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Rationale and Objectives: Spinal osteoporotic compression fractures (OCFs) can be an early biomarker for osteoporosis but are often 
subtle, incidental, and underreported. To ensure early diagnosis and treatment of osteoporosis, we aimed to build a deep learning 
vertebral body classifier for OCFs as a critical component of our future automated opportunistic screening tool. 

Materials and Methods: We retrospectively assembled a local dataset, including 1790 subjects and 15,050 vertebral bodies (thoracic 
and lumbar). Each vertebral body was annotated using an adaption of the modified-2 algorithm-based qualitative criteria. The 
Osteoporotic Fractures in Men (MrOS) Study dataset provided thoracic and lumbar spine radiographs of 5994 men from six clinical 
centers. Using both datasets, five deep learning algorithms were trained to classify each individual vertebral body of the spine radio-
graphs. Classification performance was compared for these models using multiple metrics, including the area under the receiver op-
erating characteristic curve (AUC-ROC), sensitivity, specificity, and positive predictive value (PPV). 

Results: Our best model, built with ensemble averaging, achieved an AUC-ROC of 0.948 and 0.936 on the local dataset’s test set and 
the MrOS dataset’s test set, respectively. After setting the cutoff threshold to prioritize PPV, this model achieved a sensitivity of 54.5% 
and 47.8%, a specificity of 99.7% and 99.6%, and a PPV of 89.8% and 94.8%. 

Conclusion: Our model achieved an AUC-ROC > 0.90 on both datasets. This testing shows some generalizability to real-world clinical 
datasets and a suitable performance for a future opportunistic osteoporosis screening tool.   
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INTRODUCTION 

O steoporosis affects 9% of individuals over 50 years 
old in the US (1) and 200 million women globally  
(2). In developed countries, one out of three in-

dividuals will suffer an osteoporotic compression fracture 
(OCF) in their lifetime (2). After the first OCF, the risk for 
subsequent OCFs increases greatly (3–5). Even one OCF can 
decrease the quality of life and increase the risk of mor-
tality (6). 

Osteoporosis screening is evidence-based and is endorsed 
by many organizations, including the US Preventive Services 
Task Force, but remains underutilized. Between 2004 and 
2006, more than 2/3 of women who should have been 
screened for osteoporosis were not (7). From 2006 to 2010, 
screening of US women with Medicare using dual-energy 
X-ray absorptiometry decreased by 56% (8). The rate of 
osteoporosis screening for high-risk men is also low (9). 

Opportunistic osteoporosis screening, which uses pre-
existing imaging to increase osteoporosis detection rates, can 
complement current osteoporosis screening methods and is 
desired to introduce minimum extra cost. Several approaches 
to opportunistic osteoporosis screening have been proposed  
(10–29). Many research groups used computed tomography 
(CT) images (10–22), while few used radiographs (23–29). 
Radiography is a ubiquitous imaging modality used early in 
diagnostic workup of many conditions with an estimated 183 
million exams in US hospitals in 2010 (30). Thus, using 
radiographs to conduct opportunistic osteoporosis screening 
is as important as using CT and could potentially reach a 
broader patient population. Using radiographs, Lee et al. (23) 
and Zhang et al. (24) used machine learning algorithms to 
estimate bone mineral density. However, using bone mineral 
density as a biomarker of osteoporosis detection has known 
limitations (31,32). Spinal OCFs can serve as an additional 
osteoporosis biomarker and are often incidental in chest or 
abdominal images and frequently underreported, resulting in 
underdiagnosis and undertreatment (33). Applying auto-
mated opportunistic OCF screening to existing imaging 

studies could result in earlier and more extensive osteo-
porosis identification and treatment. Multiple studies (25–29) 
have attempted to automatically detect OCFs using radio-
graphs. However, these studies had limitations, including 
single-center data leading to possible overfitting (25–28) and 
unclear dataset construction processes (29). 

We ultimately aim to build an automated opportunistic 
OCF radiograph screening tool with three primary sequential 
components (see Fig 1). Adequate performance of any clinical 
test can only be judged in the context of the use case. Con-
sidering a screening tool for large volumes of studies, a tool 
with too many false positives could unduly burden the 
healthcare system. Thus, we prioritized positive predictive 
value (PPV) and specificity of the model rather than sensitivity. 

In this paper, we focus on the second component, the 
binary OCF classifier (see Fig 1). This component predicts 
whether an image patch containing a single vertebral body 
(termed vertebral patch) has a moderate to severe OCF or 
not. The first component, which is used to automatically 
extract the individual vertebral patches, is a distinct body of 
work (34). To develop the OCF classifier in this study, we 
extracted each vertebral body using manually annotated 
corner points. 

