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A B S T R A C T   

Objective: – To identify and assess whether three major risk factors that due to differential access to flexible 
resources might help explain disparities in the spread of COVID-19 across communities with different socio
economic status, including socioeconomic inequalities in social distancing, the potential risk of interpersonal 
interactions, and access to testing. 
Methods: Analysis uses ZIP code level weekly COVID-19 new cases, weekly population movement flows, weekly 
close-contact index, and weekly COVID-19 testing sites in Southern California from March 2020 to April 2021, 
merged with the U.S. census data to measure ZIP code level socioeconomic status and cofounders. This study first 
develops the measures for social distancing, the potential risk of interactions, and access to testing. Then we 
employ a spatial lag regression model to quantify the contributions of those factors to weekly COVID-19 case 
growth. 
Results: Results identify that, during the first COVID-19 wave, new case growth of the low-income group is two 
times higher than that of the high-income group. The COVID-19 case disparity widens to four times in the second 
COVID-19 wave. We also observed significant disparities in social distancing, the potential risk of interactions, 
and access to testing among communities with different socioeconomic status. In addition, all of them contribute 
to the disparities of COVID-19 incidences. Among them, the potential risk of interactions is the most important 
contributor, whereas testing accessibility contributes least. We also found that close-contact is a more effective 
measure of social distancing than population movements in examining the spread of COVID-19. 
Conclusion: – This study answers critically unaddressed questions about health disparities in the spread of COVID- 
19 by assessing factors that might explain why the spread is different in different groups.   

1. Introduction 

Declared by the World Health Organization (WHO) as a pandemic on 
March 11, 2020, the coronavirus 2019, or COVID-19, has swept the 
world and raised global awareness of the threat that current and future 
pandemics hold for human populations (Altindiş and Ghafour, 2021; 
Cascella et al., 2022; Watson et al., 2022). While among unvaccinated 
populations everyone might be equally likely to be infected with 
COVID-19 from a biological perspective, substantial literature docu
ments significant sociodemographic inequalities in the spread of the 
disease (Hooper et al., 2020; Clouston et al., 2021; Hu et al., 2022; Lee 
et al., 2022). For example, Hooper et al. (2020) reported that the rates of 

COVID-19 are greatest among Latino and African American populations. 
Clouston et al. (2021) found that the growth of COVID-19 incidence is 
slower in counties with higher socioeconomic status after public health 
policy led to lockdowns. Lee et al. (2022) observed a 48% higher risk of 
infection among Hispanic people compared with white people. 

There are also many studies aiming to explain what lead to such 
inequality. Clouston et al. (2021) apply the theory of fundamental social 
causes (FCT) to explain the negative relationship between the COVID-19 
incidence and socioeconomic status at the county level after social 
distancing was implemented. FCT was developed to explain the persis
tence of socioeconomic and racial health disparities in disease and death 
across space and time, regardless of the intervening mechanisms and the 
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particular health outcome(s) in question (Link and Phelan, 1995; Phelan 
et al., 2010). This theory proposes that the reproduction of health 
inequality emerges when people use “flexible” resources such as 
knowledge, money, power, prestige, and beneficial social connections to 
strive, individually or collectively, for advantageous health circum
stances. These resources can be used to avoid risks and adopt protective 
strategies no matter what the most prevalent diseases in a particular 
place or time happen to be. Based on the FCT theory, Clouston et al. 
(2021) suggested that the socioeconomic inequalities lead to differen
tiated access to flexible resources to implement social distancing, which 
might cause the disproportionate distribution of COVID-19 incidence 
across counties with different socioeconomic status. 

While Clouston et al. (2021) did not explicitly measure the dispar
ities of social distancing across different socioeconomic status groups, 
much work measured social distancing disparities using a variety of 
human mobility metrics, such as point of interest (POI) visits (Jay et al., 
2020; Weill et al., 2020; Hu et al., 2022), time spent at or away from 
home (Borgonovi and Andrieu 2020; Jay et al., 2020; Weill et al., 2020; 
Hu et al., 2022), number of gathering (Lee et al., 2022), and mobility 
flows (Chang et al., 2021; Hou et al., 2021). These studies all consis
tently show significant disparities in social distancing across different 
socioeconomic status groups. However, it remains unclear how dispar
ities in social distancing contribute to COVID-19 incidence during 
different stages of the pandemic. Hu et al. (2022) even found that 
counties with better social distancing implementations, in terms of 
reducing their movement and increasing their staying home percentage, 
do not always have lower infection rates, indicating that disparities in 
social distancing cannot fully explain the disparities in COVID-19. Then 
the question is what other disparities resulting from different access to 
flexible resources are shaping the health disparity in the spread of 
COVID-19 during different stages of the pandemic? 

