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Abstract

Combinatorics of polytopes, orthogonal polynomials, and Markov chains

by

Donghyun Kim

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Sylvie Corteel, Chair

We study various combinatorial formulas arising in the asymmetric exclusion process, or-
thogonal polynomials, and Ehrhart theory. In particular, we give combinatorial formulas for
polynomials with positive coefficients. Explaining the positivity of such polynomials is an
interesting problem by itself, and giving combinatorial formulas is useful as they provide a
fast and compact way to compute those polynomials.

The asymmetric exclusion process (ASEP) is an important model from statistical mechanics
which describes a system of particles on a lattice hopping left and right. This process was
introduced in the 1970s independently in the context of biology and mathematics. Since
then, this model has many variants and was studied extensively in various fields. The ASEP
on a line is a Markov chain on a one- dimensional lattice of length N with open boundaries.
A particle can hop to the right with the rate 1 and can hop to the left with rate q, as
long as the neighboring site is empty. And on each boundary, a particle can enter from
the left or right with rate α or δ respectively and can exit to the left or right with rate
γ or β respectively. Papers of Sasamoto [32] and subsequently, Uchiyama, Sasamoto, and
Wadati [36] revealed a surprising connection between the ASEP on a line and orthogonal
polynomials, in particular the Askey-Wilson polynomials which lie in the top hierarchy of
(basic) hypergeometric orthogonal polynomials in the sense that all other polynomials in this
hierarchy are limiting cases or specializations of the Askey-Wilson polynomials. In Chapter
2, we give combinatorial formulas for the Al-Salam-Chihara polynomials, which are related
to the ASEP when γ = δ = 0. The totally asymmetric exclusion process (TASEP) on a ring
is a Markov chain on a periodic one-dimensional lattice of length N where each lattice site
can be either occupied by a particle or empty. A particle can hop to its right (when it is
empty) with the rate 1. In Chapter 3, we study the inhomogeneous version of the TASEP
and show that many steady-state probabilities are proportional to the product of Schubert
polynomials.

In the 1960s, Ehrhart introduced Ehrhart polynomials and Ehrhart series to study the num-
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ber of lattice points inside polytopes. Since then, there has been a lot of study on Ehrhart
polynomials and Ehrhart series of many well-known polytopes. The (k,n)-th hypersimplex
∆k,n is a lattice polytope inside Rn whose vertices are (0,1)-vectors with exactly k 1’s. The
hypersimplex can be found in several algebraic and geometric contexts, for example, as a
moment polytope for the torus action on the Grassmannian, or as a weight polytope for the
fundamental representation of GLn. In Chapter4, we prove the first combinatorial formula
for the Ehrhart series of the hypersimplex, proving a conjecture of Early [17].
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Chapter 1

Introduction

We summarize the main results.

1.1 Chapter 2: Combinatorial formulas for the
coefficients of the Al-Salam-Chihara polynomials

We say that a family (pn(x))n≥0 of polynomials in one variable is orthogonal if the degree
of pn(x) is n and they are orthogonal with respect to a certain measure ω, that is

∫ pn(x)pm(x)dω = 0, for m ≠ n .

And the N-th moments µN of (pn(x))n≥0 are defined as µN = ∫ x
Ndω, for N ≥ 0 . The

most widely used orthogonal polynomials are hypergeometric orthogonal polynomials, which
include the Hermite polynomials, the Laguerre polynomials, and the Jacobi polynomials.

The Askey-Wilson polynomials are a family of orthogonal polynomials which include
many of the other orthogonal polynomials as special or limiting cases. They lie at the top
of the hierarchy in the Askey scheme. Surprisingly, in [36], the moments of this family are
connected to the steady state probability of the ASEP on a line. Later in [12], Corteel
and Williams gave a combinatorial formula for the steady state probabilities in particular
showing that the moments of the Askey-Wilson polynomials are polynomials in α,β, γ, δ and
q with positive coefficients. Conjecturally, the coefficients of Askey-Wilson polynomials are
polynomials in α,β, γ, δ and q with positive coefficients.