The current work in this paper is an extension of the work 
in (35), in which spine radiographs from the Osteoporotic 
Fractures in Men (MrOS) Study (36,37) were used. In the 
current work, we used two spine radiograph datasets with 
multicenter data: (1) a dataset assembled from multiple 
clinical sites across a single local healthcare enterprise 
(hereafter termed the local dataset) and (2) the MrOS dataset. 
These two datasets include only thoracic and lumbar spine 
radiographs because OCFs are rare in the rest of the axial 
skeleton. To detect OCF on each vertebral patch, we used 
deep learning, the state-of-the-art technique for image 
classification. Our objective is to train a performant and 
generalizable OCF classifier with an area under the pre-
cision–recall (PR) curve (AUC-PR) > 0.70 and an area 
under the receiver operating characteristic curve (AUC- 
ROC) >  0.90 on the multicenter data mentioned above. 

Figure 1. Our future automated opportunistic screening tool detecting OCFs on radiographs. This tool has three components: (1) image 
segmentation and extraction of vertebral bodies; (2) a binary OCF classifier predicting whether each vertebral body has a moderate to severe 
OCF or not; and (3) a subject-level classifier integrating the OCF predictions of all vertebral bodies with additional structured data to determine 
this subject’s OCF status. OCF, osteoporotic compression fracture. 
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MATERIALS AND METHODS 

Brief Introduction to the Datasets 

We obtained two datasets containing lateral thoracic and 
lumbar spine radiographs: the clinically derived local dataset 
and the research MrOS dataset (36,37). The local dataset 
contains clinical data for diagnostic purposes, while the 
MrOS dataset was generated for research. To make the deep 
learning models performant on clinical data, we typically 
used the local dataset to fine-tune the models. Both datasets 
were used to test the models. 

Local Dataset 

This dataset contains clinical data acquired in varied clinical 
settings for diagnostic purposes. The spine radiographs in this 
retrospective dataset were acquired from 2000 to 2017 at 
multiple clinical sites (inpatient, outpatient, and emergency) 
across a single healthcare enterprise. The mean ages 
( ± standard deviation) of female and male subjects were 
75  ±  8 years and 75  ±  9 years, respectively. Figure 2 shows 
the construction of this dataset. 

Two of the coauthors reviewed each radiograph to 
guarantee that they were de-identified and contained no 
protected health information. All radiographs were originally 
in the Digital Imaging and Communications in Medicine 
(DICOM) format. The DICOM tags, which could contain 
protected health information, were removed by converting 
the DICOM radiograph to Tag Image File Format. 

On each radiograph in the local dataset, we annotated 
each vertebral body’s four corner points and severity of OCF 
using DicomAnnotator (38), an open-source annotation 
software. Multiple groups participated in the process of an-
notating the corner points of each vertebral body. The OCF 
severity of each vertebral body was annotated using the 
modified-2 algorithm-based qualitative (m2ABQ) criteria  
(39), a revised version of the modified algorithm-based 
qualitative (mABQ) criteria (40). Five individuals annotated 
OCF severity of each vertebral body, including three faculty 
radiologists (27, 17, and 10 years of experience, respectively), 
one neuroradiology fellow (7 years of experience), and one 
biomedical informatics graduate student. This process con-
sisted of 17 rounds. We randomly split the local dataset into 
17 subsets. In the first eight rounds, at least two individuals 
annotated each radiograph. For each of these first eight 
rounds, we computed Fleiss’ kappa and Cohen’s kappa to 
measure the inter-reader agreement, and held a consensus 
meeting to discuss the disputed annotations. In the last nine 
rounds, each radiograph was annotated by one annotator. 
More details about the local dataset annotation are presented 
elsewhere (39). 

Classification systems and radiologists struggle to accu-
rately classify mild or subtle OCFs often confounded by 
parallax artifact, remote traumatic injuries, and congenital 
variations (40). Our future opportunistic screening tool is 
intended to complement the current clinical standard of care 

while introducing a minimum of extra cost. Including mild 
OCFs into our classification system could substantially in-
crease false positives, which would cause more downstream 
cost. Our use case, to alert or not alert a provider or radi-
ologist to a potentially missed fracture, required a binary 
classification, defined as highly probable OCF versus 
normal/non-osteoporotic deformity/mild or questionable 
fracture. Therefore, we dichotomized the m2ABQ cate-
gories: “label 0″ representing normal/non-osteoporotic de-
formity/mild or questionable fracture vs. “label 1″ 
representing moderate or severe fracture. 

The local dataset was partitioned into the training, vali-
dation, and test sets. As shown in Figure 2, the training set 
was balanced for better model training. In contrast, we kept 
the class distributions of the validation and test sets consistent 
with those in the original population. 

MrOS Dataset 

The deidentified MrOS dataset was obtained from the San 
Francisco Coordinating Center under a data use agreement. 
This dataset was generated for research and includes only 
male subjects, and thus has lower diversity than the local 
dataset. Details (including population information) for the 
MrOS dataset are presented in multiple papers (35–37,42). 
Six US academic medical centers (36,37) contributed data to 
this dataset. 

