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Diffuse Optical Tomography (DOT) is a recently emerging imaging modality that 

provides optical properties of a tissue. One of main challenges in DOT is the fact that it requires 

modeling of light propagation in tissue, which is a time consuming and computationally 

intensive task. However, this process can be accelerated by parallelizing the application. A 

graphics processing unit (GPU) has the suitable architecture for this task. Therefore, the main 

goal of this work is to implement a GPU-based solver for the forward problem of DOT. A Finite 

Element method is utilized to solve the diffusion approximation of the photon transport model in 

the project. CUDA's parallel architecture and MATLAB software are combined for the 

implementation of GPU-based forward solver. Several simulations are performed to test 

computational accuracy and efficiency of the solver. The results show that GPU-based 

implementation provides a significant speed-up with high accuracy. 
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CHAPTER ONE 

INTRODUCTION 

 

 

 In clinical settings, there is a variety of non-invasive imaging techniques used for 

diagnostics. Nuclear imaging and optical imaging are the imaging modalities that provide 

functional and molecular information. Positron Emission Imaging (PET) and Single Photon 

Emission Computed Tomography (SPECT) are two of the most commonly used clinical nuclear 

imaging modalities. By injecting appropriate radioactive agents which bind to certain types of 

tissues, SPECT and PET scan their distributions and show where they are concentrated in the 

body [1].  However, both of them have potential health risks due to injected radioactive agents 

and exposure to ionizing radiation. In addition, SPECT and PET procedures are very expensive. 

 Compared to nuclear imaging, optical imaging has unique advantages of being non-

ionizing and having low-cost instrumentation. Diffuse Optical Imaging (DOI) is one of emerging 

non-invasive optical imaging modalities that utilize near-infrared (NIR) light to probe biological 

tissues. Intrinsic optical properties of tissue such as absorption and scattering coefficients or 

refractive index spatially vary and DOI provides their spatial distribution with NIR 

measurements along or near the boundary of tissue [2]. Since tissue absorption is lowest in the 

NIR portion of the light spectrum, this window provides the highest depth penetration. When 

recovering spatial distributions of intrinsic optical properties of the tissue in DOI, different 

methods such as planar imaging, spectroscopic or tomographic techniques can be used. Although 

planar imaging and spectroscopic technique are mostly used due to their simplicity, tomographic 

techniques such as diffuse optical tomography (DOT) can be utilized for certain applications, 

especially for thick tissue imaging. 
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DOI has been applied to clinical applications in several areas such as breast imaging, 

functional brain imaging, muscle imaging, and joint imaging. One particular application area of 

DOI is breast imaging for detection of breast tumors. Breast cancer is one of the leading causes 

of cancer death for women in the United States. Early detection plays an important role to reduce 

the chance of death from breast cancer. Invasive techniques such as surgical biopsies provide 

effective breast cancer screening. However, 80 percent of U.S. women who undergo surgical 

biopsies do not have cancer [3]. There are also non-invasive techniques in screening breast 

cancer such as X-ray mammography, magnetic resonance imaging (MRI), ultrasound (US) and 

positron emission tomography (PET) [4-6].  

X-ray mammography is widely accepted as a very effective method in detection of breast 

cancer. However, repeated screening with X-rays mammography may have serious effects due to 

ionizing radiation. In addition, the specificity of X-ray mammography is modest, which may 

result in false negatives [7]. Meanwhile, MRI provides high sensitivity [8] but it has a high cost. 

On the other hand, using ultrasound (US) for detection of breast cancer may result in poor 

screening due to the visualization difficulty of deeper lesions. In addition to these disadvantages 

of X-ray mammography, MRI and US, they provide limited information about quantitative tissue 

function and composition since they are mostly anatomical imaging modalities [9]. Lastly, 

nuclear imaging modalities such as SPECT and PET can provide metabolic information but has 

potential risks associated with injected radionuclides and exposure to ionizing radiation [6]. 

 Compared to these conventional imaging modalities mentioned above, NIR DOI for 

breast imaging has several advantages. The first advantage of DOI is that, unlike X-ray 

mammography and PET, it uses non-ionizing radiation. This is very beneficial for repetitive 

breast cancer screening. The second advantage is that it can be very cost-effective and compact. 
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For example, a continuous wave (CW) breast imaging system can be relatively inexpensive and 

portable. Last but not least, NIR DOI provides functional properties of the breast with high 

sensitivity, which may help to detect breast cancer. However, high tissue scattering limits the 

resolution of DOI, which is the main hurdle for the clinical translation of this imaging 

technology. Extensive efforts have been spent to improve the resolution of DOI in recent years. 

Another particular application area of DOI is functional brain imaging. NIR DOI can 

monitor cerebral oxygenation and hemodynamics non-invasively using neuronal and 

hemodynamic signals [3, 10-13]. DOI can measure hemodynamic signals by quantifying the 

concentration of Hb and HbO2 [3]. This ability provides the blood volume and oxygen saturation 

changes that are associated with brain functions. Functional magnetic resonance imaging (fMRI) 

is also used for brain imaging. Although both fMRI and DOI utilizes similar signals, i.e. blood 

oxygenation levels to measure brain activity, DOI has its own merits of being cost-effective and 

portable, and most importantly of having high temporal resolution [3]. 

 In the following sections, optical properties of tissue, light-tissue interaction principles 

and modeling of photon migration in turbid media will be described. Besides, three types of 

measurement techniques used in DOI, namely continuous wave (CW), frequency- and time-

domain approaches will be introduced. In addition to these, image reconstruction procedures 

involving forward and inverse problems will be introduced. Lastly, motivation of this thesis will 

be presented. 
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1.1. Optical Properties of Tissue 

 When light interacts with tissue, there are two main events observed: absorption and 

scattering. Absorption occurs when the energy of a photon completely dissipated to tissue while 

scattering refers to deviation in the direction of photons when they interact with tissue [14].  In 

the NIR wavelength range, tissue intrinsic absorbers are mainly oxy- and deoxy-hemoglobin as 

well as water and fat [3, 15-19]. The absorption spectra of these chromophores differ from each 

other with respect to their spectral shape as well as the magnitude of the main absorption peaks 

[20, 21]. The total absorption of tissue measured by the DOI is a linear combination of the 

absorption of these chromophores for a particular wavelength. Hence, measurements at multiple 

wavelengths can be used to quantify absolute tissue chromophore concentrations. This allows 

estimation of total hemoglobin and oxygen saturation, which can be used to distinguish diseased 

and normal tissue. 

In addition to absorption, scattering is the other fundamental quantity that describes the 

propagation of light. Cells in biological tissues contain a vast variety of molecules, which have 

different indices of refraction. When the light propagates through tissue, it may redirect due to 

the sharp transitions of the index of refraction. This is considered as scattering in the tissue. 

Tissue scattering may be used to detect morphological and pathophysiological changes in tissue. 

The scattering spectral features may vary due to a diseased breast tissue. Recent studies have 

shown that there is substantial contrast in breast lesions relative to normal tissue, and that the 

scattering contrast between malignant and benign processes appears to be significant [22].  

On the other hand, DOI is greatly affected by the highly scattering nature of the 

biological tissues. Most medical imaging modalities utilize other parts of the electromagnetic 

spectrum, in which a sizeable portion of the photons propagate mainly in straight paths in the 



5 
 

tissue. By utilizing different methods to eliminate the scattered photons, these modalities can 

provide high resolution images. Unfortunately, similar approaches cannot be applied to DOI of 

thick tissues due to overwhelmingly dominant scattering. Instead, modeling of light propagation 

in tissue is required to form an image from the measured optical data as described in the next 

section. 

 

 

1.2. Modeling of Photon Propagation in a Medium 

 As mentioned earlier, photons can be absorbed or scattered as they propagate in a 

medium. If the medium is only absorbing, Beer – Lambert's law can describe the portion of the 

beam attenuated or absorbed as it propagates through this medium [14]. Beer-Lambert's Law 

expressed below states that the photon intensity decreases exponentially when the light travels in 

an absorbing medium. 

  

𝐼(𝑥) = 𝐼0  × exp (−𝜇𝑎𝑥)                                                       (1) 

 

where I is the photon intensity in the medium, I0 is the incident photon intensity, µa is the 

absorption coefficient, and x is the distance travelled. 

 In biological tissues, the incident NIR light is not only absorbed but also heavily scattered 

[2]. Hence a more comprehensive modeling method is necessary for DOI. For this purpose, 

Radiative Transfer Equation (RTE) is used to describe photon propagation in tissue [23-28], 
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(2) 

 

where L(r,ŝ,t) is radiance, µa is the absorption coefficient, µs is the scattering coefficient, q(r,ŝ,t) 

is the source term, and cn is the speed of the light in the tissue, which is typically c0  / 1.4. 

