
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Accelerating Streaming Time Series Feature Extraction With an FPGA

Permalink
https://escholarship.org/uc/item/47n79855

Author
Yuvaraj, Prithviraj

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/47n79855
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Accelerating Streaming Time Series Feature Extraction Using an FPGA

A Thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science

in

Computer Science

by

Prithviraj Yuvaraj

September 2022

Thesis Committee:

Dr. Philip Brisk, Chairperson
Dr. Eamon Keogh
Dr. Daniel Wong

Copyright by
Prithviraj Yuvaraj

2022

The Thesis of Prithviraj Yuvaraj is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I am grateful to my advisor, Philip Brisk, without whose help, I would not have been

here. I would also like to mention the assistance my peer, Amin Kalantar, provided

in regards to the technical portions of this work.

iv

To my parents and brother for all their support.

v

ABSTRACT OF THE THESIS

Accelerating Streaming Time Series Feature Extraction Using an FPGA

by

Prithviraj Yuvaraj

Master of Science, Graduate Program in Computer Science
University of California, Riverside, September 2022

Dr. Philip Brisk, Chairperson

With the increase in available data, specifically time series data, the importance of

different data analysis techniques has increased. One technique used by many data

scientists is finding characteristics within subsequences of the data set. Characteris-

tics, or features can be quantified by a process known as feature extraction . This

feature extraction step is often computationally expensive, and usually requires the

availability of the entire data set. During the data collection stage, data scientists may

want to see patterns or characteristics. This can be achieved with Real-Time Feature

Extraction, by computing feature sets while data streams in from a source. FPGAs,

or Field Programmable Gate Arrays, have access to a plethora of I/O that allows for

data to be streamed directly into the computational units making for efficient,real-

time feature extraction. In this paper, we provide an FPGA architecture that is able

to extract features in real-time, while offering latency, and power optimizations.

vi

Contents

List of Figures ix

List of Tables xii

1 Introduction 1

2 Related Works 4
2.1 Feature Extraction in Time Series Analysis 4
2.2 Hardware Accelerated Software Application 5
2.3 HLS in FPGA Development . 7

3 Background 9
3.1 NLP Time Series Search . 9
3.2 Definitions . 10
3.3 Norms . 11
3.4 Normalization . 11
3.5 Features and Feature Extraction . 13
3.6 Streaming NLP Time Series Search 15
3.7 Streaming vs. Offline NLP Time Series Search 16

4 Feature Extraction Algorithms 18
4.1 Low . 19
4.2 High . 20
4.3 High and Low Amplitude . 22
4.4 Spike and Dropout . 23
4.5 Rising and Falling . 24
4.6 Complex and Simple Unnormalized (Normalized) 26
4.7 Symmetric and Asymmetric . 28
4.8 Linearity and Nonlinearity . 29
4.9 Convex and Concave . 31

vii

4.10 Noise and Smooth . 33
4.11 Step and No Step . 36
4.12 Periodic and Aperiodic . 39
4.13 Unique Pattern . 41

5 FPGA Implementation 43
5.1 Dependent Region . 45
5.2 Arithmetic Modules . 45

5.2.1 Streaming Sum and Mean . 46
5.2.2 Mean and Standard Deviation (Std) 47
5.2.3 L1 and L2 Norms . 48
5.2.4 z-Score Normalization . 49
5.2.5 Slope . 50
5.2.6 Median Filter and Smooth 51
5.2.7 Rev-Diff and Zero Min . 52
5.2.8 Remove Outliers . 53
5.2.9 Stepwise . 54
5.2.10 Linearity and Convex . 55
5.2.11 Unique Patterns . 59
5.2.12 Periodic . 60

5.3 Normalization and Invert Modules . 62
5.3.1 Min-Max Normalization (Nmin−max) 62
5.3.2 Min-Max Normalization with Minimum Transform (Nmin−trans

min−max) 63
5.3.3 Min-Max Normalization Scaled by the Maximum (Nmax−scaled

min−max) 64
5.3.4 Min-Max Normalization with Positive Guarantee (N+

min−max) . 65
5.3.5 Invert . 66

6 Experimental Results 68
6.1 Experimental Setup . 68
6.2 Baseline Results . 71
6.3 Feature Extractor Performance . 73

6.3.1 Periodic . 73
6.3.2 Unique Patterns . 76
6.3.3 Feature Score Hardware Module Comparison 76

6.4 Normalization . 79
6.5 FPGA vs GPU . 80

7 Conclusions 82

Bibliography 84

viii

List of Figures

4.1 Low: An example of the Low feature computed for the Freezer dataset
using a window of size w = 100; the Low feature is not computed for
the last 100 datapoints. 20

4.2 High: An example of the High feature computed for the Freezer
dataset using a window of size w = 100; the High feature is not com-
puted for the last 100 datapoints. 21

4.3 High and Low Amplitude: An example of the High and Low Ampli-
tude features computed for the Insect EPG dataset using a window of
size w = 100; the High and Low Amplitude features are not computed
for the last 100 datapoints. 22

4.4 Spike and Dropout: An example of the Spike and Dropout features
computed for the Freezer dataset using a window of size w = 100; the
Spike and Dropout features are not computed for the last 100 datapoints. 24

4.5 Rising and Falling: An example of the Rising and Falling features
computed for the Insect EPG dataset using a window of size w =
100; the Rising and Falling features are not computed for the last 100
datapoints. 26

4.6 Complex and Simple Unnormalized and Normalized: An ex-
ample of the Complex Unnormalized, Simple Unnormalized, Complex
Normalized, and Simple Normalized features computed for the Insect
EPG dataset using a window of size w = 100; the features are not
computed for the last 100 datapoints. 28

4.7 Symmetric and Asymmetric: An example of the Symmetric and
Asymmetric features computed for the Freezer dataset using a window
of size w = 100; the Symmetric and Asymmetric features are not
computed for the last 100 datapoints. 29

4.8 Linearity and Nonlinearity: An example of the Linearity and Non-
linearity features computed for the Star Light Curve dataset using a
window of size w = 100; the Linearity and Nonlinearity features are
not computed for the last 100 datapoints. 30

ix

4.9 Convex and Concave: An example of the Convex and Concave fea-
tures computed for the Star Light Curve dataset using a window of
size w = 100; the Convex and Concave features are not computed for
the last 100 datapoints. 33

4.10 Noise and Smooth: An example of the Noise and Smooth features
computed for the Insect EPG dataset using a window of size w =
100; the Noise and Smooth features are not computed for the last 100
datapoints. 34

4.11 Step and No Step: An example of the Step and No Step features
computed for the Insect EPG dataset using a window of size w =
100; the Step and No Step features are not computed for the last 100
datapoints. 37

4.12 Periodic and Aperiodic: An example of the Periodic and Aperiodic
features computed for the Insect EPG dataset using a window of size
w = 100; the Periodic and Aperiodic features are not computed for the
last 100 datapoints. 41

4.13 Unique Patterns: An example of the Unique Patterns feature com-
puted for the Star Light Curve dataset using a window of size w = 100;
the Unique Patterns feature is not computed for the last 100 datapoints. 42

5.1 FPGA Accelerator Architecture: A time series streams into the
FPGA from a sensor and is distributed to 8 parallel regions that com-
pute 14 feature scores, which are buffered and normalized to yield 14
feature vectors; 11 of the 14 feature vectors are inverted to generate
paired feature vectors. The accelerator outputs 25 “meta-time series”
feature vectors to the host for storage or subsequent processing. . . . 44

5.2 Dependent Region: The Low, High, and High Amplitude fea-
tures scores are computed in-order, followed by z-score normalization of
the time series window; once the z-score normalized time series window
is available, the Complex Normalize, Periodic, and Step features
are computed in parallel. 46

5.3 Dependency Tree . 47
5.4 Streaming Sum and Streaming Mean hardware modules. 47
5.5 (Non-streaming) Mean and Standard Deviation (STD) hardware mod-

ules. 48
5.6 L1 and L2 norm hardware modules. 49
5.7 z-score Normalization hardware module. 50
5.8 Slope hardware module. 51
5.9 Median Filter and Smooth hardware modules. 52
5.10 Rev-Diff and Zero Min hardware modules. 53
5.11 Remove Outliers hardware module. 54
5.12 Stepwise hardware module. 55

x

5.13 Linearity and Concave hardware modules. 56
5.14 Linear Approximation hardware module. 57
5.15 Quadratic Approximation hardware module. 58
5.16 Unique Pattern hardware modules. 60
5.17 Periodic hardware module (Bitonic Sort Implementation). 61
5.18 Periodic hardware module (Linear Search Implementation). 61
5.19 Min-Max Normalization (Nmin−max) hardware module 63
5.20 Min-Max Normalization with Minimum Transform (Nmin−trans

min−max) hard-
ware module . 64

5.21 Min-Max Normalization Scaled by the Maximum (Nmax−scaled
min−max) hard-

ware module. 65
5.22 Min-Max Normalization with Positive Guarantee (N+

min−max) hardware
module. 66

5.23 INVERT HW Module . 67

6.1 FPGA Accelerator Architecture with (HBM). 69
6.2 Latency (cycles) of each feature score hardware module. 77
6.3 Latency (time) of each feature score hardware module. 78
6.4 Frequency of each feature score hardware module. 79

xi

List of Tables

4.1 Feature Pairs . 19

6.1 Design characteristics of the prototype FPGA kernel 72
6.2 Latency splits of the full system accelerator 72
6.3 Performance of Different FFTs. 75
6.4 Performance comparison between the Xilinx Bitonic Sort IP and Linear

Search. 75
6.5 Performance comparison between the Xilinx Bitonic Sort IP and a

Hash Table. 76
6.6 Latencies of hardware modules within the Normalization kernel. . . . 80
6.7 FPGA Kernel vs GPU Kernel . 81

xii

Chapter 1

Introduction

With the wide adoption of IoT devices, the amount of data, specifically time

series data, available has increased exponentially. The need for efficient analysis

methods has risen, which gives way to the advent of hardware accelerating data

analysis techniques. A prominent technique performed on time series data consists of

extracting features to quantify characteristics within the data set. Features can then

go onto be used in searches, classification, machine learning models, etc. Although

features strip away many of the details within the data, data analysis techniques,

such as classification, using feature-based time series representations have known to

out perform other shape-based or dictionary-based methods [15].

One specific application that used feature-based analysis is NLP Time Series

Search, which used natural language processing to search subsequences within a time

series that match a user specified phrase [12]. The feature extraction stage of the ap-

1

plication is computationally expensive. These feature extractors were implemented

in Matlab and Python, which are not thought of as performance optimal languages.

