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34342 Beşiktaş, İstanbul

M. İlteriş Bozkurt (ilteris.bozkurt@metu.edu.tr)
Middle East Technical University, Cognitive Science Department

06800 Çankaya, Ankara

Abstract

The speed-accuracy tradeoff (SAT) method has produced sev-
eral prominent findings in sentence processing. While a substan-
tial number of SAT studies have yielded statistical null-results
regarding the degree to which certain factors influence the speed
of sentence processing operations, the statistical power of the
SAT paradigm is not known. As a result, it is not entirely clear
how to interpret these findings. We addressed this problem
by means of a simulation study in which we simulated SAT
experiments for a range of known effect sizes in order to de-
termine the statistical power in typical SAT experiments. We
found that while SAT experiments appear to have quite satis-
factory power to detect differences in asymptotic accuracy, that
is not the case for speed-related parameters, especially for the
multiple-response variant of the technique. We conclude that
the failure to find an effect in speed-related parameters in SAT
experiments may be less meaningful than previously thought.
Keywords: response signal paradigm; speed-accuracy tradeoff;
statistical power; simulation

Introduction
Experimental paradigms for measuring the speed-accuracy
tradeoffs in cognitive tasks have been essential in many areas
of cognitive science (e.g., Heitz, 2014) because they address
a potentially problematic aspect of typical reaction time (RT)
tasks: Most cognitive tasks can be performed more accurately
at the cost of lower speed, or faster at the expense of accuracy
(e.g., Pachella, 1974). As a result, the average RT and accuracy
obtained in such tasks reflect not only the processing speed
and accuracy on that task, but also the participant’s response
criterion, i.e., the mechanism by which they determine that
they have processed a stimulus to a sufficient degree to respond.
Speed-accuracy tradeoff functions (SATFs), which describe
the increase in response accuracy over time, are unaffected
by the participants’ response criteria and thus offer a way
to obtain uncontaminated estimates of the relative speed of
mental processes separately from their ultimate probabilities
of success.

Differences between the SATFs can yield important insights
into the timing of cognitive processes and have been success-
fully used in areas as diverse as attention, vision, memory,
and psycholinguistics. For example, McElree (2000) showed
that in the resolution of filler-gap dependencies in sentences
like (1), increased distance between the verb ’admired’ and
the head noun of its subject (’book’) decreased the probability
of successful dependency resolution, but had no effect on the
processing speed. That is, while participants did quite well

at correctly judging grammatical sentences like (1a) and their
ungrammatical counterparts like (1a’) after a sufficient amount
of time, they did not perform as well with sentences like (1b)
and (1b’). However, the speed of relative increase in accuracy
was the same in both condition pairs. Because discriminating
between grammatical and ungrammatical sentences in (1) ar-
guably requires the retrieval of book from working memory,
this finding suggests that in sentence comprehension, distance
affects the probability of successful retrieval of dependents
from memory, but not the speed of the retrieval process.

(1a/a’) This was the book that the editor admired/*amused.

(1b/b’) This was the book that the editor who the receptionist
married admired/*amused.

This finding, as well as a number of other results in the
SAT literature (e.g., Foraker & McElree, 2007; Martin &
McElree, 2008; McElree, Foraker, & Dyer, 2003; Van Dyke
& McElree, 2011, among many others) rest on the absence
of a significant difference in speed-related parameters of the
speed-accuracy tradeoff function. Because SAT data analysis
typically involves numerical estimation of several parameters
describing the SATF in each condition, followed by a variant of
a stepwise model selection procedure (e.g., Thompson, 1978),
it is unfortunately not clear how much statistical power such
experiments have in order to find differences in processing
speed (however, see Pankratz, Yadav, Smith, & Vasishth, 2021,
who conducted a power analysis using data from Franck &
Wagers, 2020, a published SAT study, and showed a lack of
statistical power). In order to understand how to interpret
such statistical null-results, we conducted a simulation study
to determine the amount of statistical power in typical SAT
experiments.