Meanwhile, f(ŝ·ŝ´) is the phase function satisfying 
4

ˆ ˆ( ) 1f s s d


    . The reduced scattering 

coefficient µs´ is defined as (1 )s sg    , where g is the average cosine of the phase function 

and typically 0.9 for biological tissues. The term g provides the degree of anisotropy of the phase 

function [29]. 

 Unfortunately, RTE is difficult to solve both analytically and numerically [3]. When 

scattering coefficient is more dominant than absorption coefficient (µs' >> µa) and the source 

term is considered as isotropic, the photon propagation can be approximated by the diffusion 

equation [28, 30-33]: 

 

0

1 ( , )
[ ( ) ( , )] ( ) ( , ) ( , )a

n

r t
r r t r r t q r t

c t
 


      


                           

 (3) 

 

where Φ(r,t) is the angle – independent photon density, q0(r,t) is an isotropic light source term 

and κ(r) is the diffusion coefficient expressed as: 
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𝜅(𝑟) =  
1

3
(𝜇𝑎 + 𝜇𝑠

′ )                                                            (4) 

 

Also, apart from (µs' >> µa) condition, there is one more important condition required to be 

satisfied for the diffuse approximation, which is the source - detector separation  ρ >> 1 / µs' [3]. 

 Using Fourier transformation, the diffusion equation in frequency domain can be 

obtained from Eq. (3) and the diffusion equation for the continuous light source can be derived 

by setting modulation angular frequency ω to 0 [28]: 

  

        ∇ ∙ [κ(𝑟)∇Φ(𝑟, 𝜔)] – [𝜇𝑎(𝑟) +
𝑖𝜔

𝑐𝑛
]Φ(𝑟, 𝜔)  + 𝑞0(𝑟, 𝜔)  =  0                  (5) 

 

  ∇∙[κ(r)∇Φ(r)] – µa (r) Φ(r) + q0(r) = 0                                      (6) 

 

 

1.3. Measurement Techniques for Diffuse Optical Imaging 

Diffuse optical imaging measures the reflected and/or transmitted light through the tissue 

to obtain its optical properties. There are mainly three types of measurement techniques in DOI: 

continuous wave (CW), frequency-domain and time-domain techniques.  

 In continuous wave (CW) technique, intensity of the light source is constant and time 

independent; hence the detected light level is also constant as shown in Fig. 1.  The advantage of 

CW technique is that it is a very straightforward technique and has low cost. Many different CW 

systems have been reported in the literature [34-36].  
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Figure 1 Intensity changes of source and detected light over time in continuous wave (CW) technique 

 

 Instead of a light source with a constant intensity, one with sinusoidally modulated 

amplitude is used in the frequency-domain technique. As seen in Fig. 2, the detected light signal 

has reduced amplitude and a phase shift compared to the source light. Although it is more 

comprehensive than the CW technique, when it is compared to time-domain technique, the 

frequency-domain technique is cheaper and its data acquisition time is shorter [37]. As the 

frequency increases, the phase shift difference between normal and tumor tissue increases; on the 

other hand, the sensitivity and accuracy of the detection system decreases [38]. As a final note, 

there are some applications which combine CW and frequency-domain techniques [39-42]. This 

improves the overall quantitative accuracy in chromophore concentration estimates [41]. 
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Figure 2 Intensity changes of source and detected light over time in frequency-domain technique 

 

 

 The last major measurement technique used in DOI is time-domain approach. It utilizes 

short laser pulses, namely sub-nanosecond laser pulses, and records flight time of photons as a 

function of time [43-45]. To do that, Temporal Point Spread Function (TPSF) is measured. 

Time-domain technique is very expensive and slow, but it provides richer data than frequency-

domain technique and hence, leads to more accurate results [37]. 

 

 

Figure 3 Intensity changes of source and detected light over time in time-domain technique 
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1.4. Image Reconstruction Procedures 

The main goal of DOT is to find the distribution of optical properties in the tissue through 

image reconstruction. Image reconstruction in DOT is divided into two steps: forward and 

inverse problems. In the forward problem, a photon density map is obtained using the photon 

diffusion model. The forward problem can be used to estimate measurements for a medium with 

known optical properties and geometry. Three types of computational methods can be used to 

solve the forward problem of DOT: 

 Analytical Methods: The Green's function is used to find optical properties of the tissue. 

The source is considered as a spatial and temporal delta-function [46]. The main 

drawback of analytical methods is that they provide solutions only for simple 

homogeneous geometry with a regular shape, or for media with a single spherical 

perturbation [33, 47]. 

 Monte-Carlo Methods: Monte-Carlo method is a computational method based on 

statistics [48-50]. While absorption and scattering events are simulated, all the events for 

each individual photon are recorded until the photon exits the medium or is completely 

absorbed. A large number of photons are traced as they propagate the medium and the 

sum of all events gives a statistical distribution. This method is very flexible and can be 

applied for complex heterogeneous geometry. Although Monte-Carlo method provides 

very accurate results, its main drawback is that it is computationally expensive.  

 Numerical Methods: There are various numerical techniques: Finite Element Method 

(FEM), Finite Difference Method (FDM), Finite Volume Method (FVM), Boundary 

Element Method (BEM) [25, 39, 51, 52]. FEM is a very popular technique used to solve 

the forward problem since it is flexible, suitable for complex heterogeneous geometry 
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and provides a good approximation.  More importantly, it is much faster than Monte-

Carlo methods. The numerical solution in this work is obtained by FEM and will be 

explained later in detail. 

To generate an image, an inverse problem should be solved. For this purpose, the forward 

problem is used. After assuming an initial optical property distribution, the difference between 

calculated and measured photon densities along the boundary is minimized by an iterative 

approach [2]. Reconstructing image in DOT is a challenging problem mainly due to inherently 

ill-posed inverse problem and non-linearity of the transport model. In addition, it can be a 

seriously ill-determined or under-determined problem, which means the number of independent 

equations is much less than the number of unknowns. In other words, the number of independent 

measurements is less than the number of pixels in the image of optical properties obtained in 

DOT [46, 53]. Therefore, there is no unique solution for given detected signals, which implies it 

is necessary to regularize the problem by iterative model-based linear algebra [53]. This is called 

regularization. Due to the reasons stated above, image reconstruction in DOT requires intense 

computations. As computers become more powerful, performing those computations become 

easier. This helps researchers to develop fast and reliable computational methods.  

 

 

1.4.1. Numerical Solution of the Forward Problem 

The forward problem starts with the photon diffusion model expressed as in Eq. 3. The 

photon diffusion model is a partial differential equation (PDE) and a numerical solution is 

obtained in this work by using a finite element method (FEM) framework.  
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 In FEM framework, the photon diffusion equation can be written as [28]: 

 

∫ 𝑑𝑥∇𝜑 ∙ (𝜅∇Φ)  +  ∫ 𝑑𝑥𝜇𝑎𝜑Φ𝑥  +  
1

2Α
∫ 𝑑𝑠𝜑Φ𝑥 +  𝑑ΩΩΩ

𝑖𝜔

𝑐
∫ 𝑑𝑥𝜑Φ𝑥 = ∫ 𝑑𝑥𝜑𝑞0ΩΩ

  (7) 

 

where 𝜑 is an arbitrary test function. The function Φ can be expressed as 
1

N

j j

j

 


   where 𝜑𝑗 

is a basis function, which is a piece-wise linear function, for the jth node. The distributions 𝜅 and 

µa can be written as 
1

N

k k

k

  


 and
1

N

a ak k

k

  


 .  

To simplify the above diffusion equation in FEM framework, it can be represented as 

[28]: 

( ) x

i
A B C D Q

c


                                                       (8) 

 

where 

(𝐴)𝑖𝑗 = ∑ 𝜅𝑘 ∫ 𝑑𝑥𝜑𝑘(∇𝜑𝑖𝑔∇𝜑𝑗)Ω

𝑁
𝑘=1                               (9) 

(𝐵)𝑖𝑗 = ∑ 𝜇𝑎,𝑘 ∫ 𝑑𝑥𝜑𝑘(𝜑𝑖𝜑𝑗)Ω

𝑁
𝑘=1                                  (10) 

(𝐶)𝑖𝑗 = ∫ 𝑑𝑠(𝜑𝑖𝜑𝑗)𝑑Ω
                                                     (11) 

(𝐷)𝑖𝑗 = ∫ 𝑑𝑥(𝜑𝑖𝜑𝑗)Ω
                                                     (12) 

(𝑄)𝑖 = ∫ 𝑑𝑥(𝜑𝑖𝑞0)Ω
                                                      (13) 

                                                
1

N

x

x

 


                                                                         (14) 
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In the forward problem, the linear equations are solved to obtain the photon density 

distribution Φ in the medium. To obtain the photon flux at the boundary, the photon density Φ is 

needed. Robin boundary condition expressed below can be used to find the photon flux at the 

boundary [28]. According to the Robin boundary condition, the total inward directed photon 

current is zero on the boundary except at the regions of the source term.  

