniques used for

diagnostics. Nuclear imaging and optical imaging are the imaging modalities that provide

functional and molecular information. Positron Emission Imaging (PET) and Single Photon

Emission Computed Tomography (SPECT) are two of the most commonly used clinical nuclear

imaging modalities. By injecting appropriate radioactive agents which bind to certain types of

tissues, SPECT and PET scan their distributions and show where they are concentrated in the

body [1]. However, both of them have potential health risks due to injected radioactive agents

and exposure to ionizing radiation. In addition, SPECT and PET procedures are very expensive.

 Compared to nuclear imaging, optical imaging has unique advantages of being non-

ionizing and having low-cost instrumentation. Diffuse Optical Imaging (DOI) is one of emerging

non-invasive optical imaging modalities that utilize near-infrared (NIR) light to probe biological

tissues. Intrinsic optical properties of tissue such as absorption and scattering coefficients or

refractive index spatially vary and DOI provides their spatial distribution with NIR

measurements along or near the boundary of tissue [2]. Since tissue absorption is lowest in the

NIR portion of the light spectrum, this window provides the highest depth penetration. When

recovering spatial distributions of intrinsic optical properties of the tissue in DOI, different

methods such as planar imaging, spectroscopic or tomographic techniques can be used. Although

planar imaging and spectroscopic technique are mostly used due to their simplicity, tomographic

techniques such as diffuse optical tomography (DOT) can be utilized for certain applications,

especially for thick tissue imaging.

2

DOI has been applied to clinical applications in several areas such as breast imaging,

functional brain imaging, muscle imaging, and joint imaging. One particular application area of

DOI is breast imaging for detection of breast tumors. Breast cancer is one of the leading causes

of cancer death for women in the United States. Early detection plays an important role to reduce

the chance of death from breast cancer. Invasive techniques such as surgical biopsies provide

effective breast cancer screening. However, 80 percent of U.S. women who undergo surgical

biopsies do not have cancer [3]. There are also non-invasive techniques in screening breast

cancer such as X-ray mammography, magnetic resonance imaging (MRI), ultrasound (US) and

positron emission tomography (PET) [4-6].

X-ray mammography is widely accepted as a very effective method in detection of breast

cancer. However, repeated screening with X-rays mammography may have serious effects due to

ionizing radiation. In addition, the specificity of X-ray mammography is modest, which may

result in false negatives [7]. Meanwhile, MRI provides high sensitivity [8] but it has a high cost.

On the other hand, using ultrasound (US) for detection of breast cancer may result in poor

screening due to the visualization difficulty of deeper lesions. In addition to these disadvantages

of X-ray mammography, MRI and US, they provide limited information about quantitative tissue

function and composition since they are mostly anatomical imaging modalities [9]. Lastly,

nuclear imaging modalities such as SPECT and PET can provide metabolic information but has

potential risks associated with injected radionuclides and exposure to ionizing radiation [6].

 Compared to these conventional imaging modalities mentioned above, NIR DOI for

breast imaging has several advantages. The first advantage of DOI is that, unlike X-ray

mammography and PET, it uses non-ionizing radiation. This is very beneficial for repetitive

breast cancer screening. The second advantage is that it can be very cost-effective and compact.

3

For example, a continuous wave (CW) breast imaging system can be relatively inexpensive and

portable. Last but not least, NIR DOI provides functional properties of the breast with high

sensitivity, which may help to detect breast cancer. However, high tissue scattering limits the

resolution of DOI, which is the main hurdle for the clinical translation of this imaging

technology. Extensive efforts have been spent to improve the resolution of DOI in recent years.

Another particular application area of DOI is functional brain imaging. NIR DOI can

monitor cerebral oxygenation and hemodynamics non-invasively using neuronal and

hemodynamic signals [3, 10-13]. DOI can measure hemodynamic signals by quantifying the

concentration of Hb and HbO2 [3]. This ability provides the blood volume and oxygen saturation

changes that are associated with brain functions. Functional magnetic resonance imaging (fMRI)

is also used for brain imaging. Although both fMRI and DOI utilizes similar signals, i.e. blood

oxygenation levels to measure brain activity, DOI has its own merits of being cost-effective and

portable, and most importantly of having high temporal resolution [3].

 In the following sections, optical properties of tissue, light-tissue interaction principles

and modeling of photon migration in turbid media will be described. Besides, three types of

measurement techniques used in DOI, namely continuous wave (CW), frequency- and time-

domain approaches will be introduced. In addition to these, image reconstruction procedures

involving forward and inverse problems will be introduced. Lastly, motivation of this thesis will

be presented.

4

1.1. Optical Properties of Tissue

 When light interacts with tissue, there are two main events observed: absorption and

scattering. Absorption occurs when the energy of a photon completely dissipated to tissue while

scattering refers to deviation in the direction of photons when they interact with tissue [14]. In

the NIR wavelength range, tissue intrinsic absorbers are mainly oxy- and deoxy-hemoglobin as

well as water and fat [3, 15-19]. The absorption spectra of these chromophores differ from each

other with respect to their spectral shape as well as the magnitude of the main absorption peaks

[20, 21]. The total absorption of tissue measured by the DOI is a linear combination of the

absorption of these chromophores for a particular wavelength. Hence, measurements at multiple

wavelengths can be used to quantify absolute tissue chromophore concentrations. This allows

estimation of total hemoglobin and oxygen saturation, which can be used to distinguish diseased

and normal tissue.

In addition to absorption, scattering is the other fundamental quantity that describes the

propagation of light. Cells in biological tissues contain a vast variety of molecules, which have

different indices of refraction. When the light propagates through tissue, it may redirect due to

the sharp transitions of the index of refraction. This is considered as scattering in the tissue.

Tissue scattering may be used to detect morphological and pathophysiological changes in tissue.

The scattering spectral features may vary due to a diseased breast tissue. Recent studies have

shown that there is substantial contrast in breast lesions relative to normal tissue, and that the

scattering contrast between malignant and benign processes appears to be significant [22].

On the other hand, DOI is greatly affected by the highly scattering nature of the

biological tissues. Most medical imaging modalities utilize other parts of the electromagnetic

spectrum, in which a sizeable portion of the photons propagate mainly in straight paths in the

5

tissue. By utilizing different methods to eliminate the scattered photons, these modalities can

provide high resolution images. Unfortunately, similar approaches cannot be applied to DOI of

thick tissues due to overwhelmingly dominant scattering. Instead, modeling of light propagation

in tissue is required to form an image from the measured optical data as described in the next

section.

1.2. Modeling of Photon Propagation in a Medium

 As mentioned earlier, photons can be absorbed or scattered as they propagate in a

medium. If the medium is only absorbing, Beer – Lambert's law can describe the portion of the

beam attenuated or absorbed as it propagates through this medium [14]. Beer-Lambert's Law

expressed below states that the photon intensity decreases exponentially when the light travels in

an absorbing medium.

𝐼(𝑥) = 𝐼0 × exp (−𝜇𝑎𝑥) (1)

where I is the photon intensity in the medium, I0 is the incident photon intensity, µa is the

absorption coefficient, and x is the distance travelled.

 In biological tissues, the incident NIR light is not only absorbed but also heavily scattered

[2]. Hence a more comprehensive modeling method is necessary for DOI. For this purpose,

Radiative Transfer Equation (RTE) is used to describe photon propagation in tissue [23-28],

6

(2)

where L(r,ŝ,t) is radiance, µa is the absorption coefficient, µs is the scattering coefficient, q(r,ŝ,t)

is the source term, and cn is the speed of the light in the tissue, which is typically c0 / 1.4.

Meanwhile, f(ŝ·ŝ´) is the phase function satisfying
4

ˆ ˆ() 1f s s d

 . The reduced scattering

coefficient µs´ is defined as (1)s sg , where g is the average cosine of the phase function

and typically 0.9 for biological tissues. The term g provides the degree of anisotropy of the phase

function [29].

 Unfortunately, RTE is difficult to solve both analytically and numerically [3]. When

scattering coefficient is more dominant than absorption coefficient (µs' >> µa) and the source

term is considered as isotropic, the photon propagation can be approximated by the diffusion

equation [28, 30-33]:

0

1 (,)
[() (,)] () (,) (,)a

n

r t
r r t r r t q r t

c t

 (3)

where Φ(r,t) is the angle – independent photon density, q0(r,t) is an isotropic light source term

and κ(r) is the diffusion coefficient expressed as:

7

𝜅(𝑟) =
1

3
(𝜇𝑎 + 𝜇𝑠

′) (4)

Also, apart from (µs' >> µa) condition, there is one more important condition required to be

satisfied for the diffuse approximation, which is the source - detector separation ρ >> 1 / µs' [3].

 Using Fourier transformation, the diffusion equation in frequency domain can be

obtained from Eq. (3) and the diffusion equation for the continuous light source can be derived

by setting modulation angular frequency ω to 0 [28]:

 ∇ ∙ [κ(𝑟)∇Φ(𝑟, 𝜔)] – [𝜇𝑎(𝑟) +
𝑖𝜔

𝑐𝑛
]Φ(𝑟, 𝜔) + 𝑞0(𝑟, 𝜔) = 0 (5)

 ∇∙[κ(r)∇Φ(r)] – µa (r) Φ(r) + q0(r) = 0 (6)

1.3. Measurement Techniques for Diffuse Optical Imaging

Diffuse optical imaging measures the reflected and/or transmitted light through the tissue

to obtain its optical properties. There are mainly three types of measurement techniques in DOI:

continuous wave (CW), frequency-domain and time-domain techniques.

 In continuous wave (CW) technique, intensity of the light source is constant and time

independent; hence the detected light level is also constant as shown in Fig. 1. The advantage of

CW technique is that it is a very straightforward technique and has low cost. Many different CW

systems have been reported in the literature [34-36].

