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Abstract Our understanding of Alzheimer’s disease (AD) is
still incomplete and, as a result, we lack effective therapies.
Reprogramming to generate human-induced pluripotent stem
cells provides a new approach to the generation of human
neurons that carry the genomes of people with familial or
sporadic AD. Differentiation of such stem cells to human
neurons is already providing new insights into AD and mo-
lecular pathways that may provide new targets for effective
therapy. These pathways include typical amyloid response
pathways, as well as pathways leading from altered behavior
of amyloid precursor protein to the elevated phosphorylation
of tau protein. There is also a need for standardization of
models so that isogenic lines differing only in the familial
AD mutation can be compared.
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Reprogramming

Alzheimer’s disease (AD) is a very common, currently incur-
able, and economically and emotionally costly disease. As
such, it represents a major public health, scientific, and med-
ical challenge. The literature around this disease is enormous,
currently including > 100,000 papers, based on a recent
Pubmed search. In spite of this enormous literature, and many
sophisticated and careful experiments, understanding of AD

remains an unsolved problem in 2 senses: first, because its
molecular basis remains mysterious in many ways; and, sec-
ond, by virtue of our current lack of a satisfyingly effective
therapeutic.

The current major hypothesis in the field is the amyloid
cascade model, which posits that oligomeric amyloid-beta
(Aβ) fragments accumulate abnormally in patients with AD
and drive neurotoxic events leading to neurodegeneration.
While considerable evidence exists for the amyloid cascade
model, experimental therapies built on this hypothesis have
thus far been unsuccessful, and key details about how amyloid
is neurotoxic either alone or in combination with other insults
remain unclear [1].

One possible reason for our current situation may be that
most mechanistic work thus far has relied either upon nonhu-
man animal models of AD or on experiments with human
cells that are not actually neurons or glia. That these may be
significant problems comes from 2 lines of thinking: first,
non-neuronal cells lack many of the most important pathways
that make neurons unique (including their ability to propagate
an action potential, their large size, their extensive connectiv-
ity, their ability to convert an electrical signal into a chemical
signal at neural synapses, and their extreme compartmentali-
zation into biochemically distinct axonal and somatodendritic
regions) and, second, euphemistically, humans are not just big
mice [e.g., 2–4].

At present, no animal model appears to develop true AD
and animal models often lack the range of phenotypes found
in typical human AD. In fact, generating any of the
Alzheimer’s-type pathology found in humans generally re-
quires expression of one or more human genes in a mouse
genetic background. That human genes are required at all for
the development of typical pathology raises the question of
whether the other, obviously mouse, genes may make a pro-
found difference in the biochemical consequences and scien-
tific interpretation of the lesions mimicked by expression of
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human familial AD (FAD) genes and mutations. Finally, of
course, no animal model truly mimics the most common form
of AD, which is sporadic AD (SAD).

One new opportunity that may provide insights into AD
comes from recent advances in stem cell technology. In par-
ticular, reprogramming technology, which allows cells from
patients with FAD or SAD to be reprogrammed to a pluripo-
tent state to create human induced pluripotent stem cells
(hIPSCs) is beginning to be of great value [5]. These hIPSC
are valuable as they can be differentiated to a variety of cell
types, such as neurons, astrocytes, oligodendrocytes, and oth-
er brain-derived cells. As these diverse cells carry the genomes
of patients with AD, they can be used to test mechanisms of
disease, to screen for potential drugs, and to evaluate func-
tional roles of genetic variation observed in large genome-
wide association studies. Furthermore, hIPSC technology al-
lows investigators to identify and validate new pathways in
the context of euploid human material in the absence of
overexpression of key genes, which can bring its own
artifacts.

Although this type of investigation of AD using hIPSC-
derived models is still relatively new, a number of informative
and provocative reports have appeared in the literature thus
far, with more soon to come. The reports fall into 3 broad
categories. First, are analyses of FAD mutations in APP;
second are analyses of FAD mutations in PS1 and PS2; and
third are analyses and tests of Aβ toxicity on different types of
human neurons.

FAD APP Mutations

Several studies of hIPSC-derived human neurons carrying
FAD APPmutations have appeared. The FAD APPmutations
are present in 1 of the 2 genomic copies of APP, and are in the
context of a “normal” euploid genome found in afflicted
patients. Importantly, these mutations are in a normal APP
gene in the absence of overexpression of amyloid precursor
protein (APP) and with apparently normal genomic control of
expression levels. Such studies have begun to provide new
clues about early changes in neuronal physiology and function
in response to mutations causing FAD.