The MrOS team had previously annotated the MrOS 
dataset based on a modification (42) of the Genant semi-
quantitative (mSQ) criteria (43). To determine OCFs, the 
mSQ criteria require the presence of endplate depression, 
making these criteria closer to the mABQ criteria (40). To 
adapt to our binary OCF classification, the mSQ categories 
were simplified into two classes (moderate or severe fracture 
versus normal/trace/mild fracture) (35). This is similar to the 
m2ABQ simplification previously discussed. 

From the MrOS dataset’s test set, we randomly selected 122 
radiographs containing 844 vertebral bodies, each assigned an 
m2ABQ label. Table 1 shows the number of vertebral bodies for 
each (dataset, OCF classification criteria) combination. In the rest 
of this paper, each of these combinations is denoted by “dataset- 
classification criteria.” For example, MrOS-m2ABQ denotes the 
dataset whose data are from the MrOS dataset and are annotated 
using the m2ABQ criteria. 

Model Training 

The inputs to each of our five models were the vertebral patches 
extracted from the spine radiographs by image preprocessing 
(described in Section A of the Supplemental Materials, which 
is similar to that in (35)). The code for the image preprocessing 
is available at https://github.com/UW-CLEAR-Center/ 
Preprocessing_for_Spinal_OCF_Detection_Multi_Datasets. 

We trained five deep learning algorithms (see Fig 3), including 
GoogLeNet (44), Inception-ResNet-v2 (45), EfficientNet-B1  
(46), and two ensemble algorithms. To train GoogLeNet, In-
ception-ResNet-v2, and EfficientNet-B1, transfer learning was 
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used by pretraining a model on ImageNet (47) and fine-tuning 
the model on a target dataset. Besides this common transfer 
learning technique, we also built a model by first pretraining it on 
ImageNet, then tuning it on the MrOS-mSQ dataset, and finally 
fine-tuning it on the local-m2ABQ dataset. Recall that the local 
dataset contains clinical data, while the MrOS dataset was gen-
erated for research. To make the model performant on the 
clinical data, we finally fine-tuned each model on only the local- 
m2ABQ dataset rather than the combination of both the local- 
m2ABQ dataset and the MrOS-mSQ dataset. Since both the 
MrOS dataset and the local dataset contain vertebral patches, a 
model tuned on the MrOS-mSQ dataset before finally fine- 
tuned on the local-m2ABQ dataset can learn more relevant 
image features. 

After training the models using the three individual al-
gorithms mentioned above, two ensemble models were 
created using the ensemble averaging algorithm and the 
ensemble majority voting algorithm (see Fig 3(b) and 3(c)). 

In summary, three deep learning models and two en-
semble models were generated in each of the following three 
training tasks:  

1) Task 1: Pretrain the model on ImageNet and fine-tune 
the model on the MrOS-mSQ dataset’s training set 
(ImageNet → MrOS-mSQ).  

2) Task 2: Pretrain the model on ImageNet and fine-tune 
the model on the local-m2ABQ dataset’s training set 
(ImageNet → local-m2ABQ).  

3) Task 3: The model tuned in Task 1 was further fine-tuned 
on the local-m2ABQ dataset’s training set (ImageNet → 
MrOS-mSQ → local-m2ABQ). 

In total, 15 models (5 models per task × 3 tasks) were built. 

More details of model training are presented in Section B 
of the Supplemental Materials. 

Model Evaluation 

Using both the local-m2ABQ dataset’s test set and the 
MrOS-m2ABQ dataset’s test set, we tested each of the 15 
trained models described in the “Model training” section 
above. Each model trained in Task 1 was also tested on the 
MrOS-mSQ dataset’s test set. All of the performance mea-
sures mentioned in this section were computed using the 
classification results on individual vertebral patches. 

The ensemble majority voting algorithm does not output a 
numerical value on which a range of cutoff thresholds can be 
set (see Fig 3(c)). Thus, the AUC-PR and the AUC-ROC 
of the models built using the ensemble majority voting al-
gorithm could not be computed. Instead, the following 
performance measures were computed: accuracy, sensitivity, 
specificity, PPV, negative predictive value (NPV), false dis-
covery rate (FDR = 1 – PPV), and F1 score. 

For the other trained models, all of the performance measures 
mentioned above were computed, including the AUC-PR and 
the AUC-ROC. For measures other than AUC-PR and AUC- 
ROC, a cutoff threshold was required. To set the cutoff 
threshold for each of these models, we used two thresholding 
methods, each applied to the validation set of the dataset whose 
training set was used to finally fine-tune the model. The same 
cutoff threshold was then used when testing the model on dif-
ferent test sets. The two thresholding methods are as follows:  

1) Set the cutoff threshold to maximize the F1 score. This 
automatically sets the cutoff threshold and balances the 
sensitivity and the PPV. 