8

Figure 1 Intensity changes of source and detected light over time in continuous wave (CW) technique

 Instead of a light source with a constant intensity, one with sinusoidally modulated

amplitude is used in the frequency-domain technique. As seen in Fig. 2, the detected light signal

has reduced amplitude and a phase shift compared to the source light. Although it is more

comprehensive than the CW technique, when it is compared to time-domain technique, the

frequency-domain technique is cheaper and its data acquisition time is shorter [37]. As the

frequency increases, the phase shift difference between normal and tumor tissue increases; on the

other hand, the sensitivity and accuracy of the detection system decreases [38]. As a final note,

there are some applications which combine CW and frequency-domain techniques [39-42]. This

improves the overall quantitative accuracy in chromophore concentration estimates [41].

9

Figure 2 Intensity changes of source and detected light over time in frequency-domain technique

 The last major measurement technique used in DOI is time-domain approach. It utilizes

short laser pulses, namely sub-nanosecond laser pulses, and records flight time of photons as a

function of time [43-45]. To do that, Temporal Point Spread Function (TPSF) is measured.

Time-domain technique is very expensive and slow, but it provides richer data than frequency-

domain technique and hence, leads to more accurate results [37].

Figure 3 Intensity changes of source and detected light over time in time-domain technique

10

1.4. Image Reconstruction Procedures

The main goal of DOT is to find the distribution of optical properties in the tissue through

image reconstruction. Image reconstruction in DOT is divided into two steps: forward and

inverse problems. In the forward problem, a photon density map is obtained using the photon

diffusion model. The forward problem can be used to estimate measurements for a medium with

known optical properties and geometry. Three types of computational methods can be used to

solve the forward problem of DOT:

 Analytical Methods: The Green's function is used to find optical properties of the tissue.

The source is considered as a spatial and temporal delta-function [46]. The main

drawback of analytical methods is that they provide solutions only for simple

homogeneous geometry with a regular shape, or for media with a single spherical

perturbation [33, 47].

 Monte-Carlo Methods: Monte-Carlo method is a computational method based on

statistics [48-50]. While absorption and scattering events are simulated, all the events for

each individual photon are recorded until the photon exits the medium or is completely

absorbed. A large number of photons are traced as they propagate the medium and the

sum of all events gives a statistical distribution. This method is very flexible and can be

applied for complex heterogeneous geometry. Although Monte-Carlo method provides

very accurate results, its main drawback is that it is computationally expensive.

 Numerical Methods: There are various numerical techniques: Finite Element Method

(FEM), Finite Difference Method (FDM), Finite Volume Method (FVM), Boundary

Element Method (BEM) [25, 39, 51, 52]. FEM is a very popular technique used to solve

the forward problem since it is flexible, suitable for complex heterogeneous geometry

11

and provides a good approximation. More importantly, it is much faster than Monte-

Carlo methods. The numerical solution in this work is obtained by FEM and will be

explained later in detail.

To generate an image, an inverse problem should be solved. For this purpose, the forward

problem is used. After assuming an initial optical property distribution, the difference between

calculated and measured photon densities along the boundary is minimized by an iterative

approach [2]. Reconstructing image in DOT is a challenging problem mainly due to inherently

ill-posed inverse problem and non-linearity of the transport model. In addition, it can be a

seriously ill-determined or under-determined problem, which means the number of independent

equations is much less than the number of unknowns. In other words, the number of independent

measurements is less than the number of pixels in the image of optical properties obtained in

DOT [46, 53]. Therefore, there is no unique solution for given detected signals, which implies it

is necessary to regularize the problem by iterative model-based linear algebra [53]. This is called

regularization. Due to the reasons stated above, image reconstruction in DOT requires intense

computations. As computers become more powerful, performing those computations become

easier. This helps researchers to develop fast and reliable computational methods.

1.4.1. Numerical Solution of the Forward Problem

The forward problem starts with the photon diffusion model expressed as in Eq. 3. The

photon diffusion model is a partial differential equation (PDE) and a numerical solution is

obtained in this work by using a finite element method (FEM) framework.

12

 In FEM framework, the photon diffusion equation can be written as [28]:

∫ 𝑑𝑥∇𝜑 ∙ (𝜅∇Φ) + ∫ 𝑑𝑥𝜇𝑎𝜑Φ𝑥 +
1

2Α
∫ 𝑑𝑠𝜑Φ𝑥 + 𝑑ΩΩΩ

𝑖𝜔

𝑐
∫ 𝑑𝑥𝜑Φ𝑥 = ∫ 𝑑𝑥𝜑𝑞0ΩΩ

 (7)

where 𝜑 is an arbitrary test function. The function Φ can be expressed as
1

N

j j

j

 where 𝜑𝑗

is a basis function, which is a piece-wise linear function, for the jth node. The distributions 𝜅 and

µa can be written as
1

N

k k

k

 and
1

N

a ak k

k

 .

To simplify the above diffusion equation in FEM framework, it can be represented as

[28]:

() x

i
A B C D Q

c

 (8)

where

(𝐴)𝑖𝑗 = ∑ 𝜅𝑘 ∫ 𝑑𝑥𝜑𝑘(∇𝜑𝑖𝑔∇𝜑𝑗)Ω

𝑁
𝑘=1 (9)

(𝐵)𝑖𝑗 = ∑ 𝜇𝑎,𝑘 ∫ 𝑑𝑥𝜑𝑘(𝜑𝑖𝜑𝑗)Ω

𝑁
𝑘=1 (10)

(𝐶)𝑖𝑗 = ∫ 𝑑𝑠(𝜑𝑖𝜑𝑗)𝑑Ω
 (11)

(𝐷)𝑖𝑗 = ∫ 𝑑𝑥(𝜑𝑖𝜑𝑗)Ω
 (12)

(𝑄)𝑖 = ∫ 𝑑𝑥(𝜑𝑖𝑞0)Ω
 (13)

1

N

x

x

 (14)

13

In the forward problem, the linear equations are solved to obtain the photon density

distribution Φ in the medium. To obtain the photon flux at the boundary, the photon density Φ is

needed. Robin boundary condition expressed below can be used to find the photon flux at the

boundary [28]. According to the Robin boundary condition, the total inward directed photon

current is zero on the boundary except at the regions of the source term.

(,)
(,) 2 () 0

r
r A r

n

 (15)

where n is the direction perpendicular to the boundary surface. A in Eq. 15 is the boundary

mismatch parameter related to light reflection at the boundary and determined by Fresnel's

reflections [23]. The photon flux J at the boundary can be expressed as [28]:

()
2

J r
n A

 (16)

For frequency-domain technique, the photon flux calculated at the boundary is a complex

number. There are mainly three types of data that can be obtained from the complex data at the

boundary [28]:

 Type I shows real and imaginary parts of the calculated photon flux.

 Type II shows amplitude and phase data of the calculated photon flux.

 Type III shows amplitude in log scale and phase data of the calculated photon flux.

14

Type III is commonly used for the reconstruction purposes because it scales dynamic

range of the amplitude data that can be in the range from 1 to 10-10 or even lower depending on

measurement conditions. In log scale, the amplitude data is in the range from 0 to -10, which is

similar to the level of dynamic range of the phase data. In addition, Type III makes it easy to see

the relation between the amplitude / phase data and RF signal data recorded from instruments

[28].

The diffusion equation provides reasonable solution accuracy for DOI owing to the

assumption that reduced scattering coefficient is more dominant than absorption coefficient in

most tissues, except in small regions of tissues such as cysts in the breast, cerebrospinal fluids in

the brain, and cynovial fluids in the joints [2]. It is mentioned that diffusion equation is an

approximation of Radiative Transfer Equation (RTE). Therefore, it is clear that RTE can provide

a more accurate solution than diffusion equation but RTE has a high computational complexity.

In addition, since the inverse problem explained in the next section has an iterative process,

simulation time for DOT reconstruction can be substantially high. A better way to have a more

accurate solution can be the use of high-order diffusion equations. However, as the order of the

diffusion equation increases, the computational cost increases.

1.4.2. Inverse Problem in DOT

Inverse problem in DOT involves finding the distribution of optical properties of the

tissue by minimizing difference between calculated and measured photon density at the

boundary. A least-square method can be used to achieve the minimization. Newton’s approach

can be employed in least-square minimization of the following objective function [2]:

15

𝐹(Φ,𝜅, 𝜇𝑎) = ∑ (Φ𝑗
𝑜 − Φ𝑗

𝑐)
2𝑀

𝑗=1 (17)

where Φ𝑗
𝑐 and Φ𝑗

𝑜 are the computed and observed photon densities at the boundary for j=1,

2,…,M. The following nonlinear system of equations can be obtained by using least-square

criteria [2]:

𝜕𝐹

𝜕χ1
=> −∑ (Φ𝑗

𝑜 − Φ𝑗
𝑐)
𝜕Φ𝑗

𝑐

𝜕χ1

𝑀
𝑗=1 = 0

𝜕𝐹

𝜕χ2
=> −∑ (Φ𝑗

𝑜 − Φ𝑗
𝑐)
𝜕Φ𝑗

𝑐

𝜕χ2

𝑀
𝑗=1 = 0 (18)

⋮

𝜕𝐹

𝜕χ2𝑁
=> −∑ (Φ𝑗

𝑜 − Φ𝑗
𝑐)

𝜕Φ𝑗
𝑐

𝜕χ2𝑁

𝑀
𝑗=1 = 0

where N is the total number of 𝜅 or 𝜇𝑎 parameters, and the symbol χ expresses 𝜅 or 𝜇𝑎. The

nonlinear system of equations in Eq. 18 can be written as follows:

�̂� = (𝑓1, 𝑓2, … , 𝑓2𝑁)
𝑇 (19)

where 𝑓𝑖 is the left-hand side of each equation for i = 1, 2, …, 2N. Then, Newton’s method gives:

16

𝐺∆𝜒 = −�̂� (20)

where ∆𝜒 = 𝜒(𝑛) − 𝜒(𝑛−1), n is the iterative step in Newton’s method, and

𝐺 =

(

𝜕𝑓1

𝜕𝜒1
𝜕𝑓2

𝜕𝜒1

𝜕𝑓1

𝜕𝜒2
𝜕𝑓2

𝜕𝜒2

⋯

𝜕𝑓1

𝜕𝜒2𝑁
𝜕𝑓2

𝜕𝜒2𝑁

⋮ ⋱ ⋮
𝜕𝑓2𝑁

𝜕𝜒1

𝜕𝑓2𝑁

𝜕𝜒2
⋯

𝜕𝑓2𝑁

𝜕𝜒2𝑁)

 (21)

After several calculations which are described in [2], �̂� and G functions can be derived as

follows:

−�̂� = 𝔍T ∙ b (22)

𝐺 = 𝔍T𝔍 (23)

where 𝔍 is the Jacobian matrix and b = (Φ1
𝑜 − Φ1

𝑐 ,Φ2
𝑜 − Φ2

𝑐 , … ,Φ𝑀
𝑜 − Φ𝑀

𝑐)T. Then, Eq. 20 can

be rewritten as:

𝔍T𝔍∆𝜒 = 𝔍T(Φ𝑜 − Φ𝑐) (24)

Regularization methods are used to overcome ill-posedness of the inverse problem due to the

matrix 𝔍T𝔍. Hence, Eq. 24 becomes

17

(𝔍T𝔍 + 𝜆𝐼)∆𝜒 = 𝔍T(Φ𝑜 − Φ𝑐) (25)

where I is the identity matrix and 𝜆 is the regularization parameter. There are many types of

algorithms to implement the inverse part of image reconstruction. An algorithm based on

Levenberg–Marquardt method is a common approach and it can solve the inverse problem

iteratively until the stopping criteria are satisfied [54, 55].

1.5. Motivation of Thesis

Long simulation time is one of main challenges in DOT since it requires the processing

of huge amount of data. Image reconstruction in DOT involves solving the forward model

iteratively. Since the total number of iterations is large, the total simulation time decreases as the

time to solve the forward model decreases. Thus, it is important to execute the DOT program

efficiently. However, when the DOT program is run on a central processing unit (CPU), it is

executed serially. One way to reduce the simulation time for the forward problem is to execute

the DOT program in parallel. Although we have multi-core CPUs which provide parallelism,

they are not enough to decrease this time-consuming procedure significantly. Graphics

processing units (GPU) have a design that is aimed to handle large number of tasks

simultaneously since they have a much larger number of cores. GPU's parallel execution of the

forward solver can provide considerable speed-up compared to CPU's serial execution. In this

work, we implement a GPU-based solver for the forward problem of DOT. To do that, CUDA's

parallel architecture and MATLAB are combined and a Finite Element method is used.

18

 We have two core goals for this project. Our first goal is to implement a Finite Element

forward solver for DOT on a GPU device. We aim to show that computations in GPU-based

forward solver are highly accurate when compared to a CPU-based forward solver. The second

core goal is to achieve a significant speed-up in simulation time of the forward solver. Smaller

simulation times for DOT can increase the applicability of DOT in clinical procedures.

 It is worth to mentioning an important implied outcome of speed-up with a GPU-based

implementation. Total simulation time of DOT is highly dependent on mesh complexity. For a

CPU-based implementation, coarse meshes are used to reduce the simulation time. However,

using coarse meshes may result in low accuracy. Therefore, mesh quality should be high so that

the mesh could be closer to continuous form, which provides more realistic results. Owing to

speed-up obtained with a GPU-based implementation, it is possible to use finer mesh for the

same amount of simulation time. In addition, the number of sources used is another factor that

increases the total simulation time. Hence, larger number of sources can be used in a GPU-based

implementation than that can be used in a CPU-based implementation for the same simulation

time.

19

CHAPTER TWO

GPU PARALLELISM WITH CUDA AND MATLAB

2.1. Parallel Computing with CUDA

2.1.1. Introduction

 Over time, the need for parallelism increased with the demand of computationally

intensive programs in several areas including the medical industry. As a result, programmers

have moved from serial to parallel programming to satisfy the computational needs. CPU

vendors started to produce multi-core CPUs to improve performance of applications by

parallelism. However, this was not enough to satisfy the need. Therefore, graphics processor unit

(GPU) have become a better candidate owing to larger number of execution cores. NVIDIA

introduced the Compute Unified Device Architecture (CUDA) programming model to develop

GPU parallelized applications [56-59]. Programmers can merge C programming language with

CUDA to write their GPU parallelized codes.

 Data-parallel programming model can be used for applications which process large

blocks of data and GPU is a better platform for those applications since GPU architecture has

more transistors to data processing rather than data caching when compared to CPU architecture.

20

Figure 4 Representation of CPU and GPU architectures

 The main concept of CUDA parallel programming is to achieve concurrency. For

example, if an algorithm does the same calculation iteratively over a large number of steps, the

individual calculation of each step can be found concurrently. Hence, the performance of the

algorithm improves drastically. The CUDA parallel programming model partitions the problem

into sub-problems that can be solved by grids of blocks, each of which contains multiple threads.

In the following section, CUDA parallel programming model will be discussed in detail.

2.1.2. CUDA Programming Model

 The fundamental building block of parallel computing is called a thread. To run multiple

threads in a parallelized program, a function that runs on GPU is needed. This function is called

a kernel. The total number of threads is specified when a kernel function is defined. Hence,

kernels are executed N times in parallel by N different CUDA threads. Multiple parallel CUDA

threads are logically grouped into a block. In addition, a set of blocks composes a grid. Using a

21

number of threads and blocks, and a special notation: <<< ... >>>, the following syntax is used to

invoke a kernel.

kernel_function <<<number_of_blocks, number_of_threads>>>(parameter1, parameter2, ...);

The total number of threads specifies the block size whereas the total number of blocks specifies

the size of the grid. __global__ declaration specifier and parameters are used to define a kernel.

In addition, it is essential that a unique thread ID is assigned to each thread executing the kernel.

The following example shows how to define and invoke a kernel that runs N multiple threads

simultaneously:

Table 1 Sample CUDA code that adds two vectors X and Y of size N and the resulting vector is Z of size N.

// Defining Kernel

__global__ void VectorAdd(float *X, float *Y, float *Z){

 // Assigning thread ID

 int i = blockIdx.x * blockDim.x + threadIdx.x;

 // Adding two vectors X and Y

 Z[i] = X[i] + Y[i];

}

int main(){

 ...

 // Invoking kernel with N threads

 VectorAdd<<< 1, N >>> (d_X, d_Y, d_Z);

 ...

}

22

In the sample code above, the thread ID for each thread is calculated using block ID for

each block and its dimension. This implies that threads are grouped according to the thread

hierarchy in the CUDA parallel programming model. In addition, the thread index threadIdx is a

3-component vector which can be used to define one-dimensional, two-dimensional or three-

dimensional block of threads. For example, in the above code, the threads are defined by one-

dimensional thread index threadIdx.x. The following figure shows the thread hierarchy in the

CUDA programming model:

Figure 5 Representation of thread hierarchy in CUDA programming model

The GPU hardware limits the number of threads per block. This limit is 512 threads per

block on the early hardware whereas it is 1024 threads per block on the later hardware. In

addition, a kernel can have a grid of a total of 65,536 blocks, which means that 33.5 million

threads in total can be scheduled on an early hardware. Therefore, a program can process up to

33.5 million array elements when one thread per array element is assumed.

23

Before starting, it is important to understand the processing flow of a basic CUDA

program. In the first stage, the processing flow starts with allocating variables in the device. This

memory allocation can be done by using the function cudaMalloc(). Then, the function

cudaMemcpy() allows the transfer of data between host and device memory. In the third stage,

after all the necessary data is transferred to the device memory, the GPU processes it in parallel

and the result is stored in the device memory. At the final stage, the result is copied from the

device to the host memory and the device memory is freed by using the function cudaFree(). The

processing flow for a basic CUDA C program and its sample implementation for the code in

Table 1 are given below:

Figure 6 Data processing flow for a basic CUDA C program

24

Table 2 Sample CUDA implementation of the processing flow after getting input vectors X and Y of the code

in Table 1

int main(){

 ...

 size_t size = N * sizeof(float);

 // Allocating vector Z in host memory

 float* Z = (float*) malloc(size);

 // Allocating vectors X and Y in device memory

 float* d_X;

 cudaMalloc(&d_X, size);

 float* d_Y;

 cudaMalloc(&d_Y, size);

 float* d_Z;

 cudaMalloc(&d_Z, size);

 // Copying vectors X and Y from host memory to device memory

 cudaMemcpy(d_X, X, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_Y, Y, size, cudaMemcpyHostToDevice);

 ...

 // Copying the result from device memory to host memory

 cudaMemcpy(Z, d_Z, size, cudaMemcpyDeviceToHost);

 // Free device memory

 cudaFree(d_X);

 cudaFree(d_Y);

 cudaFree(d_Z);

}

25

2.2. MATLAB's MEX Files with CUDA

2.2.1. Description of MEX Files

 MATLAB Executable Files or MEX Files give the ability to use C/C++ or FORTRAN

codes within the MATLAB environment [60, 61]. In addition, MEX Files can call MATLAB

functions from C/C++ or FORTRAN code and the data between MEX Files and MATLAB

environment can be transferred from one to another.

