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SATURATION MAGNETIZATION IN THE ANOMALOUS FERROMAGNET, (Y, U)B, + 

A. WALLASH, J.E. CROW and Z. FISK ‘) 

Physm Department, Temple Uniuersity, Philadelphia, PA 19122, USA 

For the (Y,_,U,)B, system, long-range ferromagnetism only occurs for 0.05 < x i 0.55. The anomalous magnetic phase 
diagram has been attributed to a delocalization of the U Sf-electrons due to increasing f-f overlap as the average U-U 
separation is varied. Measurements of the saturation magnetic moment versus x in the ferromagnetic region and measurements 
of the lattice constants versus x are presented. 

The magnetic to nonmagnetic transition seen in most 
U-based alloys and intermetallic compounds is a result 
of the delocalization of the f-electrons due to f-f over- 
lap and/or f-spd hybridization. H.H. Hill established 
that f-f overlap significantly contributes to this delo- 
calization for U-U separations less than 3.4-3.6 A, 
whereas f-spd hybridization tends to dominate for larger 
U-separations [l]. The U-U separation in UB, is 3.7 A 
which is slightly larger than Hill’s critical separation 
and UBd is weakly paramagnetic, presumably due to the 
delocalization of the f-electrons caused by f-f overlap. 
Upon dilution of UB, by YB,, an anomalous magnetic 
phase diagram is obained. Previously, it was reported 
that the (Y, ~,U,)B, system was paramagnetic for x > 
0.6, ferromagnetic for 0.1 < x < 0.6 and paramagnetic 
for x < 0.1 [2]. Also, it has been shown that the varia- 
tions of the lattice constants [3], hyperfine field [4], and 
paramagnetic susceptibility [5] versus x are consistent 
with a two-site model. This model assumes that the 5f 
electrons associated with U ions having 4 or less U 
nearest neighbours (nn) become localized and develop a 
local magnetic moment, whereas those with more than 4 
nn remain weakly paramagnetic. We have measured the 
lattice constants versus x and the saturation magnetiza- 
tion versus x and T for (Yt_,U,)B,. The variation of 
the lattice constants with x is consistent with those 
previously published [3] and the saturation magnetiza- 
tion dependence on x mirrors the variation of the Curie 
temperature, T,, with x. 

The samples were prepared in a conventional inert 
atmosphere arc furnace. Appropriate amounts of Y and 
LJ were added to compensate for the slight evaporation 
of these more volatile constituents which occured during 
melting. The lattice constants were measured using a 
Siemens 219/o diffractometer and the magnetization was 
measured using a commercial vibrating sample magne- 
tometer. 

Both YB4 and UB, crystallize in the tetragonal ThB, 
structure [2]. Shown in fig. 1 is the variation of the 
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Fig. 1. Lattice constants versus x for the tetragonal system. 

(Y, -xU,)Bzt. 

lattice constants, a and c, versus x. These results are 
very similar to those previously reported by Hill et al. 
[3]. Note the clear departure in the vicinity of x = 0.45 
from a linear Vegard’s law for both a and c. This 
departure from the initial linear dependence of a and c 
for x > 0.45 has been attributed to a delocalization of 
the 5f electrons due to increasing f-f overlap as the 
average U-U separation is reduced with increasing x. 
Such behavior is commonly seen in Ce-based alloys and 
intermetallic compounds [6] and was also reported for 

W, Y)Sb ]71. 
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Fig. 2. Curie temperature and saturation magnet moment versus 
x for (Yt -,U,)B., 
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Shown in fig. 2 by the dashed curve is the U-con- 
centration dependence of r,, the ferromagnetic Curie 
temperature. The T, versus x behavior shown in fig. 2 
was determined from an Arrott plot analysis of the field 
and temperature dependence of the magnetization. The 
q. versus x behavior shown in fig. 2 is similar to the 
behavior previously reported by Giorgi et al. [2] with the 
exception that our ferromagnetic/paramagnetic phase 
boundary is shifted slightly to lower x-values. The maxi- 
mum T, of 14.5 K is consistent with the previous 
measurements. For x > 0.3 the rapid depression of 7; 
with increasing x has been attributed to a quenching of 
the local moments due to the delocalization of the 5f 
electrons caused by increasing f-f overlap. Note that 
this rapid depression of T, with increasing x occurs in 
the region where the delocalization as seen in the lattice 
constants becomes apparent. 

Shown in fig. 3 is an Arrott plot [S] of the field and 
temperature dependence of the magnetization for x = 
0.25. From such a plot both the temperature depen- 
dence of the saturation magnetization and T, can be 
determined. Shown in fig. 2 by the solid curve is the 
zero temperature saturation moment/U-ion, pLo, versus 
x, as determined from the extrapolation of the tempera- 
ture dependence of the saturation magnetization. Note. 
the U-concentration dependence of p,, qualitatively re- 
sembles that seen for r, versus x. For a local moment 
model without crystalline electric field (CEF) effects, pLo 
should be nearly independent of x. Qualitatively. the 
observed dependence of p,, and T, can be explained 
with a local moment model assuming CEF effects with a 
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Fig. 3. M2 versus H/M (Arrott Plot) at various temperatures 
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(J = 4) 5f configuration and a nomagnetic singlet ground 
state. Using a two site model and assuming the ex- 
change and CEF parameters are independent of x, then 
an appropriate set of parameters can be selected such 
that the mean field 7; goes to zero at x = 0.1 and 
s = 0.8 with the maximum occurring near .Y = 0.5. Such 
behavior only qualitatively reproduces the observed be- 
havior of r, versus x. 

An alternate explanation of these results may be 
available in an itinerant model with the variation in the 
lattice constants reflecting the delocalization of the f- 
electrons in much the same way as occurs in the -y-u 
transition in Ce [9]. As shown by Pickett et al.. a slight 
increase of the f-f overlap can account for the isostruct- 
ural transitions and lattice collapse in Ce. Similarly. the 
increase of f-f overlap and lattice pressure with increas- 
ing U-concentration could result in a localized-itinerant 
transition in (Y. U)B4. With an itinerant model. the r, 
versus x could be qualitatively accounted for using a 
Stoner model [lo]. Furthermore, the approximate scal- 
ing of p0 with T, and the reduced size of p,, as 
compared to that expected for a well localized magnetic 
system can be easily obtained with an itinerant theory 
of magnetism. 

Measurements of the magnetization versus tempera- 
ture and magnetic field up to 9 T. along with measure- 
ments of the pressure dependence of 7; and pLo are 
presently being pursued with the hope of establishing 
which model is more appropriate. 
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