Figure 2. Construction of the local dataset and partitioning it into the training, validation, and test sets. zVision (Intelerad; Montreal, 
Canada), a radiology information search tool, queried the radiology information system (RIS) to identify subjects and exams fitting the 
inclusion criteria. A natural language processing (NLP) system called LireNLPSystem (41) analyzed each exam’s radiology report to roughly 
determine whether it described a fracture. The NLP result for each exam’s radiology note served as a weak label for this exam. These weak 
labels could help roughly balance the training set. Radiographs of the subjects that satisfied the inclusion criteria were retrieved from the 
picture archiving and communication system (PACS). From the retrieved radiographs, we randomly selected 1200 subjects and a single 
radiograph of each subject to form the validation and test sets. From these 1200 radiographs, 879 were randomly assigned to form the test 
set and the remaining 321 were assigned to the validation set. To avoid overlap between the training set and the other two sets, the 
radiographs in the training set were sampled from the 13,667 radiographs excluding those of the 1200 subjects that had been selected for 
the validation and test sets. To form the training set, 778 radiographs were sampled. To improve the balance of the training set, 75% of the 
radiographs were randomly sampled from the ones labeled as “fracture” by NLP. The remaining radiographs were randomly sampled from 
the ones labeled as “no fracture” or “not mentioned” by NLP. Finally, the local dataset was annotated. Further data preprocessing and 
augmentation steps (including other data balancing steps) are introduced in Section A of the Supplemental Materials. 

TABLE 1. The Number of Vertebral Bodies for Each (Dataset, OCF Classification Criteria) Combination            

Local Dataset MrOS Dataset  

Training Set Validation Set Test Set Total Training Set Validation Set Test Set Total  

m2ABQ 5968 2394 6688 15,050 0 0 844 844 
mSQ NA 76,748 8484 15,177 100,409 

MrOS, Osteoporotic Fractures in Men; NA, not available; OCF, osteoporotic compression fracture; m2ABQ, modified-2 algorithm-based 
qualitative criteria; mSQ, modification of the Genant semiquantitative criteria.  
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2) Manually set the threshold to make the PPV approximate 
90%. Recall that we prioritize the PPV rather than the 
sensitivity for our opportunistic screening tool (see the 

“Introduction“ section). Our initial consultation with 
local clinicians showed that a PPV of approximately 90% 
was appropriate. 

Figure 3. Flowchart of OCF classification using deep learning. Recall that the automatic image segmentation tool is a distinct body of work 
(see the “Introduction” section). In the current work, four manually annotated corner points of each vertebral body were used to extract the 
vertebral patch during image preprocessing. Taking an individual vertebral patch as an input, each of the five deep learning algorithms was 
used to build models to classify the vertebral patch to have label 0 or label 1. (a) shows the flowchart of OCF classification by GoogLeNet, 
Inception-ResNet-v2, or EfficientNet-B1. Each of these three models outputs a probability that the vertebral patch should be classified to 
have label 1. Then the vertebral patch was classified by comparing the probability and a preset cutoff threshold. (b) shows the flowchart of 
OCF classification by ensemble averaging, which averaged the probabilities output by the three individual models. Then the classification 
result was obtained by comparing the average probability and a preset cutoff threshold (details are given in the “Model evaluation section“ of 
“Materials and methods“ section). (c) shows the flowchart of OCF classification by ensemble majority voting. The classification result of 
ensemble majority voting was the majority classification result of the three individual models.OCF, osteoporotic compression fracture. 
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The 95% confidence interval (CI) of each performance 
measure was computed using 2000-fold bootstrap analysis. 

IRB Approval 

Retrieval of the local dataset was covered under the local 
retrospective institutional review board (IRB) for Diagnosis 
Radiology Images Deep Learning Project with a waiver of 
informed consent. For the MrOS dataset, at each medical 
center, a local IRB approved the MrOS study. All MrOS 
participants gave written informed consent at the time of the 
study. 

RESULTS 

Datasets 

Table 2 shows the local dataset’s metadata, including age, 
sex, race, ethnicity, radiograph generation year, and X-ray 
system vendor. In Section D of the Supplemental Materials, 
we also show the number and the percentage of the local 
dataset’s radiographs generated by each type of machine. The 
MrOS dataset’s metadata have been summarized in multiple 
publications (35–37,42) and are shown in Table 3. Section E 
of the Supplemental Materials shows more details of the 
metadata of the MrOS dataset’s training set. 

Model Evaluation 

We report the performance of our ensemble averaging al-
gorithm in Tasks 2 (ImageNet → local-m2ABQ) and 3 
(ImageNet → MrOS-mSQ → local-m2ABQ) in this paper 
and report the performance of the other models in Section C 
of the Supplemental Materials. The performance measures 
were computed using the classification results on individual 
vertebral patches. 