In this paper, we fill this research gap by identifying and assessing 
three factors that due to differential access to flexible resources might 
help explain disparities in the spread of COVID-19 across communities 
with different socioeconomic status. The first are factors related to the 
implementation of social distancing guidelines which were only 
incompletely adhered to perhaps in part because of social circumstances 
limiting the capacity of some people to do so. As mentioned earlier, 
many different measures of social distancing have been used in the 
literature. Noi et al. (2022) analyzed and compared twenty-six mobility 
and contact-related indices across nine various sources and suggested 
that any single measure might not describe all aspects of mobility. As a 
result, we propose to use two distinct social distancing measures to more 
accurately capture social distancing and COVID-19 transmission dy
namics among individuals. The first measure is the mobility flow matrix 
that summarizes the amount of population movement between any two 
communities within a certain time interval, e.g., daily or weekly. It has a 
strong potential for tracking temporal changes in COVID-19 trans
missions risk, providing in-depth insights into how movement patterns 
affect health disparities in COVID-19 incidence (Kang et al., 2020b; 
Schlosser et al., 2020; Tan et al., 2021). The second measure is the 
close-contact index, a measure that assesses the number of close-contact 
interactions using anonymized mobile phone device location data. We 
approximate the close-contact index by calculating how many devices 
come within 5 m of the target device within a 5-min window based on 
their GPS locations (Ye and Gao 2022). Crawford et al. (2022) created 
the 2-m close-contact index to model Connecticut’s town-level 
COVID-19 transmission dynamics. They suggested that the 
close-contact index resulted in a better model fit than other mobility 
metrics. However, no research to date has analyzed whether there are 
socioeconomic inequalities in close-rate contact. 

The second risk factor we will measure is the potential risk of 
interpersonal interactions. The various measures of social distancing 
quantify the likelihood of interpersonal interactions but do not fully 
capture the potential risk of such interactions. When COVID-19 first 
emerged on January 2020, communities with high socioeconomic status 

(SES) had the highest number of COVID-19 cases because their inter
national travels had high risk of getting infected (Clouston et al., 2021). 
Then when COVID-19 spread across communities the risk shifted. High 
SES groups secluded themselves whereas lower SES groups work and 
residential circumstances enforced a greater degree of interpersonal 
contact (Shin et al., 2021; Fiske et al., 2022). We propose two measures 
to approximate the potential risk of interpersonal interactions. One is 
the number of COVID-19 cases in the community two weeks prior to the 
current assessment an indicator that assessed the potential risk of in
teractions with infected people in the community. The other is the 
number of COVID-19 cases in neighboring communities in the two 
weeks prior to the current assessment, which can signal the risk of in
teractions occurring with neighboring communities. 

Third we evaluate inequalities in communities’ access to COVID-19 
testing across different socioeconomic status groups to explore 
whether they are contributing to disparities in the spread of COVID-19. 
Early testing is a crucial protective factor to prevent COVID-19 spread. 
However, states across the United States experienced insufficient testing 
access in the early stages of the pandemic and uneven geographic dis
tribution of testing sites even after test volume increased (Rader et al., 
2020; Schmitt-Grohé et al., 2020; Tao et al., 2020). Existing studies 
mainly focused on the first two or three months of COVID-19 (Tao et al., 
2020; Kang et al., 2020a; Schmitt-Grohé et al., 2020), whereas the 
time-varying effect of testing accessibility in different stages of the 
pandemic, among different socioeconomic status, in particular, is 
largely unknown. 

Specifically, we will investigate the dynamics of health disparities in 
the spread of COVID-19 at the ZIP code level in Southern California from 
April 2020 to April 2021. The following research questions guide this 
effort: 1) Do disparities in the spread of COVID-19 appear and evolve 
across communities with different socioeconomic statuses during 
different stages of pandemic, 2) Are there inequalities in social 
distancing, the potential risk of interpersonal interactions, and access to 
testing across communities with different socioeconomic status, and if so 
how do such disparities evolve during different stages of pandemic? 3) 
How do any inequalities in these risk and protective factors contribute to 
the production of health disparity in the spread of COVID-19 during 
different stages of the COVID-19 pandemic? 