 

( , )
( , ) 2 ( ) 0

r
r A r

n


 


   


                                           (15) 

 

where n is the direction perpendicular to the boundary surface. A in Eq. 15 is the boundary 

mismatch parameter related to light reflection at the boundary and determined by Fresnel's 

reflections [23]. The photon flux J at the boundary can be expressed as [28]: 

 

( )
2

J r
n A


 

  


                                                        (16) 

 

For frequency-domain technique, the photon flux calculated at the boundary is a complex 

number. There are mainly three types of data that can be obtained from the complex data at the 

boundary [28]:  

 Type I shows real and imaginary parts of the calculated photon flux. 

 Type II shows amplitude and phase data of the calculated photon flux. 

 Type III shows amplitude in log scale and phase data of the calculated photon flux. 
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Type III is commonly used for the reconstruction purposes because it scales dynamic 

range of the amplitude data that can be in the range from 1 to 10-10 or even lower depending on 

measurement conditions. In log scale, the amplitude data is in the range from 0 to -10, which is 

similar to the level of dynamic range of the phase data. In addition, Type III makes it easy to see 

the relation between the amplitude / phase data and RF signal data recorded from instruments 

[28].  

The diffusion equation provides reasonable solution accuracy for DOI owing to the 

assumption that reduced scattering coefficient is more dominant than absorption coefficient in 

most tissues, except in small regions of tissues such as cysts in the breast, cerebrospinal fluids in 

the brain, and cynovial fluids in the joints [2]. It is mentioned that diffusion equation is an 

approximation of Radiative Transfer Equation (RTE). Therefore, it is clear that RTE can provide 

a more accurate solution than diffusion equation but RTE has a high computational complexity. 

In addition, since the inverse problem explained in the next section has an iterative process, 

simulation time for DOT reconstruction can be substantially high. A better way to have a more 

accurate solution can be the use of high-order diffusion equations. However, as the order of the 

diffusion equation increases, the computational cost increases.  

 

 

1.4.2. Inverse Problem in DOT 

Inverse problem in DOT involves finding the distribution of optical properties of the 

tissue by minimizing difference between calculated and measured photon density at the 

boundary. A least-square method can be used to achieve the minimization. Newton’s approach 

can be employed in least-square minimization of the following objective function [2]: 
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𝐹(Φ,𝜅, 𝜇𝑎) =  ∑ (Φ𝑗
𝑜 − Φ𝑗

𝑐)
2𝑀

𝑗=1                                             (17) 

 

where Φ𝑗
𝑐 and Φ𝑗

𝑜 are the computed and observed photon densities at the boundary for j=1, 

2,…,M. The following nonlinear system of equations can be obtained by using least-square 

criteria [2]: 

 

𝜕𝐹

𝜕χ1
=> −∑ (Φ𝑗

𝑜 − Φ𝑗
𝑐)
𝜕Φ𝑗

𝑐

𝜕χ1

𝑀
𝑗=1 = 0  

      
𝜕𝐹

𝜕χ2
=>  −∑ (Φ𝑗

𝑜 − Φ𝑗
𝑐)
𝜕Φ𝑗

𝑐

𝜕χ2

𝑀
𝑗=1 = 0                                     (18) 

⋮ 

                                          
𝜕𝐹

𝜕χ2𝑁
=> −∑ (Φ𝑗

𝑜 − Φ𝑗
𝑐)

𝜕Φ𝑗
𝑐

𝜕χ2𝑁

𝑀
𝑗=1 = 0   

 

where N is the total number of 𝜅 or 𝜇𝑎 parameters, and the symbol χ expresses 𝜅 or 𝜇𝑎. The 

nonlinear system of equations in Eq. 18 can be written as follows: 

 

�̂� = (𝑓1, 𝑓2, … , 𝑓2𝑁)
𝑇                                                      (19) 

 

where 𝑓𝑖 is the left-hand side of each equation for i = 1, 2, …, 2N. Then, Newton’s method gives: 
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𝐺∆𝜒 =  −�̂�                                                              (20) 

 

where ∆𝜒 = 𝜒(𝑛) − 𝜒(𝑛−1), n is the iterative step in Newton’s method, and  

 

𝐺 =

(

 
 
 

𝜕𝑓1

𝜕𝜒1
𝜕𝑓2

𝜕𝜒1

𝜕𝑓1

𝜕𝜒2
𝜕𝑓2

𝜕𝜒2

⋯

𝜕𝑓1

𝜕𝜒2𝑁
𝜕𝑓2

𝜕𝜒2𝑁

⋮ ⋱ ⋮
𝜕𝑓2𝑁

𝜕𝜒1

𝜕𝑓2𝑁

𝜕𝜒2
⋯

𝜕𝑓2𝑁

𝜕𝜒2𝑁)

 
 
 

                                               (21) 

 

After several calculations which are described in [2], �̂� and G functions can be derived as 

follows: 

 

−�̂� =  𝔍T  ∙ b                                                               (22) 

𝐺 =  𝔍T𝔍                                                                  (23) 

 

where 𝔍 is the Jacobian matrix and b = (Φ1
𝑜 − Φ1

𝑐 ,Φ2
𝑜 − Φ2

𝑐 , … ,Φ𝑀
𝑜 − Φ𝑀

𝑐 )T. Then, Eq. 20 can 

be rewritten as: 

 

𝔍T𝔍∆𝜒 =  𝔍T(Φ𝑜 − Φ𝑐)                                                 (24) 

 

Regularization methods are used to overcome ill-posedness of the inverse problem due to the 

matrix 𝔍T𝔍. Hence, Eq. 24 becomes 
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(𝔍T𝔍 +  𝜆𝐼)∆𝜒 =  𝔍T(Φ𝑜 − Φ𝑐)                                          (25) 

 

where I is the identity matrix and 𝜆 is the regularization parameter. There are many types of 

algorithms to implement the inverse part of image reconstruction.  An algorithm based on 

Levenberg–Marquardt method is a common approach and it can solve the inverse problem 

iteratively until the stopping criteria are satisfied [54, 55]. 

 

 

1.5. Motivation of Thesis 

Long simulation time is one of main challenges in DOT since it requires the processing 

of huge amount of data. Image reconstruction in DOT involves solving the forward model 

iteratively. Since the total number of iterations is large, the total simulation time decreases as the 

time to solve the forward model decreases. Thus, it is important to execute the DOT program 

efficiently. However, when the DOT program is run on a central processing unit (CPU), it is 

executed serially. One way to reduce the simulation time for the forward problem is to execute 

the DOT program in parallel. Although we have multi-core CPUs which provide parallelism, 

they are not enough to decrease this time-consuming procedure significantly. Graphics 

processing units (GPU) have a design that is aimed to handle large number of tasks 

simultaneously since they have a much larger number of cores. GPU's parallel execution of the 

forward solver can provide considerable speed-up compared to CPU's serial execution. In this 

work, we implement a GPU-based solver for the forward problem of DOT. To do that, CUDA's 

parallel architecture and MATLAB are combined and a Finite Element method is used.  
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 We have two core goals for this project. Our first goal is to implement a Finite Element 

forward solver for DOT on a GPU device. We aim to show that computations in GPU-based 

forward solver are highly accurate when compared to a CPU-based forward solver. The second 

core goal is to achieve a significant speed-up in simulation time of the forward solver. Smaller 

simulation times for DOT can increase the applicability of DOT in clinical procedures.  

 It is worth to mentioning an important implied outcome of speed-up with a GPU-based 

implementation. Total simulation time of DOT is highly dependent on mesh complexity. For a 

CPU-based implementation, coarse meshes are used to reduce the simulation time. However, 

using coarse meshes may result in low accuracy. Therefore, mesh quality should be high so that 

the mesh could be closer to continuous form, which provides more realistic results. Owing to 

speed-up obtained with a GPU-based implementation, it is possible to use finer mesh for the 

same amount of simulation time. In addition, the number of sources used is another factor that 

increases the total simulation time. Hence, larger number of sources can be used in a GPU-based 

implementation than that can be used in a CPU-based implementation for the same simulation 

time.  
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CHAPTER TWO 

GPU PARALLELISM WITH CUDA AND MATLAB 

 

 

2.1.    Parallel Computing with CUDA 

2.1.1.    Introduction 

 Over time, the need for parallelism increased with the demand of computationally 

intensive programs in several areas including the medical industry. As a result, programmers 

have moved from serial to parallel programming to satisfy the computational needs. CPU 

vendors started to produce multi-core CPUs to improve performance of applications by 

parallelism. However, this was not enough to satisfy the need. Therefore, graphics processor unit 

(GPU) have become a better candidate owing to larger number of execution cores. NVIDIA 

introduced the Compute Unified Device Architecture (CUDA) programming model to develop 

GPU parallelized applications [56-59]. Programmers can merge C programming language with 

CUDA to write their GPU parallelized codes.  