One important study analyzed neurons made from hIPSC
lines carrying FAD APPE693delta and FAD APPV717L muta-
tions [6]. This work included an extensive analysis of Aβ
production from these lines and found that APPE693delta made
less total Aβ while APPV717L increased the Aβ42 : Aβ40
ratio with the increased ratio due to an increase in Aβ42 and
no change in Aβ40. They noted that APPE693delta cells accu-
mulated Aβ oligomers inside the cell and exhibited signs of
cellular stress that could be reversed by treatment with a drug
previously reported to attenuate endoplasmic reticulum stress
or reactive oxygen species generation, docosahexaenoic acid.

Neurons carrying the genome of a patient with SAD in their
analysis behaved the same as APPE693delta. These investigators
did not report any analyses of tau protein phosphorylation or
abundance.

A second study [7], from our laboratory, analyzed a hered-
itary APP duplication (APPDp), which causes early-onset
FAD. These investigators took advantage of the ability to
purify neurons by fluorescence-activated cell sorting and ob-
served that the APPDp neurons produced and secreted more
Aβ40, exhibited elevated signs of elevated glycogen synthase
kinase 3β activity, and exhibited elevated phosphorylation of
tau protein at threonine 231, a proposed pathological site in
tau protein. Strikingly, the elevated phosphorylation of tau
protein was inhibited by the application of β-secretase but
not γ-secretase inhibitors, suggesting that in this human neu-
ronal system, aberrant phosphorylation of tau protein is driv-
en, at least in part, by the β-C-terminal fragment fragment of
APP. These investigators also observed an elevated frequency
of enlarged endosomes similar to many previous reports of
enlarged endosomes in non-neuronal cells caused by elevated
expression of APP and by investigators studying postmortem
brain material from Down syndrome fetuses, which carry an
extra copy ofAPP by virtue of being trisomic for chromosome
21 [8–10]. In an analogous study [11], Down syndrome neu-
rons were differentiated to a cortical fate and analyzed for
production and deposition of Aβ, which were both observed.
The researchers found elevated production of both Aβ40 and
Aβ42 in neurons derived from both Down syndrome embry-
onic stem and induced pluripotent stem cells. In addition,
elevated levels of total and phosphorylated tau protein with
an apparent enrichment of tau protein were observed in the
cell bodies of these neurons. Another recent report analyzed
an APPV717I mutation and found elevated Aβ42 and Aβ38
production, no change in Aβ40, elevated β-secretase cleav-
age, and elevated total and phosphorylated tau protein [12].
These investigators observed that Aβ antibody treatment in
the culture medium suppressed the increased tau protein phe-
notype in these mutant neurons, suggesting that in this system
Aβ production itself can drive elevated tau protein
phenotypes.

Finally, Mertens et al. [13] generated hIPSC lines and
neurons carrying an FAD APPK724N mutation located in the
cytosolic domain of APP. This mutation also exhibited elevat-
ed an Aβ42 : Aβ40 ratio caused by decreased Aβ40 and
increased Aβ42. Surprisingly, these altered ratios could not be
rescued by treatment with therapeutically relevant doses of
nonsteroidal anti-inflammatory drugs (NSAIDS), which could
alter these ratios in a variety of other cell types and transgenic
models that overexpressed APP. The same NSAIDs had failed
in clinical trials, even though results in transgenic models had
been encouraging. These authors traced the likely failures to
respond to therapeutically appropriate NSAID exposures to
the normal levels of APP expression in the hIPSC-derived

122 Goldstein et al.



neurons and suggest that overexpression of APP in the models
increased NSAID sensitivity as human neurons that
overexpressed APP exhibited more similar NSAID responses
to those in overexpression models. Thus, this hIPSC system
more faithfully recapitulated human clinical responses to
NSAIDs and suggests that future therapy development efforts
should include assays of human euploid neurons as a key
preclinical step.

Taken together, these studies suggest euploid human neu-
rons with FAD APPmutations can reveal new insights regard-
ing drug responses and perhaps other phenotypes. For exam-
ple, different APP mutations share a common phenotype of
alterations in tau protein modification, abundance, and local-
ization. The possibility that these phenotypes are driven by a
combination of exposure to Aβ and to other proteolytic inter-
mediates of APP is also raised by these data.