There are two advantages of using a MEX File over a MATLAB file:

 MEX Files can be used to increase speed of the application. Bottlenecks can be optimized

to improve the performance.

 Custom code can be written for the MATLAB environment and MEX Files can integrate

it to the environment.

The structure of C MEX Files is almost the same as typical C source files. However,

instead of the main() function as the entry point, similar to a typical C source code, C MEX Files

use the gateway routine mexFunction() as the entry point to be consistent with the MATLAB

environment. The entry point of C MEX Files has the following syntax:

/* The gateway function */

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]){

 /* C code here */

}

26

There are four input parameters at the gateway routine: plhs is the array of arguments at

the left hand side, or the array of output arguments, nlhs is the number of arguments at the left

hand side, or the size of the plhs array, prhs is the array of arguments at the right hand side, or

the array of input arguments, and nrhs is the number of arguments at the right hand side, or the

size of the prhs array.

We use MATLAB's MEX functions to read the input data in the MEX Files. mxGetPr is

used to point the input matrix data of double type, mxGetData is used to point the input matrix

data of other types such as float or int, mxGetScalar is used to get the value of scalar input, and

mxGetM and mxGetN are used to get the size of the matrix. To create the output argument,

plhs[0], and to assign a double variable to plhs[0], mxCreateDoubleMatrix and mxGetPr were

used respectively.

Table 3 Example code in a MEX File to read the input data of various types

double* input1;

input1 = mxGetPr(prhs[0]);

float* input2;

input = (float*) mxGetData(prhs[1]);

double input3;

input3 = mxGetScalar(prhs[2]);

mwSize N;

N = mxGetN(prhs[0]);

double* outputMatrix;

plhs[0] = mxCreateDoubleMatrix(mRow, nCol, mxREAL);

outputMatrix = mxGetPr(plhs[0]);

27

2.2.2. C MEX File Example

As a reference, a C MEX File Example is presented in Table 4.

Table 4 Implementation of the C MEX File that finds the maximum element in the input vector.

#include "mex.h"

// The gateway function

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]){

 // Declaring variables

 int mRow, nCol;

 double *inVector, myOutput, maxElement;

 // Checking if the number of input argument is satisfied

 if(nrhs != 1){

 mexErrMsgTxt("There must be only one input.");

 }

 // Getting the size of the input

 mRow = mxGetM(prhs[0]);

 nCol = mxGetN(prhs[0]);

 // Checking if the input is a 1 by N vector.

 if(mRow != 1 || nCol < 1){

 mexErrMsgTxt("The input should be a 1 by N vector.");

 }

 // Reading the input data

 inVector = mxGetPr(prhs[0]);

 // Creating the output argument

 plhs[0] = mxCreateDoubleMatrix(1, 1, mxREAL);

 // Getting a pointer to the output

 myOutput = mxGetPr(plhs[0]);

 // C Code to find the maximum element in the input vector

 maxElement = inVector[0];

 if(nCol > 1){

 for(int i=1; i < nCol; i++){

 maxElement = (maxElement < inVector[i]) ? inVector[i] : maxElement;

 }

 }

 myOutput = maxElement;

}

28

2.2.3. Building CUDA C MEX File

 We mentioned that MEX Files could improve the performance of an application. In

addition, the speed of a program can be further increased by combining CUDA and C MEX

codes, which makes computationally expensive algorithms much faster. In addition, although

MATLAB provides an extensive library of GPU-enabled functions, there are additional libraries

in CUDA toolkit provided by NVIDIA. Hence, a function in one of these libraries can be called

using CUDA C MEX Files.

 For CUDA C MEX Files, the entry point mexFunction(), the input prhs and the output

plhs arguments are the same with C MEX Files. However, the processing flow contains both

CUDA and MEX routines. The following figure shows the processing flow for CUDA C MEX

Files:

Figure 7 Data processing flow for a basic CUDA C MEX File

29

 Lastly, it is important to state two differences between MATLAB and CUDA C MEX

Files. First, MATLAB stores data in column major order, whereas C/C++ or CUDA stores or

accesses the data row major order. The second difference is the indexing scheme. MATLAB

accesses the elements in a matrix using a one-based index. On the other hand, C/C++ accesses a

matrix's elements using a zero-based index.

30

CHAPTER THREE

IMPLEMENTATION OF THE FORWARD MODEL

As we mentioned earlier, the photon propagation in turbid media is modeled by the

Radiative Transfer Equation (RTE). However, the resolution of RTE is very complex; hence, it is

usually approximated to the diffusion equation. We also mentioned that during the forward

problem of DOT, the diffusion equation is solved using analytical or numerical methods. One of

the most used numerical methods is called the Finite Element Method (FEM). In this work, we

present the solution of the continuous wave (CW) DOT forward problem using FEM.

 During the formulation of the CW DOT forward problem in FEM, the photon density Φ,

the diffusion coefficient κ, and the absorption coefficient μa are spatially discretized by using the

Galerkin weak form of the FEM diffusion equation and a Lagrangian basis function. Here, it is

important to mention the trivial step in FEM, which consists of the discretization of the studied

medium. Basically, the studied domain Ω is discretized or meshed into small elements connected

at N nodes. Figure 8 shows an example of the discretization of the domain Ω.

Figure 8 Example of the discretization of the domain Ω using a 2D FEM mesh of a 25 mm diameter medium

31

In two dimensions, the domain is divided into triangles and its boundary is discretized

using segments. However, the domain is usually meshed using tetrahedral elements in 3D, and

its boundary is divided into triangles. Therefore, in order to find the photon density Φ, we

calculate nodal field photon density values for all the FEM mesh nodes within the domain Ω, that

is Φ = { ϕi } for all nodes i=1,2, ..,N.

 After spatially discretizing the diffusion equation, the forward problem can be expressed

as a system of linear equations:

[A] {Φ} = {S} (26)

where A is the system matrix, Φ is a column vector of size N, S is a column vector of size N, and

N is the number of nodes in the finite element mesh. The system matrix A is highly sparse and

generally a banded matrix. It gathers the individual contributions from each mesh element

characterized by a diffusion coefficient κ and an absorption coefficient μa at each of its nodes.

Technically, solving the forward problem consists of first solving Eq. 26 to obtain the photon

density Φ within the medium then obtaining the photon flux at the boundary.

Before explaining the implementation of the forward model, it is important to mention

the 3D FEM mesh generation. In 3D modeling, the first step consists of defining the boundary of

the studied medium. This is generally done by segmenting anatomical images of the medium.

Afterwards, the obtained boundary of the medium is transformed into a 3D closed

geometry using any Computer-Aided Design (CAD) software. In some cases, the boundary of

the 3D geometry requires some refinements and smoothening. Finally, the processed geometry is

32

meshed using any 3D mesh generator software (Comsol, NIRFAST, etc.). Figure 9 shows an

example 3D FEM mesh of a 25 mm diameter cylinder.

Figure 9 Example of a 3D FEM mesh of a 25 mm diameter cylinder

Mesh generation is a complex and time-consuming procedure in DOT. The computation

time and space efficiency of this procedure highly depend on the mesh generation algorithm

used. Iterative and recursive based methods, which have different time complexities, are

generally used. Intuitively, it can be considered that 3D mesh generation algorithms have higher

time and space complexities than the 2D ones; however, this is not always the case since time

and space complexities are determined by the method used for mesh generation.

One of the most important factors affecting the computation time is the number of mesh

elements. As imposed by the FEM, the medium must be discretized but the final solution has to

be close to realistic continuous solution. It may be considered that using a very high number of

elements seems to be the answer for this issue; however, the higher the number of elements is the

33

longer the computation time is. Therefore, finding an optimum number of elements is one of the

important steps when using FEM.

In this work, we used 3D meshes with different number of elements in order to

investigate the relationship between the number of elements and the computation time of the CW

DOT forward problem. Specifications of these meshes are given in the simulation and discussion

section. Our meshes are characterized using the following notations:

 p (3xN): Each column contains the (x, y, z) 3D coordinates of a given mesh node.

 t (4xNe): Each column contains the indices of the 4 nodes forming a tetrahedral element

and Ne is the total number of the tetrahedral elements.

 e (3xNb): Each column contains the indices of the 3 nodes forming a boundary triangular

element and Nb is the total number of the boundary triangular elements.

Apart from the p, e, and t properties, we choose to add additional information such as the

source and detector information into our 3D meshes. The source and detectors are represented by

two properties: the node number for each source or each detector, and source or detector

coordinates. In addition, information about how diffusion and absorption coefficients for each

tetrahedral and boundary element affect the photon density is also included to our 3D meshes.

This information is used to obtain the system matrix A.

34

3.1. MATLAB Implementation of the Forward Model

Earlier, we introduced that CW DOT forward problem involves in a system of linear

equations, which can be represented in a matrix formulation. Here we present a processing flow

of its implementation in MATLAB, which is a very strong software designed for matrix

computations.

Figure 10 Data processing flow of the forward model in MATLAB

 After the mesh generation, the FEM forward problem solver implemented in MATLAB

attributes the initial estimates of the optical properties of the studied medium to each mesh

element. Once this initialization performed, the FEM forward solver calculates the first term of

the left hand side of the system of linear equations, which is the system matrix A. This system

matrix is assembled by considering the effect of each tetrahedral element on the neighboring

35

tetrahedrons. Also, during the system matrix assembly, the boundary conditions of the diffusion

equation are applied to the boundary triangular elements.

The next step is to initialize the vector S. In FEM, this vector is an Nx1 vector containing

zeros everywhere except at the nodes to be used as sources. Usually, the values of vector S at

these nodes are set to 1.

