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ABSTRACT OF THE DISSERTATION

Nonlinear Quantum Search

by

Thomas Giechaung Wong

Doctor of Philosophy in Physics

University of California, San Diego, 2014

Professor David Meyer, Chair

Although quantum mechanics is linear, there are nevertheless quantum sys-

tems with multiple interacting particles in which the effective evolution of a single

particle is governed by a nonlinear equation. This includes Bose-Einstein con-

densates, which are governed by the Gross-Pitaevskii equation, which is a cubic

nonlinear Schrödinger equation with a term proportional to |ψ|2ψ. Evolution by

this equation solves the unstructured search problem in constant time, but at the

novel expense of increasing the time-measurement precision. Jointly optimizing

these resources results in an overall scaling of N1/4, which is a significant, but not

unreasonable, improvement over the N1/2 scaling of Grover’s algorithm. Since the

Gross-Pitaevskii equation effectively approximates the multi-particle Schrödinger

equation, for which Grover’s algorithm is optimal, our result leads to a quantum

xiii



information-theoretic bound on the number of particles needed for this approx-

imation to hold, asymptotically. The Gross-Pitaevskii equation is not the only

nonlinearity of the form f(|ψ|2)ψ that arises in effective equations for the evo-

lution of real quantum physical systems, however: The cubic-quintic nonlinear

Schrödinger equation describes light propagation in nonlinear Kerr media with

defocusing corrections, and the logarithmic nonlinear Schrödinger equation de-

scribes Bose liquids under certain conditions. Analysis of computation with such

systems yields some surprising results; for example, when time-measurement pre-

cision is included in the resource accounting, searching a “database” when there is

a single correct answer may be easier than searching when there are multiple cor-

rect answers. These results lead to quantum information-theoretic bounds on the

physical resources required for these effective nonlinear theories to hold, asymp-

totically. Furthermore, strongly regular graphs, which have no global symmetry,

are sufficiently complete for quantum search on them to asymptotically behave

like unstructured search. Certain sufficiently complete graphs retain the improved

runtime and resource scalings for some nonlinearities, so our scheme for nonlin-

ear, analog quantum computation retains its benefits even when some structure is

introduced.
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Chapter 1

Introduction

1.1 Linear Quantum Search

Imagine having a shuffled deck of playing cards where we are searching for

the Ace of Spades. Since there is no ordering or structure to the cards, one must

check each card, one by one, until the Ace of Spades is found. It might be the first

card, or it might be the last card; on average, one must search half of them. If

there are N cards, then one checks O(N/2) = O(N) of them on average. This is

the best that a classical computer can do.

A quantum computer, on the other hand, can solve this problem in O(
√
N)

steps using Grover’s algorithm [2]. Rather than explaining it in the digital, or

discrete-time, paradigm in which it was originally proposed, we will focus on its

equivalent analog, or continuous-time, analogue. This was first given by Farhi and

Gutmann [3], but we use Childs and Goldstone’s notation and interpretation [1].

The system evolves in a N -dimensional Hilbert space with computational

basis {|0〉, . . . , |N − 1〉}. The initial state |ψ(0)〉 is an equal superposition |s〉 of all

these basis states:

|ψ(0)〉 = |s〉 =
1√
N

N−1∑
i=0

|i〉.

The goal is to find a particular “marked” basis state, which we label |w〉. We do

this by evolving by Schrödinger’s equation

i
∂

∂t
|ψ〉 = H0|ψ〉

1



2

Figure 1.1: The complete graph with N = 6 vertices and a single marked vertex
(colored red). The non-marked vertices are colored white, and the state compo-
nents at them evolve identically by symmetry.

with Hamiltonian

H0 = −γN |s〉〈s| − |w〉〈w|,

where the first term effects a quantum random walk on the complete graph, so

γ is a parameter that’s inversely proportional to mass, and the second term is a

potential well at the marked vertex, causing amplitude to build up there. Since

the probability amplitudes of finding the randomly walking quantum particle at

the non-marked vertices evolve identically by symmetry, as shown in figure 1.1,

the system evolves in a two-dimensional subspace spanned by {|w〉, |r〉}, where

|r〉 =
1√

N − 1

∑
i 6=w

|i〉

is the equal superposition of the non-marked vertices.

One might (correctly) reason that the success of the algorithm in finding

the marked vertex with probability 1 depends on the value of γ. This can be seen

in figure 1.2, which shows the difference in eigenvalues of H0 and the overlaps of

its eigenvectors with |s〉 and |w〉. When γ takes a critical value of γc = 1/N , the

Hamiltonian becomes

H0 = −|s〉〈s| − |w〉〈w|,

and its eigenstates are

|ψ0,1〉 =
1√
2

√ √
N√

N + 1
(|s〉 ± |w〉)
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Figure 1.2: Eigenvalue gap and eigenstate overlaps of H0 with N = 1024.

with corresponding eigenvalues

E0,1 = −1∓ 1√
N
.

So the energy gap is ∆E = 2/
√
N . Then the evolution of the system can be

directly calculated. We begin in the state

|ψ(0)〉 = |s〉 =
1√
2

√√
N + 1√
N

(|ψ0〉+ |ψ1〉) .

This evolves to

|ψ(t)〉 = e−iHt|s〉 =
1√
2

√√
N + 1√
N

(
e−iE0t|ψ0〉+ e−iE1t|ψ1〉

)
.

Plugging in for |ψ0〉 and |ψ1〉,

|ψ(t)〉 =
1

2

[
e−iE0t (|s〉+ |w〉) + e−iE1t (|s〉 − |w〉)

]
=

1

2

[(
e−iE0t + e−iE1t

)
|s〉+

(
e−iE0t − e−iE1t

)
|w〉
]

=
1

2
e−i(E0+E1)t/2

[(
ei∆Et/2 + e−i∆Et/2

)
|s〉+

(
ei∆Et/2 − e−i∆Et/2

)
|w〉
]

= e−i(E0+E1)t/2

[
cos

(
∆E

2
t

)
|s〉+ i sin

(
∆E

2
t

)
|w〉
]
,

The amplitude of measuring the randomly walking quantum particle in the vertex

corresponding to |w〉 is

〈w|ψ(t)〉 = e−i(E0+E1)t/2

[
1√
N

cos

(
∆E

2
t

)
+ i sin

(
∆E

2
t

)]
.
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Figure 1.3: Success probability as a function of time for linear search with γ =
1/N . The solid line is N = 100 and the dashed line is N = 1000.

So the success probability is

|〈w|ψ(t)〉|2 =
1

N
cos2

(
∆E

2
t

)
+ sin2

(
∆E

2
t

)
,

which equals 1 when t = π/∆E. So the Schrödinger evolution rotates the state

from |s〉 to |w〉 in time π
√
N/2, as shown in figure 1.3. We can also visualize this

on the Bloch sphere, as shown in figure 1.4, with |w〉 at the north pole and |r〉 at

the south pole; the state starts at |s〉 near the south pole, moves directly to the

north pole, loops around the other side, and repeats the motion.

So the critical γ is the value of γ that causes the eigenstates of H0 to be

proportional to |s〉 ± |w〉, which causes the system to evolve to the marked basis

state |w〉 in O(
√
N) time, thus yielding a successful search. But how do we find

γc = 1/N in the first place? Here, we show two methods of finding it.

The first method of finding the critical γ is by explicitly finding the eigen-

vectors of H0 and choosing γ such that they have the desired form proportional to

|s〉 ± |w〉. Recall the system evolves in the two-dimensional subspace spanned by

the marked vertex |w〉 and the equal superposition of non-marked vertices |r〉. In

this basis, the Hamiltonian is

H0 =

(
−(γ + 1) −γ

√
N − 1

−γ
√
N − 1 −γ(N − 1)

)
.
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Figure 1.4: The evolution of |ψ(t)〉 for linear search with N = 1024 and γ = 1/N ,
depicted on a Bloch sphere with |w〉 at the north pole and |r〉 at the south pole.

Let’s find the eigenvalues of H0. The characteristic polynomial is

det(H0 − λI) = λ2 + (γN + 1)λ+ γ(N − 1)

Setting this equal to zero and using the quadratic formula, we get

λ =
−(γN + 1)±

√
(γN − 1)2 + 4γ

2
,

which has a gap of

∆λ =
√

(γN − 1)2 + 4γ.

Now, let’s find the eigenvectors of H0:

|ψ±〉 =

(
u

v

)
.

Writing our coefficient matrix in a more general form, our eigenvalue equation is(
a c

c b

)(
u

v

)
= λ

(
u

v

)
,

which results in (from the second equation)

u =
λ± − b
c

v =
−γN + 2γ + 1∓

√
(γN − 1)2 + 4γ

2γ
√
N − 1

v,
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or

|ψ±〉 =

(
λ±−b
c
v

v

)

∝

(
λ±−b
c

1

)

=
λ± − b
c
|w〉+ |r〉

=
λ± − b
c
|w〉+

√
N

N − 1

(
|s〉 − 1√

N
|w〉
)

=

√
N

N − 1

[
−γN + 1∓

√
(γN − 1)2 + 4γ

2γ
√
N

|w〉+ |s〉

]

∝
−γN + 1∓

√
(γN − 1)2 + 4γ

2γ
√
N

|w〉+ |s〉.

We want the term in front of |w〉 to equal ∓1. That way, the eigenstates are

proportional to |s〉 ∓ |w〉. This happens when γ = γc = 1/N :

−γN + 1∓
√

(γN − 1)2 + 4γ

2γ
√
N

∣∣∣∣∣
γc

= ∓1 ⇒ γc =
1

N
.

Another way to determine the critical γ and runtime is using degenerate

perturbation theory [4]. We again start with H0 in the {|w〉, |r〉} basis:

H0 =

(
−(γ + 1) −γ

√
N − 1

−γ
√
N − 1 −γ(N − 1)

)
.

Assuming N is large so that N − 1 ≈ N , we separate the Hamiltonian into leading

order and higher order terms:

H0 =

(
−1 0

0 −γN

)
︸ ︷︷ ︸

H
(0)
0

+

(
0 −γ

√
N

−γ
√
N 0

)
︸ ︷︷ ︸

H
(1)
0

+

(
−γ 0

0 0

)
︸ ︷︷ ︸

H
(2)
0

.

In lowest order, the eigenstates of the Hamiltonian are |w〉 and |r〉 with correspond-

ing eigenvalues −1 and −γN . If the eigenvalues are nondegenerate, then since the

initial superposition state |s〉 is approximately |r〉 for large N , the system will stay
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near its initial state, never having large projection on |w〉. For the eigenstates to

be different, namely a superposition of |r〉 and |w〉, we need the eigenvalues to be

degenerate. That is, when γ = γc = 1/N , the first-order perturbation H
(1)
0 causes

the eigenstates to have the form

|ψ±〉 = αw|w〉+ αr|r〉,

and the coefficients αw,r and eigenvectors E± can be found by solving the eigenvalue

problem (
Hww Hwr

Hrw Hrr

)(
αw

αr

)
= E±

(
αw

αr

)
,

where Hwr = 〈w|H(0) +H(1)|r〉, etc. These terms are easy to calculate. We get−1 −1√
N

−1√
N
−1

(αw
αr

)
= E±

(
αw

αr

)
.

Solving this eigenvalue problem, we get eigenvectors

1√
2

(
1

−1

)
with eigenvalue E+ = −1 +

1√
N

1√
2

(
1

1

)
with eigenvalue E− = −1− 1√

N

Then the approximate eigenstates of H0 are

|ψ±〉 =
1√
2

(|w〉 ∓ |r〉)

with eigenvalues

E± = −1± 1√
N
.

Note that the energy gap is ∆E = 2√
N

. Since |r〉 ≈ |s〉, we approximately have

the eigenstates from before, so the system evolves from |s〉 to |w〉 in time t∗ =

π/∆E = π
√
N/2.
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1.2 Nonlinear Quantum Search

It is proved that Grover’s algorithm is optimal [5], meaning O(
√
N) is the

fastest runtime in which quantum mechanics can solve the unstructured search

problem. To search faster, one must go beyond standard quantum theory, such

as nonlinear extensions. Abrams and Lloyd [6] gave two examples of nonlinear

algorithms with fundamental nonlinearities that resulted in unreasonable compu-

tational advantages, solving NP-complete and #P problems in polynomial time.

Both of their algorithms can be implemented by a nonlinear Schrödinger-type evo-

lution in which the time derivatives of the state components depend upon their

hyperbolic tangents [7, 8]. The derivative of tanhx at x = 0 is 1, so this is a

strongly nonlinear system in which 0 is an unstable fixed point. The strength of

the nonlinearity provides a large computational advantage, but it also makes the

system highly susceptible to noise [6, 7, 8].

An obvious question is whether a more modest, physically motivated nonlin-

earity can still produce a computational advantage. While extensive experimental

work has shown that, at least in the familiar regimes of atomic and optical physics,

the effect of any fundamental nonlinear generalization of quantum mechanics must

be tiny [9, 10, 11], there are nevertheless quantum mechanical systems with multi-

ple interacting particles in which the effective evolution of a single particle is gov-

erned by a nonlinear equation. These include Bose-Einstein condensates (BECs)

[12, 13, 14], whose evolution is described by the celebrated Gross-Pitaevskii equa-

tion [15, 16]:

i~
∂

∂t
ψ(r, t) =

[
− ~2

2m
∇2 + Vext(r) +

4π~2a

m
N0 |ψ(r, t)|2

]
ψ(r, t). (1.1)

This nonlinear Schrödinger equation has a cubic nonlinearity, which has zero

derivative at zero, making it softer than those considered by Abrams and Lloyd.

In this thesis, we explore the consequences of solving the quantum search problem

with such a cubic nonlinearity, and we later generalize it to arbitrary nonlinearities

of the form f(|ψ|2)ψ, where f is a real-valued function.

Of course, the Gross-Pitaevskii equation is only an effective approximation

of the linear, multi-particle dynamics, for which Grover’s algorithm is optimal. So
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any speedup must be at the expense of increasing the “space” resource such that

the product of the space requirements and the square of the time requirements is

lower bounded by N [5]. This will yield a lower bound on the number of condensate

atoms needed for the Gross-Pitaevskii equation to be valid.

To elucidate the source of the cubic nonlinearity in the Gross-Pitaevskii

equation, let’s explicitly derive it [17]. The many-body Hamiltonian describing

multiple interacting particles trapped in an external potential Vext(r) with two-

body interaction potential V (r− r′) is

Ĥ =

∫
drΨ̂†(r)

[
− ~2

2m
∇2 + Vext(r)

]
Ψ̂(r)+

1

2

∫
drdr′Ψ̂†(r)Ψ̂†(r)V (r−r′)Ψ̂(r′)Ψ̂(r),

where we’ve quantized the classical fields by promoting them to creation and an-

nihilation operators, Ψ̂†(r) and Ψ̂(r), respectively (i.e., second quantization). In

the Heisenberg interpretation, the state vectors remain fixed while the operators

evolve according to

i~
∂

∂t
Ψ̂(r, t) = [Ψ̂, Ĥ].

Plugging in Ĥ, this becomes

i~
∂

∂t
Ψ̂(r, t) =

[
− ~2

2m
∇2 + Vext(r) +

∫
dr′Ψ̂†(r, t)V (r− r′)Ψ̂(r′, t)

]
Ψ̂(r, t).

We express the operator using mean field theory as an order parameter plus a

perturbation:

Ψ̂(r, t) = 〈Ψ̂(r, t)〉+ Ψ̂′(r, t).

The order parameter, or number density, can be normalized and interpreted as

the wave function of the condensate, so we write it as ψ(r, t) = 〈Ψ̂(r, t)〉/
√
N0,

where N0 is the number of condensate atoms. Assuming that the perturbation

is negligible, so the temperature of the condensate is near 0, we get Ψ̂(r, t) →
ψ(r, t)

√
N0. When the Bose gas is dilute, meaning the s-wave scattering length

a is much less than the interparticle spacing, then the effective interaction is (see

section 5.2.1 of [18])

V (r− r′) =
4π~2a

m
δ(r− r′).

Using this, the evolution of the condensate wave function becomes

i~
∂

∂t
ψ(r, t) =

[
− ~2

2m
∇2 + Vext(r) +

4π~2a

m
N0 |ψ(r, t)|2

]
ψ(r, t),
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which is the Gross-Pitaevskii equation in Eq. 1.1.

Physically, we can exert some control over the strength of the cubic non-

linearity in the Gross-Pitaevskii equation by varying the scattering length a via

Feshbach resonance [19]. In this process, two condensate atoms interact via the

hyperfine interaction (i.e., an interaction between the electronic and nuclear spins

of the atoms), forming a quasi-bound state. The energy of this unstable interme-

diate state is higher than when the atoms are separate by the binding energy Eb,

and it can be further offset with a “detuning” ε. When ε = 0, it is said that the

collision is “on resonance.” In an optically trapped BEC, the detuning corresponds

to an external magnetic field B [20], and the effective scattering length near the

resonance B0 is

aeff = ã

(
1− ∆B

B −B0

)
,

where ã is the scattering length away from the resonance and ∆B is related to

the width of the resonance [19]. Thus there is no theoretical limit as to how much

the scattering length can be varied using Feshbach resonance. Experimentally, it

depends on the precision in which the external magnetic field can be controlled,

and the first group to experimentally observe Feshbach resonance in BECs was

able to vary the scattering length by a factor of 10 [20].

The first BEC to be experimentally produced was made by a team led by

Eric Cornell and Carl Wieman of JILA by trapping and cooling 2× 104 rubidium-

87 atoms in a magnetically-confined trap [21]. About four months later, this was

improved by Wolfgang Ketterle’s team at MIT, who trapped 5×105 sodium atoms

with the addition of an optical plug [22]. Both rubidium-87 and sodium atoms have

positive scattering lengths, meaning the bosons are repulsive. While BECs with

negative scattering lengths cannot exist as a homogeneous gas since condensation

is preempted by a first-order phase transition [23], they are stable against collapse

in the non-homogeneous environment of a trap for small numbers of atoms less

than a critical value given by

Ncr =
kaho

|a|
,

where k is the dimensionless “stability coefficient” depending on the ratio of mag-

netic trap frequencies, and aho is the harmonic oscillator length [24, 25]. This was
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experimentally verified when a condensate of roughly 103 lithium-7 atoms was pro-

duced by Randy Hulet’s team at Rice University, just one month after the JILA

collaboration’s discovery [26, 27]. Condensation of bosons with attractive interac-

tions can also be demonstrated using Feshbach resonance, using the detuning to

turn the interaction from repulsive to attractive [28].