PS1 and PS2 Mutations

A number of papers have reported analysis of presenilin (PS)
mutations. Mutations analyzed include PS1A246E, PS1A79V,
and PS2N141I from patient material [13–15]. The PS1dE9 mu-
tation was analyzed in our laboratory following induction by
site-directed mutagenesis using transcription activator-like ef-
fector nuclease [16]. These studies all agree that the Aβ42:
Aβ40 ratio is increased in all of these PS mutations. One study
also reports significant gene expression changes in PS1A246E

mutations [14]. All of these reports are also remarkable by
virtue of failing to observe any alteration in tau protein phos-
phorylation or abundance thus far in FAD PS mutations com-
pared with APP mutations. While this difference could be a
result of some unknown effect of culture conditions or timing,
an interesting and testable possibility is that APP and PS1
mutations differ in their initial phenotypes with respect to
AD causation, which the hIPSC system has detected. Further
work is needed to evaluate this important possibility. Woodruff
et al. [16] also carefully examined the various allelic combina-
tions of PS1null and Ps1dE9 mutant-bearing neurons and con-
cluded that null mutations and FAD mutations differed with
respect to Aβ42 production and nicastrin maturation, and
therefore that FAD PS1 mutations were not equivalent to null
mutations. PS1L166P was analyzed in an overexpression system
and was found to induce increases in the Aβ42 : Aβ40 ratio
and altered responses to NSAID γ-secretase modulators
(GSMs) [17]. Strikingly, human iPS-derived neurons overex-
pressing the PS1L166P mutation or carrying the PS1A79V mu-
tationmay be resistant to modulation by GSMs in the clinically
relevant, low micromolar range. In fact, GSMs found to work
in models overexpressing APP appeared to be ineffective in
these human neurons [13]. Given that most NSAIDs cross the
blood–brain barrier at levels < 30μMand that clinical trials for
NSAID γ-secretase modulators failed, it is telling that a human

culture system was able to recapitulate the failure of mutant
neurons to respond to these pharmacological interventions.

Studies of Differentiation and Interactions with Aβ

A number of investigations have focused on inducing differen-
tiation of human embryonic stem cells and human-induced
pluripotent stem cells to neurons in vitro and characterizing their
properties [18–23]. In addition, a number of the papers that have
reported analysis of humanmutations causing FAD have includ-
ed comparisons of different neuronal differentiation systems. In
summary, most of these studies generate neurons of different
types, frequently cortical and enriched for glutamatergic in some
cases. Some work has also focused on trying to generate basal
forebrain cholinergic neurons [23]. Among the various papers,
there is evidence that the neurons that are generated are com-
partmentalized appropriately with somatodendritic and axonal
compartments, and that the neurons are capable of mounting
action potentials. There is some diversity in how extensively
electrophysiology was examined, how mature the neurons ap-
peared to be, and how extensive the formation of synaptic
contacts are. Clearly, considerable future work will focus on
improving the in vitro differentiation systems and enhancing the
maturity and network connectivity of neurons in vitro, perhaps
including the addition of well-characterized astrocytes to pro-
mote general health and synapse formation.

Although APP processing during neurogenesis has been
evaluated extensively in the mouse, in-depth analysis of the
role of endogenous APP processing during differentiation and
in different subtypes of iPSC-derived neurons is lacking. One
important analysis of APP processing during neurogenesis
reported protein and RNA levels of APP processing proteins
measured at days 38, 45, and 52 [20]. It was found that full-
length APP, APP cleaved by α-secretase APP cleaved by β-
secretase, and Aβ species, as well as theβ-secretase 1 enzyme
increase in a time-dependent manner, but, strikingly, no
changes were seen in the protein levels and expression of
the γ-secretase complex [20].