2. Study area and data 

Our study area focuses on six counties of Southern California, 
including Los Angeles County, Orange County, San Diego County, 
Riverside County, Imperial County, and San Bernardino County, 
including 556 ZIP code areas and a total population of 21.23 million in 
the year 2020 (Fig. 1). This study area is selected not only because of 
data availability but also due to its socioeconomic and geographic di
versity of the population. The average population of the 556 ZIP code 
areas is 34,256, with a standard deviation of 22,855. 

To analyze the disparity dynamics in COVID-19 incidence and 
related disparities from 2020 to 2021, we obtained the daily COVID-19 
confirmed cases at the ZIP code level and the locations of testing sites 
between March 23, 2020, and April 5, 2021, from the California 
Department of Public Health (CDPH). The first specialized COVID-19 
testing sites were opened on March 26, 2020. As of April 11, 2021, 
1933 active testing sites were identified in Southern California, which is 
15 times the number that were open in April 2020 (126 sites). Among 
them, 71% of the sites required appointments before testing, further 
restricting accessibility. To estimate testing capacity, we collected the 
weekly county-level COVID-19 testing data from the CDPH. In addition, 
we acquired the latest 2020 American Community Survey (ACS) 5-year 
estimates from U.S. Census to analyze variations in socioeconomic status 
at the ZIP code level. 

R. Wei et al.                                                                                                                                                                                                                                     
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3. Method 

In this section, we first present the methods used to measure the 
disparities in COVID-19 incidences, social distancing, potential risk of 
interactions, and testing accessibility across communities with different 
socioeconomic status. Then we develop a spatial regression model to 
evaluate the contributions of the socioeconomic inequalities in social 
distancing, the potential risk of interactions, and testing accessibility to 
the production of health disparities in the spread of COVID-19 during 
different stages of the COVID-19 pandemic. 

3.1. Measure disparities in COVID-19 incidence 

To evaluate how health disparities in the spread of COVID-19 
emerged and evolved across communities with different socioeco
nomic status during different stages of pandemic, we classified the 556 
ZIP codes into three groups (high, medium, and low-income groups) 
based on their median household income, and assess how the weekly 
COVID-19 incidences vary across high and low-income groups at each 
week from March 23, 2020, to April 5, 2021. As shown in Fig. 1, the 139 
ZIP codes within the bottom 25% quantile median household income are 
considered as the low-income group. Their corresponding median 
household income varies from 0 to $58,070. Similarly, the 139 ZIP codes 
within the top 25% quantile of median household income was consid
ered as high-income group, with median household income varying 
from $99,352 to $222,982. We summarize the weekly COVID-19 in
cidences by adding up the reported daily COVID-19 cases for each day of 
the week. In total, 54 weekly COVID-19 incidence are analyzed. 

3.2. Socioeconomic inequalities in social distancing 

As mentioned earlier, we used two measures to track social 
distancing behavior using the mobility flow matrix and the close-contact 
rate. Based on SafeGraph data that include millions of anonymous mo
bile phone users ‘visits to various places, Kang et al. (2020b) presented a 
method to generate a daily and weekly multiscale human mobility flow 
dataset in the U.S. Following this method, we created a mobility flow 
matrix for each week between March 23, 2020, and April 5, 2021 to 
estimate the amount of population movement between any two ZIP 
codes within a given week. With the mobility flow matrix we can 
calculate the total number of population inflows to each ZIP code as a 
measure of interactions with other communities. Mathematically, if we 
use Ft

ji as the number of population movements from ZIP code j to i at 
week t, the total number of population inflows to ZIP code i at week t, 
denoted by TFt

i , can be represented as: 

TFt
i =

∑

j
Ft

ji (1)  

In addition to the mobility flow matrix, we also employed a large-scale 
anonymized mobile phone device location panel data that we acquired 
from UberMedia that covers 70% of the U.S. population. The proxy of 
close contacts of each mobile device is measured by calculating how 
many devices come within 5 m of the target device within a 5-min 
window based on their GPS locations (Ye and Gao 2022). In this way, 
a close-contact index (St

i) is created for each ZIP code at each week 
between March 23, 2020, and April 5, 2021, to approximate the average 
number of close-contacts per person at the ZIP code. It is important to 

Fig. 1. Study area ZIP codes and median household income in 2020.  
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note that both mobility measures are created based on a sample of 
mobile device data, and then population weighting is used to approxi
mate the measure for the entire population at ZIP code. 