So the Gross-Pitaevskii equation is rooted in established physics, mak-

ing its cubic nonlinearity a physically reasonable term to include in computa-

tion. In the next chapter, we quantify the computational advantage that the

cubic nonlinearity provides for the unstructured search problem compared to stan-

dard quantum computation. This requires introducing a novel physical resource:

time-measurement precision. Since this advantage cannot persist when the Gross-

Pitaevskii equation is recognized as an approximation to an underlying multi-

particle Schrödinger equation, for which Grover’s algorithm is optimal, we arrive

at a quantum information-theoretic lower bound on the number of condensate

atoms needed for this approximation to hold, asymptotically.

In Chapter 3, we generalize nonlinear search on the complete graph to

arbitrary Schrödinger-type nonlinearities of the form f(|ψ|2|ψ), where f is a real-

valued function. This includes the cubic nonlinearity in the Gross-Pitaevskii equa-

tion, as well as other physical systems including the cubic-quintic and logarithmic

Schrödinger equations. This yields some surprising results; for example, when

time-measurement precision is included in the resource accounting, searching a

“database” when there is a single correct answer may be easier than searching

when there are multiple correct answers.

As previously explained, search on the complete graph evolves in a two-

dimensional subspace spanned by the marked vertex |w〉 and the superposition of

non-marked vertices |r〉, which we colored red and white in figure 1.1. The next

level of difficulty is search in a three-dimensional subspace, which strongly regular

graphs support. In Chapter 4, we use degenerate perturbation theory in a novel

way to solve the quantum search problem on strongly regular graphs, showing that

search also achieves the O(
√
N) speedup. This is similar to the hypercube, which

evolves in a larger space than the complete graph, but still searches in O(
√
N) time
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[1]. Search on these “sufficiently complete” graphs is sped up by the nonlinearities

in the same way that that it is for the complete graph in Chapters 2 and 3, and

we work through this in Chapter 5.

Finally, we conclude with a summary and give some future directions in

Chapter 6.



Chapter 2

Nonlinear Quantum Search on the Complete

Graph

2.1 Setup

To review the search problem, the system evolves in aN -dimensional Hilbert

space with computational basis {|0〉, . . . , |N − 1〉}. The initial state |ψ(0)〉 is an

equal superposition |s〉 of all these basis states:

|ψ(0)〉 = |s〉 =
1√
N

N−1∑
i=0

|i〉.

The goal is to find a particular “marked” basis state, which we label |w〉.
In the nonlinear regime, we include an additional nonlinear “self-potential”

V (t) so that the system evolves according to the Gross-Pitaevskii equation Eq. 1.1:

i
∂

∂t
ψ(r, t) =

[
H0 − g|ψ(r, t)|2︸ ︷︷ ︸

V (t)

]
ψ(r, t),

where g > 0. This corresponds to a BEC with attractive interactions, and thus

a negative scattering length [23, 26]. Heuristically, as probability accumulates at

the marked state due to the |w〉〈w| term in H0, the self-potential attracts more

probability, speeding up the search. Thus we expect larger g to result in a faster

algorithm.

In the computational basis, the self-potential is

V (t) = g
N−1∑
i=0

|〈i|ψ〉|2 |i〉〈i|.

13
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Figure 2.1: Success probability as a function of time for N = 1024 and γ = 1/N
constant. The solid curve is the linear (g = 0) case, and the dashed curve is the
nonlinear g = 1 case.

Even with this nonlinearity, the system remains in the subspace spanned by {|w〉,
|s〉} throughout its evolution. We define a vector

|r〉 =
1√

N − 1

∑
i 6=w

|i〉,

which is orthonormal to |w〉. Then the state of the system |ψ(t)〉 can be written

as

|ψ(t)〉 = α(t)|w〉+ β(t)|r〉.

Writing the Gross-Pitaevskii equation in this {|w〉, |r〉} basis, we get

d

dt

(
α

β

)
= −i (H0 − V )

(
α

β

)

= i

(
γ + 1 + g|α|2 γ

√
N − 1

γ
√
N − 1 γ(N − 1) + g

N−1
|β|2

)
︸ ︷︷ ︸

A

(
α

β

)
, (2.1)

where we’ve defined A = −(H0 − V ).

2.2 Critical Gamma

Before proceeding with further analytical calculations, we build some intu-

ition by examining two plots. For constant γ and g, the success probability as a
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Figure 2.2: The evolution of |ψ(t)〉 for nonlinear search with N = 1024, γ = 1/N
constant, and g = 1, depicted on a Bloch sphere with |w〉 at the north pole and
|r〉 at the south pole. The system fails to reach the north pole, and so it fails to
reach a success probability of 1.
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2

Figure 2.3: Eigenvalue gap and eigenstate overlaps of A at t = 20 for nonlinear
search with N = 1024, g = 1, and γ = 1/N constant.



16

function of time, |α(t)|2, is plotted in figure 2.1 along with the linear result. The

nonlinear algorithm underperforms the linear one in this case. As shown on the

Bloch sphere in figure 2.2, with |w〉 at the north pole and |r〉 at the south pole,

the system starts near the south pole and begins moving towards the north pole.

But then it veers to the side, looping near the bottom of the sphere, and returning

to its initial position. So the system never has high success probability. This is

true in general for constant γ and g, and it can be understood by examining the

time-dependence of the critical value of γ, which is the value of γ that ensures

that the eigenstates of A are in the form ±|w〉+ |s〉. Initially, γc = 1/N . Then, as

shown in figure 2.3, it shifts to a larger value. If γ is constant, it will not follow

this shift, we will no longer have the desired eigenstates, and the algorithm will

perform poorly.

To determine how γc varies with time, we find the eigenvectors of A and

choose γ so that they have the desired form ±|w〉+ |s〉. To eliminate fractions in

the subsequent algebra, we rescale the nonlinearity coefficient g by defining

G =
g

N − 1
.

Solving the characteristic equation gives the eigenvalues of A:

λ± =
1

2
(γN + 1 +Gσ)± 1

2
∆λ,

where the gap between them is

∆λ =
√

(γN − 1)2 + 4γ +G2δ2 + 2Gδ [1− γ(N − 2)],

and we’ve defined

σ = (N − 1)|α|2 + |β|2 and δ = (N − 1)|α|2 − |β|2.

The corresponding eigenvectors of A are

|ψ±〉 =

√
N

N − 1

[
−γN + 1 + δG±∆λ

2γ
√
N

|w〉+ |s〉
]
.

The critical value of γ ensures that these eigenvectors have the form ±|w〉 + |s〉.
That is,

−γN + 1 + δG±∆λ

2γ
√
N

∣∣∣∣
γc

= 1.
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Figure 2.4: Success probability as a function of time for nonlinear search with
G = 1 and γ = γc as defined in Eq. 2.2. The solid line is N = 100 and the dashed
line is N = 1000.

Solving this yields:

γc =
1 +Gδ

N
. (2.2)

Note that in the linear limit (G = 0), this reduces to γc = 1/N , as expected and

calculated in Chapter 1. Since δ varies with time, Eq. 2.2 implies γc also varies

with time, in agreement with our previous discussion about figures 2.1 and 2.3.

Furthermore, it can be precomputed without needing to know the location of the

marked vertex, so there is no issue of having to measure the system during the

computation.

2.3 Runtime

For the remainder of the chapter, we choose time-varying γ = γc according

to Eq. 2.2. Before analytically determining the consequences of this, let’s again

consider a plot. Figure 2.4 shows the success probability as a function of time.

There are several observations. First, the success probability reaches 1, which

occurs because we constructed the eigenstates to make this happen. Second, as N

increases, the runtime remains constant. Third, the success probability is periodic.

Finally, the peak in success probability becomes increasingly narrow for large N .

Let’s now analytically prove the second, third, and fourth observations.
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To begin, we explicitly write out Eq. 2.1 to get two coupled, first-order

ordinary differential equations for α(t) and β(t):

dα

dt
= i
{[
γc + 1 +G(N − 1)|α|2

]
α + γc

√
N − 1β

}
(2.3)

dβ

dt
= i
{
γc

√
N − 1α +

[
γc(N − 1) +G|β|2

]
β
}
. (2.4)

We decouple these equations by defining three real variables x(t), y(t), and z(t)

such that

x = |α|2 (2.5)

y + iz = αβ∗. (2.6)

Note that x(t) defined by Eq. 2.5 is the success probability. Differentiating it and

utilizing Eq. 2.3, we find that

dx

dt
=
d|α|2

dt
= α

dα∗

dt
+
dα

dt
α∗ = 2γc

√
N − 1z.

Solving this for z, we get

z =
1

2γc

√
N − 1

dx

dt
. (2.7)

Noting that dγc/dt = Gdx/dt, we differentiate Eq. 2.7 to get

dz

dt
=

1

2
√
N − 1

[
−1

γ2
c

G

(
dx

dt

)2

+
1

γc

d2x

dt2

]
. (2.8)

Now we want to find another expression for dz/dt, which we can then set equal to

Eq. 2.8. We do this by differentiating Eq. 2.6, utilizing Eq. 2.3 and Eq. 2.4, and

equating the real and imaginary parts, which yields

dy

dt
= −2γcz (2.9)

dz

dt
= 2γcy + γc

√
N − 1(1− 2x). (2.10)

Substituting Eq. 2.7 for z into Eq. 2.9, we get

dy

dt
=

−1√
N − 1

dx

dt
,
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which integrates to

y =
1√

N − 1
(1− x),

where the constant of integration was found using x(0) = 1/N and y(0) =
√
N − 1/N . Now we can plug this into Eq. 2.10 to get

dz

dt
= 2γc

1√
N − 1

(1− x) + γc

√
N − 1(1− 2x)

=
γc√
N − 1

(1 +N − 2Nx) .

Equating this to Eq. 2.8 and simplifying yields

d2x

dt2
=
G

γc

(
dx

dt

)2

+ 2γ2
c (1 +N − 2Nx) .

Plugging in for γc as defined in Eq. 2.2, this becomes

d2x

dt2
=

NG

1−G+NGx

(
dx

dt

)2

+
2

N2
(1−G+NGx)2 (1 +N − 2Nx) (2.11)

Now let f(x) = (dx/dt)2 so that df/dx = 2d2x/dt2. Then Eq. 2.11 becomes

1

2

df

dx
=

NG

1−G+NGx
f +

2

N2
(1−G+NGx)2 (1 +N − 2Nx) .

Solving this first-order ODE and using the initial condition f(x = 1/N) = 0, we

get

f(x) =
4(Nx− 1)(1− x) [1 +G(Nx− 1)]2

N2
.

Taking the square root and noting that dx/dt = ±
√
f(x),

dx

dt
= ±

√
4(Nx− 1)(1− x) [1 +G(Nx− 1)]2

N2
. (2.12)

To solve this uncoupled equation, we use separation of variables and integrate from

t = 0 to t and x = 1/N to x, which yields

t = −

√
N

1 +G(N − 1)

{
tan−1

[ √
N
√

1− x√
1 +G(N − 1)

√
Nx− 1

]
− π

2

}
. (2.13)

Solving for x, the success probability as a function of time is

x(t) =

N + [1 +G(N − 1)] tan2

[
π
2
−
√

1+G(N−1)
N

t

]
N +N [1 +G(N − 1)] tan2

[
π
2
−
√

1+G(N−1)
N

t

] . (2.14)
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From this, the success probability reaches 1 when the tangent term is zero, which

first occurs at time

t∗ =
1√

1 +G(N − 1)

π
√
N

2
.

This runtime is exactly constant for G = 1. Also, when G = Θ(1), the runtime

for large N is π/2
√
G, and thus asymptotically constant (and arbitrarily small!).

From Eq. 2.14, we also see that the success probability is periodic with a period

of 2t∗.

Now let’s prove that the peak in success probability is narrow by finding

its width, thus proving all our observations about figure 2.4. Using Eq. 2.13, the

difference in time at which the success probability reaches a height of 1− ε is

∆t = 2

√
N

1 +G(N − 1)
tan−1

[ √
N
√
ε√

1 +G(N − 1)
√
N(1− ε)− 1

]
.

The tan−1 makes it difficult to determine the scaling with N , so we Taylor expand

it:

∆t =
2N

1 +G(N − 1)

√
ε

N − 1
+O(ε3/2).

When G = Nκ, the first term scales as Θ(N1/2) when κ ≤ −1 and Θ(N−1/2−κ)

when κ > −1, for large N . To determine whether keeping this first term alone is

sufficient, we use Taylor’s remainder theorem to bound the error

R1(ε) ≤ N2(1 + 3G(N(1− ε)− 1))

(N(1− ε)− 1)3/2 (1 +G (N (1− ε)− 1))2
ε3/2,

which has the same scaling for large N as the first term in the Taylor series for

∆t. Thus it suffices to keep only the first term.

For constant G, the width in success probability is Θ(1/
√
N), which agrees

with our observation from figure 2.4 that the peak in success probability is increas-

ingly narrow as N increases. Thus we must measure the system with increasing

time precision. This behavior is opposite the linear case. That is, when G = 0 the

width is Θ(
√
N), so the time at which we measure the result can be increasingly

imprecise as N increases.
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2.4 Time-Measurement Precision

This time-measurement precision requirement of the nonlinear algorithm

requires additional resources. In particular, time and frequency standards are cur-

rently defined by atomic clocks, such as NIST-F1 in the United States [29]. An

atomic clock with nclock ions used as atomic oscillators has a time-measurement

precision of 1/
√
nclock when the ions are acted upon independently. This can be

improved using quantum entanglement, reducing the time-measurement precision

to 1/nclock [30, 31]. Even with this improvement, our constant-time nonlinear

search algorithm would require O(
√
N) ions in an atomic clock to have sufficiently

high time-measurement precision to measure the peak in success probability. So,

although our nonlinear algorithm runs in constant time, the total resource re-

quirement is still O(
√
N), the same as the linear algorithm. This raises the pos-

sibility that nonlinear quantum mechanics may not provide efficient solutions to

NP-complete and #P problems when all the resource requirements are taken into

consideration [6].

In our case, however, we can settle for a smaller improvement in runtime

and reduce the time-measurement precision and total resource requirement. If we

let G decrease as Nκ for κ ≤ 0, then the runtime is t∗ = Θ(N−κ/2), and the

time-measurement precision is ∆t = Θ(N−1/2−κ), where we’ve assumed for both

that κ > −1, since for κ ≤ −1, ∆t = Θ(N1/2), independently of G. This time-

measurement precision requires O(N1/2+κ) ions in an atomic clock that utilizes

entanglement. We assume, as in the setup for Grover’s algorithm, that logN

qubits can be used to encode the N -dimensional Hilbert space; these should also

be included in the required “space” resources. Multiplying the time and “space”

requirements together, which preserves the time-space tradeoff inherent in näıve

parallelization, the resulting total resource requirement takes a minimum value

of O(N1/4 logN) when κ = −1/2 (so that the runtime is N1/4 and the time-

measurement precision is constant). The success probability as a function of time

at this jointly optimized value of G is plotted in figure 2.5; note that the peak

width is independent of N .

This significant—but not unreasonable—improvement over the
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Figure 2.5: Success probability as a function of time for nonlinear search with
G = N−1/2 and γ = γc as defined in Eq. 2.2. The solid line is N = 100 and the
dashed line is N = 1000. The peaks have same width, independent of N .

Θ(
√
N logN) time-space resource requirements of the linear quantum search algo-

rithm is consistent with our expectation that a modest nonlinearity should result

in a modest speedup.

2.5 Repulsive Interactions

Our nonlinear search algorithm was based on the intuition that attractive

interactions speed up the accumulation of success probability. By the same in-

tuition, repulsive interactions, where G < 0, should yield a worse runtime. Our

derivation of Eq. 2.2 for the critical value of γ is unchanged if we flip the sign of

G, so Eq. 2.11 and Eq. 2.12 are still valid for repulsive interactions. These equa-

tions yield critical points x∗ = 1/N , 1, and (G−1)/NG, corresponding to minima,

maxima, and stationary points, respectively.

When G > −1/(N − 1), the success probability is unhindered by the sta-

tionary point and reaches a maximum value of 1, as shown in the dashed curve of

figure 2.6. When G < −1/(N − 1), however, reaching this maximum is precluded

by the presence of a stationary point, as shown in the dashed and dot-dashed

curves of figure 2.6.

We can explicitly prove that repulsive interactions (G < 0) will underper-
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Figure 2.6: Success probability as a function of time for N = 1024 and γ = γc

as defined in Eq. 2.2. The solid line is the linear (g = 0) case, the dashed line is
the nonlinear g = −0.5 case, the dotted line is the nonlinear g = −1 case, and the
dot-dashed line is the nonlinear g = −1.5 case.

form the linear (G = 0) algorithm. From Eq. 2.12,

dx

dt
= ± 2

N

√
(Nx− 1)(1− x) [1 +G(Nx− 1)] .

So when G < 0, the magnitude of dx/dt at a particular value of x is less than when

G = 0. Then success probability will increase more slowly for repulsive interactions

(except initially, where they increase at the same rate). Thus it will underperform

the linear algorithm.

2.6 Validity of the Gross-Pitaevskii Equation

Of course, the cubic nonlinearity we’ve exploited is not fundamental, but

rather occurs in an effective description of an interacting multi-particle quantum

system (e.g., a BEC). So we must include the number of particles N0 in our resource

accounting. Each particle interacts with the potential at the marked site, so in

the framework of Zalka’s optimality proof for Grover’s algorithm [5] (generalized

to continuous time [32]), there are N0 oracles, each responding to a logN bit

query. Zalka showed that the product of the space requirements and the square

of the time requirements is lower bounded by N , i.e., (N0 logN)(N1/4)2 = Ω(N).