Interestingly, in vitro-generated human neurons appear re-
sponsive to typical β- and γ-secretase inhibitors and modula-
tors, but perhaps not at therapeutically relevant doses. Addi-
tional work will be needed to clarify this important issue. A
few papers have also gone on to test whether Aβ is toxic to
in vitro-generated human neurons, with initial indications
being that this is true [18, 19]. In 1 case, selective toxicity of
oligomeric Aβ42 to newly differentiating glutamatergic neu-
rons was reported [18]. Effects of oligomeric or fibrillar spe-
cies of Aβ1-40 and Aβ1-42 on nerve growth factor-stimulated
embryonic stem cell neuronal differentiation were also report-
ed [21]. In this study, the authors observed that both oligo-
meric forms of Aβ reduced the percentage of cholinergic
neurons without affecting general neurogenesis or gliogenesis,
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but only Aβ1-42 selectively reduced the number of function-
ally mature neurons as assessed by evoked calcium imaging
andMap2 staining (late neuronal marker). Interestingly, fibril-
lar forms of Aβ also suppressed cholinergic neuron differen-
tiation, but had the added effect of enhancing gliogenesis
(glial fibrillary acidic protein expression and staining).
Though more research is necessary to determine how Aβ
species affect neuronal differentiation, most discrepancies
may be explained by differences in experimental methods,
culture systems, and the nature of the Aβ species used.

Some Closing Thoughts

Although the use of hIPSC technology is still in its infancy,
early reports thus far have raised the possibility that this
system may provide unique advantages for the discovery of
factors that cause AD and how these factors respond to genetic
or pharmacologic manipulation. One obvious possibility is
that the generation of neurons carrying various FADmutations
or SAD genomes will provide a uniquely human neuronal
system for the evaluation of potential therapeutic interven-
tions. Early work has been valuable at understanding path-
ways in FAD neurons, but work on neurons with genomes
from patients with SAD is just getting underway. Given the
relatively high heritability of the risk of SAD, we anticipate
that some novel phenotypes driven by the genomes of patients
with SAD will be found, and genome-wide association study
variants may be better understood, but more work is clearly
needed before anything can be definitely said. Simultaneous-
ly, probing the human genetic and biochemical pathways in
neurons, and eventually astrocytes and other cells [24], pro-
vide unique advantages owing to the likely differences be-
tween human and other organisms in neurons versus other cell
types in their behavior. In this regard, of course, the failure
thus far of therapies that work in the mouse or in non-neuronal
human culture cells provides a cautionary signpost.

Moving forward, the opportunities for more complex culture
systems in either 3 dimensions or with the addition of other
defined cell types, such as astrocytes [24], oligodendrocytes
[25], and microglia themselves carrying controllable genomes,
is a provocative and exciting opportunity. One recent exciting
entrant is a 3-dimensional model in which human neuronal
stem cells that overexpress PS1 and APP mutants are differen-
tiated in Matrigel [26]. Upon differentiation to neurons and
other cell types, apparent amyloid plaque-like structures and
neurofibrillary tangle-like structures were observed. This new
system opens many new doors for testing mechanisms and
pathways elucidated from euploid models and vice versa.

While the opportunities are exciting and unique, we have
some suggestions for how to encourage experimental and
intellectual rigor in these systems. Obviously, the likelihood
that analysis of euploid cells carrying different mutations or

genomes in the absence of high-level overexpression is a key
advantage that some of these systems provide.We also suggest
that working as much as possible in isogenic systems in which
mutations can be compared in defined genetic backgrounds, as
described in Woodruff et al. [16], could be very important
given the known variability in human genomes and human
physiology. As much as possible, we think that it would be
advisable to work in cell lines that have been completely
sequenced and a true diploid sequence determined to the level
of the 1 genome described thus far [27], where enough work
has been done to piece together the linkage and repulsion
relationships of the resident haplotypes such that risk factor
architecture is known and can be manipulated. We also think
that, to the extent possible, investigators should work with cell
culture systems in which the cell types present are well defined
given the likely nonautonomous contributions of different cells
to the behavior of the neurons. Thus, the combination of better
differentiation systems that result in well-defined cell types
and/or purification methods for different cell types during
culture experiments may prove advantageous.

Finally, we note that a unique opportunity of the hIPSC
system is the ability to probe how complex human geno-
mic architectures predispose patients to AD and how they
influence the behavior of various, participating cell types.
In this regard, the reports that some genomes found in
patients with SAD also generate in vitro culture pheno-
types similar to those found in FAD mutations provides a
striking example of how this may proceed. Thus, there is
enormous promise in the utility of a human neuronal
culture system to predict how individual genetic and cel-
lular phenotypic variation contributes to response to phar-
macological intervention at clinically relevant levels. Final-
ly, the genetic technologies available with hIPSC may
allow the deciphering of how complex genomic architec-
tures found in individual humans act together to generate
susceptibility and variation in response to the environmen-
tal factors that may also contribute to, or pharmacologi-
cally modify, AD phenotypes in patients.
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