Many feature extraction algorithms require the entirety of the data set be known,

and data analysis techniques occur well after the data collection phase. A system

where data points are analyzed during the collection stage would allow for scientists

to learn the characteristics of the data in real-time. Feature extraction algorithms

should provide performance optimal, real-time computation which can be achieved

by using an FPGA (Field Programmable Gate Arrays).

Traditional CPU systems have to pass data through a memory hierarchy before

computation begins. An FPGA is able to directly stream data points onto the com-

pute architecture, as well as offers a plethora of I/O. The combination of these two

traits allow FPGAs to be a perfect candidate to perform real-time feature extrac-

tion. FPGAs can also leverage parallelism to reduce latency of computation, while

in general running at lower clock frequencies resulting in lower power consumption.

High-Level Synthesis (HLS) tools make the process of creating FPGA architecture

simpler by converting software code into register-transfer language (RTL), and allow

for design to be tested in a timely fashion.

In this paper, we provide an a streaming feature extraction accelerated using an

FPGA. The design is able to extraction 25 features from data that is streamed di-

rectly into the hardware. The features were selected from NLP Time Series Search

[12]. The feature extraction algorithms were optimized for streaming input and con-

2

verted to RTL using Xilinx’s Vitis HLS 2020.2. The design was then tested and

performance analysis was conducted trying to improve bottlenecks. The rest of the

paper is organized as follows.

We initially offer some background on feature extraction and time series analysis

in general, as well as high-level synthesis and hardware acceleration using an FPGA.

Then definitions are given to explain the algorithms thoroughly. After the feature

extraction algorithms are defined, the hardware implementation is shown. We then

provide the results of our prototype kernel. Finally, conclude with some areas the

research can be continued.

3

Chapter 2

Related Works

2.1 Feature Extraction in Time Series Analysis

Due to the increased adoption of the Internet of Things, a large amount of time

series data has emerged. Time series data is a measurement, observation, or estimate

ordered in time. There are multivariate time series which add multiple measurements

of data over time, and spatial-temporal time series that take into account the spatial

domain. The most common time series is an univariate time series that has one value

for each time step. Multivariate time series can be seen in Principal Component

Analysis and Hidden Markov Models [20], and uni-variate feature-based time series

analysis is used for subsequence searches [12].

Analysis can be performed on the data sets that allow for trends, motifs, or fea-

tures to be extracted to characterize the time series data. Many methods of anal-

4

ysis have been developed for both univariate [8] and multivariate [20] time series

data.Characterization of time series has become an important analysis technique as

they are crucial components of applications from a wide field of study. Feature-based

time series analysis is argued to outperform shape-based and dictionary-based rep-

resentations in classifications taskts [15]. Different methods to extract features from

the time series data have been explored to reduce the expense of the analysis such as

finding the most useful, influential features to reduce the size of the feature set. A

few standard feature sets [15] have emerged that have been thoroughly evaluated in

comparative studies [8].

Another method used in time series classification is Dynamic Time Warping

(DTW) which finds similarities in temporal data sequences. DTW is an extensively

explored area and many optimizations have been proposed [23]. These optimizations

usually fall into two categories, algorithm modification or hardware acceleration. The

DTW algorithm has been improved by adding weights to make a Weighted DTW

(WDTW) which can be used to penalize outliers improving performance on feature

detection. The DTW algorithm has been accelerated with different hardware such as

GPUs, and FPGAs [19] [21].

2.2 Hardware Accelerated Software Application

Hardware can be used to improve the performance of different workloads by ex-

ploiting parallelism within the software applications. Different hardware such as

5

FPGAs and GPUs are capable and proficient at improving performance by acting

on the inherit parallelism. FPGAs achieve parallelism by using multiple processing

engines (PEs), a portion of the design that does the computation, to perform more

of the computation simultaneously. Timeseries analysis techniques have been ported

over to FPGA such as DTW, Matrix Profile, and other simpler tecniques like outlier

detection [16].

The prevalence of time series data sets and subsequence searches have given rise

to different techniques to speed up performance. One of these techniques is using

hardware accelerators to speed up computation times such as FPGAs. A popular time

series analysis method is Dynamic Time Warping (DTW) which has been extensively

explored and ported to FPGA architecture. DTW is a method of time series analysis

used to measure similarities between sequences of data [23]. As a very popular form of

time series analysis many different optimizations and implementations were explored

using FPGA architecture [19, 21, 14].

Another time series analysis technique is using a Matrix Profile. The Matrix

Profile is computed to discover anomalies and trends with in the time series data,

many different methods have been created and compared that efficiently solve for

MP such as SCAMP, STAMP, SCRIMP, etc [24]. Python is often used in these

implementation, which might not be the most efficient and optimal design choice.

Efforts have been made to port SCAMP to a heterogeneous CPU + FPGA [18], and

6

alternative method of computing the Matrix Profile using an FPGA was created using

HLS tools has also been explored [13].

2.3 HLS in FPGA Development

A majority of FPGA development is done with Hardware Design Languages

(HDLs) such as VHDL or Verilog. These languages are often tricky to properly

develop with leading to long development cycles. High-Level Synthesis is a method

that allows for quick FPGA implementations to be created by using high-level pro-

gramming languages to develop usable RTL. This FPGA architecture was created

using Xilinx’s Vivado/Vitis HLS which is C/C++ based. Research has been done

to explore different aspects of HLS tools from improvements in synthesis of HLS

code, optimizations in the generated RTL, and even expand the type of programming

languages that have HLS support.

HLS synthesis, placing, and routing routines often take a large portion of time,

that causes development of FPGA architectures to slow down. Efforts have been

made to improve performance of HLS compilation by exploiting parallelism within

the compilation workload [10]. Multi-core CPUs or GPUs running newly created

parallel routing, and placement algorithms were used to reach fast compilation time.

Another avenue of research is the quality of the HLS synthesized hardware. Often

experienced FPGA developers can create more efficient designs than the HLS coun-

terparts. Research has been explored on improving the performance of the output

7

architecture created by HLS designs. A study was conducted about improving the

data placement to reduce the latency of data related operations, that can occur when

kernels try to use the wrong type of memory structures [22]. Design improvements

can also be made with regard to the scheduling on instructions which can improve

timing regarding cycles in HLS code [4, 3]. Efforts have also been made to add differ-

ent high-level languages that have HLS FPGA development support such as PyLog

[11]. Instead of worrying about the architectural specifics developers can focus on the

algorithmic details and performance.

8

Chapter 3

Background

3.1 NLP Time Series Search

NLP Time Series Search is a method to use natural language to search time series

sequences within a data set. The search is performed by computing features scores,

or values that describe a characteristic that is present within the sequence of values,

that are then matched with words [12]. The feature scores are computed using feature

extraction algorithms that analyze a subsequence of the time series data and output a

single scalar value that acts as a rating of the characteristic within that subsequence.

There are 27 characteristics, or from henceforth called features, that are originally

computed in NLP Time Series Search. Before feature extraction, a time series data

set must be known in its entirety and then scores are computed for each feature using

subsequences of a predetermined length. Once the feature scores for the entire time

9

series data are computed, a feature specific normalization occurs across each feature.

The newly normalized features are used in the time series search.

3.2 Definitions

We begin with some preliminary definitions.

Time Series: A time series T of length n is a sequence of scalar numbers ti :

T = ⟨t1, t2, . . . tn⟩. For the purpose of expository discussion, we assume that all time

series datapoints are real numbers (R).

Subsequence: A subsequence is a contiguous subset of the datapoints in T . typically

specified by starting index i and length m: Ti,m = ⟨ti, ti+1, . . . , ti+m−1⟩.

When appropriate, we will denote a time series as a real-valued vector of length n

(Rn). While a time series has a specific connotation (i.e., datapoints taken in order,

often with a known sampling interval), a time series can be treated as a vector when

appropriate. All operations that can be applied to vectors can just as easily be applied

to time series. We denote the origin (a vector of all zeroes) as 0; if the dimension is

needed, we denote it as a subscript, i.e., 0n; likewise, we denote a vector of all ones

as 1 or 1n.

10

3.3 Norms

A norm is a function M : Rn → R≥0 that maps a vector to a non-negative valued

real-valued number, and satisfies the following properties:

1. Triangle Inequality: M(X + Y) ≤ M(X) +M(Y) ∀ X, Y ∈ Rn.

2. Absolute Homogeneity: M(sX) = sM(X) ∀ s ∈ R, X ∈ Rn.

3. Positive Definiteness: M(X) = 0 ⇐⇒ X = 0 ∀ X ∈ Rn.

In this thesis, we are primarily concerned with two specific norms, defined as follows:

L1 Norm: The L1 norm of a vector X ∈ Rn, denoted ∥X∥1, is the sum of the

absolute values of the scalar datapoints in X:

∥X∥1 =
n∑

i=1

|xi| (3.1)

L2 Norm: The L2 norm of a vector X ∈ Rn, denoted ∥X∥2, is the magnitude of X,

i.e., the distance of the point ⟨x1, x2, . . . , xn⟩ ∈ Rn from the origin in an n-dimensional

Euclidean space:

∥X∥2 =

√√√√ n∑
i=1

x2
i (3.2)

3.4 Normalization

Normalization is the application of a function N : Rn → Rn, which adjusts the

value of each scalar within a vector to a common scale, typically [0, 1] or [−1, 1], in a

11

manner that preserves key qualitative and/or quantitative properties. In the context

of a time series, normalization may preserve the points which are local and global

minima, subsequence shapes, etc.; different normalization methods may be applied

as pre- and/or post-processing steps when performing computations on time series.

In the following, let µ and σ denote the arithmetic mean and standard deviation

of a vector X ∈ Rn and let xmin and xmax denote the maximum scalar values in X.

z-score Normalization (Nz) computes a vector Z = Nz(X) ∈ Rn with entries

zi =
xi − µ

σ
. (3.3)

Min-Max Normalization computes a vector Y = Nmin−max(X) ∈ Rn, with entries:

yi =
xi − xmin

xmax − xmin

. (3.4)

Min-Max Normalization with Minimum Transform computes a vector

Y = Nmin−trans
min−max (X) ∈ Rn, with entries:

yi = 1− xi − 2xmin

xmax − xmin

. (3.5)

12

Min-Max Normalization Scaled by the Maximum computes a vector

Y = Nmax−scaled
min−max (X), with entries:

yi =
xi − xmin

x2
max − xminxmax

, (3.6)

or, equivalently: Nmax−scaled
min−max (X) = 1

xmax
· Nmin−max(X).