3.3. Socioeconomic inequalities in potential risk of interactions 

As discussed previously, we use two measures to approximate the 
potential risk of interpersonal interactions. One is the number of COVID- 
19 cases at the community two weeks ago (Ct− 2

i ) to indicate the potential 
risk of interactions that are occurring inside of the community. A 14-day 
or 2-week time lag is applied to capture the incubation period of COVID- 
19. Ahouz and Golabpour (2021) examined intervals between 1 and 14 
days and found that 14 days is the optimal time period to predict the 
incidence of COVID-19. 

We also develop a measure to estimate the potential risk of in
teractions occurring among neighboring communities. Specifically, let 
Ct

i represent the number of COVID-19 cases at ZIP code i at week t, then 
the potential risk of interactions with its neighboring communities at 
week t, denoted by Rt

i , can be approximated by the following equation: 

Rt
i =

∑

j
Ct− 2

j ∗
Ft− 2

ji

TFt− 2
i

(2) 

The Rt
i is essentially a weighted sum of the number of COVID-19 

cases at neighboring communities two weeks ago. The weight used 
here is the proportion of the population movements from j to i in the 
total movements into i (TFt− 2

i ). By using such a weighted sum we can 
take into account both the number of cases at neighboring communities 
and the number of interactions between i and its neighboring commu
nities. The potential risk of interaction with neighboring communities 
will be high when there are a large number of COVID-19 cases in its 
neighboring communities and a large number of population movements 
between them two weeks ago. Such risk of interaction will be minimal if 
there are very few COVID-19 incidences in its neighboring communities 
and very few population movements between them two weeks ago. 

3.4. Socioeconomic inequalities in testing accessibility 

We adopted the enhanced two-step floating catchment method 
(2SFCA) to assess testing accessibility. First proposed by Radke and Mu 
(2000) and later enhanced by Luo and Wang (2003) and Luo and Qi 
(2009), it is one of the most widely used methods to measure access to 
health care providers. The index takes into account geographic prox
imity and is essentially a form of physician-to-population ratio, which is 
easy to interpret. Following the 2SFCA, the community’s access to 
COVID-19 testing sites will be computed using the following two steps: 

Step 1: For each testing site k, we search all ZIP codes that are within 
its 30-min drive time (this is the service area of testing site k). 30-min 
drive time is a commonly used rational threshold in health care- 
related accessibility studies (Wang and Luo, 2005; Tao et al., 2020). 
Then we compute the testing-to-population ratio, Vk, within the catch
ment area: 

Vt
k =

Tt
k∑

i∈{dik<30}
Pi

(3)  

Where Tt
k is the testing capacity of testing site k at week t, estimated 

using the county-level tests count (the weekly number of tests in a 
county divided by its number of active testing sites). Pi is the population 
at ZIP code i whose centroid falls within service area of testing site k 
(dik < 30), dik is the travel time between ZIP code i and testing site k. The 
testing-to-population ratio Vt

k is essentially a ratio of facility capacity to 
demand, integrating both the demand (Pi) and the capacity at testing 
sites (Tt

k). 
Step 2: For each ZIP code i, we search all testing sites k that are within 

its 30-min drive time (that is the catchment area of ZIP code i), and sum 
up the testing-to-population ratios Vt

k (derived in step 1), at these lo
cations as the testing accessibility (At

i) of ZIP code i at week t as follows: 

At
i =

∑

k∈{dik<30}

Vt
k (4)  

In this way the testing accessibility At
i considers the access to all testing 

sites within 30-min driving time. It is important to note that At
i is a 

summation of testing-to-population ratios so there is no bounding value 
for it. It is a relative measure. A higher value of At

i indicates better access 
to testing. 

3.5. Analyzing contributions of socioeconomic inequalities in risk and 
protective factors to disparities in COVID-19 incidence 

To assess the contributions of the risk and protective factors 
described above to disparities in the spread of COVID-19 during 
different stages of the pandemic, we constructed a cross-sectional spatial 
lag regression model for each week between March 23, 2020, and April 
5, 2021. The spatial lag regression model is adopted because it can 
capture the neighboring effect of COVID-19 transmission and address 
the issue of spatial autocorrelation (Anselin, 1988). Following previous 
notation, for each week t a cross-sectional spatial lag regression model is 
constructed as follows: 

Ct = ρtWtCt + βtXt + γtZ + ut (5) 

