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Abstract

Microbes drive fundamental ecosystem processes, such as decomposition. Environmental stressors are known to affect microbes, their
fitness, and the ecosystem functions that they perform; yet, understanding the causal mechanisms behind this influence has been
difficult. We used leaf litter on soil surface as a model in situ system to assess changes in bacterial genomic traits and decomposition
rates for 18 months with drought as a stressor. We hypothesized that genome-scale trade-offs due to investment in stress tolerance
traits under drought reduce the capacity for bacterial populations to carry out decomposition, and that these population-level trade-offs
scale up to impact emergent community traits, thereby reducing decomposition rates. We observed drought tolerance mechanisms that
were heightened in bacterial populations under drought, identified as higher gene copy numbers in metagenome-assembled genomes.
A subset of populations under drought had reduced carbohydrate-active enzyme genes that suggested—as a trade-off—a decline in
decomposition capabilities. These trade-offs were driven by community succession and taxonomic shifts as distinct patterns appeared
in populations. We show that trait–trade-offs in bacterial populations under drought could scale up to reduce overall decomposition
capabilities and litter decay rates. Using a trait-based approach to assess the population ecology of soil bacteria, we demonstrate
genome-level trade-offs in response to drought with consequences for decomposition rates.

Keywords: bacteria, drought, genomics, litter decomposition, microbial traits, population ecology

Introduction
Microbes drive large-scale processes, such as the global biogeo-
chemical cycling of elements. Environmental stress can influence
cellular-level functions in microorganisms with consequences for
these processes. However, determining the quantitative impacts
of environmental stressors on the physiological response of
microbes is extremely challenging. A trait-based approach, akin
to that widely used in plant ecology [1, 2], offers the opportunity
to functionally characterize and represent the enormous diversity
of microbes involved in system-level processes.

Traits are an organism’s phenotypic characteristics that govern
process rates [3, 4]. By focusing on the phenotypic aspects
of microbes rather than their taxonomic identity, trait-based
approaches provide a way forward to integrate functional infor-
mation across species, space, and time. Quantitative phenotypic
measurements have been made successfully at the community

level, for example of carbon use efficiency [5], but may not
be feasible for single microbial populations in environments,
such as soil. However, we can use genetic markers to study
traits in populations of single species or strains by leveraging
new genome assembly and binning approaches that make it
possible to extract hundreds of microbial genomes (metagenome-
assembled genomes or MAGs) from environmental microbiomes
[6, 7].

Modern omics technologies have transformed microbial
ecology by providing a granularity needed to study complex and
highly diverse environmental microbiomes [8, 9]. However, linking
microbiome characteristics to ecosystem processes or to changes
in pools and fluxes has remained difficult [10]. This scaling
limitation may be in part because of methodological challenges
in testing how environmental factors affect individual- or
population-level physiology, which ultimately impacts microbial
fitness and contribution to ecosystem functioning. For instance,
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shotgun sequencing approaches often produce community-
aggregated traits that represent the additive properties of phy-
logenetically diverse members of the community, which may not
reflect emergent properties resulting from complex interactions
among community members and their environment [4, 11]. Thus,
the measured microbial and environmental characteristics may
be decoupled. Therefore, there is a need to study microbial traits
at multiple levels of biological organization—from populations of
a species/strain to collective communities—to better understand
and predict the ecosystem-level impacts of microbial processes.

Traits can trade-off due to adaptive physiological processes
in response to short-term fluctuations in the environment.
Physiological constraints in stressful conditions, such as reduced
water availability, could lead to greater cellular-level allocation
of resources to maintenance and survival, relative to resource
acquisition traits [12]. If the environmental stressors persist over
longer time periods, these will manifest as genome-encoded
trade-offs across populations through ecological selection or
evolutionary processes [13, 14]. Reduced resource acquisition
traits at the community level can have system-level impacts, such
as reduction in decomposition rates. However, such ecosystem-
level quantifications or predictions are hard to make due to
mismatches in functional response at different levels of biological
organization. Various ecological and abiotic factors may impact
the emergent community response, potentially reinforcing or
attenuating the population-level trade-offs in traits.