Figures 4 and 5 show the performance of the model built 
using the ensemble averaging algorithm in Task 2. Figures 4 
and 5 also show this model’s performance on the local- 
m2ABQ dataset’s test set and the MrOS-m2ABQ dataset’s 
test set, respectively. 

On the local-m2ABQ dataset’s test set, the model men-
tioned above yielded an AUC-ROC of 0.948 and an AUC- 
PR of 0.730. After setting the cutoff threshold to make the 
PPV approximate 90% on the local-m2ABQ dataset’s vali-
dation set, this model achieved a sensitivity of 54.5%, a 
specificity of 99.7%, a PPV of 89.8%, an NPV of 97.9%, an 
FDR of 10.2%, an F1 score of 0.671, and an accuracy 
of 97.7%. 

On the MrOS-m2ABQ dataset’s test set, the model 
mentioned above yielded an AUC-ROC of 0.936 and an 
AUC-PR of 0.811. After setting the cutoff threshold to 
make the PPV approximate 90% on the local-m2ABQ da-
taset’s validation set, this model achieved a sensitivity of 
47.8%, a specificity of 99.6%, a PPV of 94.8%, an NPV of 

92.4%, an FDR of 5.2%, an F1 score of 0.636, and an ac-
curacy of 92.5%. 

Figure 6 shows the performance of the model built using 
the ensemble averaging algorithm in Task 3 and evaluated on 
the local-m2ABQ dataset’s test set. This model yielded an 
AUC-ROC of 0.955 and an AUC-PR of 0.764. After set-
ting the cutoff threshold to make the PPV approximate 90% 
on the local-m2ABQ dataset’s validation set, this model 
achieved a sensitivity of 53.9%, a specificity of 99.7%, a PPV 
of 89.4%, an NPV of 97.9%, an FDR of 10.6%, an F1 score 
of 0.672, and an accuracy of 97.7%. 

Comparison Between the Models 

For each deep learning algorithm, there were three training 
tasks. Each model was tested using two or three test sets.  
Table 4 shows the F1 score, the AUC-PR, and the AUC- 
ROC of each (deep learning algorithm, training task, 
and test set) combination. In this section, each model’s cutoff 
threshold was set to maximize the F1 score on the corre-
sponding validation set. 

In the local dataset’s test set and the MrOS dataset’s test 
set, the percentages of vertebral bodies with label 1 are 4.5% 
(computed using the table at the bottom of Fig 2) and 1.1%  
(35), respectively. Because AUC-ROC is less suitable than 
AUC-PR for a highly imbalanced test set (48), the models 
are compared not using AUC-ROC but using the F1 score 
and the AUC-PR. 

DISCUSSION 

The number of subjects in each of the training and test sets 
was determined by striking the balance between obtaining a 
large set and reducing manual annotation time. A large set is 
more likely to contain diverse data. Thus, a large training set 
can reduce model overfitting. A large test set can ensure 
accurate measures of model performance. However, since 
manual annotation is time-consuming, we could not wait to 
train and test our models after annotating a very large 
number of radiographs. 

The ensemble averaging model trained in Task 2 achieved 
our prespecified objectives of AUC-PR >  0.70 and AUC- 
ROC >  0.90 on both the local dataset and the MrOS da-
taset. When setting the cutoff threshold to make the PPV 
approximately 90% on the local-m2ABQ dataset’s validation 
set, we obtained high PPVs and specificities with moderate 
sensitivities on both datasets. This is acceptable for our 
clinical use case of an opportunistic screening tool described 
in the “Introduction” section, in which the PPV and spe-
cificity rather than the sensitivity should be prioritized. An 
opportunistic screening tool could be clinically useful with a 
moderate sensitivity and a high specificity or PPV. Given the 
volume of radiographic exams that cover some portion of the 
thoracic and lumbar spine at most medical institutions, it is 
prudent to consider the downstream effects of positive and 
negative predictive results. A positive predictive result would 
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TABLE 2. Metadata for the Training, Validation, and Test Sets of the Local Dataset, as well as the Entire Local Dataset        

Training Set Validation Set Test Set Entire Local 
Dataset   

Number (percentage) of recorded ages    
Age at exam (years)     

65–74 395 (53.2%) 181 (59.0%) 479 (56.6%) 1055 (55.7%) 
75–84 234 (31.6%) 84 (27.4%) 255 (30.1%) 573 (30.2%) 
85–94 98 (13.2%) 32 (10.4%) 102 (12.0%) 232 (12.2%) 
≥ 95 15 (2.0%) 10 (3.2%) 11 (1.3%) 36 (1.9%)  