 Data-parallel programming model can be used for applications which process large 

blocks of data and GPU is a better platform for those applications since GPU architecture has 

more transistors to data processing rather than data caching when compared to CPU architecture.  
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Figure 4 Representation of CPU and GPU architectures 

 

 

 The main concept of CUDA parallel programming is to achieve concurrency. For 

example, if an algorithm does the same calculation iteratively over a large number of steps, the 

individual calculation of each step can be found concurrently. Hence, the performance of the 

algorithm improves drastically. The CUDA parallel programming model partitions the problem 

into sub-problems that can be solved by grids of blocks, each of which contains multiple threads. 

In the following section, CUDA parallel programming model will be discussed in detail. 

 

 

2.1.2.    CUDA Programming Model 

 The fundamental building block of parallel computing is called a thread. To run multiple 

threads in a parallelized program, a function that runs on GPU is needed. This function is called 

a kernel. The total number of threads is specified when a kernel function is defined. Hence, 

kernels are executed N times in parallel by N different CUDA threads. Multiple parallel CUDA 

threads are logically grouped into a block. In addition, a set of blocks composes a grid. Using a 
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number of threads and blocks, and a special notation: <<< ... >>>, the following syntax is used to 

invoke a kernel.  

 

kernel_function <<<number_of_blocks, number_of_threads>>>(parameter1, parameter2, ...); 

 

The total number of threads specifies the block size whereas the total number of blocks specifies 

the size of the grid. __global__ declaration specifier and parameters are used to define a kernel. 

In addition, it is essential that a unique thread ID is assigned to each thread executing the kernel. 

The following example shows how to define and invoke a kernel that runs N multiple threads 

simultaneously: 

 

Table 1 Sample CUDA code that adds two vectors X and Y of size N and the resulting vector is Z of size N. 

// Defining Kernel 

__global__ void VectorAdd(float *X, float *Y, float *Z){ 

  

 // Assigning thread ID 

 int i = blockIdx.x * blockDim.x + threadIdx.x; 

  

 // Adding two vectors X and Y 

 Z[i] = X[i] + Y[i]; 

} 

int main(){ 

 

 ... 

 

 // Invoking kernel with N threads 

 VectorAdd<<< 1, N >>> (d_X, d_Y, d_Z); 

 

 ... 

 

} 
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In the sample code above, the thread ID for each thread is calculated using block ID for 

each block and its dimension. This implies that threads are grouped according to the thread 

hierarchy in the CUDA parallel programming model. In addition, the thread index threadIdx is a 

3-component vector which can be used to define one-dimensional, two-dimensional or three-

dimensional block of threads. For example, in the above code, the threads are defined by one-

dimensional thread index threadIdx.x. The following figure shows the thread hierarchy in the 

CUDA programming model: 

 

 

Figure 5 Representation of thread hierarchy in CUDA programming model 

 

The GPU hardware limits the number of threads per block. This limit is 512 threads per 

block on the early hardware whereas it is 1024 threads per block on the later hardware. In 

addition, a kernel can have a grid of a total of 65,536 blocks, which means that 33.5 million 

threads in total can be scheduled on an early hardware. Therefore, a program can process up to 

33.5 million array elements when one thread per array element is assumed. 
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Before starting, it is important to understand the processing flow of a basic CUDA 

program. In the first stage, the processing flow starts with allocating variables in the device. This 

memory allocation can be done by using the function cudaMalloc(). Then, the function 

cudaMemcpy() allows the transfer of data between host and device memory. In the third stage, 

after all the necessary data is transferred to the device memory, the GPU processes it in parallel 

and the result is stored in the device memory. At the final stage, the result is copied from the 

device to the host memory and the device memory is freed by using the function cudaFree(). The 

processing flow for a basic CUDA C program and its sample implementation for the code in 

Table 1 are given below: 

 

 

Figure 6 Data processing flow for a basic CUDA C program 
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Table 2 Sample CUDA implementation of the processing flow after getting input vectors X and Y of the code 

in Table 1 

 

int main(){ 

 

 ... 

   

 size_t size = N * sizeof(float); 

  

 // Allocating vector Z in host memory 

 float* Z = (float*) malloc(size);   

 

 // Allocating vectors X and Y in device memory 

 float* d_X; 

 cudaMalloc(&d_X, size); 

 float* d_Y; 

 cudaMalloc(&d_Y, size); 

 float* d_Z; 

 cudaMalloc(&d_Z, size); 

 

 // Copying vectors X and Y from host memory to device memory 

            cudaMemcpy(d_X, X, size, cudaMemcpyHostToDevice); 

     cudaMemcpy(d_Y,  Y, size, cudaMemcpyHostToDevice); 

 

 ... 

 

 // Copying the result from device memory to host memory  

 cudaMemcpy(Z,  d_Z, size, cudaMemcpyDeviceToHost); 

  

 // Free device memory 

 cudaFree(d_X); 

 cudaFree(d_Y); 

 cudaFree(d_Z); 

 

} 
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2.2.    MATLAB's MEX Files with CUDA 

2.2.1.    Description of MEX Files 

 MATLAB Executable Files or MEX Files give the ability to use C/C++ or FORTRAN 

codes within the MATLAB environment [60, 61]. In addition, MEX Files can call MATLAB 

functions from C/C++ or FORTRAN code and the data between MEX Files and MATLAB 

environment can be transferred from one to another.  

There are two advantages of using a MEX File over a MATLAB file: 

 MEX Files can be used to increase speed of the application. Bottlenecks can be optimized 

to improve the performance. 

 Custom code can be written for the MATLAB environment and MEX Files can integrate 

it to the environment. 

The structure of C MEX Files is almost the same as typical C source files. However, 

instead of the main() function as the entry point, similar to a typical C source code, C MEX Files 

use the gateway routine mexFunction() as the entry point to be consistent with the MATLAB 

environment. The entry point of C MEX Files has the following syntax: 

 

/* The gateway function */ 

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]){ 

 /* C code here */ 

} 
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There are four input parameters at the gateway routine:  plhs is the array of arguments at 

the left hand side, or the array of output arguments, nlhs is the number of arguments at the left 

hand side, or the size of the plhs array, prhs is the array of arguments at the right hand side, or 

the array of input arguments, and nrhs is the number of arguments at the right hand side, or the 

size of the prhs array. 

We use MATLAB's MEX functions to read the input data in the MEX Files. mxGetPr is 

used to point the input matrix data of double type, mxGetData is used to point the input matrix 

data of other types such as float or int, mxGetScalar is used to get the value of scalar input, and 

mxGetM and mxGetN are used to get the size of the matrix. To create the output argument, 

plhs[0], and to assign a double variable to plhs[0], mxCreateDoubleMatrix and mxGetPr were 

used respectively. 

 

Table 3 Example code in a MEX File to read the input data of various types 

 

double* input1; 

input1 = mxGetPr(prhs[0]); 

 

float* input2; 

input = (float*) mxGetData(prhs[1]); 

 

double input3; 

input3 = mxGetScalar(prhs[2]); 

 

mwSize N; 

N = mxGetN(prhs[0]); 

 

double* outputMatrix; 

plhs[0] = mxCreateDoubleMatrix(mRow, nCol, mxREAL); 

outputMatrix = mxGetPr(plhs[0]); 
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2.2.2.    C MEX File Example 

As a reference, a C MEX File Example is presented in Table 4. 

 

Table 4 Implementation of the C MEX File that finds the maximum element in the input vector. 

#include "mex.h" 

 

// The gateway function 

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]){ 

 // Declaring variables 

 int mRow, nCol; 

 double *inVector, myOutput, maxElement;  

 // Checking if the number of input argument is satisfied 

 if(nrhs != 1){ 

  mexErrMsgTxt("There must be only one input."); 

 }  

 // Getting the size of the input 

 mRow = mxGetM(prhs[0]); 

 nCol = mxGetN(prhs[0]); 

 // Checking if the input is a 1 by N vector. 

 if(mRow != 1 || nCol < 1){ 

  mexErrMsgTxt("The input should be a 1 by N vector."); 

 } 

 // Reading the input data 

 inVector = mxGetPr(prhs[0]); 

 // Creating the output argument 

 plhs[0] = mxCreateDoubleMatrix(1, 1, mxREAL); 

 // Getting a pointer to the output 

 myOutput = mxGetPr(plhs[0]); 

 // C Code to find the maximum element in the input vector 

 maxElement = inVector[0]; 

 if(nCol > 1){ 

  for(int i=1; i < nCol; i++){ 

   maxElement = (maxElement < inVector[i]) ? inVector[i] : maxElement;   

  } 

 } 

 myOutput = maxElement; 

} 
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2.2.3.   Building CUDA C MEX File  

 We mentioned that MEX Files could improve the performance of an application. In 

addition, the speed of a program can be further increased by combining CUDA and C MEX 

codes, which makes computationally expensive algorithms much faster. In addition, although 

MATLAB provides an extensive library of GPU-enabled functions, there are additional libraries 

in CUDA toolkit provided by NVIDIA. Hence, a function in one of these libraries can be called 

using CUDA C MEX Files.  