The photon density Φ is simply obtained by solving the system of linear equations. Once

the photon density obtained, the boundary conditions are applied to find the photon flux at the

detectors positioned at the boundary of the medium.

3.2. CUDA C Implementation

Although the processing flow of the CUDA C implementation for the forward model

shown in Fig. 11 has some differences from the MATLAB implementation, the CUDA C

implementation has the same core processing steps followed in the MATLAB version. We need

to generate a Finite Element mesh to run the CUDA C implementation, and mesh generation and

its features are the same as previously mentioned.

To run the CUDA C implementation of the forward model, we begin with the

initialization of absorption and scattering coefficients, and calculation of the diffusion

coefficient; then we import mesh features such as node coordinates, node numbers of

tetrahedrons and triangles at the boundary, as well as source and detector information into the

MATLAB environment. After that, we make the function call of the forward model's MEX File

with the necessary parameters. The CUDA C implementation of the forward model calculates the

photon density Φ and the flux at the boundary; and the MEX File function returns these two

parameters into the MATLAB environment.

36

Figure 11 Data processing flow of CUDA C implementation for the forward model

37

The CUDA C implementation of the forward model started with the gateway function of

MEX Files: mexFunction(). As stated earlier, the mexFunction() has four input parameters: array

of input arguments, prhs; the size of prhs array, nrhs; array of output arguments, plhs; and the

size of plhs array, nlhs. We need to verify the MEX File input and output parameters. To do that,

we use nrhs and nlhs parameters. If the number of right hand side arguments, i.e. the number of

input arguments nrhs, does not match with the total number of the necessary arguments to

calculate the photon density, the MEX File gives an error message to indicate wrong number of

input arguments included. In addition, if the number of left hand side argument, i.e. the number

of output arguments nlhs, is different than 2, the MEX File shows that 2 output arguments are

required.

 The next step is to declare the variables and to read the input data. We define the same

variables used in the MATLAB environment. To assign input arguments coming from the

MATLAB environment, we use MEX functions that read the input data. There are various types

of input data in the implementation; therefore, different MEX functions are used to read different

types of data. For example, the absorption coefficient μa is a double variable; hence, the MEX

function mxGetPr are utilized for the absorption coefficient to assign the input data. However,

the variable to store nodes of tetrahedrons is an integer type; therefore, the MEX function

mxGetData are used for that variable. In addition, the scalar inputs such as number of nodes,

number of tetrahedrons, and number of triangles at the boundary are assigned by the MEX

function mxGetScalar.

 After reading the input data, we need to create the output arguments, the photon density

Φ for all sources and the flux at the boundary. The first step is to calculate the size of the photon

density matrix and the flux matrix. Then, the MEX function mxCreateNumericMatrix is used to

38

create these output matrices with the arguments: number of rows, number of columns, identifier

for the class of the array and the complexity flag. In the implementation, mxDOUBLE_CLASS

and mxREAL are the class identifier and the complexity flag, respectively; since double precision

in the output data is set for the continuous wave (CW) method used in these calculations. If we

want to switch single precision, we can change the class identifier to mxSINGLE_CLASS.

Furthermore, for frequency-domain calculations, the complexity flag can be changed to

mxCOMPLEX. After creating the output matrices, the MEX function mxGetPr are used to assign

them to the array of output arguments plhs.

 At this point, the input arguments are read and our output arguments are prepared; so, we

are ready to compute the system matrix A. Since the system matrix A is calculated on the GPU

device, we firstly declared our GPU device variables and allocated some of the device memory

for them by using the function cudaMalloc(). Then, the data in the host CPU is copied to the

device GPU with the function cudaMemcpy(). The syntaxes for the functions cudaMalloc() and

cudaMemcpy() are mentioned in the previous chapter. At this point, we have everything we need

to compute the system matrix A in the GPU device. The kernel is then invoked with the declared

variables in the device and the system matrix A is obtained. Here, there are three important

concepts to mention. The first one is the difference between MATLAB's and C's indexing

schemes. As stated earlier, MATLAB accesses elements in an array using a one-based index and

C accesses them using a zero-based index. In the implementation, we utilized the node numbers

of the tetrahedrons and the triangles at the boundary as the arrays' indices. The node numbers for

both the tetrahedrons and the triangles at the boundary start with one. Since MATLAB has a one-

based index scheme, the indexing is correct for arrays using indices that come from the node

numbers starting with one. However, this is not the case for the arrays in C, since C has a zero-

39

based index scheme. Therefore, we subtracted one from indices coming from the node numbers

starting with one. The second one is the existence of atomic operations in computing the system

matrix A. Same memory locations are read, modified and written by multiple threads at the same

time when calculating some of the elements of the system matrix A. In this case, the behavior is

undefined and the result is wrong. We use an atomic operation, namely atomicAdd(), to prevent

this issue. The operation atomicAdd() reads the data for a node at some address in the device

memory, adds the calculated value to update the data for that node, and writes the result back to

the same address. The operation is guaranteed not to be interfered by any other thread that will

update the data for the same node until the operation is complete. Therefore, calculations of

some elements of the system matrix A can be time-consuming when compared to computing the

other elements. CUDA Toolkit Documentation provides an implementation of the operation

atomicAdd() for double-precision floating-point as follows:

Table 5 An implementation of the operation atomicAdd() for double precision floating point provided by

CUDA Toolkit Documentation

__device__ double atomicAdd(double* address, double val){

 unsigned long long int* address_as_ull = (unsigned long long int*) address;

 unsigned long long int old = *address_as_ull, assumed;

 do {

 assumed = old;

 old = atomicCAS(address_as_ull, assumed, __double_as_longlong(val +

 __longlong_as_double(assumed)));

 // Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN)

 } while (assumed != old);

 return __longlong_as_double(old);

}

40

The last important step for computing the system matrix A is the index calculations for

1D arrays converted from 2D arrays. The CUDA programming language enables to use 2D

arrays; however, 1D arrays can be preferred due to their simplicity. In this case, indices for 1D

arrays are needed to be calculated. If an element of 2D array with m rows and n columns is

defined as my2D [i][j], its 1D version is my1D [i * m + j].

The system matrix A is highly sparse N by N matrix, where N is the total number of

nodes. To store the matrix A, we employ the compress sparse row (CSR) format. In the CUDA

programming model, CSR format of an m by n matrix K is stored by 4 parameters:

 csrValK: The pointer to data value array of nonzero elements of the matrix in row major

format

 csrRowPtrK: The pointer to the array that holds indices of the first nonzero element in the

ith row for i=1,2, ... m. The length of this array is m+1, where the last element is

nnz + csrRowPtrK(0).

 csrColIndK: The pointer to the array that holds column indices of the nonzero elements

of the matrix.

 nnz: The total number of nonzero elements in the matrix.

The CSR format of the matrix K shown below is as follows:

K = [

 2 0
0 0

0 1
0 4

5 0
0 0

7 0
6 0

]

 csrValK = [2 1 4 5 7 6]

csrRowPtrK = [0 2 3 5]

 csrColIndK = [0 3 3 0 2 2]

41

To convert the system matrix A from its dense format to its CSR format, we use

cuSPARSE API which is provided by NVIDIA and contains library routines of basic linear

algebra for sparse matrices. Firstly, the cuSPARSE library is initialized and a handle on the

cuSPARSE context is created by calling the cuSPARSE helper function cusparseCreate().

Hardware resources necessary for accessing the GPU device is allocated owing to this function.

The cuSPARSE helper function cusparseCreateMatDescr() is called to initialize the matrix

descriptor and cusparseSetMatType() is used to set the matrix type field of the matrix descriptor.

In addition, the helper function cusparseSetMatIndexBase is called to set the index base field of

the matrix descriptor. For conversion of the system matrix A from dense to CSR format, we use

the cuSPARSE format conversion function cusparseDdense2csr(). This function has 10

parameters which need to be allocated before calling it. These parameters are as follows:

 handle: handle to the cuSPARSE library context

 m: the number of rows of matrix A

 n: the number of columns of matrix A

 descrA: the matrix descriptor for A

 A: the matrix A

 lda: the leading dimension of the matrix A

 nnzPerRow: the array containing the number of nonzero elements per row

 csrValA: the data value array of nonzero elements of the matrix

 csrRowPtrA: the array that holds the indices of the first nonzero element in the ith row

for i=1,2, ... m

 csrColIndA: the array that holds the column indices of the nonzero elements of the matrix

A.

42

We already have handle, descrA, m, n, lda, A. Next, we need to find the nnzPerRow

parameter. The cuSPARSE function cusparseDnnz is used in the CUDA C implementation. In

addition to the array containing the number of nonzero elements per row, the function

cusparseDnnz gives the total number of nonzero elements. After the conversion, we obtain the

arrays csrValA, csrRowPtrA, and csrColIndA.

The next step is to solve the system of linear equations. We create a batch of the system

matrix A in CSR format for all sources to further parallelize the system solver. Therefore, we can

solve the all linear equations simultaneously instead of solving them one by one.

[
 𝐴
⋮
𝐴
] [
 Φ1
⋮
Φ𝑛

] = [

s1
⋮
s𝑛
] (27)

where n is the number of sources, si is the source vector for the ith source and Φi is the photon

density vector for ith source.

To implement a solver for the system of linear equation, we use the cuSOLVER API

which is provided by NVIDIA and contains library routines for dense and sparse matrix

factorization and system solver. The library function to solve our batched system is

cusolverSpDcsrqrsvBatched(), which is a low level function of cuSolverSP. This function solves

a batched system shown below by using QR factorization.