Number    
Total recorded ages 742 307 847 1896  

Mean ±  standard deviation of ages in 
years    

Female 76  ±  9 75  ±  9 75  ±  8 75  ±  8 
Male 75  ±  9 75  ±  9 75  ±  9 75  ±  9 
All 75  ±  9 75  ±  9 75  ±  9 75  ±  9  

Number (percentage) of subjects    
Sex     

Female 339 (53.3%) 172 (56.0%) 467 (55.1%) 978 (54.6%) 
Male 296 (46.5%) 135 (44.0%) 379 (44.8%) 810 (45.3%) 
Not recorded 1 (0.2%) 0 (0%) 1 (0.1%) 2 (0.1%) 

Race     
American Indian and Alaska 
Native 

2 (0.3%) 2 (0.7%) 6 (0.7%) 10 (0.6%) 

Asian 68 (10.7%) 37 (12.0%) 72 (8.5%) 177 (9.9%) 
Black or African American 39 (6.2%) 20 (6.5%) 51 (6.0%) 110 (6.1%) 
Native Hawaiian and Other 
Pacific Islander 

2 (0.3%) 1 (0.3%) 3 (0.4%) 6 (0.3%) 

White 474 (74.5%) 220 (71.7%) 654 (77.2%) 1348 (75.3%) 
Multiple races 49 (7.7%) 25 (8.1%) 57 (6.7%) 131 (7.3%) 
Not recorded 2 (0.3%) 2 (0.7%) 4 (0.5%) 8 (0.4%) 

Ethnicity     
Hispanic or Latino 9 (1.4%) 5 (1.6%) 16 (1.9%) 30 (1.7%) 
Not Hispanic or Latino 189 (29.7%) 138 (45.0%) 358 (42.3%) 685 (38.3%) 
Not recorded 438 (68.9%) 164 (53.4%) 473 (55.8%) 1075 (60.0%)  

Number    
Total subjects 636 307 847 1790  

Number (percentage) of radiographs    
Radiograph generation year     

2000–2005 127 (17.1%) 49 (15.9%) 113 (13.3%) 289 (15.2%) 
2006–2011 354 (47.7%) 135 (44.0%) 405 (47.8%) 894 (47.2%) 
2012–2017 261 (35.2%) 123 (40.1%) 329 (38.9%) 713 (37.6%) 

X-ray machine vendor     
Canon 5 (0.7%) 0 (0%) 5 (0.6%) 10 (0.5%) 
DeJarnette Research Systems 48 (6.5%) 21 (6.8%) 48 (5.7%) 117 (6.2%) 
Fujifilm 378 (50.9%) 157 (51.2%) 427 (50.4%) 962 (50.8%) 
General Electric 202 (27.2%) 74 (24.1%) 232 (27.3%) 508 (26.8%) 
Philips 104 (14.0%) 50 (16.3%) 127 (15.0%) 281 (14.8%) 
Hybrid General Electric and 
Fujifilm 

5 (0.7%) 5 (1.6%) 8 (1.0%) 18 (0.9%)  

Number    
Total radiographs 742 307 847 1896 

The age data were retrieved from the radiology information system (RIS). The sex data were obtained from the Digital Imaging and 
Communications in Medicine (DICOM) metadata of the radiographs. The race and ethnicity data were retrieved from the electronic health 
record system. A subject could have multiple exams, which might not be from the same year. Consequently, multiple ages could be recorded 
for a subject. In each set, for every range of ages, we reported the number of recorded ages rather than the number of subjects. If a subject 
had multiple ages recorded, all of them were used to calculate the mean and the standard deviation.  
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result in provider efforts guiding the patient to the appro-
priate clinical care as well as patient expense, worry, radiation 
exposure, and potential harm. A negative predictive result 
would result in no further action and would not affect the 
current standard of clinical care. Our opportunistic screening 
tool will only augment current clinical practice rather than 
replace radiologist interpretation or any other step in the 
current clinical workflow. In this setting, a false negative is a 
missed opportunity, but could still be possibly caught by the 
current standard of care. A false positive triggers extra work 
that has no obvious benefit to the patient but potential harm 
and financial burden. Our model with a PPV of about 90% 
and a sensitivity of about 50% can detect nearly half of the 
unreported fractured vertebral bodies with limited extra cost. 
It is worth noting that many diagnostic tests in use today 
have modest sensitivities. Papanicolaou smear has a sensitivity 
of 55.4% and a specificity of 94.6% (49). 

In the “Comparison between the models” section of the 
“Results” section, we compared the performance of each 
(deep learning algorithm, training task, and test set) combi-
nation. We have six observations:  

1) In each (training task, test set) combination, the models 
built using the two ensemble algorithms typically out-
performed the other models. 

2) In each (training task, test set) combination, the two en-
semble algorithms typically produced models with similar 
F1 scores. Unlike the ensemble majority voting algorithm 
that outputs categorical values, the ensemble averaging 
algorithm provided numerical outputs to which different 
cutoff thresholds could be applied. Thus, the ensemble 
averaging algorithm is more flexible and can be adapted 
for different clinical use cases.  