The dependent variable is the number of COVID-19 cases at each ZIP 
code at week t (Ct). The number of COVID-19 cases is used as the 
dependent variable rather than incidence rates (number of cases divided 
by the population) because the mobility measures quantify the possible 
number of interpersonal interactions and are essentially associated with 
case growth instead of rate growth, as demonstrated in previous litera
ture (Xiong et al., 2020; Weill et al., 2020; Hu et al., 2021). The inde
pendent variables include spatial autoregressive term (WtCt) 
time-varying variables (Xt), and non-time-varying independent vari
ables (Z). The Xt consist of the measures of social distancing that include 
the number of total population inflows into each ZIP code two weeks ago 
(TFt− 2) and the close-contact index at each ZIP code two weeks ago 
(St− 2), the measures of potential risk of interactions that include the 
number of cases two weeks ago (Ct− 2) and the weighted sum of the 
number of COVID-19 cases at neighboring communities two weeks ago 
(Rt), and the testing accessibility measure two weeks ago (At− 2). The 
non-time-varying independent variables (Z) include population at each 
ZIP code to control the impacts of population on the COVID-19 cases and 
dummy variables indicating the income groups. Logarithmic trans
formation is used for these variables to mitigate the nonnormality issues 
(Xiong et al., 2020). For each week t we construct a spatial regression 
model and estimate the coefficients (βt) of the time-varying variables 
(Xt) to assess the potential impacts of these factors to COVID-19 inci
dence. Then we rely upon how βt vary at each week t to reflect how the 
impacts of these variables to COVID-19 incidence might change across 
different stages of pandemic. The spatial regression modeling was per
formed using the latest open-source Python Spatial Analysis Library 
(PySAL). 

4. Results 

4.1. Socioeconomic inequalities in the incidence of COVID-19 

Fig. 2 illustrated the trend of the weekly new COVID-19 cases, in 
which the center line indicates the mean of new cases counts among all 
the ZIP codes. The shaded areas represent two standard deviations from 
the mean. For the COVID-19 case, two major peaks can be observed. The 
first peak appeared from June to July 2020, followed by a more sub
stantial second surge from November 2020 to January 2021 (Fig. 2). 

R. Wei et al.                                                                                                                                                                                                                                     
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Governor Gavin Newsom was among the first state governors to declare 
a state of emergency on March 4, 2020, and issued the statewide shelter- 
in-place order on March 19 (Friedson et al., 2021). A direct response to 
this was a slow case growth between March and April 2020, with less 
than 50 new cases weekly per ZIP code. In May, California followed a 
gradual reopening plan to resume economic activities. With this 
reopening, however, the number of confirmed cases increased notably 
through mid-June, resulting in a delay of the state’s reopen plan and 
enforcing another governor’s order on June 27 to close all businesses 
again, in the midst of the first wave. The new case counts continued to 
rise and reached the first peak in July, approaching 100 cases per ZIP 
code. Then the number of new cases started to decline in mid-July and 
remained stable until the advent of the second wave. California’s second 
attempt at reopening started in mid-October 2020, which was then 
followed by a second outbreak in early November, when COVID-19 case 
counts reached unprecedented levels that dwarfed the summer wave in 
July, soaring from 100 to nearly 400 new cases per ZIP code. After 
January 2021, the growing pattern of new cases started to level off again 
and returned to the 2020 pre-outbreak levels from February 2021. 

According to the 2020 Census, high- and low-income groups share a 
similar population size, representing 21% and 24% of the total popu
lation, respectively. However, striking differences in COVID-19 in
fections between the high- and low-income groups were observed in 
both magnitude and variations (Fig. 2). The COVID-19 case growth of 
the low-income group protruded almost two times higher than that of 
high-income groups before November 2020, indicating a faster virus 
spread in low-income communities. The inter-(income) group gap 
widened to four times in the second wave, which peaked in December 
2020. Meanwhile, considerable variations in COVID-19 cases were 
noted among low-income groups as opposed to relatively minor intra- 
group discrepancies among high-income communities. We also 
computed the COVID-19 incidences per 10,000 population at each zip 
code throughout the pandemic periods and the results are presented in 

Appendix Fig. A1. As it shows, similar disparities are observed in the 
incidence rate as well. 

4.2. Socioeconomic inequalities in social distancing 

Fig. 3 revealed the trend of population inflow among the 556 ZIP 
codes in Southern California. Likewise, the center line was the average 
population inflow of all the ZIP codes. The shaded areas indicated two 
standard deviations from the mean. Overall, the population movements 
experienced a slight drop in late March 2020 and reached the lowest 
point in early April in response to California’s “shelter-in-place” order 
enforcement. Despite minor fluctuations, population movements grew 
gradually with the statewide reopening and remained stable from mid- 
June to late November 2020. The Thanksgiving holiday in late 
November 2020 was associated with a sharp rise in inter-community 
travel. In contrast to the declining trend of COVID-19 infection cases, 
the population movements kept growing moderately during the post- 
holiday periods. The comparison of high- and low-income groups 
revealed different dynamics. In the initial “stay-at-home” phase (from 
late March to early May 2020), the population movements of the high- 
income group reduced more than the low-income group. However, 
beginning with the reopening in May, the high-income group reversed 
the trend and had more movements than the low-income group, despite 
a roughly similar inter-group movement pattern. Both groups displayed 
similar intra-group variations, which largely overlapped in a consistent 
way, as illustrated in Fig. 3. 

