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Stochastic modeling of climatic variability in dendrochronology.
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2 Environmental Earth Sciences Laboratory,  St. Francis Xavier University, Antigonish, Nova 
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Abstract: Climatic variability can be characterized by invariant quantities arising from the 

analysis of scaling properties of paleoclimatic records.  In this paper we discuss a stochastic 

model that reproduces the variability and the long-range correlation observed in 

dendrochronological time series. We have found that non-Gaussian distributions are better suited 

to describe the climatic variability embedded in these data. Our results indicate that Gaussian 

distribution fails to capture the large fluctuation —extreme events— that characterized climatic 

variability in these time series. This might have applications on the study of extreme weather 

events on future climate scenarios.

1. Introduction

Most records of climate change show increase warming since the industrial revolution 

[Houghton et al., 2001]. Furthermore, it has also been shown that at the climate system scale, 

that oceans, cryosphere, atmosphere and continental areas have absorbed heat in the last 50 years 

on the order of 182.0, 8.1, 6.6 and 7.1 (1021) Joules respectively [Levitus, 2000; Beltrami et al., 

2002; Beltrami, 2002]. The question is whether the additional energy available in the climate 

system coupled to anthropogenic changes in the environmental conditions at the Earth’s surface , 

for example, due to land use changes, might lead to a more vigorous atmospheric circulation and 

thus our climate might experience an increased number of extreme weather events. Such a 

change has serious implications for society and has attracted much attention from policy makers 

and the general public. In order to assess the number, magnitude, and character of extreme 

weather events in a future warmer climate, models of the climate system have been used to study 



2

the statistics of climate model outputs [e.g. Hegerl et al.; 2003, Kharin and Zwiers, 2003]. To 

asses whether the frequency of extreme weather events will increase in a warmer future Earth’s 

climate, it is also important to understand and model the frequency of occurrence of extreme 

weather events in the past. One of the records with highest resolution of past environmental 

conditions, in temperate latitudes, are dendrochronological data. Tree ring records have been 

routinely used to reconstruct past climatic changes [e.g. Cook and Briffa, 1990; Stahle et al., 

2000; Cook et al., 2000; Esper et al., 2001; 20002]. Recent multiproxy reconstructions of the 

past climate of the northern hemisphere made important use of dendrochronological records [e.g. 

Mann et al., 1999, see chapter 2 in Houghton et al., 2001]. 

In this letter, we examine four long dendrochronological records from the western United 

States selected from the International Tree Ring Databank (ITRDB) (see Table 1). The tree ring 

data were selected for this study because of their large temporal coverage and their likelihood to 

be moisture or temperature sensitive. 

One important feature of the dendrochronological data is its complex behavior (see Figure 1). 

Note that the time evolution of the signal is erratic showing no apparent regularity or cyclic 

pattern.  In this letter, we propose to decipher the “complexity” embedded in the 

dendrochronological records in term of its statistical properties.  For this purpose, we present a 

stochastic model that reproduce the probability law and correlation function (or power spectrum) 

observed in the dendrochronological records. 

2. Formulation of the stochastic model:

To analyze the complex behavior of the dendrochronological time series, a typical procedure 

consists in performing a Fourier analysis of the time series. The power spectrum of one time 

series is illustrated in Figure 2.  The spectrum shows that there are no dominating frequencies, 

and that these signals cannot be reduced to—or understood as— a combination of several 
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periodical functions.  Figure 2, shows that all the frequencies contribute to the signals but also 

that the weight of the frequencies follows —on average— a trend given by a decaying power 

law. The values of the scaling exponents ν  are reported in Table 2.  

The behavior reported in Figures 2 is typical of colored noises.  According to this, a stochastic 

model can capture and reproduce some of the main features characterizing the 

dendrochronological time series.   The stochastic model proposed here consists of a convolution 

in the frequency space between the Fourier transform of random variables (white noise) X  and 

some function with a power law dependence ω−ν / 2. The scaling exponent ν  measures the 

departure from the non-correlated random variable (white noise with ν = 0); ω  is the angular 

frequency. This stochastic process is similar to a fractional Brownian motion that reduces to a 

random walk in its simplest manifestation —with ν = 2 and X  a Gaussian random variable [see 

Peitgen and Saupe, 1988; and Falconer, 1990]. In this study, the parameter ν  and the probability 

law that governs the distribution of the random variables are unspecified. They are determined 

through a statistical analysis of the data. The stochastic model Yt  is given by the following 

relationship:

Yt ∝ ω−ν / 2Fω [Xt ]exp[2πi(t −1)(s−1) /N]
s=1

N∑  , (1)

for a set of random variables Xt  distributed over a one–dimensional lattice of length N , where t

is the integer time variable on the one-dimensional lattice. The sum in equation (1) goes from 1 

to N ; s is related to ω  by ω = 2π (s−1)  and corresponds to a discrete frequency with integer 

values; Fω[Xt ]is the discrete Fourier transform of the random variables. According to this, the 

power spectrum P(k) associated to Yt  will be given by the following relation:

P ω( )= Fω[Yt]
2 ∝ω−ν .  (2)
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This equation can be used to compute the values of the parameter ν  associated to Yt .  Using this 

scaling exponent ν , the underlying random variables Xt  associated to a stochastic model Yt  can 

be computed by using the following relationship: 

Xt ∝Ft
−1[Fω[Yt ]×ων / 2] , (3)

where Ft
−1 is the Fourier inverse.  The statistical properties of the stochastic model are 

completely specified when the probability law governing Xt  are identified.  The probability law 

controls the variability of the stochastic model while ν  constraints its long-range correlation [see 

Lavallée and Archuleta, 2003 for another application of this stochastic model]

3. Stochastic model for dendrochronological time series:

In this letter, we assume that a dendrochronological time series can be approximated by a 

stochastic model Yt  described above. Using relation (2), the scaling exponent ν  of each time 

series has been computed.  Then, using ν  and Eq. (3), the underlying random variables Xt

associated to each time series are estimated. The number of random variables in the time series 

varies between 1666 (nv512) to 1967 (nv500).  These numbers are large enough to perform the 

ensuing statistical analysis. For each tree ring sample, the probability density function (PDF) 

associated with Xt  is thus estimated. 

We then proceed to determine the probability law that will provide the best fit to the estimated 

PDF of Xt . Three candidates are considered: the Gauss law, the Cauchy law and the more 

general Lévy law [Uchaikin and Zolotarev, 1999]. The Lévy law is characterized by four 

parameters α , β , γ  and µ. The parameter α , with 0 <α ≤ 2, controls the rate of falloff of the 

tails of the PDF. The larger the value of α , the less likely it is to find a random variable far away 

from the central location. The case α = 2 corresponds to the Gaussian law while α =1 (with 

β = 0) corresponds to the Cauchy law. The parameter β , with −1≤ β ≤1, controls the departure 
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from symmetry of the PDF curve. When β = 0, the PDF is symmetric and centered about µ. The 

parameter γ , γ > 0, is mainly responsible for the PDF width whereas µ is the location or shift 

parameter of the PDF. 

For each tree ring sample, we have computed the probability law parameters that minimize the 

following expression:

PDF(Xt ) − pth (Xt )
t

∑ (4)

where pth (X) corresponds the theoretical values of the PDF associated to either the Gauss, 

Cauchy or Lévy law computed for X  [see Grigoriu, 1995].  The PDF of X  and the PDF curves 

corresponding to the best-fitting Gaussian, Cauchy and Lévy law are illustrated in Figures 3, 4 

and 5. For each tree ring sample, the parameters of the best-fitting Gaussian, Cauchy and Lévy 

laws are reported in Table 2.  For each sample used in this study, the Lévy law provided the best 

fit to the PDF. For instance, the minimum values of the objective function given in Eq. (4) 

computed for the Cauchy, Gauss and Lévy laws are respectively: 0.0049, 0.0023 and 0.0013 for 

nv512. Note also that if we perform the same analysis over a comparable number of generated 

Cauchy, Gauss and Lévy random variables characterized by parameter values similar to those 

reported in Table 2, we will able to recover the parameters values with enough accuracy to 

distinguish the three laws. In Figures 4 and 5, comparison of the tails of the PDF to the tail of the 

best fitting Gaussian and Cauchy curves confirms that the a Lévy law with 1 <α < 2 provides a 

better fit.

Variation in the model parameters from one sample to another may suggest a spatial 

dependence. However, the variation may also reflect, at least partially, the presence of additional 

noisy effects and other uncertainties in the data.  Further investigations are needed to reach a 

definitive conclusion.
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For the four samples under studies, the value of the Lévy index α  doesn’t vary very much 

from one sample to another.  This suggests that the value of α  may be universal or independent 

of the tree location. Furthermore, the parameter α , controls the decrease of the PDF tail.  That is 

the occurrence of large fluctuations or extreme events in the data.  For instance, using the 

parameters given in Table 2, one can easily compute, for a given period of time, the number of 

time that X  that exceed a given threshold value.  For dendrochronological data, these large 

fluctuations could be understood as abrupt climatic change.  For the four samples, our results 

suggest that the probability to observe such events deccreases almost at the same rate. The 

parameters β  and γ  reported in Table 2 indicate significant variation in the values estimated 

from one sample to another.  (It should be noted that the values estimated for the parameter γ
will depend on the definition adopted for the inverse Fourier transform used in Eq. (3).  

However, the values of α  and β  are not affected by this definition.) Note that for s =1, ω = 0 in 

the convolution given by Eq. (3).  This implies that the average value of the random variables 

estimated with Eq. (3) will be zero. This will affect the values taken by the location parameter µ

and suggest that not to much importance should be granted to the values taken by this parameter. 