Solving for the number of particles, N0 = Ω(N1/2/ logN). This is a quantum
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information-theoretic lower bound on the number of particles necessary for the

Gross-Pitaevskii equation to be the correct asymptotic description of the multi-

particle (linear) quantum dynamics.

Notice that once we account for the scaling of N0 in the space require-

ments, the product of the time and space requirements is O(N3/4), worse than the

O(N1/2 logN) of Grover’s algorithm. In fact, if we calculate for the general case

G = Nκ, where κ need not be chosen to optimize the product of the time and space

(ignoring N0) resources, Zalka’s bound implies N0 = Ω(max{1, N1+κ/ logN}), so

the total time-space requirements are O(N1+κ/2) for κ > −1, and O(N1/2 logN)

when κ = −1. This is optimized for κ = −1, i.e., by Grover’s algorithm. On the

other hand, Zalka’s bound is strongest when κ = 0, in which case it implies that

N0 = Ω(N/ logN). That is, the existence of the constant time nonlinear algo-

rithm we found in section 4 implies this stronger lower bound on N0, despite the

O(N1/2) number of clock ions required. To our knowledge, this is the first lower

bound derived on the scaling of N0 required for the Gross-Pitaevskii equation be

a good asymptotic approximation.

This bound also is significantly stronger than the bound implied by the

physically plausible requirement that the volume of the multi-particle condensate,

and thus N0, be of at least the order of the volume of space in which the N possible

discrete locations are defined. Were we working in any fixed, finite dimension, e.g.,

on a cubic lattice, the volume would be proportional to N , implying N0 = Ω(N).

But we are not; the complete graph with equal pairwise transition rates is realized

by the vertices and edges of an equilateral (N − 1)-dimensional simplex. With

edges of length 1, this has volume
√
N/2N−1/(N−1)!, which is much smaller than

N , and also much smaller than our bound of N/ logN .

2.7 Critical Gamma is a Continuous Rescaling of Time

We previously derived the critical value of γ so that the eigenstates of the

Hamiltonian are proportional to ±|w〉 + |s〉. Now we examine what the critical

value of γ does from another perspective. Recall the “Hamiltonian” we’ve been
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using is

H = −γN |s〉〈s| − |w〉〈w| − g
∑
i

|ψi|2|i〉〈i|,

where ψi = 〈i|ψ〉. Explicitly writing the nonlinear term as marked and unmarked

terms, we get

H = −γN |s〉〈s| − |w〉〈w| − g|α|2|w〉〈w| − g |β|
2

N − 1

∑
x 6=w

|x〉〈x|

= −γN |s〉〈s| − |w〉〈w| −G(N − 1)|α|2|w〉〈w| −G|β|2
∑
x6=w

|x〉〈x|

= −γN |s〉〈s| −
[
1 +G(N − 1)|α|2

]
|w〉〈w| −G|β|2

∑
x6=w

|x〉〈x|.

Recall γ = γc is chosen according to Eq. 2.2:

γcN = 1 +G(N − 1)|α|2 −G|β|2,

which we arrange to get

1 +G(N − 1)|α|2 = γcN +G|β|2.

Then the Hamiltonian becomes

H = −γcN |s〉〈s| −
[
γcN +G|β|2

]
|w〉〈w| −G|β|2

∑
x 6=w

|x〉〈x|

= −γcN (|s〉〈s|+ |w〉〈w|)−G|β|2I.

The last term continuously redefines the “zero” of energy, so we can drop it. That

is, it only changes the overall phase of the system, which has no measurable effect.

Then the Hamiltonian is

H = −γN (|s〉〈s|+ |w〉〈w|) .

Importantly, HFG = −|s〉〈s|−|w〉〈w| is the Hamiltonian from Farhi and Gutmann’s

“analog analogue” of Grover’s algorithm [3], and it is optimal. Our nonlinear

algorithm has a factor of γN , so it effectively follows their optimal algorithm, but

with a continuously rescaled time. That is, the system evolves according to

i
dψ

γNdt
= HFGψ.
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Let’s call the rescaled time τ(t) so that dτ = γNdt. Then

τ =

∫
γNdt,

and the equation of motion becomes

i
dψ

dτ
= HFGψ.

This has success probability given by (11) of [3]:

x(τ) = sin2

(
τ√
N

)
+

1

N
cos2

(
τ√
N

)
.

Plugging in for τ ,

x(t) = sin2

(∫
γNdt√
N

)
+

1

N
cos2

(∫
γNdt√
N

)
.

Since γcN = 1 +Gδ = 1−G+GNx, we get

x(t) = sin2

(
(1−G)t+GN

∫
x(t)dt√

N

)
+

1

N
cos2

(
(1−G)t+GN

∫
x(t)dt√

N

)
.

This integral transcendental equation gives x(t). While the difficulty of solving this

equation makes it less useful in practice, it does reveal our nonlinear algorithm’s

relationship with the linear, optimal algorithm. In particular, a different control

policy for γ will cause the system to evolve along a different, slower path. While

not a proof, this is an argument for the optimality of our algorithm.

2.8 Multiple Marked States

Our analysis naturally extends to the case of k marked states. Let M be

the set of marked basis states. As before, the system evolves in a two-dimensional

subspace:

|ψ(t)〉 = α(t)
1√
k

∑
x∈M

|x〉+ β(t)
1√

N − k

∑
x/∈M

|x〉.

The system evolves according to

d

dt
|ψ(t)〉 = iA|ψ〉,
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where

A = γN |s〉〈s|+
(

1 + g
|α|2

k

)∑
x∈M

|x〉〈x|+ g
|β|2

N − k
∑
x/∈M

|x〉〈x|

includes both the linear Hamiltonian and the nonlinear “self-potential”. The eigen-

states of A have the form ±|w〉+ |s〉 when γ is

γc =
1 +Gδ

N
,

where G = g/(k(N − k)) and δ = (N − k)|α|2− k|β|2. At γ = γc, we can decouple

these equations in the same manner as the k = 1 case and integrate from t = 0 to

t and x = k/N to x to get

t = −

√
N

k(1 +G(N − k))

{
tan−1

[ √
N
√

1− x√
1 +G(N − k)

√
Nx− k

]
− π

2

}
,

which can be solved for a success probability of

x(t) =

N + k [1 +G(N − k)] tan2

[
π
2
−
√

k(1+G(N−k))
N

t

]
N +N [1 +G(N − k)] tan2

[
π
2
−
√

k(1+G(N−k))
N

t

] .
Then the runtime is

t∗ =
1√

k(1 +G(N − k))

π
√
N

2
,

and the success probability is still periodic with period 2t∗. At this runtime, the

peak in success probability has a width of

∆t = 2

√
N

k(1 +G(N − k))
tan−1

[ √
N
√
ε√

1 +G(N − k)
√
N(1− ε)− k

]
,

but Taylor’s theorem can be used to show that it suffices to keep the first term in

the Taylor series:

∆t =
2N

1 +G(N − k)

√
ε

k(N − k)
+O(ε3/2).

As in the case of a single marked state, we can find the scaling of G = Nκ

that optimizes the product of “space” and time, where “space” includes both the

number of ions needed in an atomic clock that utilizes entanglement to achieve
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sufficiently high time-measurement precision, and the logN qubits needed to en-

code the N -dimensional Hilbert space. Say the number of marked sites scales as

k = Nλ, with 0 ≤ λ ≤ 1. When κ = −λ/2 − 1/2, the product of “space” and

time takes a minimum value of ST = N−λ/4+1/4 logN (so that the runtime is

N−λ/4+1/4 and the time-measurement precision is constant). Note this is a square

root speedup over the linear (G = 0) algorithm, whose product of “space” and

time is N−λ/2+1/2 logN . Thus our nonlinear method, by varying γ and choosing

an optimal nonlinear coefficient G, provides a significant, but not unreasonable,

improvement over the continuous-time analogue of Grover’s algorithm, even with

multiple marked items.

Chapter 2, nearly in full, is a reprint of the material as it appears in “Non-

linear Quantum Search Using the Gross-Pitaevskii Equation” in New Journal of

Physics 15, 063014 (2013). D. A. Meyer and T. G. Wong both contributed signif-

icantly to the work.



Chapter 3

Quantum Search with General Nonlinearities

3.1 Introduction

So far in this thesis, we’ve only considered Schrödinger evolution with a

cubic nonlinearity, i.e., evolution by the Gross-Pitaevskii equation [15, 16]:

i~
∂

∂t
ψ(r, t) =

[
H0 +

4π~2a

m
N0|ψ(r, t)|2

]
ψ(r, t),

where H0 includes the kinetic energy and trapping potential, m is the mass of the

condensate atom, and N0 is the number of condensate atoms. In Chapter 2, we

quantified the computational advantage that this cubic nonlinear Schrödinger equa-

tion has in solving the unstructured search problem. To summarize, we search for

one of k “marked” basis states among N orthonormal basis states {|0〉, |1〉, . . . , |N−
1〉}. Without the nonlinearity, the optimal solution is the continuous-time ana-

logue of Grover’s algorithm [2, 5, 3, 32], which runs in time O(
√
N/k). With the

nonlinearity, we can search in constant time with appropriate choice of parame-

ters, as shown in figure 2.4. This figure also reveals that the success probability

spikes suddenly, so increasingly precise time measurement is necessary to catch

the spike. This requires a certain number of atoms in an atomic clock that utilizes

entanglement [31, 30]. Jointly optimizing the runtime and number of clock ions,

we achieve a resource requirement of O((N/k)1/4)—a square-root speedup over the

linear quantum algorithm.

As explained in Chapter 2, Grover’s algorithm is optimal [5], so there must

be additional resources such that the product of the space requirements and the

29
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square of the time requirements is lower bounded by N . In the case of the Gross-

Pitaevskii equation, the additional resource is the condensate atoms, and the bound

on the number of them is strongest at Ω(N/ logN) for the constant-runtime al-

gorithm. Thus we’ve found a quantum information-theoretic lower bound on the

number of condensate atoms needed for the Gross-Pitaevskii equation to be a good

asymptotic description of the many-body, linear dynamics.

These two results—a significant, but not unreasonable, square-root speedup

in solving the unstructured search problem, and the lower bound on the resources

necessary for the Gross-Pitaevskii equation to be valid—suggest it is valuable to

quantify the computational advantage that other effective nonlinearities have in

solving the unstructured search problem. In particular, we consider nonlinear

Schrödinger equations of the form

i
∂ψ

∂t
=
[
H0 − gf(|ψ|2)

]
ψ, (3.1)

where f is some real-valued function. The cubic nonlinear Schrödinger equation is

the case when f(p) = p.

A reasonable way to adjust the cubic nonlinearity is to include higher-order

terms, such as the quintic term that appears when three-body interactions are

included in the description of a BEC [33]. Another example of including higher-

order terms is the propagation of light in Kerr media [34, 35, 36], whose quantum

origins are worked out in [37]. When a material is subjected to an electric field E,

its index of refraction n changes:

n(E) = n+
dn

dE
E +

1

2

d2n

dE2
E2 + . . .

But from symmetry, many materials require that the index of refraction be an even

function. Then the first-order term is zero, leaving

n(E) = n+
1

2

d2n

dE2
E2 + . . .

The electric field needn’t come from an external source—it can be from the incident

light itself. For certain incident light beams, this second-order correction is self-

focusing, and it appears in the equation of motion as a cubic term1. The cubic

1Since the intensity is proportional to the square of the electric field, the index of refraction
is frequently written as n(I) = n0 + n2I.
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self-focusing term, however, is sometimes insufficient to describe the propagation,

and a quintic defocusing correction must be included [38, 39, 40]. This results in

the cubic-quintic nonlinear Schrödinger equation

i
dψn
dt

= −γN∆ψn − g
(
|ψn|2 − |ψn|4

)
ψn,

which naturally describes a periodic array of N waveguides, where γ is a parameter,

ψn is the amplitude of the electromagnetic wave in each waveguide, and ∆ is

the discrete second derivative [41]. This equation is of the form of (3.1) with

f(p) = p− p2.

The above nonlinearities, and indeed general nonlinearities of the form (3.1),

do not retain the separability of noninteracting subsystems. That is, in (linear)

quantum mechanics, if a physical system consists of two noninteracting subsys-

tems, then its state can be written as the product of the states of the subsystems

(i.e., as a product state). Nonlinearities, however, generally cause initially uncor-

related subsystems to become correlated. The one exception [42] is the special case

when f(p) = log(p). Then separability is retained, and the nonlinear Schrödinger

equation (3.1) contains a loglinear term:

i
∂ψ

∂t
=
[
H0 − g log(|ψ|2)

]
ψ.

Note that the limit of
√
x log(x) as x goes to 0 is 0, so the evolution doesn’t cause

the wavefunction to diverge.2 Not only is the logarithmic3 nonlinear Schrödinger

equation important for its uniqueness in retaining separability, but it may be suit-

able for describing Bose liquids, which have higher densities than BECs [43].

In the following section, we write the generalized nonlinear search problem

with multiple marked vertices in its two-dimensional subspace. Then we solve it,

referencing the solution to the cubic nonlinear Schrödinger equation from Chapter

2 as we go. Finally, we end with two comprehensive examples of searching with

the cubic-quintic and loglinear nonlinearities that were introduced above and give

lower bounds for the physical resources needed for them hold.

2This concern was also addressed in [43] by examining the generalized Lagrangian density and
effective potential density in [42].

3Although the nonlinearity is loglinear, the equation is typically referred to as logarithmic.
This is different from the cubic and cubic-quintic nonlinearites where the equations are also
referred to as cubic and cubic-quintic, respectively.
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3.2 Setup

On the complete graph of N vertices, we have k marked vertices, of which

we are looking for any one. Let’s call the set of marked vertices M . Then the

nonlinear Schrödinger equation (3.1) has

H0 = −γN |s〉〈s| −
∑
x∈M

|x〉〈x|,

from which we subtract a nonlinear “self-potential”

V (t) = g
N−1∑
i=0

f
(
|〈i|ψ〉|2

)
|i〉〈i|.

As with the cubic nonlinearity in Chapter 2, g must be positive for the nonlinear

algorithm to perform better since, heuristically, it causes the self-potential to act

as an additional potential well, therefore attracting more probability and speeding

up the search.

As the system evolves, it remains in the two-dimensional subspace spanned

by orthonormal vectors

1√
k

∑
i∈M

|i〉 and
1√

N − k

∑
i/∈M

|i〉,

so we can write |ψ(t)〉 as a linear combination of them:

|ψ(t)〉 = α(t)
1√
k

∑
x∈M

|x〉+ β(t)
1√

N − k

∑
x/∈M

|x〉.

Then the probability of measuring the system in basis state |i〉 is

|〈i|ψ〉|2 =


|α|2
k
, i ∈M

|β|2
N−k , i 6∈M

.

Let’s define

fα = f

(
|α|2

k

)
, and fβ = f

(
|β|2

N − k

)
.

Then the nonlinear Schrödinger equation (3.1) is written in the two-dimensional

subspace as

d

dt

(
α

β

)
= i

(
γk + 1 + gfα γ

√
k
√
N − k

γ
√
k
√
N − k γ(N − k) + gfβ

)(
α

β

)
. (3.2)
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3.3 Critical Gamma

We can also write H(t) = H0 − V (t) in terms of fα and fβ:

H = −γN |s〉〈s| −
∑
i∈M

|i〉〈i| − gfα
∑
i∈M

|i〉〈i| − gfβ
∑
i/∈M

|i〉〈i|

= −γN |s〉〈s| − (1 + gfα − gfβ)
∑
i∈M

|i〉〈i| − gfβ
N−1∑
i=0

|i〉〈i|.

The last term is a multiple of the identity matrix, which simply redefines the zero

of energy (or contributes an overall, non-observable phase), so we can drop it.

From our previous work on the cubic nonlinear Schrödinger equation in Chapter

2, the critical γ causes the nonlinear system to follow the same evolution as the

linear, optimal algorithm, but with rescaled time. That is, we choose

γc = γL [1 + g (fα − fβ)] =
1

N
[1 + g (fα − fβ)] , (3.3)

which is time-dependent, so that

H = (1 + gfα − gfβ)

(
−γLN |s〉〈s| −

∑
i∈M

|i〉〈i|

)
= (1 + gfα − gfβ)HFG.

So the system evolves according to Farhi and Gutmann’s Hamiltonian, but with

continuously rescaled time. Thus we have the critical γ (3.3) for general nonlin-

earities of the form (3.1). Note that for the cubic nonlinearity, f(p) = p, so if we

define G = g/[k(N − k)] and δ = (N − k)|α|2 − k|β|2, then we get the familiar

result (1 + Gδ)/N from Chapter 2. Additionally, the critical γ (3.3) causes the

eigenvectors of H to be proportional to |s〉 ± |w〉. As explained in Chapter 1, this

causes the success probability to reach a value of 1. This is shown in figure 3.1

for the cubic, cubic-quintic, and loglinear nonlinearities. A couple of observations

are noteworthy. First, the cubic-quintic nonlinearity with one marked site has a

wide peak in success probability, but with multiple marked sites, it has a narrow

spike. Catching a narrow spike is more difficult than the wide peak, so searching

with one marked site is “easier” than searching with multiple marked sites. This

is counterintuitive, and it will be explicitly proven later. Second, for the loglin-

ear nonlinearity, the success probability has a constant width. For the rest of the

chapter, we choose γ = γc as defined in (3.3).
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Figure 3.1: Success probability as a function of time for search using the cubic,
cubic-quintic, and loglinear Schrödinger equation with k = 1 and k = 2 marked
sites and γ at its critical value given by (3.3). The black solid curve is N = 100
and the red dashed curve is N = 1000. The nonlinearity coefficient g scales as
O(N), O(N), and O(

√
N/ logN) for the respective nonlinearities so as to make

the runtime constant.
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3.4 Runtime

To derive the runtime of the algorithm, we follow the same procedure given

in Chapter 2, generalized for (3.1). We begin by expliciting writing out (3.2),

which yields two coupled, first-order ordinary differential equations:

dα

dt
= i
{

[γk + 1 + gfα]α + γ
√
k
√
N − kβ

}
(3.4a)

dβ

dt
= i
{
γ
√
k
√
N − kα + [γ(N − k) + gfβ] β

}
. (3.4b)

We define three real variables x(t), y(t), and z(t) such that

x = |α|2 (3.5a)

y + iz = αβ∗. (3.5b)

Note that x(t) is the success probability, which we want to find. To do this, we

want to decouple (3.4a) and (3.4b) for a single differential equation in terms of

x(t) alone and then solve it. We begin by differentiating (3.5a) by utilizing (3.4a):

dx

dt
=

d|α|2

dt
= α

dα∗

dt
+

dα

dt
α∗ = 2γ

√
k
√
N − kz.