Climatic extremes, such as drought, are becoming more fre-
quent and severe, and act as stressors for microbial decomposers.
Drier environments are thought to reduce microbial activity and
therefore organic matter decomposition [15, 16]. Drought-induced
reduction in microbial activity may occur due to organismal
responses to water stress as well as due to limitations on resource
diffusion and transport [15, 16]. Drought is known to change
the composition of active members of the microbial community
through environmental filtering, as selective pressures enable
some taxa to gain competitive advantage over others [17–19].
Microorganisms also have the potential to acquire new genes
through horizontal gene transfer or homologous recombination
[20]. Such evolutionary processes could enable organisms under
chronic drought to gain stress tolerance traits. This functional
diversification through generation of new genetic variation with-
out shifting community taxonomic composition highlights why
linking of microbial and ecosystem processes could be better
achieved through trait-based approaches.

While population-level data can help predict the organismal
response to stress, the emergent community-level response is the
most relevant at the ecosystem scale. If population-level traits
simply add up, the effect of stress on genomic traits in microbial
populations and trade-offs with fitness traits should scale up to
the community-level. We used long-term drought as a persistent
stress on microbes that grow on plant leaf litter to investigate the
impact of stress on microbial traits at the population level and
its impact on emergent community traits that influence rates of
litter decomposition. We hypothesized that drought imposes con-
straints on the metabolism of decomposer populations, such that
increased investment in stress tolerance traits reduces resource
acquisition traits. This trade-off scales up to reduce the emergent
community-level decomposition capabilities and decrease rates
of organic matter decomposition.

We measured traits in populations of single species or strains,
and collective communities in an in-situ decomposition exper-
iment in Mediterranean grassland and shrubland ecosystems.
We used two different litter types to assess if microbial drought
response strategies differ across litter types of divergent chemical

quality. The study was performed in litter bags of 1 mm mesh size
that were placed on the soil surface in experimental plots with
ongoing drought treatment. Genomic traits of the decomposer
community in litter bags were measured using shotgun metage-
nomics at four time points over an 18-month period (Fig. S1). We
used bacterial MAGs to represent populations of single species or
strains and probed for trade-offs in traits using the frequencies of
genes linked to traits of interest. The abundance of these popu-
lations in communities across treatments was used to compare
trait trade-offs at the population and community levels. This
rarely used approach tests if patterns across biological levels are
scale-dependent and helps better understand the ecosystem-level
implications for microbial decomposition.

Materials and methods
Field site
We performed a leaf litter decomposition experiment in the field
at the Loma Ridge Global Change Experiment situated near Irvine,
California, USA (33◦44′N, 117◦42′E, 365 m elevation). The site expe-
riences a Mediterranean climate (mean annual temperature: 17◦C,
mean annual precipitation: 325 mm) with a summer drought from
May to October and periods of precipitation from November to
April. The vegetation at the site consists of an annual grassland
adjacent to a coastal sage scrub ecosystem [21, 22]. The long-
term experiment consisted of grassland plots (6.7 × 9.3 m) with
native perennial grass Stipa pulchra; exotic annual grasses, such as
Avena, Bromus, Festuca, and Lolium; and forbs, such as Erodium and
Lupinus. The shrubland plots (18.3 × 12.2 m) host crown-sprouting
shrub species, such as Salvia mellifera, Artemisia californica, Erio-
gonum fasciculatum, Acmispon glaber, and Malosma laurina [21, 23].
We used the long-term drought experimental plots that received
continuous field precipitation manipulations since 2007; reduced
precipitation treatment plots were covered with retractable clear
polyethylene rain shelters during a subset of precipitation events
during the wet season to achieve ∼40% precipitation reduction
compared to ambient plots (Fig. S1). We used a total of 16 plots
consisting of four replicated plots per treatment of grassland
ambient, grassland reduced, shrubland ambient and shrubland
reduced.