The close-contact index illustrated a different aspect of social 
distancing, compared to population inflow, especially after July 2020 
(Fig. 4). The close-contact rate maintained a low level from March to 
April 2020. It started to increase in May 2020 during the reopening and 
rapidly formed a spike in mid-July 2020 (from 60 to 100 close contact 
per person). A sharp drop occurred in late July 2020 after enforcing the 
“shut-down-all-business” mandate and the number of close contacts per 

Fig. 2. COVID-19 cases (Ct
i) trend, overall (above) and high-vs. low-income groups (below).  
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Fig. 3. Population inflow (TFt
i), overall (above) and high-vs. low-income groups (below).  

Fig. 4. Close-contact index (St) trend, overall (above) and high-vs. low-income groups (below).  
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person touched the bottom of the below-40 level in August. After the 
2020 summer “extreme event,” the close-contact index, despite several 
fluctuations, remained at relatively low levels, below 100 per person. It 
is important to note that the low-income group maintained a consis
tently higher close-contact index-two times higher than the high-income 
group. 

4.3. Socioeconomic inequalities in the potential risk of interactions 

Fig. 5 revealed the trend of the neighboring cases weighted by 
population inflow, which allows us to better capture the inter- 
community COVID-19 transmission risk. Derived from the neighboring 
cases, its overall temporal trend is very similar to that of the COVID-19 
cases but with higher magnitude and less variation. Overall, the 
weighted neighboring cases of low-income ZIP codes were consistently 
higher than those of the high-income, reflecting higher inter-community 
COVID-19 transmission risk of the low-income areas, even though the 
gap between the high and low-income groups was not as large as its 
counterpart in Fig. 2, especially during second COVID-19 wave. 

4.4. Socioeconomic inequalities in testing accessibility 

As described in section 3.4, the testing accessibility measure is a 
summation of testing-to-population ratios of all testing sites that are 
within 30-min drive time of a ZIP code, so it is a relative measure 
without bounding values. A higher value of the measure indicates better 
access to testing. Fig. 6 shows that the overall testing accessibility varies 
from 0.9 to 1.3 and exhibited the highest variations between May and 
July 2020. Testing accessibility of the low-income group was slightly 
higher than the high-income group. Specifically, the testing accessibility 
of the low-income group, which started to increase one week ahead of 
the high-income group in April 2020, gained a continuous rise initially 
and remained above 1.25 after July 2020. In contrast, the high-income 

group’s testing accessibility stayed slightly below 1. However, there are 
much more significant variations in testing accessibility among the low- 
income groups than the high-income groups, as suggested by the shaded 
areas that represent two standard deviations from the mean. 

4.5. Contributions to disparities in COVID-19 incidence 

The initial correlation analysis shows that the close-contact index 
and population inflow are strongly correlated with the Pearson coeffi
cient of 0.75. In addition, they were both strongly correlated to the total 
population, with a correlation coefficient of 0.61 and 0.4, respectively. 
As mentioned earlier, this is due to the fact that both mobility measures 
are created based on a sample of mobile device data and population 
weighting is used to approximate the measure for the entire population 
at ZIP code. Given the strong correlation between these two mobility 
measures, two sets of spatial lag regression models are constructed for 
each week between April 6, 2020 and April 5, 2021, one including close- 
contact index and other independent variables listed above, and the 
other including population inflow and other independent variables lis
ted above. The results show that close-contact models have overall 
better model fits. As a result we report the results of close-contact models 
here but include the coefficients of population inflow in the population 
inflow regression models for comparative purpose. The weekly Pseudo 
R2 for close-contact models range from 0.34 to 0.97, with an average 
value of 0.7, as shown in Fig. 7, indicating that the independent vari
ables provide a good explanation of the variations in COVID-19 in
cidences. Pseudo R2 is the squared correlation between the observed and 
predicted values for the dependent variable. Please note that it’s not a 
true R2 since it does not correspond to the share of the variance 
explained by the model. The trend of the Pseudo R2 corresponded with 
the new COVID-19 incidence, with better model fits in the two COVID- 
19 spikes than in the low tides. 