43

𝐴𝑗 × 𝑋𝑗 = 𝐵𝑗 (28)

where each Aj is a m×n sparse matrix in CSR storage format with the arrays csrValA,

csrRowPtrA and csrColIndA, and j = 1, 2,..., batchSize. Each Bj (mx1) and Xj (nx1) are the right-

hand-side and the solution vectors, respectively. QR factorization is basically the decomposition

of a matrix, in this case the system matrix A, into an orthogonal matrix Q, and upper triangular

matrix R.

A = Q R (29)

There are two prerequisite to use the batched sparse QR:

1) All matrices Aj must have the same sparsity pattern. For our case, they are same matrices;

hence, they have same sparsity pattern.

2) The solution is valid only if Aj is of full rank for all j = 1, 2, ..., batchSize, which is also

satisfied for our case.

The implementation of the cuSolverSP function cusolverSpDcsrqrsvBatched() starts with

creating a handle on the cuSolverSP context and initialization by cusolverSpCreate(). Then, the

matrix descriptor is created, and the matrix type and the matrix index base are set. We also need

to create an empty info structure by using the function cusolverSpCreateCsrqrInfo() with a

parameter of data type csrqrInfo. The opaque data structure csrqrInfo keeps the intermediate data

such as the orthogonal matrix Q and the upper triangular matrix R of QR factorization in the

batched QR.

44

In addition, an analysis phase by the function cusolverSpXcsrqrAnalysisBatched() is

implemented before solving the batched system. This function is used to obtain sparsity pattern

of the orthogonal matrix Q and the upper triangular matrix R of QR factorization. Furthermore,

the function provides the information for the working space to perform QR.

At this point, everything to solve the batched system is ready; so the function

cusolverSpDcsrqrsvBatched() is called with the following parameters:

 handle: handle to the cuSolverSP library context

 m: the number of rows of each matrix Aj

 n: the number of columns of each matrix Aj

 nnz: The total number of nonzero elements in each matrix Aj.

 descrA: the matrix descriptor for each Aj

 csrValBatchedA: the data value array of nonzero elements of the batched system

 csrRowPtrA: the array that holds indices of the first nonzero element in the ith row for

i = 1, 2, ..., m

 csrColIndA: the array that holds column indices of the nonzero elements of the matrix A.

 B: the batched source term S

 x: the batched solution returned

 batchSize: number of equations to be solved

 info: the opaque structure for QR factorization

 pBuffer: the buffer allocated by the user

Although it isn't required for our implementation, there is an important detail that needs

to be addressed. It is possible that the device memory is not big enough to solve the batched

system in one function call; therefore, it is necessary to choose a proper batch size. If the size of

45

the batched system is too big, the calculation needs to be divided into parts; hence the function

cusolverSpDcsrqrsvBatched() is called more than once.

After solving the batched system, we obtain an array of the photon densities for all

sources. The photon density array is copied from the device memory to the host memory. This is

the first output of our implementation. Furthermore, the second output, the flux at the boundary,

needs to be calculated. To do that, we firstly calculate the boundary factor. Then, the flux at the

boundary is computed using the boundary factor and the detector information defined in the

mesh.

46

CHAPTER FOUR

SIMULATION RESULTS AND DISCUSSION

Simulation studies are performed to evaluate the performance of the forward model that

is implemented using CUDA C language, which is a GPU parallelized application. Our main aim

is to compare the computational accuracy and efficiency of our GPU-based forward solver with

the CPU-based conventional forward solver developed in our lab using MATLAB.

Simulations are done on a computer that has 2.67 GHz. Intel Core i7 CPU – 920 and

Windows 7 64-bit operating system. Our GPU card is a NVIDIA GeForce GTX 960 with 5.2

compute capability. GeForce GTX 960 GPU card has 1024 CUDA cores and 2 GB memory. Its

memory clock is 7.0 Gbps and memory bandwidth is 112 GB/sec.

3D Finite Element meshes are used in the simulations. To make a good comparison

between CPU and GPU, we use several 3D meshes with different number of nodes, tetrahedral

elements and triangular elements at the boundary. However, dimensions of our 3D cylindrical

meshes are always kept the same. The diameter and the height of the meshes are 25 mm and

20mm, respectively. The origin of the coordinate system is chosen at the center of cylindrical

mesh for illustration purposes. Other features of our 3D meshes, namely the number of nodes as

well as the number of tetrahedral and triangular elements, are given in Table 6.

47

Table 6 The features of the 3D meshes used in the simulation studies such as number of nodes, tetrahedral

elements and triangular elements at the boundary

3D Meshes Number of Nodes Number of tetrahedral

elements

Number of triangular

elements at the boundary

1 2316 11393 1552

2 3370 16938 2068

3 4335 22058 2484

4 5299 27505 2680

5 6394 33437 3096

6 8359 44219 3736

7 9339 49806 3928

In addition to different meshes, we also investigate the effect of the number of sources

during the simulations. The number of the sources is varied between 2 to 26. The maximum

number of sources is determined by the memory need of the batched system solver explained in

the previous chapter. If the GPU device memory is not large enough, it cannot handle the

application for all sources. As mentioned earlier, it is possible to divide the solution of the

system of linear equations into parts if there are a large number of sources, which makes it

difficult to process them in one function call. However, we haven’t utilized this approach during

these simulations. In addition to this, the maximum number of the sources is limited by the 3D

mesh used in the simulations. For example, maximum number of the sources is 26 for the mesh

with 4335 nodes; on the other hand, it is only 4 for the mesh with 9339 nodes and it is much

higher than 26 for the mesh with 3370 nodes. Apart from the sources, there are 16 detectors

added into our 3D meshes. Both sources and detectors are placed on the z = 0 plane and they are

equally spaced. Although 16 detectors and different number of sources are utilized in the

simulations, Figure 12 shows only eight detectors and eight sources for visualization purposes.

48

Figure 12 An example of source and detector placement in a 3D mesh and its corresponding 2D slice at z=0.

In the simulations, the absorption coefficient μa is set to 0.01 mm-1 and the scattering

coefficient μs is set to 0.8 mm-1 to mimic tissue. Furthermore, since we use continuous wave

(CW) measurement technique, the frequency ω is set to 0.

In the following sections, computational accuracy and efficiency of CUDA C

implementation of the forward model will be presented. In addition, the simulation results will be

discussed in various aspects.

4.1. Computational Accuracy of CUDA C Implementation

Taking the advantage of parallelism and reducing simulation time are the main

motivation behind GPU-based parallelization. However, besides time, accuracy of the algorithm

is an important factor to consider. To test computational accuracy of our CUDA C

implementation, we firstly calculate the photon density of our 3D homogeneous finite element

49

mesh for one source with our new GPU-based forward solver. Our 3D mesh has 9339 nodes,

49806 tetrahedral elements and 3928 triangular elements at the boundary. The source is placed to

near the point (12.5, 0, 0). Then, the simulation is carried out with the same parameters but using

the conventional CPU-based forward solver.

For visualization purposes, ParaView 5.0.0 is used to generate the figures below. The

calculated photon density is presented in log scale format due to the vast dynamic range. This

also better represent the diffuse nature of photon propagation in the medium. The results of the

new CUDA C implementation and conventional MATLAB solver are given on the left and right

hand of the Figure 13, respectively. In addition to views from 4 different angles, cross-sectional

images of x-y, x-z planes are provided.

(a)

50

(b)

(c)

(d)

51

(e)

 (f)

Figure 13 Simulation results of photon density in logarithmic scale

CUDA C and MATLAB implementation results are given on the left and right side, respectively

(a) The view from +x direction, (b) The view from –y direction, (c) The view from –x direction, (d) The view

from +y direction, (e) 2D slice with a normal in y direction, (f 2D slice with a normal in z direction

As the figures above show nice diffusive patterns, it is important to obtain the photon

density profile on a line between two points: (12.5, 0, 0) and (-12.5, 0, 0). Figure 14 and 15 show

the profiles along this line for GPU and CPU implementations in standard and log scale.

52

Figure 14 Photon density profiles of CUDA C and MATLAB implementations over a line starting from the

point (12.5, 0, 0) to the point (-12.5, 0, 0) in standard scale

Figure 15 Photon density profiles of CUDA C and MATLAB implementations over a line starting from the

point (12.5, 0, 0) to the point (-12.5, 0, 0) in logarithmic scale

53

As expected, the photon density profile decreases exponentially with depth. Both photon

density profiles obtained by CPU- and GPU-based solvers match exactly with each other in both

standard and log scale. As seen from figures, the photon density profile is not a perfectly smooth

function. There are two reasons for this behavior. The first one is that elements of our 3D meshes

are not perfectly shaped and aligned. The second reason is that the program interpolates the data

points to show the profile. However, the important point is that photon density profiles that

belong to both GPU and CPU version of the solver show the same pattern.

To analyze the difference between GPU- and CPU-based simulation results, we utilize

root-mean-square error, or RMS error. The RMS error can be found by using the following

formula:

𝑅𝑀𝑆 𝐸𝑟𝑟𝑜𝑟 = √
∑ (Φ𝐺𝑃𝑈,𝑖−Φ𝐶𝑃𝑈,𝑖)

2𝑛
𝑖=1

𝑛
 (30)

The RMS error is found 4.9 x 10-17 for the photon density of the 3D finite element mesh

with 9339 nodes. As the final step of testing computational accuracy of our new CUDA C

implementation of the forward solver, we compare its flux at the boundary with the conventional

MATLAB implementation. As mentioned earlier, there are 16 detectors at the boundary which

are located on the z = 0 plane. Figure 16 shows results for GPU- and CPU-based

implementations and their comparison in both standard and log scale.