Min-Max Normalization with Positive Guarantee computes a vector

Y = N+
min−max(X), with entries:

yi =


xi−xmin

xmax−xmin
xi ≥ 0

xi+xmax−2xmin

xmax−xmin
xi < 0

(3.7)

Both cases can be rewritten in terms of Min-Max Normalization:

• Case xi ≥ 0 returns the ith scalar obtained from Nmin−max(X)

• Case xi < 0 returns the ith scalar obtained fromNmin−max(X+(xmax−xmin)·1n).

3.5 Features and Feature Extraction

A feature is defined as a computable property of a time series. We compute

features for every length-m subsequence of a time series, which we collect into a

“meta-time series” called a feature vector. Feature extraction refers to the pro-

cess of computing a feature vector by an algorithm called a feature extractor. By

13

convention, we require all feature vectors to be normalized as a post-processing step.

Many different features can be defined and computed for a time series concurrently,

and it is common to define specific features in terms of other features. Our imple-

mentation of NLP Time Series search computes 25 features. Feature extraction is a

two step process, consisting of scoring followed by normalization.

Scoring: A scoring function f : Rm → R maps a subsequence to a scalar value s

called a (feature) score. Computing scores over all sequences of a time series yields a

meta-time series called a score vector: S = ⟨s1, s2, . . . , sn−m+1⟩, where si = f(Ti,m).

The score vector F is shorter than the original time series T because subsequences

starting at indices higher than n − m + 1 have fewer than m datapoints, and their

features are not computed.

Normalization: A feature vector is a normalized score vector F = ⟨r1, r2, . . . , rn−m+1⟩,

which is computed as follows:

F = N (S) = N (⟨f(T1,m), f(T2,m), . . . , f(Tn−m+1,m)⟩). (3.8)

Each normalized datapoint ri in the feature vector F corresponds to unnormalized

score si in the score vector S.

Feature Pairs: Let F = ⟨1−r1, 1−r2, . . . , 1−rn−m+1⟩ and F ′ = ⟨r′1, r′2, . . . , r′n−m+1⟩

be feature vectors. F and F ′ paired if F ′ = 1n−m+1 − F , i.e., if r′i = 1 − ri,

14

1 ≤ i ≤ n−m+ 1. Rather than computing both F and F ′ from first principles, it is

often more efficient to compute F directly and then derive F ′ from F (or vice-versa).

When appropriate, we refer to the scoring function and feature vectors by the

name the feature, e.g., fNonlinearity and FNonlinearity for a feature named “Nonlinear-

ity.” This nomenclature omits the name of the normalization method chosen for the

“Nonlinearity” feature, but simplifies the discussion significantly.

3.6 Streaming NLP Time Series Search

While offline analyses typically assume that the entire time series is stored and

available for processing, our work considers time series in the streaming context,

where only the most recent window of data points is available. The exact length of

the time series (n) being streamed is not known in the general case, and the time

series is implicity treated as having infinite length.

Streaming Time Series: For streaming, we redefine the time series T as a

window of length w << n, i.e., T = ⟨t1, t2, . . . , tw⟩; t1 is the oldest datapoint in the

window, while tw is the most recently sampled datapoint. When a new datapoint is

sampled during streaming, t1 is discarded from the window. Certain computations

may involve both t1 and the newly sampled datapoint, which we denote as tw+1, and

t1 can only be discarded after performing those computations. After discarding t1, we

adjust the indices of the datapoints in the window so that ti → ti−1, 2 ≤ i ≤ w+1, so

15

that the newly sampled datapoint becomes tw at index w. A typical implementation

in either hardware or software is to use a circular buffer.

Streaming Feature Extraction: A streaming feature extractor generates one

scalar score value s = f(T) from the current window and transmits this value to the

streaming normalizer, defined below.

Streaming Normalizer: The streaming normalizer buffers incoming score values

in batches of length w, normalizes each batch, and then outputs the normalized

batch in a burst of size w. To simplify notation, we denote the score buffer as

S = ⟨s1, s2, . . . , sw⟩ and the (normalized) streaming feature vector as F = N (S) =

⟨r1, r2, . . . , rw⟩.

3.7 Streaming vs. Offline NLP Time Series Search

Suppose that we stream a time series T of length n through the streaming NLP

Time Series Search algorithm. Without loss of generality, assume that n = kw for

positive integer k, which ensures that the length of T is a multiple of the window

size. The score buffer computed when processing the jth window of datapoints dur-

ing streaming is the subsequence S(j−1)w+1,w of the score vector S that would be

computed offline. Streaming normalization then produces a streaming feature vector

N (S(j−1)w+1,w).

By normalizing on the granularity of window sizes, the streaming normaliza-

tion function, NStream, produces the following normalized word feature vector, in

16

which subsequences of length w have been independently normalized.

NStream(S) = ⟨N (S1,w),N (Sw+1,2w), . . . ,N (S(k−1)w+1,kw)⟩. (3.9)

In contrast, the offline NLP Time Series Search normalizes all data points in the word

feature vector F . Therefore, in the general case, one cannot assume that N (S) and

NStream(S) will produce the same output.

17

Chapter 4

Feature Extraction Algorithms

Our implementation of NLP Time Series Search extracts 25 features, 22 of which

are paired. For each feature, the input is a time series window T = ⟨t1, t2, . . . , tw⟩.

The feature extractor first computes a scoring function which produces a scalar score

value s, which is stored in a score buffer S of length w. When S is full, the stream-

ing normalizer outputs a streaming feature vector F = N (S). Table 4.1 lists all

of the features that are computed, including pairing information, and specifies the

normalization method that is applied to the score buffer computed for each feature.

This chapter specifies the scoring function and normalization method used to

compute each feature; illustrative examples are shown for each feature using time

series that are publicly available in the UCR Time Series Archive [7].

18

Table 4.1: Feature Pairs

Feature Pairs Normalization Method
Low - Nmin−trans

min−max

High - Nmin−max

High Amplitude Low Amplitude Nmin−max

Spike Dropout Nmin−max

Rising Falling Nmax−scaled
min−max

Complex Normalize Simple Normalize Nmin−max

Complex Unnormalize Simple Unnormalize Nmin−max

Symmetric Asymmetric N+
min−max

Linearity Nonlinearity Nmin−max

Convex Concave Nmin−max

Noise Smooth Nmin−max

Step No Step N+
min−max

Periodic Aperiodic Nmin−max

Unique Patterns - Nmin−max

4.1 Low

The Low feature identifies subsequences in a time series having a small sum of

values relative to the time series as a whole; Figure 4.1 shows an example. Low

maintains a running sum s of all of the datapoints in the current window T . Each

time a new datapoint is sampled, the sum is updated:

s = s+ tw+1 − t1 (4.1)

The feature score fLow(T) = s is then transferred to the normalizer. Low employs a

unique normalization method (not used by any other feature extractor) that imple-

19

ments much of its functionality. When a complete score buffer SLow becomes available,

it is normalized: FLow = Nmin−trans
min−max (SLow) and then output in a burst of size w.

Figure 4.1: Low: An example of the Low feature computed for the Freezer dataset
using a window of size w = 100; the Low feature is not computed for the last 100
datapoints.

4.2 High

The High feature classifies sub-sequences of a longer time series, that, on average

have larger values than others. Figure 4.2 shows an example. Similarly to Low,

a running sum is used to compute the arithmetic mean µ of the datapoints in the

20

current window T .

µ = µ+
tw+1

w
− t1

w
. (4.2)

The feature score fHigh(T) = µ is then transferred to the normalizer. When a com-

plete score buffer SHigh becomes available, it is normalized: FHigh = Nmin−max(SHigh)

and output in a burst of size w.

Figure 4.2: High: An example of the High feature computed for the Freezer dataset
using a window of size w = 100; the High feature is not computed for the last 100
datapoints.

21

4.3 High and Low Amplitude

The High and Low Amplitude features compute the standard deviation of the

current window T ; Figure 4.3 shows an example.

The arithmetic mean µ can be updated for each subsequence using Eq. 4.2, and

the standard deviation σ is then computed as:

Figure 4.3: High and Low Amplitude: An example of the High and Low Ampli-
tude features computed for the Insect EPG dataset using a window of size w = 100;
the High and Low Amplitude features are not computed for the last 100 datapoints.

σ =

√∑w
i=1(ti − µ)2

w
(4.3)

22

The feature score fHigh−Amplitude(T) = σ is then transmitted to the normalizer.

When a complete score buffer SHigh−Amplitude becomes available, it is normalized:

FHigh−Amplitude = Nmin−max(SHigh−Amplitude) and output in a burst of size w. The

normalized Low Amplitude feature vector can be derived from the normalized High

Amplitude feature vector: FLow−Amplitude = 1w − FLow−Amplitude.

4.4 Spike and Dropout

The Spike and Dropout features quantify the maximum difference between the

median and any other datapoints within the current window T ; Figure 4.4 shows

an example. A function Median : Rw → R computes the median of T ; a function

MedianFilter : (Rw,N) → Rw applies a median filter to T , yielding a vector D(k) =

⟨dk1, d
(k)
2 , . . . d

(k)
w ⟩ = MedianFilter(T, k), where d

(k)
i = Median(ti−k, ti−k+1, . . . ti+k);

when applying the median filter, all entries in T having indices less than 1 or greater

than w are set to zero. The Spike feature score is then computed as the maximal

difference among the datapoints of T and their median filtered values:

fSpike(T) = max
1≤i≤w

|ti − d
(1)
i | (4.4)

The feature score fSpike(T) is then transmitted to the normalizer. When a complete

score buffer SSpike becomes available, it is normalized FSpike = Nmin−max(SSpike) and

23

output in a burst of size w. The normalized Dropout feature vector can be derived

from the normalized Spike feature vector: FDropout = 1w − FSpike.

Figure 4.4: Spike and Dropout: An example of the Spike and Dropout features
computed for the Freezer dataset using a window of size w = 100; the Spike and
Dropout features are not computed for the last 100 datapoints.

4.5 Rising and Falling

The Rising and Falling features compute the sum of the slopes between neigh-

boring datapoints in the current window T ; Figure 4.5 shows an example.

24

A function Slopes : Rw → Rw−1 computes a vector P of length w, where pi =

ti+1−ti. In an offline context, the sum of slopes is the L1 norm ∥P∥1 = ∥Slopes(T)∥1;

the streaming feature extractor maintains the sum as a scalar ΣSlopes, which is updated

as follows when each new datapoint is sampled:

ΣSlopes = ΣSlopes − (t2 − t1) + (tw+1 − tw). (4.5)

The feature score fRising(T) = ΣSlopes is transmitted to the normalizer. When a

complete score buffer SRising becomes available, it is then normalized FRising =

Nmax−scaled
min−max (FRising) and output in a burst of size w. The normalized Falling fea-

ture vector can be derived from the normalized Rising feature vector: FFalling =

1w − FRising.