Most coefficients of the spatial lag model were significant at the 0.05 

Fig. 5. Neighboring cases weighted by population inflow (Rt
i), overall (above) and high-vs. low-income groups (below).  
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level. Fig. 8 shows significant coefficients of the 2-weeks-ago close- 
contact index and population inflow, where the dot markers indicate 
the coefficient estimates and error-bars represent their corresponding 
standard errors. As the results shows, both showed consistent positive 
associations with COVID-19 case changes. Both positive notwith
standing, the close-contact index had a more substantial effect on the 
COVID-19 case changes than population flow. The close-contact index is 
significant over most of the time. Its coefficients range from 0.03 to 0.18 
with an average value of 0.11, indicating that a 10% increase in the 
close-contact index could lead to a 1.05% ((1.10.11 − 1) ∗ 100%) in
crease in the new case count two weeks later. Instead, the population 
inflow has a weaker effect with its coefficients ranging from 0.02 to 0.09 
averaged at a value of 0.05, suggesting that a 10% increase in the close- 
contact index could lead to a 0.48% ((1.10.05 − 1) ∗ 100%) increase in 
the new case count two weeks later. 

Fig. 9 shows significant coefficients of 2-weeks-ago local cases and 2- 
weeks-ago weighted neighboring cases. From April 2020 to April 2021, 
these two variables had the most potent positive effects on the COVID-19 
spread. Both positive notwithstanding, the 2-weeks-ago local case has a 
more substantial effect on the COVID-19 case changes than 2-weeks-ago 
weighted neighboring cases, with corresponding average coefficients of 
0.55 and 0.27, respectively, while controlling for each other and other 
covariates. On average, a 10% increase in 2-weeks-ago local cases and 2- 
weeks-ago weighted neighboring cases could lead to a 5% and 3% rise in 
new case count two weeks later, respectively. 

In the first two weeks of April 2020, the weighted neighboring cases 
initially showed a stronger effect on case growth than 2-weeks-ago local 
cases. During this time, COVID-19 incidences at a ZIP code were 
dominated by the neighboring cases, where a 10% rise in weighted 
neighboring cases could trigger a 4%–7% increase in new cases two 

Fig. 6. Testing accessibility (At
i) trend, overall (above) and high-vs. low-income groups (below).  

Fig. 7. Weekly Pseudo R2 of spatial-lag models.  
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weeks later. After two weeks, the local case became stronger than 
neighboring cases, and kept growing during the first COVID-19 spike, 
leading to a 7% increase in new cases two weeks later as the result of a 
10% growth in local cases. 

Meanwhile, weighted neighboring cases diminished and became 
insignificant after mid-August 2020. At this stage, however, the cumu
lative growth of local cases dominated the virus spread, whereas the 
effects of the neighboring cases became negligible. After the first COVID- 

19 spike, the effects of local cases gradually declined but raised again 
during the second spike, when a 10% increase in local cases could lead to 
a 9% increase in new cases two weeks later. These two variables 
exhibited similar alternating trends to the second COVID-19 wave. Un
like in the first wave, however, the coefficients of weighted neighboring 
cases were consistently lower than local cases in the second wave, 
suggesting that local cases are more dominant than neighboring cases as 
a factor affecting the formation of the second COVID-19 wave. 

Fig. 8. Spatial-lag model coefficients, 2-week-ago close-contact rate (St− 2) and population inflow (TFt− 2).  

Fig. 9. Spatial-lag model coefficients, 2-week-ago local cases (Ct− 2) and 2-week-ago weighted neighboring cases (Rt).  
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Unlike the social distancing and potential risk of interaction mea
sures, the coefficients of testing accessibility bounced between positive 
and negative throughout the study period and it was only significant 
over 28% of the time. 

5. Discussion 

In this paper, we analyze three potential social inequalities in risk 
and protective factors and use them to help explain the disparities in the 
spread of COVID-19 across communities with different socioeconomic 
status during various stages of the pandemic. There are several major 
findings that worth further discussion. 

First, we identified striking differences in COVID-19 infections be
tween the high- and low-income groups in both magnitude and varia
tions. During the first COVID-19 wave, weekly new cases from the low- 
income group were two times the size of the high-income. In the second 
wave, this gap widened to four times. This suggests the powerful impacts 
of socioeconomic status on health outcomes. 