Experimental design
Litter of four types was collected from each treatment on 30
August 2017. Litter from all replicated plots (n = 4) within each
treatment was homogenized by hand mixing. To make litter bags,
dry, senescing sheath and blade material in grassland was cut to
a length of ∼10 cm, whereas freshly fallen intact dry leaves were
used in shrubland. In total, 6 g dry litter mass was placed into
15 cm × 15 cm bags of 1 mm mesh window screen. Litter bags were
deployed in the field on 12 September 2017; they were placed on
top of the soil surface under the canopy. Sixteen litter bags were
collected at each time point (Fig. S1): 30 November 2017 (T1; end of
the dry season), 11 April 2018 (T2; end of the wet season), 16 July
2018 (T2.5; middle of the dry season; additional sampling point
only to measure litter mass loss), 5 November 2018 (T3; end of
the dry season) and 19 February 2019 (T4; end of the wet season).
Litter in each bag was weighed at the start of the experiment and
at each sampling point. A subsample was dried to constant mass
at 65◦C to obtain the moisture content and dry mass of litter. Mass
loss is reported as percentage initial dry mass.

Deoxyribonucleic acid extraction and sequencing
Deoxyribonucleic acid (DNA) was extracted from a coarse-ground
litter aliquot of 50 mg for time points T1, T2, T3 and T4 (total
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samples: 64). We used ZymoBiomics DNA isolations kits (Zymo
Research, Irvine, CA, USA) and followed manufacturer instruc-
tions. Sample was homogenized by bead beating for 5 min at
maximum speed (6.0 m/s, FastPrep-24 High Speed Homogenizer,
MP Biomedicals, Irvine, CA, USA). Purity and concentration of
extracted DNA was assessed using gel electrophoresis, a Qubit
fluorometer (LifeTechnologies, Carlsbad, CA, USA) and Nanodrop
2000 Spectrophotometer (Thermo Scientific, USA). Metagenomics
library preparation and sequencing were carried out at the DNA
Technologies and Expression Analysis Cores at the University of
California Davis Genome Center. We used PE150 sequencing on
NovaSeq System (Illumina, San Diego, CA, USA) with the default
insert size of 250–400 bp.

Reads-based analysis to obtain community-level
functional gene abundances
To get a reads-based assessment at the community-level, DNA
sequences were annotated with the Metagenomics Rapid Annota-
tion using Subsystems Technology (MG-RAST) server version 4.0.3
[24]. Functional annotations were performed with the SEED Sub-
systems database and taxonomic classification up to genus level
was performed using the RefSeq database (maximum e-value cut-
off of 10−5, minimum identity cut-off of 60% and minimum length
of sequence alignment of 15 nucleotides).

Metagenomic co-assembly, binning, and
annotation of prokaryotic genomes
For population-level analysis of genetic traits, the goal was to
retrieve a high number of MAGs by de novo assembly and binning.
To achieve this, we used a co-assembly approach merging the
four replicates per treatment. Metagenome Orchestra-MAGO
(version V2.2b; 2020-03-08) [25] was used to produce MEGAHIT
(version 1.2.8) [26] co-assemblies. Quality control and trimming
approaches were like those used for individual assemblies. To
extract prokaryotic bins from co-assemblies, we used the binning
module of MetaWRAP (version 1.2.1) [27], MetaBAT2 (version
2.12.1) [28], Concoct (version 1.0.0) [29], and Maxbin2 (version
2.2.6) [30]. MetaWRAP’s downstream modules were run over the
collected bins with thresholds of minimum 45% completion and
maximum 10% contamination obtaining bin-related statistics
using CheckM (version 1.0.12) [31]. For the resulting bins,
carbohydrate active enzymes (CAZy) were annotated using
dbCAN2 (version 2.0.11) [32] with default parameter values. To
obtain KEGG orthology (KO) annotations for the bins, we used
Prodigal (version 2.6.3) [33] to carry out gene-calling over the
bins and output was then used to query the KOfam database
(ftp://ftp.genome.jp/pub/db/kofam/) with kofamscan (version
1.2.0) [34] using default parameter values. The quant bins module
of MetaWRAP (version 1.2.1) was used to compute the abundances
of bins across samples.