25

Figure 4.5: Rising and Falling: An example of the Rising and Falling features
computed for the Insect EPG dataset using a window of size w = 100; the Rising and
Falling features are not computed for the last 100 datapoints.

4.6 Complex and Simple Unnormalized (Normal-

ized)

These four features comprise two feature pairs that quantify the intrinsic dimen-

sionality [1] of the current window T . The Complex (Simple) Unnormalized

features are similar to Rising (Falling), but employ the L2 norm rather than the L1

norm of Slopes(T); the Complex (Simple) Normalized features are similar to

26

their Unnormalized counterparts, but z-score normalize T before computing the L2

norm of Slopes(T). Figure 4.6 shows examples for both feature pairs.

The feature score fComplex−Unnormalized(T) = ∥Slopes(T)∥2 is transmitted to the

normalizer. When a complete score buffer SComplex−Normalized becomes available,

it is then normalized FComplex−Unnormalized = Nmin−max(SComplex−Unnormalized) and

output in a burst of size w. The (normalized) Simple Unnormalized feature vec-

tor can be derived from the (normalized) Complex Unnormalized feature vector:

FSimple−Unnormalized = 1w − FComplex−Unnormalized.

The feature score fComplex−Normalized(T) = ∥Slopes(Nz(T))∥2 is transmitted the

normalizer. When a complete score buffer SComplex−Normalized becomes available, it

is normalized FComplex−Normalized = Nmin−max(SComplex−Normalized) and output in a

burst of size w. The (normalized) Simple Normalized feature vector can be derived

from the (normalized) Complex Normalized feature vector: FSimple−Normalized = 1w −

FComplex−Normalized.

27

(a) Simple and Complex Unnormal-
ized Example

(b) Simple and Complex Normalized
Example

Figure 4.6: Complex and Simple Unnormalized and Normalized: An exam-
ple of the Complex Unnormalized, Simple Unnormalized, Complex Normalized, and
Simple Normalized features computed for the Insect EPG dataset using a window of
size w = 100; the features are not computed for the last 100 datapoints.

4.7 Symmetric and Asymmetric

The Symmetric and Assymetric features quantify the extent to which T is

symmetric with respect to its midpoint tn/2; Figure 4.7 shows an example.

A function Rev : Rw → Rw reverses T . The feature score fSymmetric(T) = ∥T −

Rev(T)∥2 is transmitted to the normalizer. When a complete score buffer vector

SSymmetric becomes available, it is normalized FSymmetric = N+
min−max(SSymmetric). The

normalized Asymmetric feature vector can be derived from the normalized Symmetric

feature vector: FAsymmetric = 1w − FSymmetric.

28

Figure 4.7: Symmetric and Asymmetric: An example of the Symmetric and
Asymmetric features computed for the Freezer dataset using a window of size w = 100;
the Symmetric and Asymmetric features are not computed for the last 100 datapoints.

4.8 Linearity and Nonlinearity

The features Linearity and Nonlinearity quantify how effectively a linear equa-

tion y = ai+ b can characterize the current window T ; Figure 4.8 shows an example.

A linear approximation is fit to the datapoints in T , yielding coefficients a and b:

b =

∑w
i=1 ti

∑w
i=1 i

2 −
∑w

i=1 i
∑w

i=1 iti
w
∑w

i=1 i
2 − (

∑w
i=1 i)

2
(4.6)

29

Figure 4.8: Linearity and Nonlinearity: An example of the Linearity and Non-
linearity features computed for the Star Light Curve dataset using a window of size
w = 100; the Linearity and Nonlinearity features are not computed for the last 100
datapoints.

a =
w
∑w

i=1 ti
∑w

i=1 i
2 −

∑w
i=1 i

∑w
i=1 iti

w
∑w

i=1 i
2 − (

∑w
i=1 i)

2
(4.7)

A function Linear Approx : Rw → Rw computes a vector L of length w, where

li = ai+ b. The terms a and b are amenable to online updates, as long as we interpret

the window size w as a constant; this interpretation is reasonable, as we would need

to reconfigure the FPGA to adjust w, and, adjustments to w can change the values

30

produced by each feature extractor. Based on these assumptions, the sums
∑w

i=1 i,∑w
i=1 i

2, (
∑w

i=1 i)
2, and denominators of both coefficient equations are also constants,

and
∑w

i=1 ti is the online summation of datapoint values in T computed online by Eq.

4.1.

The sum
∑w

i=1 iti can also be computed online. After sampling datapoint tw+1, and

prior to discarding t1 and adjusting datapoint indices, this sum becomes
∑w

i=1 iti+1.

Via algebraic manipulation, one can show that
∑w

i=1 iti+1 =
∑w

i=1 iti−
∑w

i=1 ti+wtw+1,

once again recognizing that the term
∑w

i=1 ti is another instance of Eq. 4.1, which

can be computed online.

The Linearity feature is the L2 norm of the difference between T and its linear

approximation. The feature score fLinearity(T) = ∥T −Linear Approx(T)∥2 is trans-

mitted to the normalizer. When a complete score buffer SLinearity becomes available,

it is then normalized FLinearity = N+
min−max(SLinearity) and output in a burst of size

w. The normalized Nonlinearity feature vector can be derived from the normalized

Linearity feature vector: FNonlinearity = 1w − FLinearity.

4.9 Convex and Concave

The features Convex and Concave quantify how effectively a quadratic equation

y = ai2+bi+c can characterize the current window T ; Figure 4.9 shows an example. A

quadratic approximation is fit to the datapoints in T by solving a system of equations

31

Ma = b where,

M =


w

∑w
i=1 i

∑w
i=1 i

2

∑w
i=1 i

∑w
i=1 i

2
∑w

i=1 i
3

∑w
i=1 i

2
∑w

i=1 i
3

∑w
i=1 i

4

 b =


∑w

i=1 ti∑w
i=1 iti∑w
i=1 i

2ti

 a =


c

b

a

 (4.8)

A function det : R3x3 → R computes the determinant of a 3x3 matrix. We then

solve for a by using Cramer’s Rule, where k is the index of vector a, and Mk denotes

M with the kth column replaced by vector b:

a =
det(M3)

det(M)
b =

det(M2)

det(M)
c =

det(M1)

det(M)
(4.9)

Similar to our discussion of Linearity/Nonlinearity above, matrix M contains nine

scalar constants (under the assumption that w is constant), making the determinant

det(M) also a constant. The sums in vector b can be computed online analogously

to Eq. 4.1.

A function Quadratic Approx : Rw → Rw computes a vector Q of length w,

where qi = ai2 + bi + c. The Concave feature is the L2 norm of the difference

between T and its quadratic approximation. The feature score fConvex(T) = ∥T −

Quadratic Approx(T)∥2 is transmitted to the normalizer. When a complete score

buffer SConvex becomes available, it is then normalized FConvex = N+
min−max(SConvex)

32

and output in a burst of size w. The normalized Concave feature vector can be derived

from the normalized Convex feature vector: FConcave = 1w − FConvex.

Figure 4.9: Convex and Concave: An example of the Convex and Concave features
computed for the Star Light Curve dataset using a window of size w = 100; the Convex
and Concave features are not computed for the last 100 datapoints.

4.10 Noise and Smooth

The Noise and Smooth features estimate the amount of noise in the current

window T by computing the sum of the root squared difference of the original window

33

and a smoothed version; Figure 4.10 shows an example. These features are computed

by composing three functions introduced next.

Function Smooth : Rw → Rw computes a smoothed version of the window using

a median filter with k = 2, i.e., Smooth(T) = MedianFilter(T, 2).

Figure 4.10: Noise and Smooth: An example of the Noise and Smooth features
computed for the Insect EPG dataset using a window of size w = 100; the Noise and
Smooth features are not computed for the last 100 datapoints.

Function Diff : Rw × Rw → Rw computes the elementwise absolute value of the

difference of two vectors T and U : di = |ti − ui|. Computing the absolute difference

34

between each sampled datapoint and its smoothed counterpart serves as a proxy for

noise.

Function Remove Outliers : Rw → Rw removes outliers from a vector T . Let

µ and σ be the arithmetic mean and standard deviation of the datapoints in T .

Datapoint ti is an inlier if µ − σ ≤ ti ≤ µ + σ; otherwise, ti is an outlier and is

replaced by the nearest datapoint (by index) in T that is also an inlier, which we

denote as ini. Remove Outliers stores its result in a vector R of length w, where:

ri =


ti µ− σ ≤ ti ≤ µ+ σ

ini otherwise

(4.10)

The Noise feature is the L1 norm of the difference between T and its smoothed

counterpart, after removing outlier points.

The feature score fNoise(T) = ∥Remove Outliers(Diff(T, Smooth(T))∥1 is trans-

mitted to the normalizer. When a complete score buffer SNoise becomes available, it

is then normalized FNoise = Nmin−max(SNoise) and output in a burst of size w. The

normalized Smooth feature vector can be derived from the normalized Noise feature

vector: FSmooth = 1w − FNoise.

35

4.11 Step and No Step

The Step and No Step features quantify how well the current window T can be

characterized by a step-wise function. Figure 4.11 shows an example. In addition to

z-score normalization (Nz) and the Remove Outliers functions, introduced earlier,

three additional functions are introduced here:

Function Zero Min : Rw → Rw vertically shifts a time series T so that the

smallest datapoint has a value of zero. Let tmin be the minimum value among all

datapoints in T . Then Zero Min(T) = T − tmin · 1w.

36

Figure 4.11: Step and No Step: An example of the Step and No Step features
computed for the Insect EPG dataset using a window of size w = 100; the Step and
No Step features are not computed for the last 100 datapoints.

Function Rate of Change : Rw → Rw computes the rate of change between

neighboring datapoints of T , storing the result in a vector ∆ = ⟨δ1, δ2, . . . , δw⟩, where

δi =


ti+1 − ti 1 ≤ i ≤ w − 1

0 i = w

(4.11)

Function Stepwise : Rw → Rw estimates a step function that reasonably charac-

terizes time series T . The first step is to identify the indices of outlier datapoints in

37

T which satisfy the property ti > 3σ, where σ is the standard deviation of T . These

indices are collected into a vector K = ⟨i| δi > 3σ ∧ i − 1 /∈ K⟩. By convention, we

require K to contain index 1, and K is not permitted to contain consecutive indices.

The length of K, denoted m, is data dependent and satisfies m ≤ w/2.