3) In Task 2 (ImageNet → local-m2ABQ), the model built 
using the ensemble averaging algorithm had a better F1 

score and a higher AUC-PR on the MrOS-m2ABQ 
dataset than on the local-m2ABQ dataset. This shows that 
the model built using the ensemble averaging algorithm 
has some generalizability. Counterintuitively, this model 
performed worse on the test set of the local-m2ABQ 
dataset, whose training set was used for fine-tuning this 
model, than on the MrOS-m2ABQ dataset. The reason 
could be that the data in the local dataset are more diverse, 
especially in subject positioning and image artifacts, in-
creasing difficulty of OCF classification.  

4) On each test set, each model trained in Task 3 (ImageNet 
→ MrOS-mSQ → local-m2ABQ) typically had a higher 
F1 score and a better AUC-PR than the corresponding 
model trained in Task 2 (ImageNet → local-m2ABQ) 
did. Our transfer learning technique in Task 3 could 
improve models’ performance. However, since each 
model trained in Task 3 was tuned using both datasets, we 
cannot claim that this model is generalizable. We need 
more datasets to show these models’ generalizability.  

5) In Task 1 (ImageNet → MrOS-mSQ), the AUC-PR of 
each model tested on the MrOS-mSQ dataset was higher 
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than that of each model tested on the MrOS-m2ABQ 
dataset but to a limited degree (e.g., 5.7% for the en-
semble averaging algorithm). This could imply that our 
two binary OCF labeling systems (simplified from the 
mSQ criteria and the m2ABQ criteria, respectively) are 
similar.  

6) In Task 1, the F1 score and the AUC-PR of each model 
tested on the MrOS-mSQ dataset were higher than those 
of each model tested on the local-m2ABQ dataset, re-
spectively (e.g., 36.6% and 27.8% greater, respectively, by 
the F1 score and the AUC-PR, for the ensemble aver-
aging algorithm). The models fine-tuned on the MrOS- 
mSQ dataset were not generalizable to the local-m2ABQ 
dataset. The MrOS dataset was obtained for research, 
while the local dataset was extracted from clinical data that 
were more diverse in demographics, X-ray techniques, 
and image artifact variations. This greater diversity is likely 

the cause of poor performance by models only fine-tuned 
on the MrOS dataset. 

Researchers from other research projects (25–29) reported 
approaches to automatically detecting OCFs using radio-
graphs. Using lumbar or thoracolumbar spine radiographs, 
Chou et al. (25) did automatic segmentation to extract the 
vertebral bodies and classified each vertebral body using an 
ensemble method. Using similar methods, Li et al. (26) 
trained models to automatically detect vertebral fractures on 
lateral spine radiographs. Chen et al. (27) and Murata et al.  
(28), respectively, trained a deep learning model to detect 
vertebral fractures on a radiograph without vertebral body 
segmentation. The main limitation of each of the above 
projects is that a single-site dataset was used. This resulted in 
a more homogeneous population, making the trained models 
less generalizable. 

Figure 4. The performance of the model, which was built using the ensemble averaging algorithm in Task 2 and evaluated on the test set of 
the local-m2ABQ dataset. (a) The ROC curve and the AUC-ROC with its 95% CI. (b) The PR curve and the AUC-PR with its 95% CI. (c) When 
the cutoff threshold (0.327) is set to maximize the F1 score on the local-m2ABQ dataset’s validation set, the confusion matrix with the number 
of vertebral bodies in each of the four cells shown in the parentheses. (d) The confusion matrix when the cutoff threshold (0.800) is manually 
set to make the PPV approximate 90% on the local-m2ABQ dataset’s validation set. (e) Using each thresholding method, the sensitivity, 
specificity, PPV, NPV, FDR, F1 score, and accuracy with their 95% CIs. AUC-ROC, area under the receiver operating characteristic curve; CI, 
confidence interval; FDR, false discovery rate; m2ABQ, modified-2 algorithm-based qualitative criteria; NPA, negative predictive value; PPV, 
positive predictive value; PR, precision–recall. 
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Xiao et al. (29) trained and tested their models on wo-
men’s lateral spine and chest radiographs from multiple sites, 
showing that their models had good generalizability and 
could serve as an opportunistic screening tool for female 
OCF screening. Based on their models, they developed a 
software program with a user interface. However, except for 
two datasets, they did not mention the source, the dataset 
construction process, and the demographic information of 
the other datasets in detail. The two known datasets were 
retrieved from the Osteoporotic fractures in women (MsOS) 
Hong Kong dataset (50). Like the MrOS dataset, the MsOS 
Hong Kong dataset was originally collected for research and 
has some selection bias. Their recruitment criteria included 
that all subjects were able to walk without assistance (50). 
The radiographs in this dataset likely contain far fewer 
imaging chain artifacts like angulation, position, overlapping, 
motion, and equipment, which are commonly seen in 

standard clinical imaging, and are seen when comparing the 
local and MrOS datasets in our study. 