Statistical analysis and visualizations
Statistical significance of decomposition rates measured as lit-
ter mass loss was estimated across vegetation and precipitation
treatments using multivariate analysis of variance (ANOVA). Mul-
tivariate ANOVA was also used to assess the effect of vegetation,
precipitation and the interaction of the two factors across all time
points on the different categories of functional genes (level 1 of
SEED Subsystems classification). Categories of functional genes
with the highest and most statistically significant fold changes in
read abundance in reduced precipitation treatment compared to
the ambient were identified as drought-enriched functions. Fold

change was estimated as the ratio of sum-normalized read abun-
dance in reduced and ambient precipitation treatments averaged
across all time points and vegetation types. Statistical significance
of this change with precipitation was estimated using one-way
ANOVA across the precipitation treatments. Three functional cat-
egories with P < .001 were identified: membrane transport, stress
response, and iron acquisition and metabolism. We then used
differential abundance analysis carried out using DESeq2 [35]
with precipitation as the experimental condition to identify the
individual drought-enriched functional genes within the three
categories. The temporal pattern and treatment effect of the three
drought-enriched functional groups was visualized using line
plots. Statistical significance of change with precipitation treat-
ment at each time point was estimated using one-way ANOVA.
Temporal pattern and treatment effect of individual drought-
enriched functional genes were visualized using a heatmap cre-
ated with the pheatmap package [36]; more descriptive level
2 functional annotation of each gene was highlighted using a
color code.

To demonstrate gene level trade-offs between drought-
enriched genes and genes for decomposition, we made scatter
plots with the sum of normalized copy numbers for multiple
genes representing the three abundant drought responsive gene
functions on the x-axis and normalized total number of CAZy
genes on the y-axis. Normalization was performed using the
total gene number per genome, which accounted for genome
size and bin completeness. Trade-offs were visualized as negative
regressions, displayed on the scatter plot using regression lines.
Bacterial MAG-level gene copy numbers for total CAZy genes and
drought enriched genes across treatments were visualized using
geom point and geom smooth lm function. Bacterial MAG count
for variable gene copy numbers for total CAZy genes and drought
enriched genes were plotted with geom histogram; geom vline
function was used to indicate the mean gene copy number across
all MAGs. Wilcoxon signed rank sum test was used to examine
the statistical differences in gene copy number across the
precipitation treatments. The trade-offs in resource acquisition
and stress tolerance traits were plotted with geom point and
geom smooth lm functions. Here, only a subset of the MAGs
from each treatment were plotted; these were MAGs that were
differentially abundant in drought samples compared to the
ambient control and vice versa. Trade-offs visualized as negative
regressions were displayed on the scatter plot using regression
lines. Abundance of MAGs in metagenomes was obtained using
the quant bins function expressed as genome copies per million
reads and visualized as the size of each point representing
the mean abundance over the four time points. The temporal
pattern of these differentially abundant MAGs across the different
treatments was plotted as a heatmap with the pheatmap package;
phylum-level affiliation of each MAG was highlighted using a
color code. MAGs were labelled as per their family-level affiliation;
when this was not available a coarser taxonomic classification at
the level of order or phylum was used. All visualizations were
made in ggplot2 package [37] in R 3.4.2 [38].

Results and discussion
Ecosystem-level decomposition rates under
drought
Drought is known to negatively impact decomposition in Mediter-
ranean semi-arid ecosystems, including in multiple prior studies
at our experimental site [39–42]. However, in our experiment,
litter decomposition rates were statistically unaffected by
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Figure 1. Effect of drought on decomposition rates and community decomposition capabilities. (A) Decomposition rates measured as percentage loss
of litter mass since the start of the litter bag experiment. (B) Temporal patterns of community-aggregated read abundance of functional genes
belonging to the carbohydrates category.