The Stepwise function computes a vector E using the indices in K. For index i,

let kl and kl+1 be the entries of K that satisfy kl ≤ i < kl+1. Then the estimated step

ei at position i is computed as follows:

ei =

∑kl+1

j=kl
tj

kl+1 − kl
kl ≤ i < kl+1 (4.12)

There is a subtle discontinuity involving the final entry of K. There are two cases

to consider:

1. If w ∈ K, i.e., if the last entry of K, km = w, then we must compute ew for

km = w < km+1, where km+1 is undefined because it exceeds the length of K

(i.e., an out-of-bounds index). In this case, we simply let ew = tw.

2. If w /∈ K, then km = v < w, and km+1 is likewise undefined. In this case, we

use Eq. 4.12 with kl = v and kl+1 = w, essentially treating the trailing indices

of T as the final step.

To compute the Step feature, let

A = Zero Min(Remove Outliers(Nz(T))) (4.13)

38

and

B = Stepwise(Rate of Change(A)). (4.14)

The Step feature is the L2 norm of the difference between A (the current win-

dow, after z-score normalization, outlier removal, etc.) and B (the stepwise esti-

mation). The feature score fStep(T) = ∥A − B∥2 is transmitted to the normal-

izer. When a complete score buffer SStep becomes available, it is then normal-

ized FStep = N+
min−max(SStep) and output in a burst of size w. The normalized

No Step feature vector can be derived from the normalized Step feature vector:

FNo−Step = 1w − FStep.

4.12 Periodic and Aperiodic

The Periodic and Aperiodic features quantify the ability of two Fast Fourier

Transform (FFT) coefficients to model the window of recently sampled datapoints.

Figure 4.12 shows an example. This function employs z-score normalization as a

preliminary step, which is then followed by the following functions.

Functions FFT : Rw → Rw and IFFT : Rw → Rw transform the datapoints

between the time and frequency domains.

Function Subst Max4 : Rw → Rw identifies and extracts the 4-largest values from

a vector of length w ≥ 4, places them in-order in the first four positions, and zeroes out

39

the remaining value. For example, let v1max ≥ v2max ≥ v3max ≥ v4max be the four largest

values in vector V . Then Subst Max4(V) = ⟨v1max, v
2
max, v

3
max, v

4
max, 0, 0, . . . , 0⟩.

Let Y = IFFT (Subst Max4(FFT (Nz(T)))). To compute Y , the current window

T is z-score normalized and then transformed into the frequency domain via FFT.

Within the frequency domain, the four highest-valued frequency domain coefficients

are identified and moved to the front of the vector, while zeroing out all other co-

efficients, before transforming it back into the time domain via IFFT. The Periodic

feature is the L2 norm of the difference between Y and the z-score normalized current

window T .

The frequency score fPeriodic(T) = ∥Nz(T) − Y ∥2 is transmitted to the normal-

izer. When a complete score buffer SPeriodic becomes available, it is then normalized

FPeriodic = Nmin−max(SPeriodic) and output in a burst of size w. The normalized

Aperiodic feature vector can be derived from the normalized Periodic feature vector

FAperiodic = 1w − FPeriodic.

40

Figure 4.12: Periodic and Aperiodic: An example of the Periodic and Aperiodic
features computed for the Insect EPG dataset using a window of size w = 100; the
Periodic and Aperiodic features are not computed for the last 100 datapoints.

4.13 Unique Pattern

The Unique Pattern feature calculates the amount of unique values within the

window of recently sampled datapoints. Figure 4.13 shows an example. This feature

extractor is implemented by a function Unique : Rw → R defined as

Unique(T) = |{ti ∈ T | tj ̸= ti ∀tj ∈ T \ {ti}}|. (4.15)

41

Figure 4.13: Unique Patterns: An example of the Unique Patterns feature com-
puted for the Star Light Curve dataset using a window of size w = 100; the Unique
Patterns feature is not computed for the last 100 datapoints.

The feature score fUnique(T) = Unique(T) is transmitted to the normalizer. When

a complete score buffer SUnique becomes available, it is then normalized FUnique =

Nmin−max(SUnique) and output in a burst of size w.

42

Chapter 5

FPGA Implementation

This chapter presents an FPGA accelerator for Streaming NLP Time Series Search.

The accelerator extracts 25 features comprising eleven feature pairs and three stan-

dalone features (Table 4.1). Figure 5.1 presents the accelerator: the FPGA obtains

data in real time from a sensor (possibly over a network), extracts the 25 features and

transmits them to a host PC for storage and/or subsequent processing. The Feature

Extraction Kernel samples the time series datapoints from the sensor, and trans-

mits each datapoint via FIFOs to eight parallel regions that concurrently compute 14

feature scores and write them to their respective score buffers (BRAM). When the

score buffers are full (i.e., when their capacity reaches w), they are normalized (in

accordance with Table 4.1) and written to the host (via FIFO) as feature vectors; 11

of the 14 feature scores are concurrently inverted to generate their respective feature

43

pairs, are are also written to the host (once again, via FIFO). Each burst generates

a total of 25× w scalar values to be written to the host.

Figure 5.1: FPGA Accelerator Architecture: A time series streams into the
FPGA from a sensor and is distributed to 8 parallel regions that compute 14 fea-
ture scores, which are buffered and normalized to yield 14 feature vectors; 11 of the
14 feature vectors are inverted to generate paired feature vectors. The accelerator
outputs 25 “meta-time series” feature vectors to the host for storage or subsequent
processing.

Six of the eight parallel regions compute individual feature scores (Spike, Unique

Pattern, Symmetric, Linearity, Convex, Noise); a seventh parallel region com-

putes two feature scores (Rising, Complex-Unnormalized), which share a hard-

ware module that computes Slopes(T) (see Section 4.5); the eighth parallel region,

denoted Dependent Features, computes six features (Low, High, High Am-

plitude, Complex-Normalized, Periodic), with a significant number of shared

hardware modules (see Figure 5.2).

44

The presentation of hardware modules in each parallel region mimics the presen-

tation of each feature scoring method in the preceding chapter. Each parallel region

is pipelined internally, and FIFOs are used to communicate array data between hard-

ware modules. The following subsections describe the hardware implementation in

greater detail.

5.1 Dependent Region

The Dependent Region (see Figure 5.2) computes six features, whose dependency

tree is shown in Figure 5.3. The feature extraction kernel (also shown in Figure 5.1),

generates the current time series window T . The streaming sum (of the elements of

T ; Eq. (4.1)) computed for Low is used to compute the streaming mean µ (Eq. (4.2))

for High, which is used to compute the standard deviation σ (Eq. (4.3)) for High

Amplitude; µ and σ are then used to z-score normalize T (Eq. (3.3)). Complex

Normalize, Periodic, and Step subsequently process T after z-score normalization,

and can execute concurrently.

5.2 Arithmetic Modules

This section summarizes the different arithmetic modules (white boxes) shown

in Figures 5.1 and 5.2; the Normalization and Invert modules (shown in Figure 5.1)

45

Figure 5.2: Dependent Region: The Low, High, and High Amplitude features
scores are computed in-order, followed by z-score normalization of the time series
window; once the z-score normalized time series window is available, the Complex
Normalize, Periodic, and Step features are computed in parallel.

will be discussed later, in Section 5.3. Many of the arithmetic operators shown in

this section, such as division or square root, are pipelined; internal registers are not

shown.

5.2.1 Streaming Sum and Mean

Figures 5.4a and 5.4b depict the Streaming Sum and Streaming Mean hardware

modules in the Dependent Region (Figure 5.2), which implement Eqs. (4.1) and (4.2),

where the Streaming Sum is divided by the window size w to compute the Streaming

46

Figure 5.3: Dependency Tree

Mean. The Streaming Sum is also used to compute the Rising feature score (Fig.

5.1).

(a) Streaming Sum (b) Streaming Mean

Figure 5.4: Streaming Sum and Streaming Mean hardware modules.

5.2.2 Mean and Standard Deviation (Std)

Figures 5.5a and 5.5b depict a non-streaming mean and standard deviation (STD)

(Eq. 4.3) respectively. In both cases, the entire time series is available as a vector,

47

and the mean and standard deviation are computed across all vector entries. These

modules are paired in in the parallel regions that compute the Noise (Fig. 5.1) and

Step (Fig. 5.2) feature scores; theHigh Amplitude feature score uses the Streaming

Mean computed for the High feature score to compute a standard deviation using

STD as well (Fig. 5.2).

(a) Mean (b) Standard Deviation (STD)

Figure 5.5: (Non-streaming) Mean and Standard Deviation (STD) hardware modules.

5.2.3 L1 and L2 Norms

Figures 5.6a and 5.6b depict hardware modules that compute the L1 and L2 norms

(Eqs. (3.1) and 3.2)). Across Figs. 5.1 and 5.2, the L1 norm is computed once (for

the Noise feature score), while seven feature scores compute L2 norms internally.

48

5.2.4 z-Score Normalization

Figure 5.7 depicts the hardware module that implements z-score normalization

(Eq. 3.3). The mean and standard deviation are pre-computed by other hardware

modules. The z-score computation is implemented as a fully-unrollable vector opera-

tion, in which each scalar operation performs subtraction followed by division. z-score

normalization is computed once in the Dependent Region and is used to compute the

Complex Normalized, Periodic, and Step features.

(a) L1 Norm (b) L2 Norm

Figure 5.6: L1 and L2 norm hardware modules.

49

Figure 5.7: z-score Normalization hardware module.

5.2.5 Slope

Figure 5.8 depicts the hardware module that implements the function Slopes

introduced in Section 4.5, which is a fully unrollable vector operation that computes

pi = ti+1− ti, 1 ≤ i ≤ w− 1, and sets pw = 0. The Slopes hardware module is used to

compute the Rising, Step, Complex Normalized, and Complex Unnormalized

feature scores in Figures 5.1 and 5.2.

50

Figure 5.8: Slope hardware module.

5.2.6 Median Filter and Smooth

Figures 5.9a and 5.9b depicts hardware modules that implements the Median

Filter and the Smooth function introduced in Sections 4.4 and 4.10. The two functions

are quite similar: for each datapoint ti, they compute the median of the subsequence

⟨ti−k, ti−k+1, . . . ti+k⟩ at position i. The Median Filter outputs the maximum of the

computed medians, while the Smooth function stores the medians in a vector. As k

tends to be small, each median is computed efficiently by sorting, and all medians

can be computed as a fully unrollable vector operation. The Median Filter is used to

compute the Spike feature score, while the Smooth function is used to compute the

Noise feature score (Figure 5.1).

51

To facilitate efficient pipelining, median computations that involve indices outside

of the range [1, w] are handled separately; these edge cases execute concurrently with

the main loop, which is fully unrolled; this approach eliminates the need to pad the

vector with additional data points or to insert inefficient branching statements into

the loop that specifies the computation.