Solving for z,

z =
1

2γ
√
k
√
N − k

dx

dt
. (3.6)

Note that the critical γ depends on x:

γc =
1

N

{
1 + g

[
f
(x
k

)
− f

(
1− x
N − k

)]}
,

so we can use (3.6) to eliminate z in favor of x and dx/dt. We can also find

an expression for eliminating dz/dt by differentiating this, but note that γ = γc

depends on time. Its derivative is

dγc
dt

=
g

N

[
1

k
f ′α +

1

N − k
f ′β

]
dx

dt
,

where we’ve defined in analogy to fα and fβ,

f ′α =
df(p)

dp

∣∣∣∣
p=
|α|2
k

=x
k

and f ′β =
df(p)

dp

∣∣∣∣
p=
|β|2
N−k= 1−x

N−k

.
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Then the derivative of (3.6) is

dz

dt
=

1

2
√
k
√
N − k

{
−1

γ2

g

N

[
1

k
f ′
(x
k

)
+

1

N − k
f ′
(

1− x
N − k

)](
dx

dt

)2

+
1

γ

d2x

dt2

}
.

(3.7)

So now we can eliminate dz/dt in favor of x, dx/dt, and d2x/dt2.

Now let’s differentiate (3.5b) by utilizing (3.4a) and (3.4b), which yields

d

dt
(y+iz) =

d(αβ∗)

dt
=

dα

dt
β∗+α

dβ∗

dt
= −2γkz+i

{
2γky + γ

√
k
√
N − k(1− 2x)

}
,

where we’ve used γ = γc to calculate the 2γk coefficients. Matching the real and

imaginary parts, we get:
dy

dt
= −2γkz

dz

dt
= 2γky + γ

√
k
√
N − k(1− 2x).

In the first equation, we can eliminate z using (3.6), which yields

dy

dz
= −

√
k

N − k
dx

dt
.

This integrates to

y = −
√

k

N − k
x+

√
k

N − k
= −

√
k

N − k
(x− 1),

where the constant of integration was found using y(0) =
√
k(N − k)/N and

x(0) = k/N . Using this to eliminate y in the second equation and simplifying,

dz

dt
= γ

√
k

N − k
(N − 2Nx+ k) .

Eliminating dz/dt using (3.7) and simplifying, we get

d2x

dt2
=

1

γ

g

N

[
1

k
f ′α +

1

N − k
f ′β

](
dx

dt

)2

+ 2γ2k (N − 2Nx+ k) ,

which is entirely in terms of x and its derivatives. Plugging in for γ = γc,

d2x

dt2
=

N

1 + g(fα − fβ)

g

N

[
1

k
f ′α +

1

N − k
f ′β

](
dx

dt

)2

+ 2

(
1 + g(fα − fβ)

N

)2

k (N − 2Nx+ k) . (3.8)



37

So we’ve decoupled (3.4a) and (3.4b), yielding a second-order ordinary differential

equation for x. To solve it, let h(x) = (dx/dt)2 so that dh/dx = 2d2x/dt2. Then

we get a first-order ordinary differential equation for h(x):

1

2

dh

dt
=

N

1 + g(fα − fβ)

g

N

[
1

k
f ′α +

1

N − k
f ′β

]
h

+ 2

(
1 + g(fα − fβ)

N

)2

k (N − 2Nx+ k) .

Solving this with the initial condition h(x = k/N) = 0, we get

h(x) =
4k(x− 1)(k −Nx) [1 + g (fα − fβ)]2

N2
.

Taking the square root and noting that dx/dt = ±
√
h(x),

dx

dt
= ±

√
4k(x− 1)(k −Nx) [1 + g (fα − fβ)]2

N2
. (3.9)

We can solve this using separation of variables and integrating from t = 0 to t and

x = k/N to x, which yields

t =
N

2
√
k

∫ x

x0=k/N

1

1 + g(fα − fβ)

√
1

(1− x)(Nx− k)
dx. (3.10)

This integral depends on the form of f(p). If it is analytically integrable, we

get an expression for t(x), which we invert for x(t). For example, for the cubic

nonlinearity, f(p) = p. Then fα − fβ = (Nx − k)/(k(N − k)), and (3.10) can be

integrated to yield

t = −

√
Nk

k + g

{
tan−1

[ √
Nk
√

1− x
√
k + g

√
Nx− k

]
− π

2

}
, (3.11)

which can be solved for a success probability of

x(t) =

N + (k + g) tan2

[
π
2
−
√

k+g
N
t

]
N + N

k
(k + g) tan2

[
π
2
−
√

k+g
N
t

] .
This reaches a value of 1 at a runtime of

t∗ =
1√
k + g

π
√
N

2
, (3.12)
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and the success probability is periodic with period 2t∗. These results agree with

Chapter 2.

Returning to the general nonlinearity, if we are only interested in the run-

time t∗ and not the entire evolution of the success probability, then we can instead

integrate from x = k/N to 1:

t∗ =
N

2
√
k

∫ x∗=1

x0=k/N

1

1 + g(fα − fβ)

√
1

(1− x)(Nx− k)
dx. (3.13)

Evaluating this for the cubic nonlinearity yields (3.12), as expected.

3.5 Time-Measurement Precision

As shown in FIGs. 2.4 and 3.1, the spike in success probability may be

narrow. To quantify it, let’s find the width of the peak at height 1− ε.
If we can explicitly integrate (3.10), then we can use the result to find the

width in success probability. For example, the cubic nonlinearity yielded (3.11),

which we use to find the time at which the success probability reaches a height of

1− ε. Then the width of the peak at this height is

∆t = 2

√
N

k + g
tan−1

[ √
Nk
√
ε

√
k + g

√
N(1− ε)− k

]
.

We are interested in how this time-measurement precision scales with N , but the

inverse tangent makes it difficult to see. Instead, Taylor’s theorem can be used to

show that it suffices to keep the first term in the Taylor series:

∆t(0) =
2Nk

k + g

√
ε

k(N − k)
+O(ε3/2).

If we define G = g/[k(N − k)], this agrees with our result from Chapter 2.

For a general nonlinearity, we can find the leading-order formula for the

time-measurement precision ∆t(0) by Taylor expanding the success probability

around x = 1, which is a maximum so the first derivative there is zero, and using
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(3.8) for the second derivative:

x(t) = x(t∗) + x′(t∗)(t− t∗) +
x′′(t∗)

2
(t− t∗)2 + ...

≈ 1 + 0−
(

1 + g(fα|x=1 − fβ|x=1)

N

)2

k(N − k)(t− t∗)2.

This reaches a height of 1− ε at times

t ≈ t∗ ±

√(
N

1 + g(fα|x=1 − fβ|x=1)

)2
ε

k(N − k)
.

So, the leading-order width of the peak is

∆t(0) =
2N

1 + g(fα|x=1 − fβ|x=1)

√
ε

k(N − k)
. (3.14)

For the cubic nonlinearity, fα|x=1 − fβ|x=1 = 1/k, so we get

∆t(0) =
2N

1 + g/k

√
ε

k(N − k)
, (3.15)

which agrees with our previous result.

To attain this level of time-measurement precision, say we use an atomic

clock with Nclock entangled ions. Then the time-measurement precision goes as

O(1/Nclock) [31, 30]. So the number of atomic clock ions we need is inversely pro-

portional to the required time-measurement precision. This, plus the logN qubits

needed to encode the N -dimensional Hilbert space, gives the “space” requirement

of our algorithm. The product of “space” and time, which preserves the time-space

tradeoff inherent in näıve parallelization, gives the total resource requirement.

Now that we have formulas for the runtime (3.13) and time-measurement

precision (3.14) for a general nonlinearity of the form (3.1), let’s calculate them

for the specific examples of the cubic-quintic and loglinear nonlinearities. But for

comparison’s sake, let’s first review the results for the cubic nonlinearity.

3.6 Cubic Nonlinearity

The cubic nonlinear Schrödinger equation has the form (3.1) with f(p) = p.

From Eqs. (3.12) and (3.15), we found

t∗ =
1√
k + g

π
√
N

2



40

and

∆t(0) =
2N

1 + g/k

√
ε

k(N − k)
,

both of which agree with Chapter 2. If g = O(Nκ) and k = O(Nλ) (with 0 ≤ λ ≤
1), then these become

t∗ =

O
(
N−κ/2+1/2

)
, κ ≥ λ

O
(
N−λ/2+1/2

)
, κ < λ

and

∆t(0) =

O
(
N−κ+λ/2+1/2

)
, κ ≥ λ

O
(
N−λ/2+1/2

)
, κ < λ

.

To achieve this level of time-measurement precision, the number of ions in an

atomic clock that utilizes entanglement must scale as the reciprocal of the precision

[31, 30]. Including the logN qubits to encode the N -dimensional Hilbert space,

the total “space” requirement S scales as

S =

O
(
Nκ−λ/2−1/2

)
, κ ≥ λ/2 + 1/2

O (logN) , κ < λ/2 + 1/2
.

Then the total resource requirement is

ST =


O
(
Nκ/2−λ/2) , κ ≥ λ/2 + 1/2

O
(
N−κ/2+1/2 logN

)
, κ ≥ λ, κ < λ/2 + 1/2

O
(
N−λ/2+1/2 logN

)
, κ < λ

This takes a minimum value of ST = N−λ/4+1/4 logN = (N/k)1/4 logN when

κ = λ/2 + 1/2, and it makes the width ∆t(0) constant.

Of course, the cubic nonlinear Schrödinger equation, or Gross-Pitaevskii

equation, is an effective nonlinear theory that only approximates the linear evo-

lution of the multiparticle Schrödinger equation describing Bose-Einstein conden-

sates. As worked out in Chapter 2 for the case of a single marked vertex, and

generalized here to multiple marked vertices, since Grover’s algorithm is optimal

[5] for (linear) quantum computation, the number of condensate atoms N0 must
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be included in the resource accounting such that the product of the space require-

ments and the square of the time requirements is lower bounded by N . That is,

since there are N0 oracles, each responding to a logN bit query,

ST 2 =


O
(
N−λ/2+1/2 +N−κ+1N0 logN

)
, κ ≥ λ/2 + 1/2

O (N−κ+1N0 logN) , κ ≥ λ, κ < λ/2 + 1/2

O
(
N−λ+1N0 logN

)
, κ < λ

= Ω(N).

Then

N0 =

Ω
(

Nκ

logN

)
, κ ≥ λ

Ω
(

Nλ

logN

)
, κ < λ

.

In the first region, this bound is maximized when κ = 1, corresponding to the

constant-runtime solution and beyond which it doesn’t make sense to increase κ.

In the second region, it is maximized when λ = 1, i.e., the number of marked

vertices scales with N . In both of these cases, the bound takes its strongest value:

N0 = Ω

(
N

logN

)
.

As expressed in Chapter 2, to the best of our knowledge, this is the first bound on

the number of condensate atoms needed for the Gross-Pitaevskii equation to be a

good approximation of the linear, multiparticle dynamics.

3.7 Cubic-Quintic Nonlinearity

The cubic-quintic nonlinear Schrödinger equation has the form (3.1) with

f(p) = p− p2. Then

fα − fβ =
−N(N − 2k)x2 + k(N2 − kN − 2k)x− k2(N − k − 1)

k2(N − k)2
.

Plugging this into (3.13), the runtime is given by an integral of the form

t∗ =
Nk2(N − k)2

2
√
k

∫ x∗=1

x0=k/N

1

ax2 + bx+ c

√
1

(1− x)(Nx− k)
dx,

where

a = −gN(N − 2k)
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b = gk(N2 − kN − 2k)

c = −gk2(N − k − 1) + k2(N − k)2.

This is analytically integrable, and the solution is

t∗ =
π

2

Nk2(N − k)2

2
√
k

√
2√

Σ
√

∆

 2a+ b+
√

∆√
ξ +
√

∆(k −N)
+
−2a− b+

√
∆√

ξ −
√

∆(k −N)

 ,
where

∆ = b2 − 4ac

Σ = a+ b+ c

ξ = 2ak + 2cN + b(k +N).

Let’s find the scaling of this runtime when g = O(Nκ) and k = O(Nλ) (with

0 ≤ λ ≤ 1) by finding the scaling of the individual terms and putting them

together. We have

a = O
(
Nκ+2

)
b = O

(
Nκ+λ+2

)
c =

O
(
Nκ+2λ+1

)
, κ ≥ 1

O
(
N2λ+2

)
, κ < 1

.

Then

∆ =

O
(
N2κ+2λ+4

)
, κ ≥ 0

O
(
Nκ+2λ+4

)
, κ < 0

Σ =


O
(
Nκ+λ+2

)
, κ ≥ 1

O
(
Nκ+λ+2

)
, κ < 1, λ ≤ κ

O
(
N2λ+2

)
, κ < 1, λ > κ

ξ =


O
(
Nκ+λ+3

)
, κ ≥ 1

O
(
Nκ+λ+3

)
, κ < 1, λ ≤ κ

O
(
N2λ+3

)
, κ < 1, λ > κ
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We also have

2a+ b+
√

∆ =

O
(
Nκ+λ+2

)
, κ ≥ 0

O
(
Nκ/2+λ+2

)
κ < 0

This is different, however, from

−2a− b+
√

∆ =



O (Nκ+2) , κ ≥ 1

O (Nκ+2) , 0 ≤ κ < 1, λ ≤ κ

O
(
Nλ+2

)
, 0 ≤ κ < 1, λ > κ

O
(
Nκ/2+λ+2

)
κ < 0

because when κ ≥ 0, the dominant term in
√

∆ is b, which cancels with −b. The

expression

ξ +
√

∆(k −N)

is a little tricky. The dominant terms of ξ and
√

∆(k−N) cancel in certain cases.

That is, when κ ≥ 1 or κ < 1 and λ ≤ κ, then ξ = 2ak + 2cN + b(k + N) is

dominated by the bN term. When κ ≥ 0, ∆ = b2 − 4ac is dominated by the b2

term, so
√

∆(k − N) is dominated by −bN . So in these regions, the bN ’s cancel

out, and we should ignore it when computing ξ +
√

∆(k − N), thereby making

ξ = O(2ak + 2cN + bk) and
√

∆(k − N) = O(bk − 2ac
b

(k − N)). If we add them

together, we get

ξ +
√

∆(k −N) = 2ak + 2cN + 2bk − 2ac

b
(k −N).

Note that 2ak + 2cN + 2bk is dominated by −2gkN2 + 2k2N3, and −2ac
b

(k − N)

is dominated by 2gkN2 − 2kN3. Adding these, the 2gkN2 factors cancel, leaving

ξ +
√

∆(k −N) dominated by 2k2N3. So

ξ +
√

∆(k −N) = O
(
N2λ+3

)
.

It’s easy to see (i.e., we don’t have to worry about cancellations) that the scaling

is also N2λ+3 for other values of κ and λ. Combining our results,

2a+ b+
√

∆√
ξ +
√

∆(k −N)
=

O
(
Nκ+1/2

)
, κ ≥ 0

O
(
Nκ/2+1/2

)
, κ < 0

.
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The expression ξ −
√

∆(k−N) is different (easier) because the dominant term no

longer cancels. So we have

ξ −
√

∆(k −N) =



O
(
Nκ+λ+3

)
, κ ≥ 1

O
(
Nκ+λ+3

)
, 0 ≤ κ < 1, λ ≤ κ

O
(
N2λ+3

)
, 0 ≤ κ < 1, λ > κ

O
(
N2λ+3

)
, κ < 0

.

Then

−2a− b+
√

∆√
ξ −
√

∆(k −N)
=



O
(
Nκ/2−λ/2+1/2

)
, κ ≥ 1

O
(
Nκ/2−λ/2+1/2

)
, 0 ≤ κ < 1, λ ≤ κ

O
(
N1/2

)
, 0 ≤ κ < 1, λ > κ

O
(
Nκ/2+1/2

)
, κ < 0

.

Then

2a+ b+
√

∆√
ξ +
√

∆(k −N)
+
−2a− b+

√
∆√

ξ −
√

∆(k −N)
=

O
(
Nκ+1/2

)
, κ ≥ 0

O
(
Nκ/2+1/2

)
, κ < 0

.

We also have

√
Σ
√

∆ =



O
(
N3κ/2+3λ/2+3

)
, κ ≥ 1

O
(
N3κ/2+3λ/2+3

)
, 0 ≤ κ < 1, λ ≤ κ

O
(
Nκ+2λ+3

)
, 0 ≤ κ < 1, λ > κ

O
(
Nκ/2+2λ+3

)
, κ < 0

Putting all this together,

t∗ =



O
(
N−κ/2+1/2

)
, κ ≥ 1

O
(
N−κ/2+1/2

)
, 0 ≤ κ < 1, λ ≤ κ

O
(
N−λ/2+1/2

)
, 0 ≤ κ < 1, λ > κ

O
(
N−λ/2+1/2

)
, κ < 0
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Note that our formula can be reduced to two cases. When κ ≥ 1, then λ ≤ κ since

0 ≤ λ ≤ 1. Similarly, when κ < 0, then λ > κ. So we have

t∗ =

O
(
N−κ/2+1/2

)
, λ ≤ κ

O
(
N−λ/2+1/2

)
, λ > κ

,

which is the same runtime order as search with the cubic nonlinearity.

For the time-measurement precision, note that fα|x=1−fβ|x=1 = (k−1)/k2.

Plugging this into (3.14), the width of the spike in success probability at height

1− ε is

∆t(0) =
2N

1 + g(k − 1)/k2

√
1

k(N − k)
ε.