 For CUDA C MEX Files, the entry point mexFunction(), the input prhs and the output 

plhs arguments are the same with C MEX Files. However, the processing flow contains both 

CUDA and MEX routines. The following figure shows the processing flow for CUDA C MEX 

Files: 

 

Figure 7 Data processing flow for a basic CUDA C MEX File 
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 Lastly, it is important to state two differences between MATLAB and CUDA C MEX 

Files. First, MATLAB stores data in column major order, whereas C/C++ or CUDA stores or 

accesses the data row major order. The second difference is the indexing scheme. MATLAB 

accesses the elements in a matrix using a one-based index. On the other hand, C/C++ accesses a 

matrix's elements using a zero-based index. 
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CHAPTER THREE 

IMPLEMENTATION OF THE FORWARD MODEL 
 

 

As we mentioned earlier, the photon propagation in turbid media is modeled by the 

Radiative Transfer Equation (RTE). However, the resolution of RTE is very complex; hence, it is 

usually approximated to the diffusion equation. We also mentioned that during the forward 

problem of DOT, the diffusion equation is solved using analytical or numerical methods. One of 

the most used numerical methods is called the Finite Element Method (FEM). In this work, we 

present the solution of the continuous wave (CW) DOT forward problem using FEM.  

 During the formulation of the CW DOT forward problem in FEM, the photon density Φ, 

the diffusion coefficient κ, and the absorption coefficient μa are spatially discretized by using the 

Galerkin weak form of the FEM diffusion equation and a Lagrangian basis function. Here, it is 

important to mention the trivial step in FEM, which consists of the discretization of the studied 

medium. Basically, the studied domain Ω is discretized or meshed into small elements connected 

at N nodes. Figure 8 shows an example of the discretization of the domain Ω.   

 

Figure 8 Example of the discretization of the domain Ω using a 2D FEM mesh of a 25 mm diameter medium 
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In two dimensions, the domain is divided into triangles and its boundary is discretized 

using segments. However, the domain is usually meshed using tetrahedral elements in 3D, and 

its boundary is divided into triangles. Therefore, in order to find the photon density Φ, we 

calculate nodal field photon density values for all the FEM mesh nodes within the domain Ω, that 

is Φ = { ϕi  } for all nodes i=1,2, ..,N.  

 After spatially discretizing the diffusion equation, the forward problem can be expressed 

as a system of linear equations: 

 

[A] {Φ} = {S}                                                            (26) 

 

where A is the system matrix, Φ is a column vector of size N, S is a column vector of size N, and 

N is the number of nodes in the finite element mesh. The system matrix A is highly sparse and 

generally a banded matrix. It gathers the individual contributions from each mesh element 

characterized by a diffusion coefficient κ and an absorption coefficient μa at each of its nodes. 

Technically, solving the forward problem consists of first solving Eq. 26 to obtain the photon 

density Φ within the medium then obtaining the photon flux at the boundary. 

Before explaining the implementation of the forward model, it is important to mention 

the 3D FEM mesh generation. In 3D modeling, the first step consists of defining the boundary of 

the studied medium. This is generally done by segmenting anatomical images of the medium.  

Afterwards, the obtained boundary of the medium is transformed into a 3D closed 

geometry using any Computer-Aided Design (CAD) software. In some cases, the boundary of 

the 3D geometry requires some refinements and smoothening. Finally, the processed geometry is 
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meshed using any 3D mesh generator software (Comsol, NIRFAST, etc.). Figure 9 shows an 

example 3D FEM mesh of a 25 mm diameter cylinder.  

 

 

Figure 9 Example of a 3D FEM mesh of a 25 mm diameter cylinder 

 

Mesh generation is a complex and time-consuming procedure in DOT. The computation 

time and space efficiency of this procedure highly depend on the mesh generation algorithm 

used. Iterative and recursive based methods, which have different time complexities, are 

generally used. Intuitively, it can be considered that 3D mesh generation algorithms have higher 

time and space complexities than the 2D ones; however, this is not always the case since time 

and space complexities are determined by the method used for mesh generation.  

One of the most important factors affecting the computation time is the number of mesh 

elements. As imposed by the FEM, the medium must be discretized but the final solution has to 

be close to realistic continuous solution. It may be considered that using a very high number of 

elements seems to be the answer for this issue; however, the higher the number of elements is the 
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longer the computation time is. Therefore, finding an optimum number of elements is one of the 

important steps when using FEM.  

In this work, we used 3D meshes with different number of elements in order to 

investigate the relationship between the number of elements and the computation time of the CW 

DOT forward problem. Specifications of these meshes are given in the simulation and discussion 

section. Our meshes are characterized using the following notations: 

 p (3xN): Each column contains the (x, y, z) 3D coordinates of a given mesh node. 

 t (4xNe): Each column contains the indices of the 4 nodes forming a tetrahedral element 

and Ne is the total number of the tetrahedral elements.  

 e (3xNb): Each column contains the indices of the 3 nodes forming a boundary triangular 

element and Nb is the total number of the boundary triangular elements. 

Apart from the p, e, and t properties, we choose to add additional information such as the 

source and detector information into our 3D meshes. The source and detectors are represented by 

two properties: the node number for each source or each detector, and source or detector 

coordinates. In addition, information about how diffusion and absorption coefficients for each 

tetrahedral and boundary element affect the photon density is also included to our 3D meshes. 

This information is used to obtain the system matrix A. 
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3.1.    MATLAB Implementation of the Forward Model 

Earlier, we introduced that CW DOT forward problem involves in a system of linear 

equations, which can be represented in a matrix formulation. Here we present a processing flow 

of its implementation in MATLAB, which is a very strong software designed for matrix 

computations. 

 

 

Figure 10 Data processing flow of the forward model in MATLAB 

 

 After the mesh generation, the FEM forward problem solver implemented in MATLAB 

attributes the initial estimates of the optical properties of the studied medium to each mesh 

element. Once this initialization performed, the FEM forward solver calculates the first term of 

the left hand side of the system of linear equations, which is the system matrix A. This system 

matrix is assembled by considering the effect of each tetrahedral element on the neighboring 
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tetrahedrons. Also, during the system matrix assembly, the boundary conditions of the diffusion 

equation are applied to the boundary triangular elements.  

The next step is to initialize the vector S. In FEM, this vector is an Nx1 vector containing 

zeros everywhere except at the nodes to be used as sources. Usually, the values of vector S at 

these nodes are set to 1.  

The photon density Φ is simply obtained by solving the system of linear equations. Once 

the photon density obtained, the boundary conditions are applied to find the photon flux at the 

detectors positioned at the boundary of the medium. 

 

3.2.    CUDA C Implementation 

Although the processing flow of the CUDA C implementation for the forward model 

shown in Fig. 11 has some differences from the MATLAB implementation, the CUDA C 

implementation has the same core processing steps followed in the MATLAB version. We need 

to generate a Finite Element mesh to run the CUDA C implementation, and mesh generation and 

its features are the same as previously mentioned.  

To run the CUDA C implementation of the forward model, we begin with the 

initialization of absorption and scattering coefficients, and calculation of the diffusion 

coefficient; then we import mesh features such as node coordinates, node numbers of 

tetrahedrons and triangles at the boundary, as well as source and detector information into the 

MATLAB environment. After that, we make the function call of the forward model's MEX File 

with the necessary parameters. The CUDA C implementation of the forward model calculates the 

photon density Φ and the flux at the boundary; and the MEX File function returns these two 

parameters into the MATLAB environment. 
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Figure 11 Data processing flow of CUDA C implementation for the forward model 
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The CUDA C implementation of the forward model started with the gateway function of 

MEX Files: mexFunction(). As stated earlier, the mexFunction() has four input parameters: array 

of input arguments, prhs; the size of prhs array, nrhs; array of output arguments, plhs; and the 

size of plhs array, nlhs. We need to verify the MEX File input and output parameters. To do that, 

we use nrhs and nlhs parameters. If the number of right hand side arguments, i.e. the number of 

input arguments nrhs, does not match with the total number of the necessary arguments to 

calculate the photon density, the MEX File gives an error message to indicate wrong number of 

input arguments included. In addition, if the number of left hand side argument, i.e. the number 

of output arguments nlhs, is different than 2, the MEX File shows that 2 output arguments are 

required. 