(a) Median Filter (b) Smooth

Figure 5.9: Median Filter and Smooth hardware modules.

5.2.7 Rev-Diff and Zero Min

Figure 5.10a depicts a hardware module that computes the function T − Rev(T)

described in Section 4.7, which is used to compute the Symmetric feature score

(Figure 5.1). Figure 5.10b depicts a hardware module that computes the function

52

Zero Min described in Section 4.11, which is used to compute the Step feature score

(Figure 5.2). Both of these modules can be implemented as fully-unrollable vector

subtraction operations, with Zero Min first requiring computation of the minimum

value of the vector.

(a) Rev-Diff (b) Zero Min

Figure 5.10: Rev-Diff and Zero Min hardware modules.

5.2.8 Remove Outliers

Figures 5.11 depicts a hardware module that computes the Fill Outliers function

introduced in Section 4.10, which is used to compute theNoise (Figure 5.1) and Step

(Figure 5.2) feature scores. The threshold for outlier detection is µ ± σ; an array is

53

created by identifying the inliers (i.e., non-outliers) and replacing each outlier by its

nearest inlier.

Figure 5.11: Remove Outliers hardware module.

5.2.9 Stepwise

Figure 5.12 computes the Stepwise function (Eq. (4.14)) described in Section 4.11,

which is used to compute the Step feature score (Figure 5.2). Internally, the absolute

value of the slopes produced by the Slope hardware module (Figure 5.8) is used to

identify indices where new steps occur, i.e., where the absolute value of the slopes

54

exceeds 3σ. The stepwise approximateion is created by setting the values of a step to

the mean value of the subarray based on the indices of the step.

Figure 5.12: Stepwise hardware module.

5.2.10 Linearity and Convex

Figures 5.13a and 5.13b depict hardware modules that compute the Linearity

and Convex feature scores (Fig. 5.1). The Linearity feature score computes the

difference between a time series and a Linear Approximation of that time series,

55

while the Convex feature score computes the difference between a time series and a

quadratic approximation.

Figure 5.14 depicts the hardware module that computes the linear approximation

of a time series via linear regression in accordance with Eqs. (4.6) and (4.7). Terms∑w
i=1 i and

∑w
i=1 i

2 are constants and terms
∑w

i=1 ti and
∑w

i=1 iti can be computed

online, similar to the Streaming Sum and Mean hardware modules depicted in Figure

5.4.

(a) Linearity (b) Convex

Figure 5.13: Linearity and Concave hardware modules.

56

Figure 5.14: Linear Approximation hardware module.

57

Figure 5.15: Quadratic Approximation hardware module.

58

Figure 5.15 depicts the hardware module that computes the quadratic approxi-

mation of a time series via polynomial regression in accordance with Eqs. (4.8) and

(4.9). In Eq. (4.8), matrix M consists of constant values that be computed offline;

likewise, M ’s determinant, det(M) can be computed offline; and vector b consists of

sums (terms:
∑w

i=1 ti,
∑w

i=1 iti, and
∑w

i=1 i
2ti) that can be computed online, similar to

the Streaming Sum and Mean hardware modules depicted in Figure 5.4. The bulk of

the computation is spent computing determinants of three 3× 3 matrices at runtime

and then dividing each by constant det(M) (Eq. (4.9).

5.2.11 Unique Patterns

Figure 5.16 depicts two hardware modules that compute the Unique Pattern

feature score (Figure 5.1). The hardware module shown in Figure 5.16a is true to

the NLP Time Series Search reference code, which sorts the time series in O(nlogn)

time and then makes a linear pass over the sorted vector to count the number of

values that occurs exactly once; our implementation uses a Bitonic Sort hardware

module provided by Xilinx as an IP. Figure 5.16b depicts a more efficient approach,

which employs a hash table rather than a sorting algorithm to identify unique values.

While the hash table approach has a time complexity of O(n2) (i.e., in the worst

case, all values hash to the same bucket), it’s average-case time complexity is linear,

making it much more efficient in practice. We compare the performance of both

implementations in the next Chapter.

59

(a) Unique Pattern hardware module
(Bitonic Sort Implementation)

(b) Unique Pattern hardware module
(Hash Table Implementation)

Figure 5.16: Unique Pattern hardware modules.

5.2.12 Periodic

Figures 5.17 and 5.18 depict two hardware modules that compute the Periodic

feature score (5.2). Both modules compute the difference between the input time

series (which has already been z-score normalized, as per Figure 5.2) and an ap-

proximation modeled by two FFT coefficients. The approximation is computed by

transforming the (z-score normalized) time series into the frequency domain via FFT,

extracting the four largest coefficients, placing them in-order in the first four positions

in the vector, zeroing out the remaining entries, and transforming the approximation

back to the time domain via IFFT.

60

Figure 5.17: Periodic hardware module (Bitonic Sort Implementation).

Figure 5.18: Periodic hardware module (Linear Search Implementation).

61

The hardware module shown in Figure 5.17 is true to the NLP Time Series Search

reference code, which sorts the FFT coefficients in O(nlogn) time and then zeroes

out all but the top-four coefficients in-place; our implementation uses a Bitonic Sort

hardware module provided by Xilinx as an IP. Figure 5.18 depicts a more efficient

approach, which identifies the four maximum values in the coefficient vector using an

O(n) time linear search.

5.3 Normalization and Invert Modules

This section summarizes the Normalization and Invert modules shown on the

bottom of Figure 5.1: the eight parallel regions compute fourteen feature scores, which

are buffered in BRAM and then normalized. Each score buffer is normalized using one

of four normalization algorithms as specified in Table 4.1, generating fourteen feature

vectors. In accordance with Table 4.1, the Invert module computes the corresponding

paired feature vector for eleven of the fourteen feature vectors previously normalized.

5.3.1 Min-Max Normalization (Nmin−max)

Figure 5.19 presents the hardware architecture for Min-Max Normalization (Eq.

3.4), which is applied to ten of the fourteen score buffers produced by the eight parallel

regions (Table 4.1).

62

Figure 5.19: Min-Max Normalization (Nmin−max) hardware module

5.3.2 Min-Max Normalization with Minimum Transform (Nmin−trans
min−max)

Figure 5.20 presents the hardware architecture for Min-Max Normalization with

Minimum Transform (Eq. 3.5); this normalization method is only applied to the Low

score buffer.

63

Figure 5.20: Min-Max Normalization with Minimum Transform (Nmin−trans
min−max) hard-

ware module

5.3.3 Min-Max Normalization Scaled by the Maximum (Nmax−scaled
min−max)

Figure 5.21 presents the hardware architecture for Min-Max Normalization Scaled

by the Maximum (Eq. 3.6); this normalization method is only applied to the Rising

score buffer.

64

Figure 5.21: Min-Max Normalization Scaled by the Maximum (Nmax−scaled
min−max) hardware

module.

5.3.4 Min-Max Normalization with Positive Guarantee (N+
min−max)

Figure 5.22 presents the hardware architecture for Min-Max Normalization Scaled

by the Maximum (Eq. 3.7); this normalization method is only applied to the Sym-

metric and Step score buffers.

65

Figure 5.22: Min-Max Normalization with Positive Guarantee (N+
min−max) hardware

module.

5.3.5 Invert

Figure 5.23 presents the hardware architecture for the Invert hardware block that

generates paired feature vectors: Fpaired feature = 1w − Ffeature. The operation is a

fully unrollable constant subtraction vector operation. Eleven of the fourteen feature

vectors produced by the accelerator (Figure 5.1) have paired features (Table 4.1).

66

Figure 5.23: INVERT HW Module

67

Chapter 6

Experimental Results

6.1 Experimental Setup

The NLP Time Series Search paper [12] includes a project website1, which pro-

vides source code written in MATLAB. A former UCR undergraduate student (Julian

Beaulieu) rewrote the NLP Time Series Search program in Python and provided a

reference copy for use2. For this project, the NLP Time Series Search’s Feature

Extraction source code was rewritten in C/C++ to be compatible with commercial

high-level synthesis tools. The C/C++ source code was compiled using Vivado HLS

2018.3 and Vitis HLS 2020.2, targeting a Xilinx Zedboard (for initial testing) and a

larger-scale Alveo U280 card for performance evaluation; all results reported here are

for the Alveo U280 card.

1https://sites.google.com/site/nlptimeseries
2To the best of my knowledge, Julian has not published his source code publicly.

68

https://sites.google.com/site/nlptimeseries

Figure 6.1: FPGA Accelerator Architecture with (HBM).

In accordance with the Vitis documentation, we use the term “kernel” to refer to

the compute-intensive portion of an algorithm that is accelerated on the FPGA; in

our case, the entire NLP Time Series Search implementation is itself a kernel. We

set the datatype to floating-point and used a window size of 100 elements, matching

the design choices used in the reference code. To mimic a streaming sensor, we wrote

a host-program to preload a time series into the Alveo U280 card’s High Bandwidth

Memory (HBM), which has an 8 GB capacity, and to stream the data from the HBM

to the FPGA. Figure 6.1 demonstrates this setup, which replaces the sensor and host

shown in Figure 5.1 with reads from and writes to HBM.

We used the HLS DATAFLOW pragma to enable the eight parallel regions in Fig-

ure 5.1 to execute concurrently, and within each feature extractor to enable further

69

concurrency; additionally, we used the HLS PIPELINE pragma within each feature

extractor to allow concurrent execution of operations within a loop across iterations;

each module is organized in a load-compute-store format in order to overlap compu-

tation with memory accesses and data transfers.

The interconnects that transfer subsequences between the modules are instanti-

ated as HLS Streams, which transmit data values sequentially; the alternative would

be to transmit data values via buffers, which would require address generation for

each read and write. Each hardware module reads data elements from the stream

and stores its values in a local array for computation; when computation finishes,

the module writes its output array into an outgoing stream in sequential order. The

streams are implemented as FIFOs in hardware. Some modules output single scalar

values rather than arrays/streams, which are implemented as regular data ports with-

out protocol support. The depth of each HLS stream is set to w, the window size.

Each parallel region in the design operates at its own clock frequency. The latency

to process a window of datapoints is dominated by the longest latency among the

feature extractors. Four of the parallel regions that compute feature scores (Periodic,

Unique Pattern, Step and Noise) have data-dependent latencies; the underlying

data-dependent hardware modules are the Bitonic Sort IP (used by Periodic and

Unique Pattern (see Figures 5.17 and 5.16a) and the Remove Outliers hardware

module used by Step and Noise). Periodic and Unique Patterns become fixed-

latency when the Bitonic Sort IP is replaced with a Linear Search (Figure 5.17) and

70

Hash Table (Figure 5.16b) respectively; coincidentally, the Periodic and Unique

Patterns feature score computes have the two highest overall latencies as well.