When k = 1, the g term disappears. So varying g, while changing the runtime,

doesn’t affect the width. When k 6= 1, it is

∆t(0) =
2N

1 + g/k

√
1

k(N − k)
ε,

which is the same as the cubic nonlinearity’s formula. Putting these together and

letting g = O(Nκ) and k = O(Nλ) (with 0 ≤ λ ≤ 1), we get

∆t(0) =


O
(
N1/2

)
, λ = 0

O
(
N−κ+λ/2+1/2

)
, λ 6= 0, λ ≤ κ

O
(
N−λ/2+1/2

)
, λ 6= 0, λ > κ

.

So the runtime of search with the cubic-quintic nonlinearity scales identi-

cally to search with the cubic nonlinearity. Furthermore, when there are multiple

marked sites, the time-measurement precision also scales the same. But when there

is a single marked site, the time-measurement precision scales as N1/2, which is the

same as Farhi and Gutmann’s linear algorithm [3]. This distinction between single

and multiple marked sites is evident in figure 3.1. So for a single marked site, all

the speedup that comes from the nonlinearity can be utilized without the expense

of increasing the time-measurement precision. Thus search with the cubic-quintic

nonlinearity is able to achieve a jointly-optimized runtime and time-measurement

precision of O(1).
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As explained in Chapter 2, Grover’s algorithm is optimal [5], so there must

be additional resources such that the product of the space requirements and the

square of the time requirements is lower bounded by N . For the cubic-quintic

nonlinearity, say the physical system is a periodic array of N waveguides, each

long enough that the electromagnetic wave propagating through it performs the

calculation. So the length of the waveguide would scale with the runtime t∗.

Keeping the cross sectional area of the waveguide constant, the number of atoms

in a waveguide would also go as t∗. Since we have N waveguides, the number of

atoms would go as Nt∗. If the runtime is constant, then the number of atoms goes

as Ω(N), satisfying the optimality proof’s lower bound.

The amount of energy, or number of photons, can also be included in the

resource accounting. Say a waveguide needs P photons in the incident beam for

it to behave like Kerr media with quintic corrections. Then we would need PN

photons for the whole array. But it’s reasonable to say P is constant, so this would

scale as N , again satisfying the optimality proof’s lower bound.

We would also need charge to create an electric field at the marked wave-

guides. Say this takes a constant number of resources. There are k marked wave-

guides, so the resources for this would scale as k. While this may scale less than

N , the other physical resources already satisfy the optimality proof’s lower bound.

These resources may seem excessive, but if they scale linearly with N , then

it is no different than any other database that requires the N items in the database

to be physically written somewhere.

For other physical systems that are effectively described by the cubic-

quintic nonlinear Schrödinger equation, such as Bose-Einstein condensates with

higher-order corrections [33], the additional resource to the runtime and time-

measurement precision is some number of particles N0, each of which responds

to a logN bit query. As proved above, when there are multiple marked vertices,

the cubic-quintic nonlinearity solves the unstructured search problem in the same

way as the cubic nonlinearity. Then the lower bound N0 = Ω(N/ logN) from the

cubic nonlinearity carries over. With a single marked vertex, the cubic-quintic

nonlinearity requires a constant number of atoms in an atomic clock to achieve
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Figure 3.2: The integrand of the runtime integral (3.16) is the solid black curve,
and the red dashed and green dotted curves are the integrands of the lower bound
integrals (3.17), all for N = 1024, k = 5, and g = 1.

the necessary time-measurement precision, and this yields the same bound. Thus

the strongest lower bound on the number of particles is the same as for the cubic

nonlinearity:

N0 = Ω

(
N

logN

)
.

To the best of our knowledge, this is the first bound on the number of particles

needed for the cubic-quintic Schrödinger equation to be a good approximation of

the linear, many-body Schrödinger equation.

3.8 Loglinear Nonlinearity

The logarithmic nonlinear Schrödinger equation has the form (3.1) with

f(p) = log p. Then

fα − fβ = log

(
N − k
k

x

1− x

)
.

Plugging this into (3.13), the runtime is given by the integral

t∗ =
N

2
√
k

∫ 1

x0=k/N

1

1 + g log
(
N−k
k

x
1−x

)√ 1

(1− x)(Nx− k)
dx. (3.16)

Although it’s unclear how to directly integrate this, it is possible to bound it. Let’s

begin with the lower bound. Splitting the region of integration into two parts, the
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runtime is bounded below by

t∗ ≥
N

2
√
k

[∫ 1/2

k/N

1

1 + g log
(
N−k
k

1/2
1−1/2

)√ 1

(1− k/N)(Nx− k)
dx (3.17)

+

∫ 1

1/2

1

1 + g log
(
N−k
k

1
1−x

)√ 1

(1− x)(N · 1− k)
dx

]
.

These integrands are shown in figure 3.2 along with the original integrand, illus-

trating that they are indeed lower bounds. These integrate to

t∗ ≥
N

2
√
k

1√
N − k

[√
2(N − 2k)

N

1

1 + g log
(
N−k
k

)
− e

1
2g

1

g

√
N − k
k

E1

1 + g log
(

2(N−k)
k

)
2g

],
where E1 is the exponential integral

E1(x) =

∫ ∞
x

e−t

t
dt,

which is bounded by

1

2
e−x log

(
1 +

2

x

)
< E1(x) < e−x log

(
1 +

1

x

)
.

Then the runtime is lower bounded by

t∗ ≥
N

2
√
k

1√
N − k

[√
2(N − 2k)

N

1

1 + g log
(
N−k
k

)
− 1√

2g
log

1 +
2g

1 + g log
(

2(N−k)
k

)
].

Now assume that g = O(Nκ) with κ > 0. Then for large N , this becomes

t∗ = Ω

(√
N

k

1

g log
(
N
k

)) .
Now for the upper bound, we can again split the region of integration into
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Figure 3.3: The integrand of the runtime integral (3.16) is the solid black curve,
and the red dashed and green dotted curves are the integrands of the upper bound
integrals (3.18), all for N = 1024, k = 5, and g = 1.

two parts:

t∗ ≤
N

2
√
k

[∫ 1/2

k/N

1

1 + g log
(
N−k
k

k/N
1−k/N

)√ 1

(1− 1/2)(Nx− k)
dx (3.18)

+

∫ 1

1/2

1

1 + g log
(
N−k
k

1/2
1−1/2

)√ 1

(1− x)(N/2− k)
dx

]
.

These integrands are shown in figure 3.3 along with the original integrand, illus-

trating that they are indeed upper bounds. The first region, however, is a poor

bound, so we expect our result to not be tight. These integrate to

t∗ ≤
N

2
√
k

[
2
√
N − 2k

N
+

2√
N − 2k

[
1 + g log

(
N−k
k

)]].
Again assuming that g = O(Nκ) with κ > 0 and large N ,

t∗ = O

(√
N

k

)
.

But this does not provide much insight. It simply says that the nonlinear algorithm

is no worse than the linear algorithm. This is expected because our upper bound

is not very tight.
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Figure 3.4: Plot of (3.19) for N = 1024 and k = 5. The black solid curve is
original logarithm, the red dashed curve is the bound from k/N < x < 1, and the
green dotted curve is the bound from 1/2 < x < 1.
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Figure 3.5: The integrand of the runtime integral (3.16) is the solid black curve,
and the red dashed and green dotted curves are the integrands of the upper bound
integrals (3.20), all for N = 1024, k = 5, and g = 1.
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To find a tighter bound for the runtime, we instead replace the logarithmic

term in the denominator of the runtime integral (3.16) with a smaller function. In

the region k/N < x < 1/2, we can use the line connecting those points, and in the

region 1/2 < x < 1, we use the first-order Taylor approximation at x = 1/2:

log

(
N − k
k

x

1− x

)
≤


2

N−2k
log
(
N−k
k

)
(Nx− k) k/N < x < 1/2

log
(
N−k
k

)
+ 4

(
x− 1

2

)
1/2 < x < 1

. (3.19)

The bounds for this logarithm are shown in figure 3.4. Then the runtime is bounded

by

t∗ ≤
N

2
√
k

∫ 1/2

k/N

1

1 + g 2
N−2k

log
(
N−k
k

)
(Nx− k)

√
1

(1− x)(Nx− k)
dx

+
N

2
√
k

∫ 1

1/2

1

1 + g
(
log
(
N−k
k

)
+ 4

(
x− 1

2

))√ 1

(1− x)(Nx− k)
dx. (3.20)

These integrands are shown in figure 3.5 along with the original integrand, illus-

trating that they are indeed upper bounds. They are also tighter than our previous

attempt illustrated in figure 3.3. The runtime integrates to

t∗ ≤
N

2
√
k

{
−2
√
N − 2k

√
N
√
N − 2k + 2g(N − k) log

(
N−k
k

)
× tan−1

 √
N√

N − 2k + 2g(N − k) log
(
N−k
k

)


+
π√

N − k
√
N

√
N2 − 3kN + 2k2

N − 2k + 2g(N − k) log
(
N−k
k

)
+

2 tan−1

(√
4gk+N−2gN+gN log(N−kk )
√
N−2k

√
1+2g+g log(N−kk )

)
√

1 + 2g + g log
(
N−k
k

)√
4gk +N − 2gN + gN log

(
N−k
k

)
}
.

For g = O(Nκ) with κ > 0 and large N , this is dominated by the second term and

becomes

t∗ = O

√N

k

1√
g log

(
N
k

)
 .
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Figure 3.6: The runtime of search with the loglinear nonlinearity for k = N1/4

and g = N1/8/ log(N/k). The black circles were numerically calculated from (3.16)
for N = 500 000 to N = 1 000 000 with intervals of 10 000, and the red solid line is
the best-fit curve t∗ = 1.226N0.261.

Combining this with the lower bound, the runtime is bounded between√
N

k

1

g log
(
N
k

) . t∗ .

√
N

k

1√
g log

(
N
k

) ,
where the notation f1(N) . f2(N) denotes f1(N) = O(f2(N)), which implies that

f1(N) & f2(N) denotes f1(N) = Ω(f2(N)). Numerically, the actual runtime seems

to be closer to the lower bound. For example, when k = N1/4 and g = N1/8/ logN ,

the regression shown in figure 3.6 yields a runtime scaling of O(N0.261), whereas the

lower bound is O(N1/4) and the upper bound is O(N5/16) = O(N0.3125). Given the

frequent appearance of the ratio N/k, we define R = N/k. Also, the nonlinearity

coefficient g appears with a factor of logR, so we now let g = O(Rσ/ logR) rather

than O(Nκ) from before. Then the bounds are

R1/2−σ . t∗ . R1/2−σ/2.

For the time-measurement precision, note that fα|x=1 − fβ|x=1 = ∞, so

(3.14) says the width of the success probability is zero. But from figure 3.1, that

can’t be right. This incorrect results arises because (3.14) was derived by Taylor

expanding the success probability about its peak, but for the loglinear nonlinearity,

the second derivative at the peak is negative infinity.
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To get around this, we instead Taylor expand about a nearby point 1 − ε.
So we need the first and second derivative, which from (3.9) and (3.8) are

dx

dt
= ±

√
4k(1− x)(Nx− k) [1 + g (fα − fβ)]2

N2

and

d2x

dt2
=

N

1 + g(fα − fβ)

g

N

[
1

k
f ′α +

1

N − k
f ′β

](
dx

dt

)2

+ 2

(
1 + g(fα − fβ)

N

)2

k (N − 2Nx+ k) .

For the loglinear nonlinearity

fα − fβ = log

(
N − k
k

x

1− x

)
and

1

k
f ′α +

1

N − k
f ′β =

1

x
− 1

1− x
=

1

x(1− x)
.

So near x = 1− ε for small ε and large N ,

fα − fβ|x=1−ε ≈ log

(
N

k

1

ε

)
.

Still for large N , the first derivative is

dx

dt

∣∣∣∣
x=1−ε

≈ ±
√
kε

N
g log

(
N

k

1

ε

)
and the second derivative is

d2x

dt2

∣∣∣∣
x=1−ε

≈ −
kg2 log2

(
N
k

1
ε

)
N

Then the Taylor expansion is

x(t) ≈ (1− ε) +

√
kε

N
g log

(
N

k

1

ε

)
(t− t1−ε)−

1

2

kg2 log2
(
N
k

1
ε

)
N

(t− t1−ε)2,

where t1−ε is the time in which the success probability is 1− ε. Now let’s consider

the time in which the success probability reaches a height of 1 − ε/2, which is

closer to the peak of 1. For small ε, the first derivative of x(t) in this region

is decreasing towards 0 because the success probability is approaching the peak
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(where its derivative is zero). That is, for small ε, we’re considering the region

after the success probability’s inflection point. Then the width δt = t1−ε/2− t1−ε is

a lower bound for the width ∆t = t∗− t1−ε/2, where t∗ is the time when the success

probability is 1 (i.e., the runtime). Then the Taylor expansion becomes

1− ε

2
≈ (1− ε) +

√
kε

N
g log

(
N

k

1

ε

)
(δt)− 1

2

kg2 log2
(
N
k

1
ε

)
N

(δt)2.

This is a quadratic for δt. Solving it and keeping the highest order terms,

δt ≈

√
kε
N
g log

(
N
k

1
ε

)
k
N
g2 log2

(
N
k

1
ε

) =

√
N

k

1

g log
(
N
k

1
ε

) .
So the width of the success probability at height 1− ε is bounded by

∆t = Ω

(√
N

k

1

g log
(
N
k

1
ε

)) .
Note that in figure 3.1, we chose g = O(

√
N/ logN) since k was constant, and

it resulted in constant runtimes and widths. So this bound seems tight, and it is

further evidence that the runtime t∗ is closer to its lower bound.

To achieve this level of time-measurement precision in an atomic clock that

utilizes entanglement, we need the number of clock ions to scale inversely with ∆t.

Also including the logN qubits to encode the N -dimensional Hilbert space, the

total “space” requirement S is

S = O
(
Rσ−1/2 + logN

)
.

Then the total resource requirement when σ ≥ 1/2 is(
1 +R1/2−σ logN

)
. ST .

(
Rσ/2 +R1/2−σ/2 logN

)
.

This is minimized when σ = 1/2, yielding

logN . ST . R1/4 logN.

The upper bound equals the cubic nonlinearity’s total resource requirement. So

the loglinear nonlinearity is at least as good as the cubic nonlinearity in reducing
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the time-space resources. Given the numerical results from figure 3.6, the actual

total resources seem closer to the lower bound.

Of course, there must be additional resources such that the product of the

space requirements and the square of the time requirements is lower bounded by N

[5]. If the physical system (e.g., a Bose liquid) has N0 particles, then each particle

can be at any of the N vertices of the graph, which requires logN qubits for each

particle. Then the “space” requirement S is N0 logN plus the number of clock

ions to achieve the necessary time-measurement precision. That is,

S = O
(
N0 logN +Rσ−1/2

)
for large N . Then

R1−2σ(N0 logN +Rσ−1/2) . ST 2 . R1−σ(N0 logN +Rσ−1/2).

Since this must be lower bounded by N ,

R1−2σ(N0 logN +Rσ−1/2) = Ω(N).

When σ ≤ 1/2, this bound is satisfied regardless of N0. When σ > 1/2, then

N0 = Ω

(
NR2σ−1

logN

)
.

As σ increases, this bound also increases. But there is no reason to increase σ

beyond 1/2, at which N0 = Ω(N logN), because that gives the optimal product

of space and time when ignoring N0, and numerically gives constant runtime. So

we’ve given a quantum information-theoretic bound for the number of particles

needed for the logarithmic nonlinear Schrödinger equation to describe the phys-

ical system (e.g., the number of atoms in a Bose liquid), and to the best of our

knowledge, it is the first such result.

3.9 Conclusion

Our results indicate that a host of physically realistic nonlinear quantum

systems of the form (3.1) can be used to perform continuous-time computation
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faster than (linear) quantum computation. In particular, we’ve quantified this

speedup by analyzing the quantum search problem, and the particular choice

of nonlinearity gives rise to different runtimes, requires different levels of time-

measurement precision, and necessitates a different number of particles for the

nonlinearity to be an asymptotic description of the many-body quantum dynam-

ics.

Chapter 3, nearly in full, is a reprint of the material as it appears in “Quan-

tum Search with General Nonlinearities” in Physical Review A 89, 012312 (2014).

D. A. Meyer and T. G. Wong both contributed significantly to the work.



Chapter 4

Quantum Search on Strongly Regular Graphs

4.1 Introduction

As explained in Chapter 1, the quantum search problem can be formulated

as a quantum random walk on the complete graph of N vertices, as shown in

figure 1.1, where the randomly walking quantum particle is initially in an equal

superposition over all N vertices. Then the system evolves in a two-dimensional

subspace spanned by the marked vertex and superposition of non-marked vertices.

The next step in difficulty would be search on a graph where the system evolves

in a three-dimensional subspace, namely that spanned by the marked vertex, the

superposition of vertices adjacent to (or “one away” from) the marked vertex, and

the superposition of vertices non-adjacent to (or “two away” from) the marked

vertex. But this is precisely a strongly regular graph, examples of which are shown

in figure 4.1 with the vertices of each respective subspace colored red, blue, and

white. A strongly regular graph with parameters (N , k, λ, µ) is a graph with N

vertices, each with k neighbors, where adjacent vertices have λ common neighbors

and non-adjacent vertices have µ common neighbors.

As one might expect, only certain choices of parameters (N , k, λ, µ) give

rise to strongly regular graphs. One constraint is that the parameters satisfy

k(k − λ− 1) = (N − k − 1)µ, (4.1)

which is proved by counting the number of pairs of adjacent blue and white vertices.

On the left hand side of Eq. 4.1, the marked red vertex has k neighbors, so there are

57
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Figure 4.1: Some examples of strongly regular graphs. From left to right: the
Paley graph with parameters (5,2,0,1), the Paley graph with parameters (9,4,1,2),
and the square graph L2(3) with parameters (9,4,1,2). Without loss of generality, a
“marked” vertex is colored red, vertices adjacent to it are colored blue, and vertices
not adjacent to it are colored white.

k blue vertices. Each blue vertex has k neighbors, one of which is the red marked

vertex, and λ of which are other blue vertices. So it is adjacent to k− λ− 1 white

vertices. So the number of pairs of blue and white vertices that are adjacent to

each other is k(k−λ− 1). On the right hand side of Eq. 4.1, we count the number

of pairs another way, beginning with the number of white vertices. There are N

total vertices in the graph, one of which is red and k of which are blue. So there

are N − k − 1 white vertices. Each of these white vertices has is adjacent to µ

blue vertices. So there are (N − k − 1)µ pairs of blue and white vertices that are

connected to each other. Equating these expressions gives Eq. 4.1. Note this is a

necessary, but not sufficient, condition for a strongly regular graph to exist.