 The next step is to declare the variables and to read the input data. We define the same 

variables used in the MATLAB environment. To assign input arguments coming from the 

MATLAB environment, we use MEX functions that read the input data. There are various types 

of input data in the implementation; therefore, different MEX functions are used to read different 

types of data. For example, the absorption coefficient μa is a double variable; hence, the MEX 

function mxGetPr are utilized for the absorption coefficient to assign the input data. However, 

the variable to store nodes of tetrahedrons is an integer type; therefore, the MEX function 

mxGetData are used for that variable. In addition, the scalar inputs such as number of nodes, 

number of tetrahedrons, and number of triangles at the boundary are assigned by the MEX 

function mxGetScalar. 

 After reading the input data, we need to create the output arguments, the photon density 

Φ for all sources and the flux at the boundary. The first step is to calculate the size of the photon 

density matrix and the flux matrix. Then, the MEX function mxCreateNumericMatrix is used to 
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create these output matrices with the arguments: number of rows, number of columns, identifier 

for the class of the array and the complexity flag. In the implementation, mxDOUBLE_CLASS 

and mxREAL are the class identifier and the complexity flag, respectively; since double precision 

in the output data is set for the continuous wave (CW) method used in these calculations. If we 

want to switch single precision, we can change the class identifier to mxSINGLE_CLASS. 

Furthermore, for frequency-domain calculations, the complexity flag can be changed to 

mxCOMPLEX. After creating the output matrices, the MEX function mxGetPr are used to assign 

them to the array of output arguments plhs. 

 At this point, the input arguments are read and our output arguments are prepared; so, we 

are ready to compute the system matrix A. Since the system matrix A is calculated on the GPU 

device, we firstly declared our GPU device variables and allocated some of the device memory 

for them by using the function cudaMalloc(). Then, the data in the host CPU is copied to the 

device GPU with the function cudaMemcpy(). The syntaxes for the functions cudaMalloc() and 

cudaMemcpy() are mentioned in the previous chapter. At this point, we have everything we need 

to compute the system matrix A in the GPU device. The kernel is then invoked with the declared 

variables in the device and the system matrix A is obtained. Here, there are three important 

concepts to mention. The first one is the difference between MATLAB's and C's indexing 

schemes. As stated earlier, MATLAB accesses elements in an array using a one-based index and 

C accesses them using a zero-based index. In the implementation, we utilized the node numbers 

of the tetrahedrons and the triangles at the boundary as the arrays' indices. The node numbers for 

both the tetrahedrons and the triangles at the boundary start with one. Since MATLAB has a one-

based index scheme, the indexing is correct for arrays using indices that come from the node 

numbers starting with one. However, this is not the case for the arrays in C, since C has a zero-
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based index scheme. Therefore, we subtracted one from indices coming from the node numbers 

starting with one. The second one is the existence of atomic operations in computing the system 

matrix A. Same memory locations are read, modified and written by multiple threads at the same 

time when calculating some of the elements of the system matrix A. In this case, the behavior is 

undefined and the result is wrong. We use an atomic operation, namely atomicAdd(), to prevent 

this issue. The operation atomicAdd() reads the data for a node at some address in the device 

memory, adds the calculated value to update the data for that node, and writes the result back to 

the same address. The operation is guaranteed not to be interfered by any other thread that will 

update the data for the same node until the operation is complete. Therefore, calculations of 

some elements of the system matrix A can be time-consuming when compared to computing the 

other elements. CUDA Toolkit Documentation provides an implementation of the operation 

atomicAdd() for double-precision floating-point as follows: 

 
 

Table 5 An implementation of the operation atomicAdd() for double precision floating point provided by                    

CUDA Toolkit Documentation 

 

__device__ double atomicAdd(double* address, double val){ 

    unsigned long long int* address_as_ull = (unsigned long long int*) address; 

    unsigned long long int old = *address_as_ull, assumed; 

    do { 

        assumed = old; 

        old = atomicCAS(address_as_ull, assumed, __double_as_longlong(val + 

                               __longlong_as_double(assumed))); 

    // Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN) 

    } while (assumed != old); 

    return __longlong_as_double(old); 

} 
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The last important step for computing the system matrix A is the index calculations for 

1D arrays converted from 2D arrays. The CUDA programming language enables to use 2D 

arrays; however, 1D arrays can be preferred due to their simplicity. In this case, indices for 1D 

arrays are needed to be calculated. If an element of 2D array with m rows and n columns is 

defined as my2D [ i ][ j ], its 1D version is my1D [ i * m + j ].  

The system matrix A is highly sparse N by N matrix, where N is the total number of 

nodes. To store the matrix A, we employ the compress sparse row (CSR) format. In the CUDA 

programming model, CSR format of an m by n matrix K is stored by 4 parameters:  

 csrValK: The pointer to data value array of nonzero elements of the matrix in row major 

format 

 csrRowPtrK: The pointer to the array that holds indices of the first nonzero element in the 

ith row for i=1,2, ... m. The length of this array is m+1, where the last element is          

nnz + csrRowPtrK(0).  

 csrColIndK: The pointer to the array that holds column indices of the nonzero elements 

of the matrix.  

 nnz: The total number of nonzero elements in the matrix. 

The CSR format of the matrix K shown below is as follows:  

K = [

 2   0 
0  0

    
0  1
0  4

5  0
0  0

    
7  0
6  0

] 

 csrValK = [      2 1 4 5 7 6 ] 

csrRowPtrK = [ 0 2 3 5 ] 

 csrColIndK = [ 0 3 3 0 2 2 ] 
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To convert the system matrix A from its dense format to its CSR format, we use 

cuSPARSE API which is provided by NVIDIA and contains library routines of basic linear 

algebra for sparse matrices. Firstly, the cuSPARSE library is initialized and a handle on the 

cuSPARSE context is created by calling the cuSPARSE helper function cusparseCreate(). 

Hardware resources necessary for accessing the GPU device is allocated owing to this function. 

The cuSPARSE helper function cusparseCreateMatDescr() is called to initialize the matrix 

descriptor and cusparseSetMatType() is used to set the matrix type field of the matrix descriptor. 

In addition, the helper function cusparseSetMatIndexBase is called to set the index base field of 

the matrix descriptor. For conversion of the system matrix A from dense to CSR format, we use 

the cuSPARSE format conversion function cusparseDdense2csr(). This function has 10 

parameters which need to be allocated before calling it. These parameters are as follows: 

 handle: handle to the cuSPARSE library context  

 m: the number of rows of matrix A  

 n: the number of columns of matrix A  

 descrA: the matrix descriptor for A 

 A: the matrix A 

 lda: the leading dimension of the matrix A 

 nnzPerRow: the array containing the number of nonzero elements per row 

 csrValA:  the data value array of nonzero elements of the matrix 

 csrRowPtrA:  the array that holds the indices of the first nonzero element in the ith row 

for i=1,2, ... m 

 csrColIndA: the array that holds the column indices of the nonzero elements of the matrix 

A. 
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We already have handle, descrA, m, n, lda, A. Next, we need to find the nnzPerRow 

parameter. The cuSPARSE function cusparseDnnz is used in the CUDA C implementation. In 

addition to the array containing the number of nonzero elements per row, the function 

cusparseDnnz gives the total number of nonzero elements. After the conversion, we obtain the 

arrays csrValA, csrRowPtrA, and csrColIndA.  

The next step is to solve the system of linear equations. We create a batch of the system 

matrix A in CSR format for all sources to further parallelize the system solver. Therefore, we can 

solve the all linear equations simultaneously instead of solving them one by one. 

 

[
  𝐴  
⋮
𝐴
] [
  Φ1  
⋮
Φ𝑛

] =  [  

s1
⋮
s𝑛
  ]                                                     (27) 

 

where n is the number of sources, si is the source vector for the ith source and Φi is the photon 

density vector for ith source. 

To implement a solver for the system of linear equation, we use the cuSOLVER API 

which is provided by NVIDIA and contains library routines for dense and sparse matrix 

factorization and system solver. The library function to solve our batched system is 

cusolverSpDcsrqrsvBatched(), which is a low level function of cuSolverSP. This function solves 

a batched system shown below by using QR factorization. 
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𝐴𝑗 × 𝑋𝑗 = 𝐵𝑗                                                           (28) 

 

where each Aj is a m×n sparse matrix in CSR storage format with the arrays csrValA, 

csrRowPtrA and csrColIndA, and j = 1, 2,..., batchSize. Each Bj (mx1) and Xj (nx1) are the right-

hand-side and the solution vectors, respectively. QR factorization is basically the decomposition 

of a matrix, in this case the system matrix A, into an orthogonal matrix Q, and upper triangular 

matrix R. 