54

(a)

(b)

Figure 16 Results of the flux at the boundary which is measured by 16 equally distant detectors

 (a) The flux at the boundary obtained by the CUDA C and MATLAB implementations in standard scale, (b)

The flux at the boundary obtained by the CUDA C and MATLAB implementations in logarithmic scale

55

Just as the photon density, we also calculate the RMS error between two implementations

for the flux calculated at the boundary. The RMS error is 5.7 x 10-14 for the flux at the boundary.

The main reason of these RMS errors is the fact that calculations of floating points are

not guaranteed to give identical results for different hardware. However, we can say that the

RMS errors for both the photon density and the flux at the boundary are very low. The minimum

value is around 10-5 for both calculated photon density and flux. Since the RMS errors for the

photon density and the flux at the boundary are around 10-17 and 10-14 respectively, we can

conclude that the GPU-based forward model works with high accuracy.

Before going into computational efficiency, there is one important issue left to be

addressed. This issue is the precision level of the implementation. In our new CUDA C

implementation, we use double precision floating points for comparison purposes; however, it is

also possible to use single precision floating points. Using single precision will provide higher

speed compared to using double precision.

4.2. Computational Efficiency of CUDA C Implementation

High computational efficiency is the main goal of the GPU parallelism; therefore, it is

important to evaluate the computational efficiency of our CUDA C implementation. To test the

computational efficiency, we conduct several simulations using various meshes with different

number of nodes and elements. These simulations give us the relationship between the number of

nodes in a mesh and speed-up of our new implementation over conventional one. In addition, we

want to know how the number of sources affects the speed-up; hence we make additional

simulations using different number of sources.

56

For the first part of testing computational efficiency of our CUDA C implementation, we

use four sources with different types of 3D meshes, which have different features such as number

of nodes, tetrahedral elements, and triangular elements at the boundary explained in the previous

section. The Figure 17 and 18 show our simulation results for GPU- and CPU-based

implementation.

Figure 17 Simulation time of CUDA C implementation for meshes with different number of nodes

57

Figure 18 Simulation time of MATLAB implementation for meshes with different number of nodes

Using the time results from previous figures, we calculate the speed-up of using CUDA C

implementation over MATLAB implementation. The speed-up bar and line graphs are given in

Figure 19. For 3D meshes that have small number of nodes, there is a little speed-up; however,

as the number of nodes in a mesh increases, the speed-up becomes significant. Here, it is

important to mention that reasons of low speed-up for the small number of nodes are mainly high

data transfer time between CPU and GPU and high memory allocation time. Unfortunately, we

could not use a 3D mesh with very large number of nodes in our simulations because there is no

enough memory in our computer to process that amount of data. Therefore, maximum

observable speed-up for our simulations is near 2.5, which means the GPU application is

approximately 2.5 times faster than the CPU application for a 3D mesh with 9339 nodes.

58

(a)

 (b)

Figure 19 The speed-up graphs with CUDA C implementation for 3D meshes with different number of nodes

(a) The bar graph of the speed-up and (b) The line graph of the speed-up

59

For the second part of the computational efficiency test, we use different number of

sources with our 3D mesh of 4335 nodes. Figures 20 and 21 show our simulation results for

CUDA C and MATLAB implementations.

Figure 20 Simulation time of CUDA C implementation for different number of sources

Figure 21 Simulation time of MATLAB implementation for different number of sources

60

There is an important reason behind why using different number of sources is a good

measure to test computational efficiency. As we said earlier, the implementation of the forward

model consists of two main parts: computation of the system matrix A and solving the system of

linear equations. In terms of time, the computation of the system matrix A is insignificant

compared to solving the system of linear equations. Solving the system is an iterative process for

the MATLAB implementation and its time is dependent on the number of sources used.

Therefore, the number of sources generally determines the overall time of the forward solver. In

fact, time for solving of the system of linear equations is so dominant that CPU simulation time

of the forward solver changes almost linearly with the number of sources. On the other hand,

GPU simulation time of the forward solver increases with much smaller increments as the

number of sources increases. Therefore, the speed-up which is shown in Figure 22 becomes

higher with increasing number of sources. However, beyond a certain number of sources, the

speed-up slows down. Just like the simulations of different 3D meshes, we cannot use large

number of sources in the simulations due to memory requirements. For our simulations with

range of number of sources from 2 to 26, we observe that maximum speed-up is approximately

4.5.

61

(a)

 (b)

Figure 22 The speed-up graphs with CUDA C implementation for different number of sources

(a) The bar graph of the speed-up and (b) The line graph of the speed-up

62

CHAPTER FIVE

CONCLUSION AND FUTURE WORK

5.1. Conclusion

In this work, we implemented a GPU-based solver for the forward problem of DOT by

using a Finite Element method. In the implementation, CUDA's parallel architecture and

MATLAB software were combined by utilizing MEX Files. We made several simulations to test

relative computational accuracy and efficiency of our new CUDA C implementation when

compared to the MATLAB implementation. For relative computational accuracy, we used a

mesh with a high number of nodes and one source. We found that root-mean-square (RMS)

errors between the CUDA C and the MATLAB implementation are in the order of magnitude of

-17 for the photon density and in the order of magnitude of -14 for the flux. These RMS errors

are very small compared to the minimum values of photon density and flux that are in the order

of magnitude of -5. This shows that our new implementation has a high accuracy. For relative

computational efficiency, we used several meshes with various nodes and elements, and utilized

different number of sources. We computed that the maximum speed-up is around 2.5 for

simulations with different meshes and around 4.5 for simulations with different number of

sources.

In conclusion, we can say that we have significant computational speed-up with high

computational accuracy. However, it is possible to accelerate the computational speed. One way

to achieve that is to write a custom GPU code to solve the system of linear equations with a

heterogeneous programming style. In a nutshell, we achieved the goal of this project with our

new GPU-based implementation.

63

5.2. Future Work

As mentioned in the implementation chapter of the forward model, we used a library

function provided by CUDA programming model to solve the system of linear equations. Using

a library function limited our capabilities to optimize the system solver. Therefore, as a future

work, we can write a custom code to minimize the effects of bottlenecks, which improves the

performance of the system solver. We believe that running a custom GPU parallelized code on a

more powerful NVIDIA Tesla GPU card will provide much higher speed-up when compared to

current GPU-based implementation. Apart from the custom code, it is possible to decrease the

simulation time by a heterogeneous programming style. We can optimize our code to run both on

CPU and GPU simultaneously and have a higher speed-up.

We also mentioned that image reconstruction of DOT involves two parts, which are the

forward and the inverse problem. In this project, we only worked on the forward problem;

therefore, it is possible to extend the project to the inverse problem. Although image

reconstruction can be done significantly faster with our current GPU-based implementation, we

can also take advantage of parallelism of the inverse problem. Additionally, we can combine the

forward and the inverse problem and obtain much higher speed-up with further parallelism. We

can even go beyond the speed-up provided by the parallelized forward and inverse problems by

using a heterogeneous programming style.

Lastly, we used the diffusion approximation of Radiative Transfer Equation (RTE) in this

project; however, it is possible to utilize higher order approximation of RTE. As a future work,

we can implement a GPU-based solver for the forward problem which uses higher order of

approximation of RTE. Since complexity of the higher order approximations is much higher than

64

diffusion approximation, the simulation time will be longer. However, we believe that the

calculation time can be decreased to acceptable limits by a GPU-based implementation.

65

REFERENCES

[1] J.T. Bushberg and J.M. Boone, The essential physics of medical imaging, Lippincott

Williams & Wilkins, 2011.

[2] H. Jiang, Diffuse Optical Tomography Principles and Applications, CRC Press Taylor and

Francis Group, 2011.

[3] J.W. Tunnell, In vivo clinical imaging and diagnosis, The McGraw-Hill Companies, 2011.

[4] M. J. Cross, S. E. Harms, J. H. Cheek, G.N. Peters, R. C. Jones, New horizons in

thediagnosis and treatment of breast cancer using magnetic resonance imaging, Am J Surg, 166,

749 – 753; discussion 753-755, 1993.

[5] P. Forouhi, J. S. Walsh, T. J. Anderson, U. Chetty, Ultrasonography as a method of

measuring breast tumor size and monitoring response to primary systematic treatment, Br J Surg,

81, 223-225, 1994.

[6] M. Tatsumi, C. Cohade, K. A. Mourtzikos, E. K. Fishman, R. L. Walh, Initial experience

with FDG-PET/CT in the evaluation of breast cancer, Eur J Nucl Med Mol Imaging, 33, 254-

262, 2006.

[7] B. Bone, Z. Pentek, L. Perbeck, B. Veress, Diagnostic accuracy of mammography and

contrast enhanced MR imaging in 238 histologically verified breast lesions, Acta. Radiol., 38,

489–496, 1997.

[8] T. Hata, H. Takahashi, K. Watanabe, M. Takahashi, K. Taguchi, T. Itoh, S. Todo, Magnetic

resonance imaging for preoperative evaluation of breast cancer: a comparative study with

mammography and ultrasonography, J. Am. Coll. Surg., 198, 190–197, 2004.

66

[9] A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F.

Holcombe, B. J. Tromberg, Sources of absorption and scattering contrast for near-infrared

optical mammography, Acad Radiol, 8, 211-218, 2001.

[10] F. F. Jobsis, Noninvasive, infrared monitoring of cerebral and myocardial oxygen

sufficiency and circulatory parameters, Science, 198, 1264-1267, 1977.

[11] A. Villringer, B. Chance, Non-invasive optical spectroscopy and imaging of human brain

function, Trends Neurosci, 20, 435-442, 1997.

[12] M. Fabiani, D. D. Schmorrow, G. Gratton, Optical imaging of the intact human brain, IEEE

Eng Med Biol Mag, 26, 14-16, 2007.

[13] G. Strangman, D. A. Boas, J. P. Sutton, Non-invasive neuroimaging using near-infrared

light, Biol Psychiatry, 52, 679-693, 2002.