In contrast to the above projects, we used data assembled 
from multiple sites with detailed description of the dataset 
construction process and demographic information (see Fig 2 
and Table 2 describing the local dataset, as well as the papers  
(35–37,42) describing the MrOS dataset). Our local dataset 
was retrieved from local clinical sites and thus is more con-
sistent with the distribution of clinical data. Shown in  
Table 2, the local dataset contains subjects that have varied 
race, ethnicity, and gender, as well as radiographs generated 
from different X-ray machines, which could help improve 
the generalizability of our trained models. 

Our models have several limitations:  

1) We used lateral spine radiographs to build our classifiers. 
This type of radiograph is optimized to show bones, and 

Figure 5. The performance of the model, which was built using the ensemble averaging algorithm in Task 2 and evaluated on the test set of 
the MrOS-m2ABQ dataset. (a) The ROC curve and the AUC-ROC with its 95% CI. (b) The PR curve and the AUC-PR with its 95% CI. (c) 
When the cutoff threshold (0.327) is set to maximize the F1 score on the local-m2ABQ dataset’s validation set, the confusion matrix with the 
number of vertebral bodies in each of the four cells shown in the parentheses. (d) The confusion matrix when the cutoff threshold (0.800) is 
manually set to make the PPV approximate 90% on the local-m2ABQ dataset’s validation set. (e) Using each thresholding method, the 
sensitivity, specificity, PPV, NPV, FDR, F1 score, and accuracy with their 95% CIs. AUC-ROC, area under the receiver operating char-
acteristic curve; CI, confidence interval; FDR, false discovery rate; m2ABQ, modified-2 algorithm-based qualitative criteria; NPA, negative 
predictive value; PPV, positive predictive value; PR, precision–recall. 
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thus a rational initial target for research. However, to in-
crease the target population in the future, other radiographs 
like lateral chest or abdominal radiographs should be used.  

2) Our current model classifies individual vertebral bodies 
extracted from spine radiographs using manual annota-
tion. This ensures that the vertebral bodies are correctly 
bounded on a radiograph but is not automated or scalable. 
As mentioned in the “Introduction” section, we are 
testing and separately reporting image segmentation 
models to automatically localize the vertebral bodies on a 
radiograph.  

3) Currently, we only have one dataset (the local dataset) 
containing data acquired in varied clinical settings for 
diagnostic purposes. The number of annotated radio-
graphs in the local dataset is small. We need more an-
notated clinical data to train our model and test its 
generalizability. In the future, we will annotate more 

radiographs from various clinical sites using semi-auto-
mated approaches. 

4) In this study, the cutoff thresholds set using the two thresh-
olding methods might not be the best for the clinical use case. 
We have already surveyed a variety of clinical providers to 
determine an acceptable performance threshold for automated 
opportunistic OCF screening. We will further analyze our 
survey results to determine the most appropriate cutoff 
threshold for the clinical use case.  

5) In this study, we did not analyze incorrectly classified 
cases and explore how image features contribute to each 
model’s outputs. These two tasks should be implemented 
in the future to understand how the model works, its 
failure modes, and how to further improve the model. 

In conclusion, we used five deep learning algorithms to 
train models that detected OCFs of vertebral bodies 

Figure 6. The performance of the model, which was built using the ensemble averaging algorithm in Task 3 and evaluated on the test set of 
the local-m2ABQ dataset. (a) The ROC curve and the AUC-ROC with its 95% CI. (b) The PR curve and the AUC-PR with its 95% CI. (c) When 
the cutoff threshold (0.764) is set to maximize the F1 score on the local-m2ABQ dataset’s validation set, the confusion matrix with the number 
of vertebral bodies in each of the four cells shown in the parentheses. (d) The confusion matrix when the cutoff threshold (0.900) is manually 
set to make the PPV approximate 90% on the local-m2ABQ dataset’s validation set. (e) Using each thresholding method, the sensitivity, 
specificity, PPV, NPV, FDR, F1 score, and accuracy with their 95% CIs.AUC-ROC, area under the receiver operating characteristic curve; CI, 
confidence interval; FDR, false discovery rate; m2ABQ, modified-2 algorithm-based qualitative criteria; NPA, negative predictive value; PPV, 
positive predictive value; PR, precision–recall. 
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extracted from spine radiographs. The ensemble averaging 
model trained in Task 2 achieved our prespecified objectives 
of AUC-PR >  0.70 and AUC-ROC >  0.90 on both the 
local dataset and the MrOS dataset. This model has good 
performance and some generalizability and can serve as a 
critical component of our future automated opportunistic 
screening tool. 
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