Importantly, although our simulations are meant to model
SAT experiments typical for the area of sentence processing,
our results will likely be relevant beyond this specific setting.
We further make all code available online,1 which allows
anyone to re-run the power simulations presented here under
different assumptions with a modest amount of effort.

The Response Signal Paradigm
A method commonly used to estimate SATFs is the response-
signal paradigm (McElree, 1993; Reed, 1973). In this

1https://git.io/JsfPR

2211



paradigm, participants see stimuli of different types and are
asked to respond to them after varying amounts of time relative
to the onset of the last phrase of the sentence. Typically, an au-
ditory cue presented after a variable amount of time is used as
cue to respond immediately, even if participants have not yet
finished making a decision. In the so-called single-response
variant (SR-SAT), participants are prompted to respond once
per trial. In the multiple-response variant (MR-SAT), partici-
pants respond several times per trial, at different lags.

As in the McElree (2000) experiment, the experimental
design needs to ensure that discrimination between different
types of stimuli (such as ‘acceptable’ and ‘unacceptable’)
requires participants to deploy the cognitive process being
studied. As a result, the difference between SATFs (at least
partially) reflects the timing of the cognitive process involved
– the number of trials on which the relevant process has ter-
minated will increase with the passage of time, and so will
accuracy for both types of stimuli. In keeping with Signal De-
tection Theory (SDT) terminology (Wickens, 2001), we will
refer to the two types of stimuli as signal and noise without
loss of generality.

In order to obtain estimates of sensitivity to stimulus
type which is unaffected by response bias towards either
response, the accuracy at each lag in each experimental
condition pair is computed as the SDT sensitivity measure
d′ = Φ(hits)−Φ(false alarms), where Φ is the Gaussian dis-
tribution function, and hits and false alarms are the proportions
of ‘signal’ responses in signal and noise conditions, respec-
tively. The resulting d′ values at each lag allow us to estimate
the underlying SATF in each experimental condition, which
is typically well-approximated by the negatively accelerated
shifted exponential function in equation 1 (Dosher, 1979)
which is illustrated in Figure 1. In it, λ (asymptotic accu-
racy) determines the highest attainable level of accuracy given
unlimited processing time, while δ (intercept) and β (rate)
jointly determine the processing speed: δ determines at which
point the accuracy rises above chance, while β determines
how quickly the SATF increases. The reciprocal of the rate
β−1 can be interpreted as the time required for the function
to reach approximately 63% of the asymptote, once accuracy
has departed from 0. A joint measure of dynamics, (δ+β−1),
can be interpreted as the time requires to reache 63% of the
asymptote, starting at 0 (e.g., Foraker, Cunnings, & Martin,
2018; Liu & Smith, 2009).

d′t = λ ·
(

1− e−β(t−δ)
)
, f or t > δ; else d′t = 0 (1)

Analysis of data from response signal paradigm experiments
follows a variant of a stepwise model selection procedure
sometimes referred to as a hierarchical model testing scheme
(e.g., Foraker et al., 2018): The aim is to select the most parsi-
monious of a range of models of varying complexity according
to several criteria. For two-condition experiments, there are 8
candidate models. The simplest model (1δ−1β−1λ) posits
a single intercept, rate, and asymptote for both experimental
conditions. The most complex model (2δ−2β−2λ) posits sep-
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Figure 1: A speed-accuracy tradeoff following equation 1.
After an initial period of chance performance, accuracy begins
to increase at the intercept (δ). The growth rate (β) determines
how quickly the function approaches the asymptotic perfor-
mance (λ). The reciprocal of the rate β−1 can be interpeted as
the time required for the function to reach approximately 63%
of the asymptote.

arate intercepts, rates, and asymptotes for both experimental
conditions. Further models of intermediate complexity that are
also considered in the process are 1δ−1β−2λ, 1δ−2β−1λ,
1δ−2β−2λ, 2δ−1β−1λ, 2δ−1β−2λ, and 2δ−2β−1λ.
Each model corresponds to a particular pattern of differences
between experimental conditions: Differences in asymptotes
(λ) can be interpreted as differences in the success probability
of the target process, while differences in rate and intercept (δ
and β), jointly considered the dynamics, can be interpreted as
differences in processing speed.