long-term drought (Fig. 1A; ANOVA P > .05), although there was
a non-significant trend toward lower decomposition rates in
grass litter under reduced precipitation treatment compared to
the ambient control. After 14 months of in situ experimental
incubation in the grassland system, mass loss under reduced
precipitation treatment was 50.5 ± 3.3% compared to 53.8 ± 7.2%
under ambient precipitation treatment. Decomposition rates
were significantly lower in shrub litter (ANOVA P < .001) likely
due to its higher C:N ratio, higher proportion of lignin and lower
proportion of cellulose, hemicellulose and soluble compounds
than the grass litter [43]. After 14 months, mass loss in the
shrubland system under reduced precipitation treatment was
41.8 ± 1.2% compared to 37.3 ± 4.5% under ambient precipitation
treatment. Litter mass loss measures showed abnormally high
variability due to soil infiltration into the litter bags, which could
have affected the accuracy of the rate estimates (especially at
T4, 18 months of incubation; this time point was excluded). Litter
decomposition rates from other experiments performed at the
same site using litter bags with smaller mesh size have found
lower decomposition rates in grass litter under drought [22, 44],
and therefore we are confident that drought generally decreases
decomposition at our site.

Metagenomic sequencing across the four sampled time points
was used to investigate microbial community-level patterns in
trait variation during decomposition. We assessed changes in
community-level functional gene abundance using metagenomic
reads annotated with SEED Subsystems databases. The category
of level 1 functions called carbohydrates (consisting of genes
for carbohydrate decomposition but also the central carbon
metabolism and fermentation pathways) was not significantly
different across the precipitation treatment, although there was
a vegetation-precipitation interaction effect (ANOVA: vegetation
P < .001, precipitation P = .52, vegetation×precipitation P = .02),
which could mean that it was negatively affected by the precipita-
tion treatment only in the grass litter communities and not in the
shrub litter communities (Fig. 1B). Carbohydrate gene abundance
was significantly lower in shrub litter communities compared
to grass litter communities (ANOVA: P < .001). This pattern of
carbohydrate genes across the vegetation and precipitation
treatments largely reflects the overall pattern of decomposition
rates observed at our study site.

Community-level drought stress response linked
to osmotic adaptations and iron metabolism
From the analysis of metagenomics-derived community-level
functional gene abundance, three categories of level 1 functions
in Subsystems classification were significantly higher in the
drought treatment relative to ambient (Fig. 2A): membrane
transport (ANOVA: vegetation P < .001, precipitation P < .001,

vegetation×precipitation P = .99), stress response (ANOVA: veg-
etation P < .001, precipitation P < .001, vegetation×precipitation
P = .7), and iron acquisition and metabolism (ANOVA: vegetation
P < .001, precipitation P < .001, vegetation×precipitation P = .44). In
microbial communities from both grass and shrub litter, sequence
reads annotated to these three categories were consistently
higher in drought treatment at most time points (Fig. 2B) sug-
gesting a similar drought response in very distinct communities
[23, 45]. Individual genes belonging to the three drought-enriched
functional categories were linked to oxidative and osmotic stress,
antiporters, ABC transporters, protein secretion systems and
siderophores (Fig. S2). Enrichment of these genes is consistent
with our hypothesis and other studies of bacterial drought
response pathways [45–47].

Drought responsive traits of bacterial
populations
To investigate drought responsive traits in bacterial populations,
we analyzed gene profiles in MAGs retrieved by de novo assem-
bly and binning. Overall, we retrieved 533 bacterial MAGs with
contamination of <10% and completeness of >45% (207 MAGs
had completeness of >70%). These MAGs spanned all major bac-
terial phyla. In some cases, multiple MAGs were retrieved for a
species, which indicates strain-level genomic resolution; hence we
consider MAGs representative of populations. For each MAG, we
obtained gene copy numbers with KEGG annotations. From each
of the three categories of functional genes that were most respon-
sive to drought treatment at the community level (Fig. 2), we chose
the most abundant genes and queried for them in MAGs to assess
whether they were present in higher copy numbers in populations
under drought (gene copy numbers were normalized to account
for variable genome size and bin completeness). We used the
sum of copy numbers for the following set of genes and refer
to them as drought responsive functions: (i) Na+:H+ antiporter
in the “membrane transport” category (Na+:H+ antiporter NhaA,
NhaB, and NhaC family; multicomponent Na+:H+ antiporter sub-
unit A, B, C, D, E, F and G), (ii) glycine transport in the “stress
response” category (glycine betaine/proline transport system ATP-
binding protein, permease protein and substrate-binding protein;
choline/glycine/proline betaine transport protein; glycine betaine
transporter; D-serine/D-alanine/glycine transporter) and (iii) Fe3+