Prior to execution, a window consisting of all zero values is transmitted through

the entire accelerator to initialize all streaming sums; all feature scores at this point

are invalid and are discarded prior to direct execution on the first window of sampled

datapoints.

6.2 Baseline Results

Our baseline design implements the Periodic and Unique Patterns feature ex-

tractors using the Bitonic Sort IP module. In this design, Periodic has the highest

overall latency among all feature extractors, and therefore determines the kernel’s

latency. Table 6.1 summarizes the accelerator kernel’s performance, including fre-

quency, maximum and minimum latencies, and usage of different types of FPGA re-

sources: flip-flops (FF), Lookup-Tables (LUT), DSP Blocks (DSP), and Block RAMs

(BRAM). The accelerator kernel used 10.42% of the FPGA’s register capacity, while

using 20.28% of available LUTs, 12.45% of available BRAMs and 3.48% of available

DSP blocks. The 346 MHz frequency reported in Table 6.1 is for the kernel’s top-level

module (”Feature Extraction Kernel” in Figures 5.1 and 6.1); each feature extraction

kernel ran at its own frequency.

Each feature extractor is divided into two parallel steps: feature score computation

and normalization, with performance splits shown in Table 6.2, which reports the

71

Table 6.1: Design characteristics of the prototype FPGA kernel

Feature Extraction Kernel
Frequency Min. Latency Max. Latency FF LUT DSP BRAM

(cycles) (cycles)
346 MHz 16,693 30,676 271,420 264,201 314 251

Table 6.2: Latency splits of the full system accelerator

Performance Splits of Kernel
Min. Latency Max. Latency Min. Latency Max. Latency
(cycles) (cycles) (µs) (µs)

Computation 16,511 26,836 55.0 89.4
Normalization 1,079 1,079 3.60 3.60
Full Kernel 16,693 30,676 55.6 102

latency required to extract features from and normalize a full window of w = 100

data points. Referring back to Figures 5.1 and 6.1, 8 parallel regions generate 14

features, which are then normalized. Recall that each feature extractor generates

w feature scores, which are then normalized; thus, normalization executes 1/w as

frequently as the modules that generate the feature scores. The percentage of time

allocated to the computation of feature scores ranges from 87% (maximum latency)

to 99% (minimum latency). In addition to the normalization step, some additional

latency (not reported in Table 6.2) is spent updating static registers, writing buffer

scores to BRAM, and writing back the results to global memory.

72

6.3 Feature Extractor Performance

This section will summarize the performance of the different feature score hard-

ware modules. We begin by discussing performance optimizations applied to Peri-

odic and Unique Patterns, and then we compare their performance to the other

feature score modules. Prior to optimization, Periodic had the highest latency and

constraints the latency of the entire design. After optimizing Periodic, Unique

Patterns had the highest latency. After optimizing Unique Patterns, the now-

optimized Periodic had the highest overall latency. We could not determine any

subsequent optimizations that could further reduce the latency of Periodic, and

optimizing the latency of other hardware modules could not yield any additional

system-level performance improvements.

We applied the HLS UNROLL pragma to both Periodic and Unique Patterns.

Unique Patterns features a single loop that can be fully unrolled. All loops within

Periodic were fully unrolled as well, except for the loops that read and write to the

FIFOs, where unrolling will not benefit performance.

6.3.1 Periodic

The latency of the baseline implementation of thePeriodic feature score hardware

module was dominated by the latency of the FFT (6332 cycles) and a data-dependent

bitonic sorter (3096 cycles in the best case; 13,421 cycles in the worst-case). Taken

together, the two optimizations described below reduced Periodic’s latency from

73

54.811 µs (best case) and 89.224 µs (worst case) to 9.993 µs constant (not data-

dependent) latency.

FFT: We implemented the FFT using a Xilinx IP module, which employs a default

streaming pipeline architecture that is optimized for performance at the cost of a

considerable amount of area. We do not have the ability to optimize or modify the

FFT IP directly to further improve performance, for example using pragmas. The

FFT employs two wrappers, FFT FWD and FFT INV, which set up data prior to

calling the FFT IP to perform either a forward FFT or an inverse IFFT. To optimize

the wrappers, we fully unrolled the data transfer loop; to ensure that the length of

the input to the FFT IP has a power of 2, we added a second concurrent loop to

zero-pad the input and unrolled it fully as well. A second optimization is to switch

from a Radix-2 FFT to a Radix-4 FFT.

Table 6.3 compares the performance of the different FFT implementations. As a

baseline for comparison, we took the open-source Project Nayuki FFT3 and synthe-

sized it using HLS. While the Project Nayuki FFT performed incrementally better

than the Radix-2 Xilinx FFT IP with an optimized wrapper, the Radix-4 Xilinx FFT

IP ran an order of magnitude faster. Based on this comparison, we selected the

Radix-4 FFT IP with optimized wrapper to accelerate the Period feature extractor.

Bitonic Sort: As mentioned earlier, the NLP Time Series Search reference code em-

ploys an O(nlogn) sorting algorithm within the Periodic feature extractor; however,

3https://www.nayuki.io/page/free-small-fft-in-multiple-languages

74

https://www.nayuki.io/page/free-small-fft-in-multiple-languages

Table 6.3: Performance of Different FFTs.

FFT Comparison
FFT Implementation Latency (cycles) Latency (µs)
Xilinx Radix-2 FFT + Unoptimized Wrapper 6,385 21.3
Xilinx Radix-2 FFT + Optimized Wrapper 6,332 21.1
Project Nayuki FFT Compiled via HLS 5,702 19.1
Xilinx Radix-4 FFT + Unoptimized Wrapper 972 3.24
Xilinx Radix-4 FFT + Optimized Wrapper 849 2.83

Table 6.4: Performance comparison between the Xilinx Bitonic Sort IP and Linear
Search.

Bitonic Sort vs. Linear Search
Min. Latency Max. Latency Min. Latency Max. Latency
(cycles) (cycles) (µs) (µs)

Bitonic Sort 3,096 13,421 10.3 44.7
Linear Search 853 853 2.84 2.84

only the four maximum values in the sorted list are retained, and the other values

are discarded. Our initial implementation of the Periodic feature extractor tried to

be as faithful as possible to the reference code, with the main difference being the

choice of sorting algorithm. We used a Bitonic Sort IP provided by Xilinx, which

consumed around 50% of the full kernel execution time under the worst-case latency

assumptions. A more efficient approach was to employ an O(n)-time linear search

that identifies the four largest-valued datapoints within the window, noting that do-

ing so could also optimize the software performance. As shown in Table 6.4, this

change reduced the latency to 853 cycles, and eliminated data-dependent latency,

75

Table 6.5: Performance comparison between the Xilinx Bitonic Sort IP and a Hash
Table.

Bitonic Sort vs. Hash Table Search
Min. Latency Max. Latency Min. Latency Max. Latency
(cycles) (cycles) (µs) (µs)

Bitonic Sort 3,096 13,421 10.3 44.7
Hash Table 501 501 1.67 1.67

6.3.2 Unique Patterns

As mentioned earlier, NLP Time Series Search reference code employs an O(nlogn)

sorting algorithm within the Unique Patterns feature extractor; here, the purpose

of the sorting algorithm is to count the number of datapoints in the time series with

unique values, which is trivial when the time series is sorted. That said, a more

efficient approach is to employ a hash table, rather than a sorting algorithm, which

could work as a software optimization as well. As shown in Table 6.5 the Bitonic

Sort IP with a hash table reduced the latency of the Unique Feature Extractor from

10.746 µs (best case) and 45.159 µs (worst case) by an order of magnitude to 1.670

µs constant (not data-dependent) latency.

6.3.3 Feature Score Hardware Module Comparison

Figures 6.2 and 6.3 report the latencies of each of the feature score computation

hardware modules in terms of cycle count and time (µs). The highest-latency module

is Periodic, which constrains the overall latency of the design; the other hardware

76

modules need to wait for Periodic to finish once they have computed their feature

scores.

Figure 6.2: Latency (cycles) of each feature score hardware module.

77

Figure 6.3: Latency (time) of each feature score hardware module.

As discussed earlier, the Periodic and Unique Patterns hardware modules have

fixed-latency, due to removal of the Bitonic Sort IP. The Step and Noise hardware

modules have variable latencies, due to the Remove Outliers hardware module.

Each arithmetic hardware module operates at its own frequency. Figure 6.4 re-

ports the respective frequencies of each of the feature score extractors. Frequencies

range from 3̃50 MHz (Periodic, Step, Complex Normalize) to 4̃25 MHz. It may

be possible to achieve higher performance by increasing the frequency of the Peri-

odic and Step hardware modules, as they have the two highest latencies in terms of

time, as reported in Figure 6.3.

78

Figure 6.4: Frequency of each feature score hardware module.

6.4 Normalization

Table 6.6 report the latencies of the different components within the normalization

kernel. The latency of loading feature score vectors from BRAM exceeds the latencies

of the normalization computations. The latency of the Invert module, which is used to

generate feature pairs, is not particularly significant. The critical path runs through

the N+
min−max normalization method and includes the Invert module.

79

Table 6.6: Latencies of hardware modules within the Normalization kernel.

Performance Splits of Normalization
Latency (cycles) Latency (µs)

Load from BRAM 707 2.36
Nmin−max 443 1.48
Nmin−trans

min−max 448 1.49

Nmax−scaled
min−max 333 1.11

N+
min−max 478 1.59

Invert 102 0.340

6.5 FPGA vs GPU

This section compares the performance and power consumption of two-based

FPGA implementations of NLP Time Series Search to a GPU-based implementa-

tion, which we also wrote. Our second FPGA-based implementation is based on

the same hardware architecture as described previously, but was compiled with Vitis

under a power optimization, setting.

The GPU kernel that was created for comparing the FPGA design was built with

CUDA C and was executed on an Nvidia GeForce RTX 2080 Ti GPU. The GPU im-

plements the offline NLP Time Series Search Algorithm, not the online version, eval-

uated using the FPGA. The GPU computes feature scores sequentially, one-by-one;

each feature score computational algorithm is parallelized for maximal throughput.

Feature score vectors are written back to memory. The GPU then normalizes each

feature score vector in an offline fashion; i.e., each feature score vector is fully nor-

malized, rather than decomposing the feature score vector into length-w subvectors,

each of which is then normalized.