The parameters for each such model are typically estimated
separately for each participant by means of numerical opti-
mization minimizing the root mean squared error (RMSD) of
the model fit.

For inference, Foraker et al. (2018) recommend forward
model selection starting with the asymptote parameter λ. As
illustrated in Figure 2A, this process works by successively
comparing nested models, beginning with the simplest model
1δ−1β−1λ and 1δ−1β−2λ in order to determine whether
to assume one or two asymptotes. The choice made at this
point affects which models will be considered later. If there is
sufficient evidence for the two-asymptote model, this means
that there is a difference in asymptotes between the two ex-
perimental conditions, and only 2λ models are considered at
later stages; otherwise only 1λ models are considered. Simi-
larly, the choice regarding the number of intercept parameters
affects which models are considered at the third stage of the
forward model selection procedure, when the number of rates
is determined in the example in Figure 2A.

An alternative is backward model selection, illustrated in
Figure 2B. This model selection process starts with the most
complex model 2δ−2β−2λ, and involves comparing it to in-
creasingly less complex nested models. If no evidence is found
for the more complex model, the simpler model is adopted.
During the stepwise selection procedure, models are compared
based on (i) adjusted R2, which takes into account the fit and

2212



Figure 2: Illustration of the forward and backward model
selection processes, in which the number of asymptotes is
determined first, then the number of intercepts, and then the
number of rates.

penalizes the number of parameters, and (ii) the consistency
of the direction of the difference of the parameter estimates in
the more complex models, as assessed by a statistical test.

A third alternative we will consider is non-stepwise infer-
ence based on the estimates of a 2δ−2β−2λ model. That is,
we will assume that the two experimental conditions differ in
a parameter if we observe a significant difference between the
parameter estimates, in no particular order.

Simulation Study
In order to determine the statistical power of the model se-
lection methods outlined above with different sample sizes,
we repeatedly simulated data for a number of different effect
sizes for asymptotic accuracy and dynamics, performed model
selection, and calculated the proportion of cases in which a
difference with the correct sign was identified.

Method
We repeatedly simulated SR-SAT and MR-SAT experiments
with two experimental condition pairs (two signal conditions,
and two noise conditions). Figure 3 provides an overview of
the process. We used parameter values which are relatively
typical for sentence processing SAT experiments and assumed
that the average population SATF followed equation 1 with
δ = 0.8sec, β−1 = 0.8sec, λ = 2.25. We further assumed that
the individual SATF parameters for each subject s (λS, β

−1
S , δS)

were log-normally distributed around the population param-
eters (SDδ = 0.8, SDβ−1 = 0.8, SDλ = 1.25). We simulated
data for a range of differences between conditions in the three
SATF population parameters.

For each combination of parameters, we simulated a par-
ticipant pool of 2,000 participants with responses at 17 lags

starting from 0sec to 5.6sec, increasing in steps of 0.35sec.
We simulated different numbers of responses per: 20, 50, and
80 in each of the four experimental conditions for each of the
17 lags. To simulate experiment replications, we then drew
1,000 bootstrap samples of 10, 20, 30, 40, or 50 participants
and carried out model comparison for each bootstrap sample.

In simulating responses, we assumed that P(Rt,q = 0), i.e.
the probability of a ‘noise’ response in condition q at time
t is given by equation 2. We assumed that responses were
equi-biased towards ‘signal’ and ‘noise’ responses, and that
the response criterion c at time t was always ct = dt/2.2

P(Rt,q = 0) = Φ(ct −ψt,q), where

ψt,q =

{
dt in signal trials
0 in noise trials

(2)

Because in MR-SAT experiments, participants respond sev-
eral times per trial, it stands to reason that the responses within
the trial are correlated as the amount of evidence in favor of
a particular response at lag k would at least partially depend
on the amount of evidence available in its favor at lag k−1.
We modeled this serial dependence based on assumptions akin
to a simple random walk model in which evidence adds up
in accordance with the increase in d′ since the last lag: We
assumed that ψ′k, the amount of evidence in favor of a ‘signal’
response on a particular trial at lag k was the sum of ψk, the av-
erage amount of evidence in its favor at this lag, and normally
distributed serially correlated noise with mean 0 and σ = 1, as
in equation 3. We further assumed that a ‘signal’ response was
given when ψ′k > ck, and a ‘noise’ response otherwise, thus
accounting for serial correlation between responses.