transport in the “iron acquisition and metabolism” category (ferric
enterobactin transport system substrate-binding protein, perme-
ase protein and ATP-binding protein; ferric hydroxamate trans-
port system substrate-binding protein and permease protein; fer-
ric transport system ATP-binding protein, permease protein and
substrate-binding protein).

For all three drought responsive functions, mean gene
copy numbers were higher in bacterial MAGs from drought
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Figure 2. Community-level drought-enriched functional categories. (A) Results of community-aggregated read abundance-based analysis of major
categories of functional genes in grass and shrub litter across all time points. This differential abundance analysis highlighted the drought-enriched
functional categories that were significantly higher in the reduced precipitation treatment compared to ambient. The bar plot shows mean read
abundance and heatmap shows the fold change in response to drought. Asterisks indicate significant drought enrichment measured as pairwise
variation between ambient and reduced precipitation treatments (∗∗∗ P < .001, ∗∗ P < .01, ∗ P < .05). (B) Temporal patterns of community-aggregated
read abundance across treatments for the most drought-responsive categories of functional genes: membrane transport, stress response, and iron
acquisition and metabolism. Asterisks indicate significant pairwise difference between ambient and reduced precipitation treatments at each time
point (∗ P < .05).

communities relative to control in both grass and shrub litter
(Fig. 3A–C). This difference suggests that bacterial populations
under drought have increased gene copy numbers for key
stress tolerance traits, which likely improved their fitness
under drought, consistent with our hypothesis. Membrane
transport functions performed by Na+:H+ antiporter subunit A in
maintaining monovalent cation and proton homeostasis could be
crucial for drought stress tolerance, a mechanism that has been
identified in microbes and plants to tolerate drought and salinity
stress [48–50]; we have previously reported this adaptation in
our study at the same field site using metatranscriptomics [45].
Differential abundance of genes for transport of osmolytes, such
as glycine betaine and proline, under osmotic stress has been well
documented in laboratory cultures and to some extent in soils
[51, 52]. These genes are related to maintenance of intracellular
osmotic potential by increasing the concentrations of organic
compatible solutes. In addition to triggering osmotic stress,
drought appears to reduce iron availability in microorganisms
due to reduced diffusion and increased aeration that oxidizes
Fe2+ into insoluble Fe3+. We demonstrate higher abundance of
genes for iron transport and metabolism (e.g. Fe3+ siderophore
transport system) presumably as a metabolic adaptation to
mitigate iron limitation caused by drought [53–55]. Here, we used
community-level drought-responsive functions to inform MAG-
level functional gene analysis. A more robust statistical analysis
that focusses directly on MAGs may identify other drought
responsive functions in bacterial populations.

Trade-offs between stress tolerance and resource
acquisition traits across populations
We tested whether increased investment in stress tolerance
traits in populations under drought (measured here in terms
of higher gene copy numbers for drought responses) leads to

lower decomposition capabilities. To demonstrate such a tradeoff,
we quantified the total number of CAZyme (carbohydrate-active
enzyme) genes in the recovered MAGs; CAZyme genes are involved
in decomposition of carbohydrates [56], a major substrate in
grass and shrub litter. A trade-off between drought tolerance
and resource acquisition traits would manifest as a negative
correlation between counts of genes representing the two traits,
with the slope determining the magnitude of this trade-off. We
expected to see this trade-off for populations under both drought
and control treatments due to long-term evolutionary changes
[13, 14], but we anticipated that the magnitude of the trade-
off would be higher under drought due to stronger short-term
selection for drought tolerant populations.