80

Table 6.7: FPGA Kernel vs GPU Kernel

FPGA vs GPU
Latency Throughput Power
(ms) (FLOPS) (W)

FPGA (Performance Optimized) 220 5.8× 106 32.1
GPU 244 5.0× 106 52.0
FPGA (Power Optimized) 260 4.8× 106 30.7

Table 6.7 compares the performance (latency and throughput) and power con-

sumption of the Performance- and Power-optimized FPGA implementations to that

of the GPU. The performance-optimized FPGA implementation achieves the lowest

latency and the highest throughput overall, including outperforming the GPU by 24

ms (latency) and 0.8 FLOPS (throughput), and reducing power consumption by 19.9

W. An additional 1.4 W of power can be saved by switching to the power-optimized

FPGA implementation, although doing so yields a design that is inferior to the GPU

in terms of performance metrics (higher latency, lower throughput).

81

Chapter 7

Conclusions

In this paper a feature extraction FPGA kernel was created using C++ and Xil-

inx’s Vitis HLS. The design is able to extraction 25 features in real-time by streaming

data directly into the computation architecture. The design was performance tested

and optimized by reducing the latency of bottleneck hardware modules. The current

design can be further developed to prioritize different attributes. If the design needs

to be optimized for latency, we would keep attacking the bottlenecks of the design

and use more of the available hardware resources to improve performance. Another

avenue of development would be to optimize for hardware utilization. By simplifying

all the hardware modules’ architecture slowing them down to the same speed as the

bottleneck, we would achieve the same latency but at a lower resource utilization

cost. Lastly, we could try to lower frequency of the hardware modules to try to lower

power consumption.

82

The prototype design was compared against a GPU implementation, further com-

parisons can be made in the future to multi-threaded CPU applications. A through

study could be conducted by creating the optimal FPGA, GPU and CPU design for

the kernels and comparing them in a systematic manner. Other research related to

this design that can be done is to compute features in real-time and use them to per-

form data analysis techniques such as searches, and classifications in real-time. We

could try to extract even more features, or choose from a different set of features like

the Catch-22 set [15]. To extrapolate from that idea, we could create an autotunning

software that takes in a user’s requested feature set and outputs an FPGA design

optimized to extract those specific features.

83

Bibliography

[1] Gustavo E. A. P. A. Batista, Eamonn J. Keogh, Oben M. Tataw, and Vinicius
M. A. Souza. Cid: an efficient complexity-invariant distance for time series. Data
Mining and Knowledge Discovery, 28:634–669, 2013.

[2] Zehua Chen, Yirui Wu, Jiang Mei, Jiamin Lu, Yunfeng Wang, and Jun
Feng. Spatial-temporal motif discovery with variable-size sliding windows. In
2021 International Conference on Wireless Communications and Smart Grid
(ICWCSG), pages 126–133, 2021.

[3] Jianyi Cheng, Lana Josipovic, George A. Constantinides, Paolo Ienne, and John
Wickerson. Combining dynamic & static scheduling in high-level synthesis.
In Proceedings of the 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA ’20, page 288–298, New York, NY, USA,
2020. Association for Computing Machinery.

[4] Jianyi Cheng, John Wickerson, and George A. Constantinides. Probabilistic
optimization for high-level synthesis. In The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, FPGA ’21, page 145, New York,
NY, USA, 2021. Association for Computing Machinery.

[5] Yuze Chi, Young-kyu Choi, Jason Cong, and Jie Wang. Rapid cycle-accurate
simulator for high-level synthesis. In Proceedings of the 2019 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays, FPGA ’19, page
178–183, New York, NY, USA, 2019. Association for Computing Machinery.

[6] Bill Chiu, Eamonn Keogh, and Stefano Lonardi. Probabilistic discovery of time
series motifs. In Proceedings of the Ninth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD ’03, page 493–498, New
York, NY, USA, 2003. Association for Computing Machinery.

[7] Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan
Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, Yanping, Bing

84

Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen, and Gustavo Batista.
The ucr time series classification archive, October 2018.

[8] Ben D. Fulcher and Nick S. Jones. Highly comparative feature-based time-
series classification. IEEE Transactions on Knowledge and Data Engineering,
26(12):3026–3037, 2014.

[9] Konstantinos Georgopoulos, Grigorios Chrysos, Pavlos Malakonakis, Antonis
Nikitakis, Nikos Tampouratzis, Apostolos Dollas, Dionisios Pnevmatikatos, and
Yannis Papaefstathiou. An evaluation of vivado hls for efficient system design.
In 2016 International Symposium ELMAR, pages 195–199, 2016.

[10] Licheng Guo, Pongstorn Maidee, Yun Zhou, Chris Lavin, Jie Wang, Yuze Chi,
Weikang Qiao, Alireza Kaviani, Zhiru Zhang, and Jason Cong. Rapidstream:
Parallel physical implementation of fpga hls designs. In Proceedings of the 2022
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
FPGA ’22, page 1–12, New York, NY, USA, 2022. Association for Computing
Machinery.

[11] Sitao Huang, Kun Wu, Hyunmin Jeong, Chengyue Wang, Deming Chen, and
Wen-mei Hwu. Pylog: An algorithm-centric python-based fpga programming
and synthesis flow. In The 2021 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’21, page 227–228, New York, NY,
USA, 2021. Association for Computing Machinery.

[12] Shima Imani, Sara Alaee, and Eamonn Keogh. Putting the human in the time
series analytics loop. In Companion Proceedings of The 2019 World Wide Web
Conference, WWW ’19, page 635–644, New York, NY, USA, 2019. Association
for Computing Machinery.

[13] Amin Kalantar, Zachary Zimmerman, and Philip Brisk. Fa-lamp: Fpga-
accelerated learned approximate matrix profile for time series similarity pre-
diction. In 2021 IEEE 29th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 40–49, 2021.

[14] Reza Lotfian and Roozbeh Jafari. An ultra-low power hardware accelerator ar-
chitecture for wearable computers using dynamic time warping. In 2013 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 913–916,
2013.

[15] Carl Henning Lubba, Sarab Sethi, Philip Knaute, Simon Schultz, Ben Fulcher,
and Nick Jones. catch22: Canonical time-series characteristics: Selected through
highly comparative time-series analysis. Data Mining and Knowledge Discovery,
33, 08 2019.

85

[16] Leonard MacEachern and Ghazaleh Vazhbakht. Configurable fpga-based out-
lier detection for time series data. In 2020 IEEE 63rd International Midwest
Symposium on Circuits and Systems (MWSCAS), pages 142–145, 2020.

[17] Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair Fort,
Andrew Canis, Yu Ting Chen, Hsuan Hsiao, Stephen Brown, Fabrizio Ferrandi,
Jason Anderson, and Koen Bertels. A survey and evaluation of fpga high-level
synthesis tools. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 35(10):1591–1604, 2016.

[18] Jose Carlos Romero, Angeles Navarro, Antonio Vilches, Andrés Rodŕıguez, Fran-
cisco Corbera, and Rafael Asenjo. Efficient heterogeneous matrix profile on a cpu
+ high performance fpga with integrated hbm. Future Gener. Comput. Syst.,
125(C):10–23, dec 2021.

[19] Doruk Sart, Abdullah Mueen, Walid Najjar, Eamonn Keogh, and Vit Niennat-
trakul. Accelerating dynamic time warping subsequence search with gpus and
fpgas. In 2010 IEEE International Conference on Data Mining, pages 1001–1006,
2010.

[20] Xiaozhe Wang, Anthony Wirth, and Liang Wang. Structure-based statistical
features and multivariate time series clustering. In Seventh IEEE International
Conference on Data Mining (ICDM 2007), pages 351–360, 2007.

[21] Zilong Wang, Sitao Huang, Lanjun Wang, Hao Li, Yu Wang, and Huazhong
Yang. Accelerating subsequence similarity search based on dynamic time warping
distance with fpga. In Proceedings of the ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, FPGA ’13, page 53–62, New York, NY,
USA, 2013. Association for Computing Machinery.

[22] Shaojie Xiang, Yi-Hsiang Lai, Yuan Zhou, Hongzheng Chen, Niansong Zhang,
Debjit Pal, and Zhiru Zhang. Heteroflow: An accelerator programming model
with decoupled data placement for software-defined fpgas. In Proceedings of
the 2022 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, FPGA ’22, page 78–88, New York, NY, USA, 2022. Association for
Computing Machinery.

[23] Jidong Yuan, Qianhong Lin, Wei Zhang, and Zhihai Wang. Locally slope-based
dynamic time warping for time series classification. In Proceedings of the 28th
ACM International Conference on Information and Knowledge Management,
CIKM ’19, page 1713–1722, New York, NY, USA, 2019. Association for Com-
puting Machinery.

[24] Zachary Zimmerman, Kaveh Kamgar, Nader Shakibay Senobari, Brian Crites,
Gareth Funning, Philip Brisk, and Eamonn Keogh. Matrix profile xiv: Scaling

86

time series motif discovery with gpus to break a quintillion pairwise comparisons
a day and beyond. In Proceedings of the ACM Symposium on Cloud Computing,
SoCC ’19, page 74–86, New York, NY, USA, 2019. Association for Computing
Machinery.

87

	List of Figures
	List of Tables
	Introduction
	Related Works
	Feature Extraction in Time Series Analysis
	Hardware Accelerated Software Application
	HLS in FPGA Development

	Background
	NLP Time Series Search
	Definitions
	Norms
	Normalization
	Features and Feature Extraction
	Streaming NLP Time Series Search
	Streaming vs. Offline NLP Time Series Search

	Feature Extraction Algorithms
	Low
	High
	High and Low Amplitude
	Spike and Dropout
	Rising and Falling
	Complex and Simple Unnormalized (Normalized)
	Symmetric and Asymmetric
	Linearity and Nonlinearity
	Convex and Concave
	Noise and Smooth
	Step and No Step
	Periodic and Aperiodic
	Unique Pattern

	FPGA Implementation
	Dependent Region
	Arithmetic Modules
	Streaming Sum and Mean
	Mean and Standard Deviation (Std)
	L1 and L2 Norms
	z-Score Normalization
	Slope
	Median Filter and Smooth
	Rev-Diff and Zero_Min
	Remove_Outliers
	Stepwise
	Linearity and Convex
	Unique Patterns
	Periodic

	Normalization and Invert Modules
	Min-Max Normalization (Nmin-max)
	Min-Max Normalization with Minimum Transform (Nmin-maxmin-trans)
	Min-Max Normalization Scaled by the Maximum (Nmin-maxmax-scaled)
	Min-Max Normalization with Positive Guarantee (Nmin-max+)
	Invert

	Experimental Results
	Experimental Setup
	Baseline Results
	Feature Extractor Performance
	Periodic
	Unique Patterns
	Feature Score Hardware Module Comparison

	Normalization
	FPGA vs GPU

	Conclusions
	Bibliography