Equation 4.1 also implies that that k, the degree of the vertices, must be

lower bounded by
√
N . That is,

k2 > k(k − λ− 1) = (N − k − 1)µ.

Then

k = Ω(
√
N). (4.2)

Additional constraints on the parameters (N , k, λ, µ) divide strongly reg-

ular graphs into two types [44, 45]:
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1. Type I graphs, also called conference graphs, satisfy

(N − 1)(λ− µ) + 2k = 0,

which means (N , k, λ, µ) can be parameterized by

N = 4t+ 1, k = 2t, λ = t− 1, and µ = t.

This parameterization reveals that

k = Θ(N), (4.3)

which will be useful later. Furthermore, Type I graphs exist if and only if N

is the sum of two squares (one of the squares can be zero, so N = 9 = 32 +02

is acceptable).

A large number of Type I graphs are Paley graphs, where N is congruent

to 1 mod 4. The two smallest Paley graphs, where N = 5 and N = 9, are

shown in figure 4.1.

2. Type II graphs satisfy

(N − 1)(µ− λ)− 2k

d
= N − 1 mod 2

This condition is not sufficient for the existence of a strongly regular graph.

That is, just because a set of parameters (N , k, λ, µ) satisfies this equation

does not mean a strongly regular graph exists with such parameters. There

are, however, some parameter families that do exist, three examples of which

we now discuss.

A. Square lattice graphs, an example of which is shown in figure 4.1, can be

pictured as a square lattice of t2 vertices, where vertices are connected if and

only if they are in the same row or column. They are denoted L2(t) according

to the parameterization

N = t2, k = 2(t− 1), λ = t− 2, and µ = 2.

B. Latin square graphs are similar to square lattice graphs, except each vertex

is given a symbol that only appears once in each row and column. Then
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Figure 4.2: The Latin square graph L3(3) with parameters (9,6,3,6).

vertices with the same symbol are additionally connected. An example is

given in figure 4.2. They are denoted L3(t) according to the parameterization

N = t2, k = 3(t− 1), λ = t, and µ = 6,

with t ≥ 3.

C. Triangular graphs, an example of which is shown in figure 4.3, are denoted

T (t) and are parameterized by

N =
1

2
t(t− 1), k = 2(t− 2), λ = t− 2, and µ = 4,

with t ≥ 4. They are constructed by labeling each vertex with a different

unordered pair of different numbers in the set {1, 2, . . . , t}. Two vertices are

connected if they have a common number.

Note that each of these examples of existing parameter families have

k = Θ(
√
N), (4.4)

meaning they reach the lower bound given by Eq. 4.2.

It seems likely that almost all strongly regular graphs are asymmetric,

meaning their automorphism groups are trivial. While this has not been proved in

general, it has been proved for Latin square graphs, which were introduced above

and shown in figure 4.2 [46]. Thus, they lack global symmetry, which is intuitively
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Figure 4.3: The triangular graph T (4) with parameters (6,4,2,4).

believed to be necessary for fast quantum search [1]. In this chapter, we show this

intuition to be false, i.e., that a randomly walking quantum particle on strongly

regular graphs optimally [5] solves the quantum search problem in O(
√
N) time

for large N .

4.2 Setup

The vertices serve as a N -dimensional computational basis, which we label

{|0〉, |1〉, . . . , |N − 1〉} and reduce to a three-dimensional subspace because there

are three types of vertices: the red marked vertex, the k blue vertices that are

adjacent to the red marked vertex, and the N − k − 1 white vertices that are not

adjacent to the red marked vertex. Let’s call the basis states corresponding to

these |w〉, |a〉 (for adjacent), and |b〉 (since we called the other basis state |a〉),
respectively. That is,

|w〉 =


1

0

0

, |a〉 =
1√
k

∑
(x,w)∈E

|x〉 =


0

1

0

, |b〉 =
1√

N − k − 1

∑
(x,w) 6∈E

|x〉 =


0

0

1

.
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The system begins in the equal superposition of all vertices, which we can write in

the three-dimensional {|w〉, |a〉, |b〉} basis:

|s〉 =
1√
N

∑
x

|x〉

=
1√
N

(
|w〉+

∑
x∼w

|x〉+
∑
x 6∼w

|x〉

)

=
1√
N

(
|w〉+

√
k|a〉+

√
N − k − 1|b〉

)

=
1√
N


1
√
k

√
N − k − 1

 .

The system evolves by Schrödinger’s equation with Hamiltonian

H = −γL− |w〉〈w|,

where γ is the amplitude per unit time of the randomly walking quantum particle

transitioning from one vertex to another, and L is the graph Laplacian which

effects a quantum random walk on the graph [1]. More specifically, L = A − D,

where Aij = 1 if (i, j) ∈ E (and 0 otherwise) is the adjacency matrix indicating

which vertices are connected to one another, and Dii = deg(i) (and 0 otherwise)

is the degree matrix indicating how many neighbors each vertex has. In the case

of strongly regular graphs, each vertex has degree k, so the degree matrix is a

multiple of the identity matrix: D = kI. This is simply a rescaling of energy, so

we can drop it without observable effects. Then the Hamiltonian is

H = −γA− |w〉〈w|.

Now let’s determine H in the three-dimensional {|w〉, |a〉, |b〉} basis. The

|w〉〈w| term is simply a 3x3 matrix with a 1 in the top-left corner and 0’s everywhere

else:

|w〉〈w| =


1 0 0

0 0 0

0 0 0

 .
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Figure 4.4: The Petersen graph, which is a strongly regular graph with parameters
(10,3,0,1). Without loss of generality, the vertices have been numbered and the
marked vertex was chosen to be 0.

The adjacency matrix A can be a little tricky, so let’s work it out explicitly for the

Petersen graph, as shown in figure 4.4, in its (N = 10)-dimensional computational

basis. With the labeling in figure 4.4, the adjacency matrix is

A =



0 1 0 0 1 1 0 0 0 0

1 0 1 0 0 0 1 0 0 0

0 1 0 1 0 0 0 1 0 0

0 0 1 0 1 0 0 0 1 0

1 0 0 1 0 0 0 0 0 1

1 0 0 0 0 0 0 1 1 0

0 1 0 0 0 0 0 0 1 1

0 0 1 0 0 1 0 0 0 1

0 0 0 1 0 1 1 0 0 0

0 0 0 0 1 0 1 1 0 0



.
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The basis states {|w〉, |a〉, |b〉} in the computational basis are

|w〉 =



1

0

0

0

0

0

0

0

0

0



, |a〉 =
1√
3



0

1

0

0

1

1

0

0

0

0



, |b〉 =
1√
6



0

0

1

1

0

0

1

1

1

1



.

Then the adjacency matrix acting on each basis state is

A|w〉 =



0

1

0

0

1

1

0

0

0

0



=
√

3|a〉
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A|a〉 =
1√
3



3

0

1

1

0

0

1

1

1

1



=
1√
3

3|w〉+

√
6√
3
|b〉

A|b〉 =
1√
6



0

2

2

2

2

2

2

2

2

2



=

√
3√
6

2|a〉+ 2|b〉.

So the adjacency matrix in the three-dimensional {|w〉, |a〉, |b〉} basis is

A =


0 1√

3
3 0

√
3 0

√
3√
6
2

0
√

6√
3

2

 .

This is symmetric, as expected.

Let’s examine where these terms come from. The normalization factors of

|w〉, |a〉, and |b〉 are 1, 1/
√

3, and 1/
√

6, respectively. By the definition of the

adjacency matrix, we can write it as a matrix of normalization conversions multi-

plied component-by-component with another matrix that describes the connection
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between vertices in |w〉, |a〉, and |b〉:

A =


1 1√

3
1√
6√

3 1
√

3√
6√

6
√

6√
3

1

 ∗ˆ


0 3 0

1 0 2

0 1 2

 ,

where ∗̂ indicates component-by-component multiplication (as in Matlab syntax).

That is, the (i, j)-th entry of the first matrix is the normalization factor of the jth

subspace basis vector divided by the ith (e.g., the entry at (2, 3) is the normal-

ization factor of |b〉 divided by the normalization factor of |a〉, or 1/
√

6 divided

by 1/
√

3), and the (i, j)-th entry of the second matrix is the number of vertices

in the jth subspace basis vector that are adjacent to a single vertex in the ith

subspace basis vector (e.g., the entry at (2, 3) is 2 because there are two white

vertices connected to a single blue vertex).

This example of the Petersen graph reveals what A should be for a general

strongly regular graph with parameters (N, k, λ, µ). First, recall that the normal-

ization factors for |w〉, |a〉, and |b〉 are 1, 1/
√
k, and 1/

√
N − k − 1, respectively.

Then the adjacency matrix is

A =


1 1√

k
1√

N−k−1√
k 1

√
k√

N−k−1√
N − k − 1

√
N−k−1√

k
1

 ∗ˆ

· · ·
· · ·
· · ·

 .

Now let’s determine the second matrix. First, there are k blue vertices that go

into the red vertex. So we have

A =


1 1√

k
1√

N−k−1√
k 1

√
k√

N−k−1√
N − k − 1

√
N−k−1√

k
1

 ∗ˆ


0 k 0

· · ·
· · ·

 .

Next, there is one red vertex, λ blue vertices, and (k − λ− 1) white vertices that

go into a blue vertex (for a total of k, the degree of a vertex). So we have

A =


1 1√

k
1√

N−k−1√
k 1

√
k√

N−k−1√
N − k − 1

√
N−k−1√

k
1

 ∗ˆ


0 k 0

1 λ k − λ− 1

· · ·

 .
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Finally, there are µ blue vertices and (k − µ) white vertices that go into a white

vertex, so

A =


1 1√

k
1√

N−k−1√
k 1

√
k√

N−k−1√
N − k − 1

√
N−k−1√

k
1

 ∗ˆ


0 k 0

1 λ k − λ− 1

0 µ k − µ

 .

Multiplying these component-by-component,

A =


0

√
k 0

√
k λ

√
k√

N−k−1
(k − λ− 1)

0
√
N−k−1√

k
µ k − µ

 .

The adjacency matrix must be symmetric. Let’s check the two non-obvious terms:

√
k√

N − k − 1
(k − λ− 1)

?
=

√
N − k − 1√

k
µ

k(k − λ− 1)
?
= (N − k − 1)µ.

But this is precisely Eq. 4.1, so they are equal. Furthermore, it says that both of

these are equal to
√
µ
√
k − λ− 1. So we have

A =


0

√
k 0

√
k λ

√
µ
√
k − λ− 1

0
√
µ
√
k − λ− 1 k − µ

 .

Thus the Hamiltonian H = −γA − |w〉〈w| in the three-dimensional {|w〉, |a〉, |b〉}
basis is

H = −γ


1
γ

√
k 0

√
k λ

√
µ
√
k − λ− 1

0
√
µ
√
k − λ− 1 k − µ

 . (4.5)

4.3 Critical Gamma from Eigenstate Overlaps

For the complete graph, the critical γ caused the eigenstates of the Hamil-

tonian to be proportional to |s〉 ± |w〉, which caused the system to evolve from |s〉
to |w〉 in time π

√
N/2. We want the energy eigenstates to have the same form,
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Figure 4.5: For the Latin square graph with parameters (900,87,30,6), overlaps of
the eigenstates of the Hamiltonian in Eq. 4.5 with |w〉 and |s〉 and the gap between
the two lowest energy eigenvalues for various values of γ. Note that |〈s|ψ2〉|2 is
near zero and not visible.

but there are three of them |ψ0〉, |ψ1〉, and |ψ2〉. As shown in figure 4.5, this isn’t

a problem—the projection of the highest energy eigenstate |ψ2〉 onto |w〉 and |s〉 is

small, so it doesn’t contribute significantly to the evolution of the system. So only

the ground and first excited states matter, and there is a point near the middle of

the plot where they are roughly proportional to |s〉± |w〉. This corresponds to the

critical value of γ.

So we expect to find a value of γ that causes

|s〉 ± |w〉 =

(
1√
N
± 1

)
|w〉+

√
k√
N
|a〉+

√
N − k − 1√

N
|b〉 =


1√
N
± 1
√
k√
N√

N−k−1√
N


to be an energy eigenvector. So let’s find the eigenvectors of H and choose γ so

that they have the desired form. The characteristic equation for the eigenvalues χ
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(since λ is already used as a parameter of the strongly regular graph) of −H/γ is

0 = det

(
−1

γ
H − χI

)

=

∣∣∣∣∣∣∣∣
1
γ
− χ

√
k 0

√
k λ− χ √

µ
√
k − λ− 1

0
√
µ
√
k − λ− 1 k − µ− χ

∣∣∣∣∣∣∣∣
=

(
1

γ
− χ

)
[(λ− χ)(k − µ− χ)− µ(k − λ− 1)]−

√
k
[√

k(k − µ− χ)
]

= −χ3 +

(
1

γ
+ k − λ− µ

)
χ2

+

[
−1

γ
(k + λ− µ)− λ(k − µ) + µ(k − λ− 1) + k

]
χ

+
1

γ
λ(k − µ)− 1

γ
µ(k − λ− 1)− k(k − µ)

This is a cubic equation of the form aχ3 + bχ2 + cχ+d = 0. Solving it seems really

messy, as does finding the eigenvectors. So we’ll need another approach.

4.4 Perturbation Theory in the {|w〉, |a〉, |b〉} Basis

Recall that the critical γ for the complete graph can be found using degen-

erate perturbation theory. Let’s try the same approach for strongly regular graphs.

The leading order terms of the Hamiltonian in Eq. 4.5 depend on the relative sizes

of the parameters, so we break the problem into two cases: when k scales as N ,

and when k scales less than N (but still bounded by
√
N as in Eq. 4.2).

4.4.1 Case 1: k = Θ(N)

When k scales the same as N , the leading order terms in the Hamiltonian

from Eq. 4.5 are

H(0) = −γ


1
γ

0 0

0 λ
√
µ
√
k − λ− 1

0
√
µ
√
k − λ− 1 k − µ

 .
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Clearly, |w〉 is an eigenstate of this with eigenvalue −1. It’s straightforward to

show that

|r〉 =
1√

N − 1

∑
x 6∼w

|x〉 =
1√

N − 1

(√
k|a〉+

√
N − k − 1|b〉

)
,

which is approximately |s〉, is also an eigenvector of H(0), but with eigenvalue −γk:

H(0)|r〉 = −γ


1
γ

0 0

0 λ
√
µ
√
k − λ− 1

0
√
µ
√
k − λ− 1 k − µ

 1√
N − 1


0
√
k

√
N − k − 1



=
−γ√
N − 1


0

λ
√
k +
√
µ
√
k − λ− 1

√
N − k − 1

√
k
√
µ
√
k − λ− 1 + (k − µ)

√
N − k − 1



=
−γ√
N − 1


0

λ
√
k +
√
k(k − λ− 1)

µ
√
N − k − 1 + (k − µ)

√
N − k − 1



=
−γ√
N − 1


0

√
k(k − 1)

k
√
N − k − 1



≈ −γk 1√
N − 1


0
√
k

√
N − k − 1


= −γk|r〉,

where we assumed that N is sufficiently large such that k ≈ k − 1. We want

|w〉 and |r〉 to have the same eigenvalue so that the perturbation will cause the

eigenstates of the full Hamiltonian to be a linear combination of |w〉 and |r〉. So

we want −γk = −1, or

γc1 =
1

k
. (4.6)

So with this value of γ, the success probability should go to 1 for large N when k

scales larger than
√
N . This is verified in figure 4.6 for a Type I graph. When k =

Θ(
√
N), as in our examples of Type II graphs, we expect the success probability

to not reach 1, and this is verified in figure 4.7.
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Figure 4.6: Evolution in each subspace for search on the Paley graph with pa-
rameters (101,50,24,25) with γc1 in Eq. 4.6. The black solid curve is |〈w|ψ〉|2, the
red dashed curve is |〈a|ψ〉|2, and the green dotted curve is |〈b|ψ〉|2. As expected,
the success probability nears 1.
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Figure 4.7: Evolution in each subspace for search on the Latin square graph with
m = 30 (so parameters (900,87,30,60) with γc1 in Eq. 4.6. The black solid curve
is |〈w|ψ〉|2, the red dashed curve is |〈a|ψ〉|2, and the green dotted curve is |〈b|ψ〉|2.
As expected, the success probability doesn’t reach 1.
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Finally, the third eigenvector of H(0) is

|e3〉 =
1√

N − 1

(√
N − k − 1|a〉 −

√
k|b〉

)
,

which is necessarily orthogonal to both |w〉 and |r〉 and has eigenvalue −(λ−µ)/k:

H(0)|e3〉 = −γ


1
γ

0 0

0 λ
√
µ
√
k − λ− 1

0
√
µ
√
k − λ− 1 k − µ

 1√
N − 1


0

√
N − k − 1

−
√
k



=
−γ√
N − 1


0

λ
√
N − k − 1−

√
k
√
µ
√
k − λ− 1

√
µ
√
k − λ− 1

√
N − k − 1−

√
k(k − µ)



=
−γ√
N − 1


0

λ
√
N − k − 1− µ

√
N − k − 1

√
k(k − λ− 1)−

√
k(k − µ)



=
−γ√
N − 1


0

(λ− µ)
√
N − k − 1

(λ− µ+ 1)(−
√
k)



≈ −γ(λ− µ)
1√

N − 1


0

√
N − k − 1

−
√
k


= −γ(λ− µ)|e3〉.

Since |w〉 and |r〉 are degenerate eigenvectors of H(0), degenerate perturba-

tion theory says that the eigenstates of the perturbed system are linear combina-

tions of them:

|ψ±〉 = αw|w〉+ αr|r〉.