We observed statistically significant negative relationships in
grassland bacterial MAGs, and the slopes were either similar or
more negative in the drought treatment compared to control
(Fig. 3D–F). In other words, populations in grass litter with higher
gene copy numbers for the drought responsive functions had
lower total CAZyme genes, consistent with our trade-off hypoth-
esis. This pattern was also seen in bacterial populations from
shrub litter (Fig. 3D–F), but it was weaker compared to populations
from grass litter. The negative relationship between Fe3+ transport
genes and total CAZyme genes was strongest and statistically
significant in drought treatments from both grass and shrub litter,
likely because “iron transport and metabolism” was the most
highly enriched functional gene category in response to drought
in both grass and shrub communities (Fig. 2). We also observed
that a higher number of bacterial MAGs in grass litter under
drought compared to ambient had a lower count of CAZyme genes
(Fig. 3G). Such a drought-linked pattern was not observed for
bacterial MAGs from shrub litter (Fig. 3G). The negative relation-
ship between drought-enriched genes and total CAZyme genes
demonstrates the presence of a gene-level tradeoff between stress
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Figure 3. Gene copy numbers of drought responsive functions within MAGs and their trade-offs with CAZy genes. (A–C) Histograms showing the count
of all bacterial MAGs with varying number of genes for the drought-enriched functions: Na+:H+ antiporter (A), glycine betaine (B), and iron transport
(C). The vertical dotted lines represent mean number of genes in MAGs from ambient and reduced precipitation treatment. Also presented are the P
values of Wilcoxon signed rank sum test to highlight statistical differences in number of genes across the precipitation treatments. (D–F) Scatter plot
of number of genes for drought-enriched functions in each MAG on the x-axes and total CAZy genes on the y-axes with linear regression lines for
ambient and reduced precipitation treatment. Also presented are the slope values for each regression and asterisks, which indicate significant
negative correlation of drought enriched genes and CAZy genes (∗∗∗ P < .001, ∗∗ P < .01, ∗ P < .05). (G) Histogram showing the count of bacterial MAGs
with varying number of CAZy genes. The horizontal dotted lines represent mean number of genes in MAGs from ambient and reduced precipitation
treatment and statistical differences are highlighted using P values of the Wilcoxon signed rank sum test.

tolerance and resource acquisition traits in bacterial populations.
Such trade-offs have been theorized [12] to act at the level of
populations, and here we provide empirical evidence in support
of that theory for bacteria.

Trade-offs across populations of
drought-responsive bacteria
To assess the implications of gene-based trade-offs across
populations, we examined the influence of reduced precipitation
on the abundance of bacterial populations over the 18-month
decomposition experiment. Abundance of populations (individual
MAGs) was quantified as genome copies per million metagenomic
reads across all samples. Instead of analyzing all populations
that were present in the precipitation treatments as in Fig. 3,
we identified drought-selected populations as MAGs that were
significantly more abundant in drought samples compared to
the ambient control and vice versa. We obtained the following
number of MAGs that were differentially abundant in each
treatment: grass ambient precipitation: 25, grass reduced
precipitation: 23, shrub ambient precipitation: 9, shrub reduced
precipitation: 18 (low abundance MAGs with <5 genome copies
per million reads were excluded). For each MAG, we used the sum
of copy numbers for the genes representing all three drought
responsive functions as a measure of drought stress tolerance
and plotted it against total CAZyme genes (Fig. 4A) while also
accounting for the taxonomic affiliation of each MAG at the
level of family (coarser level when this was not available). We
demonstrate that population level trade-offs were only observed
in grass litter under drought and that these trade-offs were driven
by taxonomic shifts across treatments.