 

A = Q R                                                               (29) 

 

There are two prerequisite to use the batched sparse QR: 

1) All matrices Aj must have the same sparsity pattern. For our case, they are same matrices; 

hence, they have same sparsity pattern. 

2) The solution is valid only if Aj is of full rank for all j = 1, 2, ..., batchSize, which is also 

satisfied for our case. 

The implementation of the cuSolverSP function cusolverSpDcsrqrsvBatched() starts with 

creating a handle on the cuSolverSP context and initialization by cusolverSpCreate(). Then, the 

matrix descriptor is created, and the matrix type and the matrix index base are set. We also need 

to create an empty info structure by using the function cusolverSpCreateCsrqrInfo() with a 

parameter of data type csrqrInfo. The opaque data structure csrqrInfo keeps the intermediate data 

such as the orthogonal matrix Q and the upper triangular matrix R of QR factorization in the 

batched QR.  
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In addition, an analysis phase by the function cusolverSpXcsrqrAnalysisBatched() is 

implemented before solving the batched system. This function is used to obtain sparsity pattern 

of the orthogonal matrix Q and the upper triangular matrix R of QR factorization. Furthermore, 

the function provides the information for the working space to perform QR.  

At this point, everything to solve the batched system is ready; so the function 

cusolverSpDcsrqrsvBatched() is called with the following parameters: 

 handle: handle to the cuSolverSP library context  

 m: the number of rows of each matrix Aj 

 n: the number of columns of each matrix Aj  

 nnz: The total number of nonzero elements in each matrix Aj. 

 descrA: the matrix descriptor for each Aj 

 csrValBatchedA:  the data value array of nonzero elements of the batched system 

 csrRowPtrA:  the array that holds indices of the first nonzero element in the ith row for    

i = 1, 2, ..., m 

 csrColIndA: the array that holds column indices of the nonzero elements of the matrix A. 

 B: the batched source term S 

 x: the batched solution returned 

 batchSize: number of equations to be solved 

 info: the opaque structure for QR factorization 

 pBuffer: the buffer allocated by the user 

Although it isn't required for our implementation, there is an important detail that needs 

to be addressed. It is possible that the device memory is not big enough to solve the batched 

system in one function call; therefore, it is necessary to choose a proper batch size. If the size of 
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the batched system is too big, the calculation needs to be divided into parts; hence the function 

cusolverSpDcsrqrsvBatched() is called more than once.  

After solving the batched system, we obtain an array of the photon densities for all 

sources. The photon density array is copied from the device memory to the host memory. This is 

the first output of our implementation. Furthermore, the second output, the flux at the boundary, 

needs to be calculated. To do that, we firstly calculate the boundary factor. Then, the flux at the 

boundary is computed using the boundary factor and the detector information defined in the 

mesh. 
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CHAPTER FOUR 

SIMULATION RESULTS AND DISCUSSION 
 

 

 

 

 

Simulation studies are performed to evaluate the performance of the forward model that 

is implemented using CUDA C language, which is a GPU parallelized application. Our main aim 

is to compare the computational accuracy and efficiency of our GPU-based forward solver with 

the CPU-based conventional forward solver developed in our lab using MATLAB. 

Simulations are done on a computer that has 2.67 GHz. Intel Core i7 CPU – 920 and 

Windows 7 64-bit operating system. Our GPU card is a NVIDIA GeForce GTX 960 with 5.2 

compute capability. GeForce GTX 960 GPU card has 1024 CUDA cores and 2 GB memory. Its 

memory clock is 7.0 Gbps and memory bandwidth is 112 GB/sec.  

3D Finite Element meshes are used in the simulations. To make a good comparison 

between CPU and GPU, we use several 3D meshes with different number of nodes, tetrahedral 

elements and triangular elements at the boundary. However, dimensions of our 3D cylindrical 

meshes are always kept the same. The diameter and the height of the meshes are 25 mm and 

20mm, respectively. The origin of the coordinate system is chosen at the center of cylindrical 

mesh for illustration purposes. Other features of our 3D meshes, namely the number of nodes as 

well as the number of tetrahedral and triangular elements, are given in Table 6. 
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Table 6 The features of the 3D meshes used in the simulation studies such as number of nodes, tetrahedral 

elements and triangular elements at the boundary 

3D Meshes Number of Nodes Number of tetrahedral 

elements 

Number of triangular 

elements at the boundary 

1 2316 11393 1552 

2 3370 16938 2068 

3 4335 22058 2484 

4 5299 27505 2680 

5 6394 33437 3096 

6 8359 44219 3736 

7 9339 49806 3928 

 

 

In addition to different meshes, we also investigate the effect of the number of sources 

during the simulations. The number of the sources is varied between 2 to 26. The maximum 

number of sources is determined by the memory need of the batched system solver explained in 

the previous chapter. If the GPU device memory is not large enough, it cannot handle the 

application for all sources. As mentioned earlier, it is possible to divide the solution of the 

system of linear equations into parts if there are a large number of sources, which makes it 

difficult to process them in one function call. However, we haven’t utilized this approach during 

these simulations. In addition to this, the maximum number of the sources is limited by the 3D 

mesh used in the simulations. For example, maximum number of the sources is 26 for the mesh 

with 4335 nodes; on the other hand, it is only 4 for the mesh with 9339 nodes and it is much 

higher than 26 for the mesh with 3370 nodes. Apart from the sources, there are 16 detectors 

added into our 3D meshes. Both sources and detectors are placed on the z = 0 plane and they are 

equally spaced. Although 16 detectors and different number of sources are utilized in the 

simulations, Figure 12 shows only eight detectors and eight sources for visualization purposes. 
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Figure 12 An example of source and detector placement in a 3D mesh and its corresponding 2D slice at z=0. 

 

In the simulations, the absorption coefficient μa is set to 0.01 mm-1 and the scattering 

coefficient μs is set to 0.8 mm-1 to mimic tissue. Furthermore, since we use continuous wave 

(CW) measurement technique, the frequency ω is set to 0. 

In the following sections, computational accuracy and efficiency of CUDA C 

implementation of the forward model will be presented. In addition, the simulation results will be 

discussed in various aspects.  

 

 

4.1.    Computational Accuracy of CUDA C Implementation 

 

Taking the advantage of parallelism and reducing simulation time are the main 

motivation behind GPU-based parallelization. However, besides time, accuracy of the algorithm 

is an important factor to consider. To test computational accuracy of our CUDA C 

implementation, we firstly calculate the photon density of our 3D homogeneous finite element 
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mesh for one source with our new GPU-based forward solver. Our 3D mesh has 9339 nodes, 

49806 tetrahedral elements and 3928 triangular elements at the boundary. The source is placed to 

near the point (12.5, 0, 0). Then, the simulation is carried out with the same parameters but using 

the conventional CPU-based forward solver.  

For visualization purposes, ParaView 5.0.0 is used to generate the figures below. The 

calculated photon density is presented in log scale format due to the vast dynamic range.  This 

also better represent the diffuse nature of photon propagation in the medium. The results of the 

new CUDA C implementation and conventional MATLAB solver are given on the left and right 

hand of the Figure 13, respectively. In addition to views from 4 different angles, cross-sectional 

images of x-y, x-z planes are provided. 

 

 

 
(a) 
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(b) 

 
(c) 

 
(d) 



51 
 

 
(e) 

 
 (f) 

Figure 13 Simulation results of photon density in logarithmic scale 

CUDA C and MATLAB implementation results are given on the left and right side, respectively 

(a) The view from +x direction, (b) The view from –y direction, (c) The view from –x direction, (d) The view 

from +y direction, (e) 2D slice with a normal in y direction, (f 2D slice with a normal in z direction 

 

 

As the figures above show nice diffusive patterns, it is important to obtain the photon 

density profile on a line between two points: (12.5, 0, 0) and (-12.5, 0, 0). Figure 14 and 15 show 

the profiles along this line for GPU and CPU implementations in standard and log scale.  
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Figure 14 Photon density profiles of CUDA C and MATLAB implementations over a line starting from the  

point (12.5, 0, 0) to the point (-12.5, 0, 0) in standard scale 

 

 
Figure 15 Photon density profiles of CUDA C and MATLAB implementations over a line starting from the 

point (12.5, 0, 0) to the point (-12.5, 0, 0) in logarithmic scale 
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As expected, the photon density profile decreases exponentially with depth. Both photon 

density profiles obtained by CPU- and GPU-based solvers match exactly with each other in both 

standard and log scale. As seen from figures, the photon density profile is not a perfectly smooth 

function. There are two reasons for this behavior. The first one is that elements of our 3D meshes 

are not perfectly shaped and aligned. The second reason is that the program interpolates the data 

points to show the profile. However, the important point is that photon density profiles that 

belong to both GPU and CPU version of the solver show the same pattern.  