The coefficients αw and αr can be found by solving the eigenvalue problem(
Hww Hwr

Hrw Hrr

)(
αw

αr

)
= E±

(
αw

αr

)
,
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where Hwr = 〈w|H(0) +H(1)|r〉 and

H(1) = −γ


0
√
k 0

√
k 0 0

0 0 0

 .

Evaluating the matrix components, we get −1 −γk√
N−1

−γk√
N−1

−1

(αw
αr

)
= E±

(
αw

αr

)
.

Since γ = γc1 = 1/k, this is −1 −1√
N−1

−1√
N−1

−1

(αw
αr

)
= E±

(
αw

αr

)
.

Solving this eigenvalue problem, we get eigenvectors

1√
2

(
−1

1

)
with eigenvalue E+ = −1 +

1√
N − 1

1√
2

(
1

1

)
with eigenvalue E− = −1− 1√

N − 1

Then the eigenstates of H are

|ψ±〉 =
1√
2

(∓|w〉+ |r〉)

with eigenvalues

E± = −1± 1√
N − 1

.

Note that the energy gap is ∆E = 2√
N−1

. Since |r〉 ≈ |s〉, the system evolves from

|s〉 to nearly |w〉 in time t∗ = π/∆E = π
√
N − 1/2 ≈ π

√
N/2.

4.4.2 Case 2: k = o(N)

When k scales less than N , the leading order terms in the Hamiltonian from

Eq. 4.5 are

H(0) = −γ


1
γ

0 0

0 λ 0

0 0 k − µ

 .
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Figure 4.8: Evolution in each subspace for search on the Latin square graph with
m = 30 (so parameters (900,87,30,60) with γ′c2 in Eq. 4.7. The black solid curve
is |〈w|ψ〉|2, the red dashed curve is |〈a|ψ〉|2, and the green dotted curve is |〈b|ψ〉|2.
As expected, the success probability doesn’t reach 1.

Clearly, the eigenstates of this are |w〉, |a〉, and |b〉 with corresponding eigenvalues

−1, −γλ, and −γ(k − µ). Although |r〉 ≈ |s〉 isn’t an eigenstate, from figure 4.7,

the system is hardly in |a〉 for the Latin square graph, so it might be sufficient

to use |b〉 instead of |r〉. Doing this, we want |w〉 and |b〉 to have degenerate

eigenvalues, or −γ(k − µ) = −1, which implies

γ′c2 =
1

k − µ
, (4.7)

where the prime denotes that this is different from another (better) critical value

of γ for the second case that we derive later.

Figure 4.8 shows the evolution of search on a Latin square graph. It reveals

that γ′c2 is worse than γc1 = 1/k, even though the latter was already suboptimal.

This is expected, however, since more terms were dropped in the leading-order

Hamiltonian H(0) used to derive γ′c2 than γc1. It is not apparent which terms to

drop in the Hamiltonian in this {|w〉, |a〉, |b〉} basis.

4.5 Perturbation Theory in the {|w〉, |r〉, |e3〉} Basis

In the last section, we used perturbation theory in the {|w〉, |a〉, |b〉} basis.

When k = Θ(N) it was clear which terms were best to drop in the leading-order
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Hamiltonian H(0). When k = o(N), however, too many terms were dropped. In

order to drop fewer terms, we switch from the {|w〉, |a〉, |b〉} basis we’ve been using

to the basis {|w〉, |r〉, |e3〉}. We can transform the Hamiltonian Eq. 4.5 to this basis

by multiplying T−1HT , where

T =
(
|w〉 |r〉 |e3〉

)
=


1 0 0

0
√
k√

N−1

√
N−k−1√
N−1

0
√
N−k−1√
N−1

−
√
k√

N−1

 .

Note that T−1 = T> = T , and T is a reflection in the (|a〉, |b〉)-plane about

the line through the origin in the direction of the vector 〈
√

1− ξ,
√

1 + ξ〉, where

ξ =
√
k/(N − 1). Multiplying T−1HT , the Hamiltonian in the new basis is

H ′ = −γ


1
γ

k√
N−1

√
k
√
N−k−1√
N−1

k√
N−1

k(N−2)
N−1

−
√
k
√
N−k−1

N−1√
k
√
N−k−1√
N−1

−
√
k
√
N−k−1

N−1
(λ−µ)(N−1)+k

N−1

 . (4.8)

As before we break the problem into two cases: when k scales as N , and when k

scales less than N .

4.5.1 Case 1: k = Θ(N)

Although we’ve already solved this case, we can replicate the result in the

{|w〉, |r〉, |e3〉} basis. The leading-order terms in the Hamiltonian in Eq. 4.8 are

H(0) = −γ


1
γ

0 0

0 k 0

0 0 λ− µ

 .

Clearly, the eigenvectors of this are |w〉, |r〉, and |e3〉 with corresponding eigen-

values −1, −γk, and −γ(λ − µ), which is consistent with what we found in the

{|w〉, |a〉, |b〉} basis. We want |w〉 and |r〉 to be degenerate so that the perturbation

causes the eigenstates to be linear combinations of |w〉 and |r〉. The value of γ

that does this is

γc1 =
1

k
,

which is the same result as Eq. 4.6.
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4.5.2 Case 2: k = o(N)

When k scales less than N , which includes Latin square graphs where k =

Θ(
√
N), the leading-order terms in the Hamiltonian in Eq. 4.8 are

H(0) = −γ


1
γ

0
√
k

0 k 0
√
k 0 λ− µ

 .

It’s clear that |r〉 is an eigenvector of H(0) with eigenvalue −γk. Then the two

other eigenvectors have the form 
c1

0

c3

 .

We want one of these to have the same eigenvalue −γk so that H(0) is degenerate:

H(0)


c1

0

c3

 = −γk


c1

0

c3

 .

Solving this in the two-dimensional subspace:(
1
γ

√
k

√
k λ− µ

)(
c1

c3

)
= k

(
c1

c3

)

det

(
1
γ
− k

√
k

√
k λ− µ− k

)
= 0(

1

γ
− k
)

(λ− µ− k)− k = 0

γ =
1

k

(
1− 1

k − λ+ µ

)−1

=
1

k

k − λ+ µ

k − λ+ µ− 1

=
1

k

(
1 +

1

k − λ− 1 + µ

)
=

1

k

(
1 +

1

(N − k − 1)µ
k

+ µ

)
=

1

k

(
1 +

k

(N − 1)µ

)
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This is the critical γ when k = o(N):

γc2 =
1

k
+

1

(N − 1)µ
. (4.9)

Finding the corresponding eigenvector is straightforward:

−γ


1
γ

0
√
k

0 k 0
√
k 0 λ− µ



c1

0

c3

 = −γk


c1

0

c3




1
γ
− k 0

√
k

0 0 0
√
k 0 λ− µ− k



c1

0

c3

 =


0

0

0


Using the third line (or equivalently the first line),

√
kc1 + (λ− µ− k)c3 = 0

c1 =
k − λ+ µ√

k
c3

Normalization requires c2
1 + c2

3 = 1:

(k − λ+ µ)2

k
c2

3 + c2
3 = 1

c3 =

(
1 +

(k − λ+ µ)2

k

)−1/2

So the eigenvector is

|c〉 =


c1

0

c3

 =

(
1 +

(k − λ+ µ)2

k

)−1/2


k−λ+µ√

k

0

1

 .

Note that the third eigenvector of H(0) is

(
1 +

k

(k − λ+ µ)2

)−1/2


−
√
k

k−λ+µ

0

1
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with corresponding eigenvalue

(λ− µ)2 + k(1− λ+ µ)

k(−1 + k − λ+ µ)
.

The perturbation

H(1) = −γ


0 k√

N
0

k√
N

0 − k√
N

0 − k√
N

0


causes the eigenstates of H(0) +H(1) to be a linear combination of |r〉 and |c〉:

|ψ±〉 = αr|r〉+ αc|c〉

To find αr and αc, we solve the eigenvalue problem(
Hrr Hrc

Hcr Hcc

)(
αw

αr

)
= E±

(
αw

αr

)
,

where Hrc = 〈r|H(0) + H(1)|c〉, etc. These terms are straightforward to calculate.

We get  −γk −γAN−1√
kN
µ

−γAN−1√
kN
µ −γk

(αw
αr

)
= E±

(
αw

αr

)
,

where A = (1 + (k − λ+ µ)2/k)
−1/2

is the normalization constant of |c〉, and we

used Eq. 4.1 for the off-diagonal terms. For large N , this is −γk −γA
√

N
k
µ

−γA
√

N
k
µ −γk

(αw
αr

)
= E±

(
αw

αr

)
.

Solving this, we get eigenvectors

1√
2

(
1

−1

)
with eigenvalue E+ = −γk − γA

√
N

k
µ

1√
2

(
1

1

)
with eigenvalue E− = −γk + γA

√
N

k
µ
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Then the eigenstates of H(0) +H(1) are

|ψ±〉 =
1√
2

(|r〉 ∓ |c〉)

with eigenvalues

E± = −γk ± γA
√
N

k
µ.

Now let’s find the success probability as a function of time. The initial

state of the system is |s〉, which is close to |r〉. So the evolution of the system is

approximately spanned by these two eigenstates:

|ψ(t)〉 = e−iH
′t|s〉,

where H ′ = H(0) +H(1) is the approximate Hamiltonian. That is, we’re ignoring

H(2) = −γ


0 0 0

0 0 0

0 0 k
N

 .

Then the state of the system approximately evolves in the subspace spanned by

|ψ±〉:
|ψ(t)〉 ≈ e−iE+t|ψ+〉〈ψ+|s〉+ e−iE−t|ψ−〉〈ψ−|s〉.

Note that 〈ψ±|s〉 = 1√
2

(〈r|s〉 ∓ 〈c|s〉) ≈ 1√
2
(1 ∓ 0) = 1√

2
. Then the success ampli-

tude as a function of time is

〈w|ψ(t)〉 ≈ 1√
2

(
e−iE+t〈w|ψ+〉+ e−iE−t〈w|ψ−〉

)
.

Now let’s compute the inner products 〈w|ψ±〉. To evaluate them, note that

k − λ+ µ = k − λ− 1 + µ+ 1

= (N − k − 1)
µ

k
+ µ+ 1

=
µ

k
(N − 1) + 1

≈ µN

k
+ 1

≈ µN

k
, (4.10)
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where we’ve used Eq. 4.1, k = o(N), and assumed large N . Then 〈w|ψ±〉 =

∓ 1√
2
〈w|c〉 ≈ ∓1

2
AµN/k3/2. Plugging this in,

〈w|ψ(t)〉 ≈ 1

2
A
µN

k3/2

(
−e−iE+t + e−iE−t

)
.

Plugging in for the energy eigenvalues,

〈w|ψ(t)〉 ≈ e−iγkt
1

2
A
µN

k3/2

(
−e−iγA

√
N/kµt + eiγA

√
N/kµt

)
.

The exponentials give us 2i sin(·).

〈w|ψ(t)〉 ≈ e−iγktA
µN

k3/2
i sin

(
γA

√
N

k
µt

)
.

Then the success probability is

|〈w|ψ(t)〉|2 ≈
(
A
µN

k3/2

)2

sin2

(
γA

√
N

k
µt

)
.

Using γ ≈ 1/k,

|〈w|ψ(t)〉|2 ≈
(
A
µN

k3/2

)2

sin2

(
A

√
N

k3/2
µt

)
.

Using Eq. 4.10, the normalization constant of |c〉 becomes

A =

(
1 +

(k − λ+ µ)2

k

)−1/2

≈
(

1 +
(µN)2

k3

)−1/2

≈ k3/2

µN
,

when k scales less than or equal to (µN)2/3, which is true for the known parameter

families of Latin square graphs (which are proved asymmetric [46]), pseudo-Latin

square graphs, negative Latin square graphs, square lattice graphs, negative Latin

square graphs, square lattice graphs, triangular graphs, and point graphs of partial

geometries [45]. For these, the success probability is

|〈w|ψ(t)〉|2 ≈ sin2

(
t√
N

)
,

which is 1 at time t∗ = π
√
N/2, which is the same as on the complete graph. This

is shown in figure 4.9 for a Latin square graph, and it outperforms figures 4.7 and

4.8, as expected. We expect the success probability to approach 1 for large N ,

which we confirm in figure 4.10
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Figure 4.9: Evolution in each subspace for search on the Latin square graph with
m = 30 (so parameters (900,87,30,60) with γc2 in Eq. 4.9. The black solid curve
is |〈w|ψ〉|2, the red dashed curve is |〈a|ψ〉|2, and the green dotted curve is |〈b|ψ〉|2.
As expected, the success probability nears 1.
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Figure 4.10: Evolution in each subspace for search on the Latin square graph
with m = 50 (so parameters (2500,147,50,6) with γc2 in Eq. 4.9. The black solid
curve is |〈w|ψ〉|2, the red dashed curve is |〈a|ψ〉|2, and the green dotted curve is
|〈b|ψ〉|2. As expected, the success probability nears 1.
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Thus, we’ve shown that quantum search on known strongly regular graphs

behaves like search on the complete graph for large N , reaching a success proba-

bility of 1 at time O(
√
N). This requires choosing γ = γc1 = 1/k when k = Θ(N)

and γc2 = 1/k+ 1/[(N − 1)µ] when k = o(N). Since this includes strongly regular

graphs that are asymmetric, it disproves the intuition that fast quantum search

requires global symmetry.

Chapter 4 is based on a paper, “Global Symmetry is Unnecessary for

Fast Quantum Search,” published in Physical Review Letters 112, 210502 (2014).

J. Janmark, D. A. Meyer and T. G. Wong all contributed significantly to the work.



Chapter 5

Nonlinear Quantum Search on Sufficiently

Complete Graphs

5.1 Introduction

In Chapter 1, we showed that a randomly walking quantum particle can

locate a marked vertex on the complete graph with probability 1 in time π
√
N/2.

It does this by evolving in a two-dimensional subspace with energy eigenstates

|ψ0,1〉 =
1√
2

√ √
N√

N ± 1
(|s〉 ± |w〉) , (5.1)

at the critical γ, where |s〉 is the equal superposition of the vertices, and |w〉 is

the marked vertex that we want to find. The corresponding energy eigenvalues of

these eigenstates are

E0,1 = −1∓ 1√
N
, (5.2)

so the system evolves from |s〉 to |w〉 in time π/∆E = π
√
N/2.

In the previous chapter, we showed that a randomly walking quantum par-

ticle can search for a marked vertex on a strongly regular graph with the same

asymptotic behavior as on the complete graph. That is, although strongly regu-

lar graphs are not complete (and even lack global symmetry), they are “complete

enough” for the search to primarily evolve in its two lowest energy eigenstates,

which take the form (|r〉 ± |w〉)/
√

2, where |r〉 is the equal superposition of non-

marked vertices, at the critical γ and for large N . This is the same as (5.1) up

83
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Figure 5.1: The 4-dimensional hypercube, which has 24 = 16 vertices. A single
marked vertex is colored red. Vertices “one away” (adjacent) are colored blue,
“two away” are yellow, “three away” are green, and “four away” is white.

to terms of order 1/
√
N . We call such graphs that evolve according to (5.1) with

error terms that tend to zero for large N sufficiently complete.

Strongly regular graphs are not the only sufficiently complete graphs—the

hypercube is as well. The hypercube is even “less complete” than strongly regular

graphs—whereas search on strongly regular graphs evolve in a three-dimensional

subspace, search on the n-dimensional hypercube evolves in a (n+ 1)-dimensional

subspace, which grows with N = 2n. An example of this for four dimensions

is shown in figure 5.1, where vertices that evolve identically are the same color.

Nonetheless, the hypercube is complete enough for search on it to behave like

search on the complete graph. That is, search on the n-dimensional hypercube

also primarily evolves in its two lowest eigenstates, which take the form of (5.1),

up to terms of order 1/n, at the critical γ and large N [47, 48, 1]. As an exam-

ple, the evolution of the success probability for the 10-dimensional hypercube is

shown in figure 5.2; while N = 210 = 1024 is large enough for the runtime to be

near π
√

1024/2 ≈ 50.265, it is not large enough for the second peak to be near

3π
√

1024/2 ≈ 150.80, or for the success probability to be near 1.

In Chapters 2 and 3, we showed that a fundamental nonlinearity provides

a computational advantage in searching on the complete graph. In this chapter

show that nonlinearities sometimes provide the same speedup when searching on

sufficiently complete graphs, depending on the nonlinearity and the graph.
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Figure 5.2: Success probability as a function of time for search on the 10-
dimensional hypercube, which has 210 = 1024 vertices, at the critical γ derived
by Childs and Goldstone [1].

5.2 Linear Search

We begin by introducing notation to describe linear search on sufficiently

complete graphs. First we assume the system exactly evolves with eigenstates

and eigenvalues of the form (5.1) and (5.2), respectively, showing that it finds the

marked vertex with probability 1 in time π
√
N/2. Then we introduce error in the

eigenstates and show how it propagates to the success probability and runtime.

Since search on strongly regular graphs evolves in a three-dimensional subspace,

and search on the hypercube evolves in a (n+ 1)-dimensional subspace, search on

a general sufficiently complete graph may evolve in an M -dimensional subspace.

That is, the N vertices of the graph can be grouped together in M sets mi of size

|mi|, where all vertices in a set evolve identically. Then the equal superpositions

of identically evolving vertices

|mi〉 =
1√
|mi|

∑
j∈mi

|j〉

form an orthonormal basis {|m0〉, |m1〉, . . . , |mM−1〉} for the M -dimensional sub-

space. Without loss of generality, we pick the marked site to be |m0〉 = |w〉, so

|m0| = 1. In the case of a strongly regular graph with parameters (N, k, λ, µ), the
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basis states of the subspace are

|m0〉 = |w〉

|m1〉 =
1√
k

∑
(x,w)∈E

|x〉

|m2〉 =
1√

N − k − 1

∑
(x,w)6∈E

|x〉,

which correspond to the marked vertex, vertices adjacent to the marked vertex,

and vertices not adjacent to the marked vertex. For the n-dimensional hypercube,

we first label each of the N = 2n vertices with an n-bit string |z1 . . . zn〉. Without

loss of generality, we choose the marked vertex to be the string of all zeros: |w〉 =

|0 . . . 0〉. Then the vertices “one away” are bit strings with a single one (i.e., with

Hamming weight 1), the vertices “two away” are bit strings with two ones (i.e.,

with Hamming weight 2), and so forth. Taking the superposition of vertices equally

far from the marked vertex, we get

|mk〉 =

(
n

k

)−1/2 ∑
z1+···+zn=k

|z1 . . . zn〉.