ψ
′
k = ψk +

k

∑
i=1

εi/
√

k

where εi ∼ N(0,1)

(3)

Analysis
We used R (R Core Team, 2018) and the tidyverse packages
(Wickham, 2017) for simulation and data pre-processing, and
the mrsat R package (Van Dyke, Wagers, Cho, & Matsuki,
2015) to fit eight models of varying degrees of complexity to
each simulated participant’s data.

We used five different model selection procedures on each
of the simulated experiments: As a baseline analysis method,
we tested for significant differences between estimates of δ̂, β̂,
λ̂ in the two conditions based on 2δ−2β−2λ model estimates.
Moreover, we carried out backward and forward model selec-
tion using two sets of criteria: The first method was model
selection based on the results of a t-test on the parameter dif-
ference estimates (∆̂δ, ∆̂β, ∆̂λ) of the more complex model.

2This assumption was made in order to obtain best-case power
estimates, as a bias towards either response would increase the vari-
ance of the sampling distribution of d′. (cf. Liu & Smith, 2009, for
an approximation of the variance of the d′ sampling distribution.)
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Figure 3: Illustration of the simulation process: For each parameter combination for ∆δ, ∆β−1, ∆λ, we simulated out 2,000
participants. For each participant, we independently sampled the by-participant parameters for δ, β−1, λ, ∆δ, ∆β−1, and ∆λ from
their respective distributions. We then sampled ‘signal’/‘noise’ responses for each of the 17 lags in each of the 4 conditions,
computed d′ at each lag, for each condition pair for each simulated participant, fitted several models of varying complexity to
each participants data. Next, we drew 1,000 bootstrap samples of 10, 20, 30, 40, or 50 participants each (with replacement) and
carried out model comparison for each bootstrap samples. Simulations for SR-SAT and MR-SAT were carried out independently.
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Figure 4: Simulation results for single-response SAT. Each panel shows the simulation results for one of the three SATF
parameters with a separate panel for the pooled dynamics (δ+β−1). Each cell shows the power curve estimates of a particular
combination of participants (columns) and number of resposes per condition (rows). In each cell, the x-axis represents the
magnitude of the population difference, while the y-axis corresponds to the proportion of simulated experiments in which a
positive value for the respective difference was (correctly) detected.
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Figure 5: Simulation results for multiple-response SAT. Layout as in figure 4.
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For example, in forward model selection as illustrated in fig.
2A, we selected model 1δ− 1β− 2λ if the estimates of ∆λ

significantly differed from 0, or in other words: if there was
a significant difference in the asymptote estimates of the two
experimental conditions. Otherwise, we selected the simpler
model 1δ− 1β− 1λ. Because Foraker et al. (2018) suggest
the use of the adjusted R2 metric to supplement hypothesis
tests, we also tested a more conservative method, in which the
more complex model was only selected if its average adjusted
R2 across participants was higher than that of the simpler
model, in addition to the relevant parameter difference being
significantly different from 0.

For the analysis of pooled dynamics (δ+ β−1), we con-
sidered only 2δ− 2β− 2λ, 1δ− 1β− 2λ, 2δ− 2β− 1λ and
1δ− 1β− 1λ models, and based inference on the results of
t-tests on the asymptote and the joint dynamics measure.