[14] R. Splinter, B. A. Hooper, An introduction to biomedical optics, CRC Press Taylor and

Francis Group, 2007.

[15] T.O. McBride, B.W. Pogue, E.D. Gerety, S.B. Poplack, U.L. Osterberg, K.D. Paulsen,

Spectroscopic diffuse optical tomography for quantitative assessment of hemoglobin

concentration and oxygen saturation in breast tissue, Appl. Opt., 38, 5480-5490,1999.

[16] M. Cope, D.T. Delpy, System for long term measurement of cerebral blood and tissue

oxygenation on newborn infants by near infra-red transillumination, Med Biol Eng Compt, 26,

289-294, 1988.

[17] V. Quaresima, S.J. Matcher, M. Ferrari, Identification and quantification of intrinsic optical

contrast for near-infrared mammography, Photochem Photobiol, 67, 4-14, 1998.

67

[18] C. E. Cooper, M. Cope, R. Springett, P.N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R.

Ordidge, J. Wyatt, D. T. Delpy, Use of mitochondrial inhibitors to demonstrate that cytochrome

oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the

brain, J Cereb Blood Flow Metab, 19, 27-38, 1999.

[19] G. Gulsen, H. Yu, J. Wang, O. Nalcioglu, S. Merritt, F. Bevilacqua, A.J. Durkin, D.J.

Cuccia, R. Lanning, B. J. Tromberg, Congruent MRI and near-infrared spectroscopy for

functional and structural imaging of tumors, Technol Cancer Res Treat, 1, 497-505, 2002.

[20] R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, R.

Cubeddu, Determination of visible near-IR absorption coefficients of mammalian fat using time-

and spatially resolved diffuse reflectance and transmission spectroscopy, J Biomed Opt., 10 (5),

054004, 2005.

[21] S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, E. Gratton,

Characterization of metabolic differences between benign and malignant tumors: high-spectral

resolution diffuse optical spectroscopy. Radiology, 254 (1), 277-84.

[22] B. W. Pogue, X. Song, S. Srinivasan, H. Dehghani, T. D. Paulsen, K. D. Tosteson, C.

Kogel, S. Soho, S. Poplack, Near-infrared scattering spectrum differences between benign and

malignant breast tumors measured in vivo with diffuse tomography, OSA Biomed. Optics

Topical Meetings, 2004.

[23] R. C. Haskell, L. O. Svaasand, T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg,

Boundary conditions for the diffusion equation in radiative transfer, J. Opt. Soc. Am. A Opt.

Image Sci. Vis. 11, 2727, 1994.

[24] K. Ren, G. Bal, A. H. Hielscher, Transport- and diffusion-based optical tomography in

small domains: a comparative study, Appl. Opt. 46, 6669-6679, 2007.

68

[25] S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, A finite element approach for

modeling photon transport in tissue, Med. Phys. 20, 299-309, 1993.

[26] J. C. Rasmussen, A. Joshi, T. Pan, T. Wareing, J. McGhee, E. M. Sevick-Muraca, Radiative

transport in fluorescence-enhanced frequency domain photon migration, Med. Phys. 33, 4685-

4700, 2006.

[27] F. P. Bolin, L. E. Preuss, R. C. Taylor, R. J. Ference, Refractive index of some mammalian

tissues using a fiber optic cladding method, Appl. Opt. 28, 2297-2303, 1989.

[28] Y. Lin, Quantitative fluorescence tomography using multi-modality approach, University of

California, Irvine, 2009.

[29] V. V. Tuchin, Laser light scattering in biomedical diagnostics and therapy, J. Laser Appl. 5,

43-60, 1993.

[30] A. Ishimaru, Wave propagation and scattering in random media, New York Academic,

1978.

[31] M.S. Patterson, B. Chance, B.C. Wilson, Time resolved reflectance and transmittance for

the non-invasive measurement of tissue optical properties, Appl Opt, 28, 2331-2336, 1989.

[32] J.B. Fishkin, E. Gratton, Propagation of photon-density waves in strongly scattering media

containing an absorbing semi-infinite plane bounded by a straight edge, J Opt Soc Am A, 10,

127 -140, 1993.

[33] D. A. Boas, M. A. O'leary, B. Chance, A.G. Yodh, Scattering of diffuse photon density

waves by spherical inhomogeneities within turbid media: analytic solution and applications, Proc

Natl Acad Sci USA, 91, 4887-4891, 1994.

[34] X. Intes, J. Ripoll, Y. Chen, S. Nioka, A.G. Yodh, B. Chance, In vivo continuous-wave

optical breast imaging enhanced with Indocyanine Green, Med Phys., 30 (6), 1039-1047, 2003.

69

[35] A. Siegel, J.J. Marota, D. Boas, Design and evaluation of a continuous-wave diffuse optical

tomography system, Opt Express, 4 (8), 287-298, 1999.

[36] J. Su, H. Shan, H. Liu, M.V. Klibanov, Reconstruction method with data from a multiple-

site continuous-wave source for three-dimensional optical tomography, J Opt Soc Am A Opt

Image Sci Vis., 23 (10), 2388-2395, 2006.

[37] I. Nissila, J. C. Hebden, D. Jennions, J. Heino, M. Schweiger, K. Kotilahti, T. Noponen, A.

Gibson, S. Jarvenpaa, L. Lipiainen, T. Katila, Comparison between a time-domain and a

frequency-domain system for optical tomography, J. Biomed. Opt., 11, 064015:1-18, 2006.

[38] B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, Phase measurement of light

absorption and scatter in human tissue, Rev. Sci. Inst., 69 (10), 3457-3481, 1998.

[39] J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos,

B. Chance, A. G. Yodh, Three-dimensional diffuse optical tomography in the parallel plane

transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical

system for breast imaging, Med Phys., 30 (2), 235-247, 2003.

[40] F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, B. J. Tromberg, Broadband

absorption spectroscopy in turbid media by combined frequency-domain and steady-state

methods, Appl Opt., 39 (34), 6498-6507, 2000.

[41] J. Wang, B. W. Pogue, S. Jiang, K. D. Paulsen, Near-infrared tomography of breast cancer

hemoglobin, water, lipid, and scattering using combined frequency domain and cw measurement,

Opt Lett., 35 (1), 82-84, 2010.

70

[42] Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L.

Miller, D. H. Brooks, D. A. Boas, Combined optical imaging and mammography of the healthy

breast: optical contrast derived from breast structure and compression, IEEE Trans Med Imaging,

28 (1), 30-42, 2009.

[43] H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y.

Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, Multichannel time-resolved optical

tomographic imaging system, Review of Scientific Instruments, 70 (9), 3595-3602, 1999.

[44] F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, A 32-channel

time-resolved instrument for medical optical tomography, Rev. Sci. Instrum., 71 256, 2000.

[45] X. Intes, Y. Jiangsheng , A. G. Yodh, B. Chance, Development and evaluation of a multi-

wavelength multi-channel time resolved optical instrument for NIR/MRI mammography co-

registration, Proc. IEEE 28th Annual Northeast Bioengineering Conf., 91–92, 2002.

[46] P. K. Yalavarthy, A generalized least-squares minimization method for near infrared diffuse

optical tomography, Dartmouth College, 2007.

[47] S. R. Arridge, M. Cope, D. T. Delpy, The theoretical basis for the determination of optical

path lengths in tissue: temporal and frequency analysis, Phys. Med. Biol., 37, 1531–1559, 1992.

[48] S. A. Parhl, M. Keijzer, S. L. Jacques, A. J. Welch, A Monte Carlo model of light

propagation in tissue, Dosimetry of laser radiation in medicine and biology, SPIE Institute

Series, IS 5, 102-111, 1989.

[49] B. C. Wilson, G. Adam, A Monte Carlo model for the absorption and flux distributions of

light in tissue, Med. Phys., 10, 824–830, 1983.

[50] L. H. Wang, S. L. Jacques, L. Q. Zheng, MCML - Monte Carlo modeling of photon

transport in multi-layered tissues, Comp. Meth. Prog. Biomed., 47, 131–146, 1995.

71

[51] K. Ren, G. S. Abdoulaev, G. Bal, A. H. Hielscher, Algorithm for solving the equation of

radiative transfer in the frequency domain, Opt. Lett., 29, 578–580, 2004.

[52] S. Srinivasan, B. W. Pogue, C. M. Carpenter, P. K. Yalavarthy, K. Paulsen, A boundary

element approach for image-guided near-infrared absorption and scatter estimation, Med. Phys.,

34, 4545-4557, 2007.

[53] S. R. Arridge, Optical tomography in medical imaging, Inv. Problems, 15, R41–R93, 1999.

[54] K. Madsen, H. B. Nielsen, O. Tingleff, Methods for non-linear least squares problems,

Technical University of Denmark, 2004.

[55] W. Sun, Y. X. Yuan, Optimization Theory and Methods, Springer, 2006.

[56] NVIDIA, Parallel Programming and Computing Platform, NVIDIA Corporation,

http://www.nvidia.com/object/cuda_home_new.html.

[57] NVIDIA, CUDA Toolkit Documentation, NVIDIA Corporation,

http://docs.nvidia.com/cuda/index.html.

[58] NVIDIA, CUDA C Programming Guide, NVIDIA Corporation,

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.

[59] NVIDIA, CUDA C Best Practices Guide, NVIDIA Corporation,

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html.

[60] MATLAB & Simulink, MEX File Creation API, The Mathworks Inc.,

http://www.mathworks.com/help/matlab/call-mex-files-1.html.

[61] MATLAB & Simulink, GPU Computing, The Mathworks Inc.,

http://www.mathworks.com/help/distcomp/gpu-computing.html.