Drought-selected populations in grass litter belonging to the
taxa Micrococcaceae/Micrococcales (Actinobacteria) and Pseudomon-
adaceae (Proteobacteria) have reduced resource acquisition traits
with a below average (<100 genes) CAZyme count (Fig. 4A). How-
ever, there were other drought-selected populations belonging
to the taxa Microbacteriaceae (Actinobacteria), Sphingomonadaceae
or Sphingomonadales (Proteobacteria), and Rhodobacteraceae (Pro-
teobacteria) that maintained a higher CAZyme gene count (>100)
while also having higher drought enriched genes (Fig. 4A). This
demonstrates that the trade-offs observed in grass litter under

drought were driven by taxonomic differences at the level of
family; some of the families identified have been extensively
studied at this field site [57, 58].

We then analyzed the temporal dynamics in the abundance
of these populations (Fig. 4B) and found that the drought-
selected populations with a lower CAZyme count were more
abundant at the start of the decomposition process (T1). In
contrast, the drought-selected populations with a higher CAZyme
count were more abundant at the later time points (T2 to T4).
Drought-selected populations in shrub litter did not demon-
strate a reduction in CAZyme gene count (Fig. 4A). However,
populations belonging to the family Erwiniaceae (Proteobacteria)
that were more abundant at the start of the decomposition
process (Fig. 4B) had below average CAZyme count (Fig. 4A)
reinforcing that trade-offs were driven by family-level taxonomic
differences. However, trait distributions were quite varied in
populations within the family Microbacteriaceae, which suggests
that trade-offs may also occur across populations within a family.
Overall, the temporal dynamics in populations and trade-offs
between drought tolerance and decomposition capabilities were
linked to successional patterns over the litter decomposition
process.

Linking population-level traits to decomposition
rates
The results from our 18-month decomposition experiment sug-
gest that drought acts as an environmental filter that selects
for bacterial populations with a genetic basis for stress toler-
ance traits that could confer a competitive advantage. We show
that in some drought-selected populations, enhanced stress tol-
erance strategies negatively impacted decomposition capabilities
as inferred from CAZyme gene counts. We also observed that
the drought-related trade-offs appear across populations, mean-
ing that ecological selection for drought-tolerant taxa can drive
trade-offs in traits. Trade-offs may also occur within populations,
but further studies with higher resolution MAG assembly and
binning would be needed to address the evolutionary processes
that underlie such trade-offs.

Our genome-based analysis highlights gene-encoded patterns
that likely appear as drought-selected bacterial populations are
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Figure 4. Trade-offs across populations of drought-responsive bacteria. (A) Scatter plot of sum number of genes for all drought-enriched functions in
MAGs on the x-axes and total CAZy genes on the y-axes. Displayed here are only those MAGs that were differentially abundant across the
precipitation treatments. Each point is a bacterial MAG, and its size represents its mean abundance in metagenomes across all four time points
expressed as genome copies per million reads. Linear regression lines and the slope values for each regression are presented. Very low abundance
MAGs (<5 genome copies per million reads for bacterial MAGs) were excluded from this analysis. The color represents the taxonomic affiliation of
MAGs at the level of family (or order/phylum when that was not available). (B) Heatmaps showing the abundance of the same MAGs at individual time
points across all treatments. Similar temporal patterns are clustered together, and the color codes represent their phylum level affiliation.

favored by the decade-long drought imposed in our experiment.
Trait trade-offs in response to long-term drought were observed
in grass litter and were weak or absent in shrub litter. Tradeoffs
between stress tolerance and resource acquisition traits across
bacterial populations could reduce decomposition capabilities
and ecosystem-level litter decay rates under drought. However,
the physiological response of bacteria to drought is only one
of the factors that affects decomposition rates. Other factors,
such as changes in fungal traits, limitations to resource diffu-
sion and transport, and changes in plant litter chemistry and
physico-chemical factors, also affect ecosystem-level decompo-
sition rates [16, 59], which could decouple bacterial population
traits from ecosystem process rates. Nevertheless, we show clear
links between the metabolism of bacterial populations and col-
lective emergent traits. When integrated into a biogeochemical
framework [4], such trait-based scaling can be applied to link the
metabolism of microbial populations in a changing environment
to the ecosystem functions they perform.
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