To analyze the difference between GPU- and CPU-based simulation results, we utilize 

root-mean-square error, or RMS error. The RMS error can be found by using the following 

formula: 

 

𝑅𝑀𝑆 𝐸𝑟𝑟𝑜𝑟 =  √
∑ (Φ𝐺𝑃𝑈,𝑖−Φ𝐶𝑃𝑈,𝑖)

2𝑛
𝑖=1

𝑛
                                  (30) 

 

The RMS error is found 4.9 x 10-17 for the photon density of the 3D finite element mesh 

with 9339 nodes. As the final step of testing computational accuracy of our new CUDA C 

implementation of the forward solver, we compare its flux at the boundary with the conventional 

MATLAB implementation. As mentioned earlier, there are 16 detectors at the boundary which 

are located on the z = 0 plane. Figure 16 shows results for GPU- and CPU-based 

implementations and their comparison in both standard and log scale. 
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(a) 

 
(b) 

Figure 16 Results of the flux at the boundary which is measured by 16 equally distant detectors 

 (a) The flux at the boundary obtained by the CUDA C and MATLAB implementations in standard scale, (b) 

The flux at the boundary obtained by the CUDA C and MATLAB implementations in logarithmic scale 
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Just as the photon density, we also calculate the RMS error between two implementations 

for the flux calculated at the boundary. The RMS error is 5.7 x 10-14 for the flux at the boundary. 

The main reason of these RMS errors is the fact that calculations of floating points are 

not guaranteed to give identical results for different hardware. However, we can say that the 

RMS errors for both the photon density and the flux at the boundary are very low. The minimum 

value is around 10-5 for both calculated photon density and flux. Since the RMS errors for the 

photon density and the flux at the boundary are around 10-17 and 10-14 respectively, we can 

conclude that the GPU-based forward model works with high accuracy. 

Before going into computational efficiency, there is one important issue left to be 

addressed. This issue is the precision level of the implementation. In our new CUDA C 

implementation, we use double precision floating points for comparison purposes; however, it is 

also possible to use single precision floating points. Using single precision will provide higher 

speed compared to using double precision.  

 

 

4.2.    Computational Efficiency of CUDA C Implementation 

High computational efficiency is the main goal of the GPU parallelism; therefore, it is 

important to evaluate the computational efficiency of our CUDA C implementation.   To test the 

computational efficiency, we conduct several simulations using various meshes with different 

number of nodes and elements. These simulations give us the relationship between the number of 

nodes in a mesh and speed-up of our new implementation over conventional one. In addition, we 

want to know how the number of sources affects the speed-up; hence we make additional 

simulations using different number of sources.  
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For the first part of testing computational efficiency of our CUDA C implementation, we 

use four sources with different types of 3D meshes, which have different features such as number 

of nodes, tetrahedral elements, and triangular elements at the boundary explained in the previous 

section. The Figure 17 and 18 show our simulation results for GPU- and CPU-based 

implementation.  

 

 

Figure 17 Simulation time of CUDA C implementation for meshes with different number of nodes 
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Figure 18 Simulation time of MATLAB implementation for meshes with different number of nodes 

 

Using the time results from previous figures, we calculate the speed-up of using CUDA C 

implementation over MATLAB implementation. The speed-up bar and line graphs are given in 

Figure 19. For 3D meshes that have small number of nodes, there is a little speed-up; however, 

as the number of nodes in a mesh increases, the speed-up becomes significant. Here, it is 

important to mention that reasons of low speed-up for the small number of nodes are mainly high 

data transfer time between CPU and GPU and high memory allocation time. Unfortunately, we 

could not use a 3D mesh with very large number of nodes in our simulations because there is no 

enough memory in our computer to process that amount of data. Therefore, maximum 

observable speed-up for our simulations is near 2.5, which means the GPU application is 

approximately 2.5 times faster than the CPU application for a 3D mesh with 9339 nodes.  
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(a) 

 
 (b)  

Figure 19 The speed-up graphs with CUDA C implementation for 3D meshes with different number of nodes 

(a) The bar graph of the speed-up and (b) The line graph of the speed-up 

 

 



59 
 

For the second part of the computational efficiency test, we use different number of 

sources with our 3D mesh of 4335 nodes. Figures 20 and 21 show our simulation results for 

CUDA C and MATLAB implementations. 

 

 

Figure 20 Simulation time of CUDA C implementation for different number of sources 

 

Figure 21 Simulation time of MATLAB implementation for different number of sources 
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There is an important reason behind why using different number of sources is a good 

measure to test computational efficiency. As we said earlier, the implementation of the forward 

model consists of two main parts: computation of the system matrix A and solving the system of 

linear equations. In terms of time, the computation of the system matrix A is insignificant 

compared to solving the system of linear equations. Solving the system is an iterative process for 

the MATLAB implementation and its time is dependent on the number of sources used. 

Therefore, the number of sources generally determines the overall time of the forward solver. In 

fact, time for solving of the system of linear equations is so dominant that CPU simulation time 

of the forward solver changes almost linearly with the number of sources. On the other hand, 

GPU simulation time of the forward solver increases with much smaller increments as the 

number of sources increases. Therefore, the speed-up which is shown in Figure 22 becomes 

higher with increasing number of sources. However, beyond a certain number of sources, the 

speed-up slows down. Just like the simulations of different 3D meshes, we cannot use large 

number of sources in the simulations due to memory requirements. For our simulations with 

range of number of sources from 2 to 26, we observe that maximum speed-up is approximately 

4.5. 
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(a) 

 
 (b) 

Figure 22 The speed-up graphs with CUDA C implementation for different number of sources 

(a) The bar graph of the speed-up and (b) The line graph of the speed-up 
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CHAPTER FIVE 

CONCLUSION AND FUTURE WORK 
 

 

5.1.    Conclusion 

In this work, we implemented a GPU-based solver for the forward problem of DOT by 

using a Finite Element method. In the implementation, CUDA's parallel architecture and 

MATLAB software were combined by utilizing MEX Files. We made several simulations to test 

relative computational accuracy and efficiency of our new CUDA C implementation when 

compared to the MATLAB implementation. For relative computational accuracy, we used a 

mesh with a high number of nodes and one source. We found that root-mean-square (RMS) 

errors between the CUDA C and the MATLAB implementation are in the order of magnitude of 

-17 for the photon density and in the order of magnitude of -14 for the flux. These RMS errors 

are very small compared to the minimum values of photon density and flux that are in the order 

of magnitude of -5. This shows that our new implementation has a high accuracy. For relative 

computational efficiency, we used several meshes with various nodes and elements, and utilized 

different number of sources. We computed that the maximum speed-up is around 2.5 for 

simulations with different meshes and around 4.5 for simulations with different number of 

sources.  

In conclusion, we can say that we have significant computational speed-up with high 

computational accuracy. However, it is possible to accelerate the computational speed. One way 

to achieve that is to write a custom GPU code to solve the system of linear equations with a 

heterogeneous programming style. In a nutshell, we achieved the goal of this project with our 

new GPU-based implementation. 
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5.2.    Future Work 

As mentioned in the implementation chapter of the forward model, we used a library 

function provided by CUDA programming model to solve the system of linear equations. Using 

a library function limited our capabilities to optimize the system solver. Therefore, as a future 

work, we can write a custom code to minimize the effects of bottlenecks, which improves the 

performance of the system solver. We believe that running a custom GPU parallelized code on a 

more powerful NVIDIA Tesla GPU card will provide much higher speed-up when compared to 

current GPU-based implementation. Apart from the custom code, it is possible to decrease the 

simulation time by a heterogeneous programming style. We can optimize our code to run both on 

CPU and GPU simultaneously and have a higher speed-up. 

We also mentioned that image reconstruction of DOT involves two parts, which are the 

forward and the inverse problem. In this project, we only worked on the forward problem; 

therefore, it is possible to extend the project to the inverse problem. Although image 

reconstruction can be done significantly faster with our current GPU-based implementation, we 

can also take advantage of parallelism of the inverse problem. Additionally, we can combine the 

forward and the inverse problem and obtain much higher speed-up with further parallelism. We 

can even go beyond the speed-up provided by the parallelized forward and inverse problems by 

using a heterogeneous programming style.  

Lastly, we used the diffusion approximation of Radiative Transfer Equation (RTE) in this 

project; however, it is possible to utilize higher order approximation of RTE. As a future work, 

we can implement a GPU-based solver for the forward problem which uses higher order of 

approximation of RTE. Since complexity of the higher order approximations is much higher than 
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diffusion approximation, the simulation time will be longer. However, we believe that the 

calculation time can be decreased to acceptable limits by a GPU-based implementation. 
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