Finally note that the values taken by the parameters of the Levy law provide valuable 

information about the variability of the time series.  The parameter γ  controls the amplitude of 

the variability.  This is why departures (or fluctuations) from the average trend of the time series 

are larger in Figure 1a than in Figure 1b as suggested by the estimated γ  reported in Table 2. For 

a positive β , the tail of the PDF will decay more rapidly for negative values indicating that 

positive values are more likely to be observed.  This implies for a time series approximated by a 

stochastic model given by Eq. (1) that positive jumps from the average values are more likely to 

be observed. The converse applies to negative value of β  [see Figure 4.13 in Uchaikinand and 

Zolotarev, 1999].  Although it is not necessary easy to capture on a plot the isolated effect due to 
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one parameter of the Lévy law when comparing two signal characterized by four different 

parameter values, comparison of Figures 1a to 1b illustrates well the consequences due to a 

variation in the polarity of the parameter β .

4. Conclusion

In this paper, we investigated the variability of four dendrochronological records. We have 

shown that a stochastic model — based on Lévy law— is best suited to reproduces the main 

features of the climatic variability embedded in dendrochronological time series, including the 

presence of large fluctuations. (For a comparison between synthetic earthquake slips based on 

random variables distributed according to a Cauchy law and a Gauss law see Figure 4 in Lavallée 

and Archuleta 2003.) These results suggest some features of the complexity recorded in tree ring 

indices are quite general, perhaps “universal,” and thus can be formulated in term of the 

stochastic model discussed in this letter.  Five parameters are needed to completely determine the 

stochastic model: the four parameters of the Lévy law controlling the amplitudes of the signal 

fluctuations and a scaling exponent to specify the correlation.

We already have indicated that the parameter α  controls the rate at which the probability to 

observe extreme events is decreasing.  That is, for dendrochronological data, large climatic 

departure from the “usual” variability observed in the data.  In principle the same procedure 

outlined in this letter can be applied to other paleoclimatic time series such as ice core data, 

staglagmite data as well as to temperature time series recorded in recent years.  Comparisons of 

the α  values computed for such time series, or for different period of times, will indicate the 

time dependence of the parameter α , and therefore the time dependence in the rate at which the 

probability to observe abrupt climatic change is decreasing. 
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Figure and table captions

Figure 1: The typical behavior of the time evolution of the tree ring indices is illustrated: (a) 

nv500 and (b) nv512.  The time interval is one year on each sample.

Figure 2: For the signal illustrated in Figure 1a, the power spectrum P(ω) has been computed.  

The power spectrum P(ω) (red) and the best straight line (black) that fits the log-log curve is 

reported for this signal.  These results suggest that the scaling behavior is observed for time scale 

length ranging from 2 to 512 years. The scaling exponent is given in Table 2.

Figure 3: The (discrete) probability density function PDF (red and blue dots and bars) associated 

to the filtered signal is illustrated: (a) nv500 and (b) nv512.  The left side of the PDF ( X < 0) is 

colored in red while the right ( X > 0) side is in blue. The magnitude of the random variables is 

given by X . The width of the bar corresponds to the increment used to estimate the PDF is 

equaled to 50.  The curves of three probability laws that best fit the PDF are illustrated: the 
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Cauchy law (black curve), the Gaussian law (dashed curve) and the Lévy law (green curve). The 

parameters of the Gaussian, Cauchy and Lévy law are reported in Table 2. 

Figure 4: On a log-log plot, the left tail of the (discrete) probability density function PDF (red 

dot) associated to the filtered signal is illustrated for nv512. The curves of three probability law 

that best fit the PDF are illustrated: the Cauchy law (black curve), the Gaussian law (dashed 

curve) and the Lévy law (green curve). Tails that decay according to power laws characterized 

the Lévy and Cauchy probability density functions.  Such behavior is best illustrated on a log-log 

plot. The misfit of the Gaussian probability density function is more obvious in these plots (see 

also Figure 5). In particular, note that according to the Gaussian law, the large events have 

almost a zero probability of being observed.

Figure 5: Same as for Figure 4, but for nv500 and for the right tail of the (discrete) PDF (blue 

dot).

Table 1: The dendrochronological data used in this study.  

Table 2: Parameters of the stochastic models for the four tree ring indices: nv500, nv512, nv514 

and ut508.  The parameter ν  is the scaling exponent of the power spectrum (see Figure 2). The 

parameters of the Gauss law ( µ and σ ), the Cauchy law ( γ  and µ) and the Lévy law (α , β , γ
and µ) that best fit the four PDF( X ) are given (see Figures 3, 4 and 5).
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Table 1
Tree Ring Location Species Years

nv500 380-57’N - 1140- Bristlecon Pine 1-1967
nv512 400-14’N- 1150- Bristlecon Pine 320-1985
nv514 400-33’N - 1140- Bristlecon Pine 302-1985
ut508 390-25’N-1110-04’W Bristlecon Pine 286-1985

Table 2
Samples Scaling 

Exponent
Gauss law Cauchy law Lévy law

ν µ σ γ µ α β γ µ
nv500 0.52 -3.59 153. 117. -8.67 1.72 0.22 3211 9.99
nv512 0.63 15.23 99.1 76.8 16.43 1.62 -0.49 953 -5.73
nv514 0.7 -4.04 94.7 71.7 -6.42 1.76 0.28 1567 5.03
ut508 0.56 17.31 147. 110. 22.12 1.74 -1.0 3131 -21.1
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