Results and Discussion
Figures 4 and 5 show the results of our simulations. In each
simulation, we calculated the proportion of samples in which
a positive effect was detected, because we were interested in
obtaining estimates of the probability that a difference with
the correct sign is detected. As a result, the figures show
estimates of (Type I error rate)/2 when there was no difference
between conditions, and (Power - Type M error rate) otherwise
(Gelman & Carlin, 2014). We will refer to this quantity as the
detection rate.

Importantly, since the joint dynamics measure is the sum
of the intercept and the reciprocal of the rate, we could vary
either to manipulate it. As a result, several detection rates are
available for each value of the joint dynamics measure, de-
pending on the contribution of the two underlying parameters.
We present the maximum detection rate at each point in order
to obtain optimistic detection rate estimates.

SR-SAT
The results for SR-SAT show a high overall probability of
detecting a difference in asymptotes: It is reasonably high
(> 80%) for differences of more than 0.6 d′ units, even for
small sample sizes, except for the combination 10 subjects,
20 responses. Detection rates for the intercept parameter was
rather low (< 50%) for many sample sizes. Detection rates
were even lower for the rate parameter, and reached more than
80% only for relatively large effect sizes, and only when the
sample size was high.

Interestingly, while the forward model selection methods
appeared to perform better than their alternatives for the
asymptote and intercept parameters, backward model selec-
tion showed the highest detection rates for the rate parameter.
This discrepancy is likely due to the fact that the rate param-
eter is selected last in both methods. As a result, backwards
model selection is less likely to attribute differences between
conditions to the asymptote or to the intercept as long as the
models also assume two rates. When it does not, any substan-
tial differences between conditions have to be attributed to the
rate. As a result, backwards selection shows relatively low

detection rates for asymptote and intercept differences, and
relatively high detection rates for rate differences.

Somewhat surprisingly, the detection rates for the pooled
dynamics metric (δ+β−1) did not show an improvement over
detection rates for the intercept alone.

MR-SAT

While the MR-SAT findings regarding the model selection
method were qualitatively similar to the SR-SAT results for
asymptotes and rates, the model selection method appears
to matter less than for SR-SAT data. Importantly, the MR-
SAT detection rates were substantially lower across the board.
This is not surprising given the fact that the responses on
each trial were correlated, which is expected to increase the
width of the sampling distribution and to decrease the effective
sample size (e.g., Berger, Bayarri, & Pericchi, 2014). As
a result, SR-SAT and MR-SAT seem to exhibit substantial
differences in terms of power in detecting a difference in rates
and intercepts, with remarkably low power especially for rate
parameter differences of less than 50% even for relatively
large effect sizes such as 150ms, and less than 25% in most
cases.

Surprisingly, the detection rates for the pooled dynamics
metric (δ+β−1) were even lower than for the intercept param-
eter, which was likely due to a wide sampling distribution of
the rate parameter due to a lot of uncertainty. This uncertainty
would increase the variance of the dynamics estimate, leading
to lower detection rates.

A possible concern about our findings for MR-SAT is that
the exact detection rate estimates are potentially heavily de-
pendent on the assumptions of our ad-hoc model accounting
for the serial correlation between responses on a given trial.
While that is correct, our results show that statistical power
for MR-SAT may be substantially lower than for SR-SAT,
due to a small effective sample size. The fact that we don’t
know how much lower it is, presents a major challenge in the
interpretation of results from the MR-SAT methodology.

Conclusions

Our findings suggest that the statistical power for dynamics-
related parameters in typical MR-SAT experiments (20 par-
ticipants, with 50 responses per time lag per condition) may
be relatively low for typical effect sizes in psycholinguistics
(50− 100ms). This is due to the fact that as a result of the
serial correlation of responses on a trial, the effective sample
size may be significantly lower than the nominal sample size.
As a result, the failure to find a difference in dynamics be-
tween two experimental condition pairs should be interpreted
with caution. We hope that the power can be improved and its
dependence on the model selection mechanism may be reme-
died by simultaneous estimation of all three SATF parameters
using hierarchical models such as used by Niklaus, Singmann,
and Oberauer (2019) and Pankratz et al. (2021).
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