Then the set {|mk〉 : k = 0, 1, . . . , n} is an orthonormal basis for the (n + 1)-

dimensional subspace.

In this {|m0〉, |m1〉, . . . , |mM−1〉} subspace, the state |ψ(t)〉 of the system

can be written as a linear combination of the basis states:

|ψ(t)〉 =
M−1∑
i=0

ci(t)|mi〉.

We assume that the system evolves in its two lowest energy eigenstates, having the

form (5.1). Then the amplitudes are

ci(t) = 〈mi|ψ(t)〉 = 〈mi|e−iHt|s〉 = 〈mi|ψ0〉〈ψ0|s〉e−iE0t + 〈mi|ψ1〉〈ψ1|s〉e−iE1t.

Then from the definition of sufficiently complete graphs in (5.1),

〈ψ0,1|s〉 =
1√
2

√ √
N√

N ± 1

(
1± 1√

N

)
=

1√
2

√ √
N√

N ± 1

√
N ± 1√
N
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and

〈mi|ψ0,1〉 =
1√
2

√ √
N√

N ± 1

(√
|mi|√
N
± δi0

)
,

where δi0 = 1 when i = 0 and 0 otherwise is the Kronecker delta. Then the

amplitudes are

ci(t) =

e
−it
[

1√
N

cos
(

t√
N

)
+ i sin

(
t√
N

)]
, i = 0

e−it
√
|mi|√
N

cos
(

t√
N

)
, i 6= 0

.

Squaring them, the probabilities are

|ci(t)|2 =


1
N

cos2
(

t√
N

)
+ sin2

(
t√
N

)
, i = 0

|mi|
N

cos2
(

t√
N

)
, i 6= 0

(5.3)

This reveals that the success probability |c0|2 reaches 1 at time π
√
N/2.

Now, to introduce error, a sufficiently complete graph has eigenstates of

the form (5.1) and corresponding eigenenergies of the form (5.2), both up to terms

of some order ε, where ε tends to zero for large N . For strongly regular graphs,

ε = 1/
√
N , and for the n-dimensional hypercube, ε = 1/n. Propagating these

errors through the previous calculations, we get probabilities

|c0(t)|2 =

[
1

N
+O (ε)

]
cos2

(
1√
N

+O (ε)

)
t+ [1 +O (ε)] sin2

(
1√
N

+O (ε)

)
t,

and

|ci 6=0(t)|2 =

[
|mi|
N

+O (ε)

]
cos2

(
1√
N

+O (ε)

)
t,

where the t’s are inside the trigonometric functions. So if the error in the eigen-

states (5.1) and eigenenergies (5.2) tends to zero for large N , then the evolution

also tends to the complete graph’s evolution, as expected.

5.3 Nonlinear Search

For the nonlinear algorithm, we subtract from H0 an additional nonlinear

“self-potential” V (t) = gf(|ψ(r, t)|2), where f is a real-valued function, so that the
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system evolves according to the nonlinear Schrödinger equation:

i
∂

∂t
ψ(r, t) =

[
H0 − gf

(
|ψ(r, t)|2

)︸ ︷︷ ︸
V (t)

]
ψ(r, t).

Then for positive g this speeds up the buildup of probability amplitude. In the

computational basis, the self-potential is

V (t) = g
N−1∑
i=0

f
(
|〈i|ψ〉|2

)
|i〉〈i|. (5.4)

Even with this nonlinearity, the system still evolves in the M -dimensional subspace

spanned by {|m0〉, |m1〉, . . . , |mM−1〉}. In this M -dimensional subspace, the self-

potential (5.4) has off-diagonal elements equal to zero. Its diagonal terms are

〈mi|V (t)|mi〉 = g
N−1∑
j=0

f
(
|〈j|ψ〉|2

)
〈mi|j〉〈j|mi〉

= g
1

|mi|
∑
j∈mi

f
(
|〈j|ψ〉|2

)
= g

1

|mi|
|mi|f

(
|ci|2

|mi|

)
= gf

(
|ci|2

|mi|

)
.

For ease of notation, let’s define

fi = f

(
|ci|2

|mi|

)
.

Then in the M -dimensional subspace, the nonlinearity is

V (t) = g


f0 0 · · · 0

0 f1 · · · ...
...

...
. . . 0

0 · · · 0 fM−1

 .
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In the M -dimensional subspace, the equation of motion is governed by

H = −γL− |m0〉〈m0| − g
M−1∑
i=0

fi|mi〉〈mi|

= −γL− (1 + gf0) |m0〉〈m0| − g
M−1∑
i=1

fi|mi〉〈mi|

= −γL− (1 + gf0 − gf1) |m0〉〈m0| − gf1I− g
M−1∑
i=2

(fi − f1) |mi〉〈mi|.

The term proportional to the identity matrix can be dropped since it is a rescaling

of energy (or an overall phase), which is unobservable. We want to show that there

exists a critical γ that causes the nonlinear evolution to follow the same path as

the linear evolution for large N , but with rescaled time τ . That is, we want to

show that fi≥2−f1 can be dropped in comparison to f0−f1 when we use the linear

evolution, but with t→ τ . Assume for the moment that we can do this. Then we

have

H = −γL− (1 + gf0 − gf1) |m0〉〈m0|

for large N . Then the critical γ for the nonlinear algorithm is

γc = γL (1 + gf0 − gf1) ,

where γL is the linear algorithm’s critical γ. At γc, we have

H = (1 + gf0 − gf1) (−γLL− |m0〉〈m0|) ,

which is the linear Hamiltonian at its critical γ with a rescaled factor that depends

on f0 − f1. For large N , the leading-order behavior of f0 − f1 is

f0 − f1 = f

(
1

N
cos2

(
τ√
N

)
+ sin2

(
τ√
N

))
− f

(
1

N
cos2

(
τ√
N

))
which is the same for all sufficiently complete graphs that can be sped up by the

nonlinearity, including complete graphs, and so we expect the nonlinearity to speed

them up the same way.

Now let’s prove that such a critical γ exists, that we can drop fi≥2 − f1

compared to f0 − f1. This depends on the graph and the form of f . Assuming as
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Figure 5.3: Success probability for search with a cubic nonlinearity and g =
N − 1 on strongly regular graphs at the critical γ. The black solid curve is
with parameters (N, k, λ, µ) = (509,254,126,127), and the red dashed curve is
(4001,2000,999,1000). With this choice of g, the runtime is constant for large
N .

before that the error in the eigenstates (5.1) and eigenenergies (5.2) is of order ε,

let’s first work out f0 − f1 and fi≥2 − f1 for f(p) = p (i.e., the cubic nonlinearity)

so that fi = |ci|2/|mi|. We get

f0 − f1 = O (ε) cos2

(
1√
N

+O (ε)

)
τ + (1 +O (ε)) sin2

(
1√
N

+O (ε)

)
τ

and

fi≥2 − f1 = O

(
ε

|mi|
− ε

|m1|

)
cos2

(
1√
N

+O (ε)

)
τ,

where the τ ’s are inside the trigonometric functions. Clearly, f0 − f1 dominates

fi≥2−f1 at later time because of the sine piece, but what about at short time when

cosine dominates? Recall that the set m0 corresponds to the marked vertex, and

the other sets mi 6=0 correspond to identically evolving vertices. Then for strongly

regular graphs, the mi 6=0’s correspond to the k = Ω(
√
N) vertices adjacent to the

marked vertex and the N − k − 1 = Θ(N) vertices not adjacent to the marked

vertex. Since both |m1| and |m2| scale as N to a positive power, fi≥2 − f1 scales

smaller than f0 − f1, so we can drop it. Thus a critical γ exists that causes

search with a cubic nonlinearity on strongly regular graphs to behave like search

on the complete graph, as shown in figure 5.3. This argument doesn’t work with
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Figure 5.4: Success probability for search with a cubic nonlinearity and g = N−1
on the hypercube. The black solid curve is the 10-dimensional hypercube with
N = 210 = 1024 vertices, and the red dashed curve is the 11-dimensional hypercube
with N = 211 = 2048 vertices.

the hypercube, however, because there is an mi that corresponds to the vertex

furthest from the marked vertex, which is the white vertex in figure 5.1, so it has

size |mi| = 1. For this vertex, fi≥2 − f1 scales the same than f0 − f1, so we can’t

use this argument to drop it. Nonetheless, figure 5.4 indicates that a critical γ

might still exist for the hypercube—our argument has not ruled it out.

These arguments persist when we consider nonlinearities where f(p) is a

polynomial, which includes the cubic-quintic nonlinearity. If the polynomial is

order q, so that f(p) = Θ(pq), then f0 − f1 would be

O (εp) cos2p

(
1√
N

+O (ε)

)
τ

plus terms with sine. We compare this to

fi≥2 − f1 = O

(
εp

|mi|
− εp

|m1|

)
cos2p

(
1√
N

+O (ε)

)
τ.

Again we have the same sufficient condition for the existence of a critical γ, that if

the sets mi 6=0 grow with N , then we can drop fi≥2 − f1 compared to f0 − f1. This

is shown in figure 5.5 for strongly regular graphs. Note that the peak in success

probability is not as wide as for the complete graph in figure 3.1; this is expected

because the width broadens as the success probability approaches 1. That is, as it
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Figure 5.5: Success probability for search with a cubic-quintic nonlinearity and
g = N − 1 on strongly regular graphs at the critical γ. The black solid curve
is with parameters (N, k, λ, µ) = (509,254,126,127), and the red dashed curve is
(4001,2000,999,1000). With this choice of g, the runtime is constant for large N .

approaches 1, f0 goes to zero while f1 remains nonzero. Then the rescaling of time

slows down the evolution, causing a broad peak. For strongly regular graphs, the

error with which the success probability approaches 1 decreases as N increases,

so the peak is wider for large N . For the hypercube, figure 5.6 indicates that a

critical γ may exist, although the quintic term seems to have magnified the errors

compared to the cubic case in figure 5.4. Since its success probability only reaches

0.8, we don’t expect the peak to broaden at all.

For the loglinear nonlinearity f(p) = log p, we similarly find that whether

f0 − f1 dominates fi − f1 depends on whether the sets of non-marked, identically

evolving vertices have sizes that increase with N or not. Since log(a) − log(b) =

log(a/b), we have

f0 − f1 = log

[
1
N

+O(ε)
]

cos2
(

1√
N

+O(ε)
)
τ + [1 +O(ε)] sin2

(
1√
N

+O(ε)
)
τ[

1
N

+O
(

ε
|m1|

)]
cos2

(
1√
N

+O(ε)
)
τ

= log
[1 +O(Nε)] cos2

(
1√
N

+O(ε)
)
τ + [N +O(Nε)] sin2

(
1√
N

+O(ε)
)
τ[

1 +O
(
Nε
|m1|

)]
cos2

(
1√
N

+O(ε)
)
τ

.
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Figure 5.6: Success probability for search with a cubic-quintic nonlinearity and
g = N−1 on the hypercube. The black solid curve is the 10-dimensional hypercube
with N = 210 = 1024 vertices, and the red dashed curve is the 11-dimensional
hypercube with N = 211 = 2048 vertices.

We also have

fi≥2 − f1 = log

[
1
N

+O
(

ε
|mi|

)]
cos2

(
1√
N

+O(ε)
)
τ[

1
N

+O
(

ε
|m1|

)]
cos2

(
1√
N

+O(ε)
)
τ

= log
1 +O

(
Nε
|mi|

)
1 +O

(
Nε
|m1|

) .
At later time, f0 − f1 clearly dominates fi≥2 − f1 because of the sine piece. At

earlier time, it is dominated by the cosine piece, so it reduces to

log
1 +O(Nε)

1 +O
(
Nε
|m1|

) .
For strongly regular graphs, ε = 1/

√
N and |m1| = Ω(

√
N), so Nε/|m1| = O(1).

Then f0 − f1 for small time is dominated by log[O(Nε)]. Similarly, fi≥2 − f1 is

dominated by log[O(Nε/|mi|)], which is smaller, so we can drop it compared to f0−
f1, showing there exists a critical γ. This is shown in figure 5.7 for strongly regular

graphs. The second “peak” is strange because of numerical error; the derivative of

log x at x = 0 is nonzero, which makes the nonlinearity highly susceptible to noise,

as shown in figure 5.8, where the evolution begins to vary wildly shortly after the

first peak.
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Figure 5.7: Success probability for search with a loglinear nonlinearity and g =√
N/ logN on strongly regular graphs at the critical γ. The black solid curve

is with parameters (N, k, λ, µ) = (509,254,126,127), and the red dashed curve is
(4001,2000,999,1000). With this choice of g, the runtime is constant for large N .

For the hypercube, we have the same issue as before; the set correspond-

ing to the vertex furthest from the marked vertex has size 1, so we can’t justify

dropping fi≥2 − f1 compared to f0 − f1. As shown in figure 5.9, our formulation

doesn’t yield a critical γ; if it did, the peak of the success probability would stay

near 0.8 with the nonlinearity.

So whether a sufficiently complete graph can be sped up by the nonlin-

ear Schrödinger equation depends on the graph and the nonlinearity. Nonetheless,

we’ve shown that even with a degree of noncompleteness, some nonlinearities speed

up search on certain sufficiently complete graphs in the same way as on the com-

plete graph for large N .

Chapter 5 is preliminary work for a paper to be published. D. A. Meyer

and T. G. Wong both contributed significantly to the work.
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Figure 5.8: Evolution of search with a loglinear nonlinearity and g =
√
N/ logN

on a strongly regular graph with parameters (N, k, λ, µ) = (509,254,126,127). The
black solid curve is |c0(t)|2, the red dashed curve is |c1(t)|2, and the green dotted
curve is |c2(t)|2; they correspond to the marked vertex, vertices adjacent to the
marked vertex, and vertices not adjacent to the marked vertex, respectively.
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Figure 5.9: Success probability for search with a loglinear nonlinearity on the
10-dimensional hypercube. The black solid curve is g = 0 (linear), the red dashed
curve is g = 0.01, the green dotted curve is g = 0.05, and the blue solid curve that
wildly varies is g = 0.5.



Chapter 6

Conclusion

6.1 Summary

To summarize our results, although quantum mechanics, which is governed

by Schrödinger’s equation, is linear, there are nevertheless many-body quantum

systems whose effective evolutions are governed by nonlinear Schrödinger equations

of the form

i
∂ψ

∂t
=
[
H0 − gf(|ψ|2)

]
ψ, (6.1)

where f is a real-valued function. For example, Bose-Einstein condensates [12, 13,

14] can be described by the Gross-Pitaevskii equation [15, 16], which takes the

form of (6.1) with f(p) = p. Nonlinear Kerr media with defocusing corrections

[38, 39, 40] can be described with f(p) = p−p2. Bose liquids [43] may be described

with f(p) = log p, which also retains the separability of noninteracting subsystems

[42].

We showed that the nonlinear Schrödinger equation (6.1) can be used to

solve the unstructured quantum search problem faster than standard quantum

computation, using the cubic, cubic-quintic, and loglinear nonlinearities as spe-

cific examples. In some instances, however, this causes the success probability to

suddenly spike, which requires a certain number of atoms in an atomic clock to

achieve the necessary time-measurement precision to catch the spike. This consid-

eration of time-measurement precision as a physical resource is new. Even with it,

we jointly optimized the runtime and time-measurement precision to outperform

Grover’s algorithm, indicating that evolution by (6.1) is takes fewer resources than

96



97

evolution by Schrödinger’s equation, assuming the nonlinearity is fundamental.

Of course, the nonlinearity is not fundamental, but arises as an effective

description of the underlying linear dynamics. Since Grover’s algorithm is optimal

[5], the speedup must be at the expense of increasing the number of particles in the

physical system. Taking this into account, we arrived at bounds on the number

of particles needed for the systems to be effectively described by the nonlinear

equations. These are the first such bounds, and we novelly determined them by

quantum information-theoretic means.

The quantum search problem can be formulated as search on the complete

graph, which evolves in a two-dimensional subspace. The next level of difficulty

is search in a three-dimensional subspace, which strongly regular graphs support.

Although strongly regular graphs are not complete, they are “complete enough”

such that search on them behaves like search on the complete graph for large N ,

which we novelly used degenerate perturbation theory to show. Since this includes

strongly regular graphs that are asymmetric, it disproves the intuition that global

symmetry is needed for fast quantum search.

The hypercube is even less complete than strongly regular graphs, yet is

still “sufficiently complete” for search on it to behave like search on the complete

graph for large N . The nonlinear Schrödinger equation (6.1) speeds up search on

certain sufficiently complete graphs in the same way as it sped up search on the

complete graph, so our results from nonlinear search on the complete graph carry

over to these graphs.

Thus we have proposed a new type of quantum computer that utilizes phys-

ically realistic nonlinearities to compute in continuous time faster than (linear)

quantum computation, even when some non-completeness is introduced into the

underlying graph.

6.2 Future Directions

To physically implement our nonlinear search algorithms, the underlying

search graph would need to be physically encoded in our three-dimensional world.

Thus the complete graph, strongly regular graphs, and the hypercube are not viable



98

graphs to search on for large N . Square and cubic lattices, however, would be, and

linear search on them has already been considered [1]. Preliminary results indicate

that search by the nonlinear Schrödinger equation (6.1) also yields a speedup on

arbitrary dimensional cubic lattices. But these graphs have sets of identically

evolving vertices of constant size, so our analysis in Chapter 5 must be refined

before we can analytically determine the precise computational advantage on cubic

lattices. This would give a concrete runtime that experimentalists can seek to

achieve, giving them a way to test the viability of our scheme for nonlinear, analog

quantum computation.
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