In [24], we studied the coefficients of the Al-Salam-Chihara polynomials, which are ob-
tained as the specialization of the Askey-Wilson polynomials at γ = δ = 0. We gave a
combinatorial formula for those coefficients, which explains positivity in the case γ = δ = 0.
To do this, we introduced a generalized q-binomial coefficient Mµ

n (b). Here n and b are non-
negative integers and µ is a weakly increasing composition of length a. It is a polynomial in
q and α that recovers ordinary q binomial coefficient (

n+a+b
b

)
q
when α = 0. The construction

of Mµ
n (b) was motivated by our bijective proof of the identity (

n+a
a
)
q
(
n+a+b
b

)
q
= (

n+a+b
a

)
q
(
n+b
b
)
q
.
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We also showed that the well-known identity (1.1.1)

(
n + a + b + 1

b
)
q

= qn+a+1(
n + a + b

b − 1
)
q

+ (
n + a + b

b
)
q

(1.1.1)

lifts to (1.1.2)

Mµ
n+1(b) = (qn+a+b + [n + a + b]qα)M

µ
n+1(b − 1) +Mµ−1

n (b). (1.1.2)

So far, there seems to be no previous work that can be related to a generalized q-binomial
coefficient. It would be interesting to study this and find more applications. Our main result
in [24] expresses the coefficients of the (transformed) Al-Salam-Chihara polynomials in terms
of the generalized q-binomial coefficients.

Theorem 1.1.1 ([24]). The coefficient of xn in the (transformed) Al-Salam-Chiara polyno-
mial p̃n+k(x) is given by

[xn]p̂n+k(x) = ∑
a+b=k

( ∑
µ=(µ1,⋯,µa)

0≤µ1≤⋯≤µa≤n

(ξα)aβbXµM
µ
n (b)),

where Xµ =
a

∏
i=1

(qµi+i−1 + [µi + i − 1]qβ).

Theorem 1.1.1 makes clear that the coefficients of the (transformed) Al-Salam-Chihara
polynomials are polynomials with positive coefficients.

It is an open problem to understand the minors of the coefficient matrix G = (gn,i)n,i
where gn,i is the coefficient of xi of the Askey-Wilson polynomial pn(x) if i ≤ n, otherwise
zero.

G =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 g1,0 g2,0 g3,0 . . .
0 1 g2,1 g3,1 . . .
0 0 1 g3,2 . . .
⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The minors of G are also conjectured to be polynomials with positive coefficients. Unfortu-
nately, techniques showing a positivity of minors in the literature (for example, Lindström-
Gessel-Viennot lemma) do not apply to the coefficient matrix G. In [10], a combinatorial
formula for some minors was given by relating it to the stationary distributions of 2-species
ASEP. And in [24], we proved the positivity for some 2 by 2 minors when γ = δ = 0 using
generalized q-binomial coefficients.

Theorem 1.1.2 ([24]). Let gn+k,n be the coefficient of xn of the (transformed) Al-Salam-
Chihara polynomial p̃n+k(x). Then

(gn+a+b,n+agn+a,n − gn+a+b,n)

is a polynomial with positive coefficients.
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1.2 Chapter 3: Schubert polynomials and the
inhomogeneous TASEP on a ring

The inhomogeneous multispecies TASEP on a ring is a Markov chain on a periodic lattice
of length N where each lattice site is occupied by positive integers. This Markov chain is
indexed by m = (m1,m2,⋯) such that ∑mi = N where mi is the number of i’s on a lattice.
There are a total of ( N

m1,m2,⋯) possible states in this case. The adjacent integers i and j (i is
on the left of j) can swap their positions with a rate ri,j given as follows

ri,j =

⎧⎪⎪
⎨
⎪⎪⎩

xi if i < j
0 otherwise

.

When each mi = 1, the possible states are permutations. In [28], Lam and Williams conjec-

1

3

25

4

3

1

25

4
r1,3

Figure 1.1: The figure shows a transitions rate of the inhomogeneous multispecies TASEP
on a ring.

tured that each steady state probability is proportional to a positive linear combination of
Schubert polynomials. Subsequently, a combinatorial formula for the steady state probabil-
ity was given in terms of objects called multiline queues [19, 3, 1]. In particular, the steady
state probability for the state w is given as a weighted sum over multiline queues of type w.
However, the conjecture about Schubert polynomials remained open.

In [6], Cantini introduced a z-deformed steady state probability for the spectral parame-
ters z1, z2,⋯ which recovers the (usual) steady state probability when specialized to zi =∞.
He gave an explicit formula for z-deformed steady state probability of a few states, explaining
the appearance of Schubert polynomials in those cases.

In a joint with Williams [25], we introduced a special subset St(n, k) of Sn and gave an
explicit formula for z-deformed steady state probabilities of w ∈ St(n, k) thereby generalizing
Cantini’s work. As a corollary we have the following statement.