Second, when measuring the inequalities in the implementation of 
social distancing, we found that people from high-income areas sharply 
reduced and remained substantially below their low-income area 
counterparts with respect to close contact during every stage of the 
pandemic, even though there are higher population movements in the 
high-income areas than the low-income areas after May 2020. 

Third, inequalities in social distancing, the potential risk of in
teractions, and testing accessibility go a long way in explaining varia
tions in COVID-19 incidence. Specifically, the potential risk of 
interactions contributes most to the spread of CVID-19, whereas testing 
accessibility has the least impacts. While both 2-weeks-prior local case 
and 2-weeks-prior weighted neighboring cases have significant effects 
on COVID-19 incidences, their strength exhibits alternating rises and 
falls during the two COVID-19 waves. The neighboring cases dominate 
in the early stage of community spread, but local cases become domi
nant during the peak season. The two-week time lag could allow early 
warning of an incoming peak. In terms of the two social distancing 
measures, the close-contact rate is more impactful than the population 
inflows. This helps explain why people in high-income areas have lower 
infections even though their population movements are higher than 
those in low-income areas. People in high-income areas avoid the more 
impactful factor – close contact, and did not limit themselves by 
avoiding the one we found less impactful – mobility. The testing 
accessibility was negatively associated with case changes for most of the 
time, illustrating that 2-weeks-prior testing could effectively identify 
infected populations and trigger behavior changes like (self-) quaran
tines, isolation, or mask-wearing (Li et al., 2020; Skoll et al., 2020). 
However, testing accessibility had not become significant until May 
2020, indicating the inadequate supply at the beginning of the 
COVID-19 spread (Schmitt-Grohé et al., 2020; Tao et al., 2020). 

There are also several limitations in our research that call for further 
research. First, our analysis only includes the data from March 23, 2020 
to April 5, 2021. During this period, the vaccines are not widely avail
able so that the impacts of vaccines might be minimal. However vacci
nation data and further analysis are needed to account for the impacts of 
vaccines. Second, the number of COVID-19 cases is used as the depen
dent variable in our spatial regression models rather than incidence 
rates (number of cases divided by the population) because the mobility 
measures quantify the possible number of interpersonal interactions and 
are essentially associated with case growth instead of rate growth, as 
demonstrated in previous literature (Xiong et al., 2020; Weill et al., 
2020; Hu et al., 2021). While we include population as a controlling 
variable in our regression model to mitigate the impacts of population 
on the number of cases, the strong correlations between mobility mea
sures and population also undermine such efforts. Third, information on 
the weekly testing site’s capacity was derived from the county-level 
COVID-19 Cases Tests data from the California Department of Public 
Health (CDPH), which did not capture the heterogeneity of testing 

accessibility at the ZIP code level. Additionally, we could not track the 
accessibility to testing sites through public transit as our accessibility 
index was limited to car access only. This might not cause significant 
inaccuracies because public transit was not available in many counties 
due to pandemic during 2020 and driving is the major community 
method in southern California. We also use the ZIP code centroid as the 
proxy when measuring the travel time between ZIP codes and testing 
sites. This could also cause inaccuracies in the accessibility measure. 
Third, confirmed cases and positive test data alone might not accurately 
reflect the severity of income-related health disparities. Studies have 
demonstrated that the addition of COVID-19-induced death data can 
overcome the well-documented inconsistencies in reported cases and 
tests. Thus, better illuminating the inequality embedded among the 
income-divided communities coping with the COVID-19 infection (e.g., 
Chen and Krieger, 2021). Despite these limitations, this research con
tributes significantly to understanding health disparities in the spread of 
COVID-19 because of its testing of different possible mechanisms 
through which such disparities may have arisen. 

6. Conclusion 

Since the COVID-19 outbreak in the U.S., California has one of the 
highest number of COVID-19 cases. We set out to answer critically un
addressed questions about health disparities in the spread of COVID-19 
in Southern California and the reasons for these spread patterns. Our 
study identified the emergence and persistence of health disparities in 
the spread of COVID-19 across communities with different socioeco
nomic status from April 2020 to April 2021. To better understand what 
contributes to such health disparities, we further examined three major 
socioeconomic inequalities that could plausibly result from differential 
access to flexible resources, including social distancing, disparities in 
potential risk of interactions, and disparities in testing accessibility. We 
observed significant disparities in all of them among communities with 
different socioeconomic status. In addition, all of them contribute to the 
disparities of COVID-19 incidence. Among them the potential risk of 
interactions is the most important contributor, whereas testing accessi
bility contributes least. We also found that close-contact is a much more 
important measure of social distancing than population movements in 
examining the spread of COVID-19. 
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