Theorem 1.2.1 ([25]). For w ∈ St(n, k), the steady state probability of the state w is pro-
portional to a product of k Schubert polynomials.
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1.3 Chapter4: A combinatorial formula for the Ehrhart
h∗-vector of the hypersimplex

For an n-dimensional lattice polytope P ⊂ RN , it is well known from Ehrhart theory that
the map r → ∣rP ∩ ZN ∣ is a polynomial function in r of degree n, which we call Ehrhart
polynomial, and the corresponding Ehrhart series ∑∞

r=0 ∣rP ∩ ZN ∣tr is a rational function of
the form

∞
∑
r=0

∣rP ∩ZN ∣tr =
h∗(t)

(1 − t)n+1
,

such that h∗(t) is a polynomial of degree ≤ n (see [34]). Define h∗d to be the coefficient of
td in h∗(t). The vector (h∗0,⋯, h

∗
n) is called the Ehrhart h∗-vector of P . In [33], Stanley

proved that the h∗-vector of a lattice polytope always consists of non-negative integers, so
it became an interesting question to find a combinatorial interpretation of h∗-vectors for
various polytopes.

In [17], Early conjectured a combinatorial interpretation of the h∗-vector of the hyper-
simplex ∆k,n in terms of decorated ordered set partitions. A decorated ordered set partition
((L1)l1 ,⋯, (Lm)lm) of type (k,n) consists of an ordered partition (L1,⋯, Lm) of {1,2, ..., n}
and an m-tuple (l1,⋯, lm) ∈ Zm such that l1 +⋯+ lm = k and li ≥ 1. A decorated ordered set
partition is called hypersimplicial if it satisfies 1 ≤ li ≤ ∣Li∣ − 1 for all i, and one can define a
natural statistic called winding number for them. In [23], we proved the conjecture of Early.

Theorem 1.3.1 ([23]). The h∗-vector (h∗0, h
∗
1,⋯) of the hypersimplex ∆k,n has the property

that h∗d equals the number of hypersimplicial decorated ordered set partitions of type (k,n)
with winding number d.



5

Chapter 2

Combinatorial formulas for the
coefficients of the Al-Salam-Chihara
polynomials

The results of this chapter are based on [24].

2.1 Introduction
In the last few decades, there has been a lot of work on finding combinatorial formulas

for moments of orthogonal polynomials (see [9], [11],[12], [13], [14], [36]), particularly when
they are polynomials with positive coefficients. The Al-Salam-Chihara polynomials are an
important class of orthogonal polynomials in one variable x which are connected to a model
from statistical mechanics called the partially asymmetric simple exclusion process (PASEP).
There have been some works on the combinatorics of the Al-Salam-Chihara polynomials (see
[21]); this work has focused on the moments of the Al-Salam-Chihara polynomials, not the
coefficients, as the coefficients fail to be positive polynomials. In this paper, we introduce
the transformed Al-Salam-Chihara polynomials, which do have positive coefficients and give
two manifestly positive combinatorial formulas for the coefficients.

Orthogonal polynomials in one variable (pn(x))n≥0 are a family of polynomials such that
the degree of pn(x) is n and are orthogonal with respect to a certain measure ω, that is

∫ pn(x)pm(x)dω = 0, for m ≠ n .

Monic orthogonal polynomials can be also defined by a three-term recurrence relation

pn+1(x) = (x − bn)pn(x) − λnpn−1(x),

with p0(x) = 1 and p−1(x) = 0 and where (bn)n≥0 and (λn)n≥1 are constants (see [18]). We
call (bn)n≥0 and (λn)n≥1 the structure constants of (pn(x))n≥0. The N-th moments µN of
(pn(x))n≥0 are defined as µN = ∫ x

Ndω, for N ≥ 0 .
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The (monic) Al-Salam-Chihara polynomials are orthogonal polynomials with three free
parameters (a, b, q). They are in the basic Askey scheme (see [2]) and can be obtained as
the specialization of the Askey-Wilson polynomials at c = d = 0. The Al-Salam-Chihara
polynomials may be defined by the following three-term recurrence relation (see [27])

pn+1(x) = (x − bn)pn(x) − λnpn−1(x)

bn =
(a + b)qn

2

λn =
(1 − qn)(1 − abqn−1)

4
.

Surprisingly, the moments of the Al-Salam Chihara polynomials are connected to a model
from statistical mechanics called the partially asymmetric simple exclusion process (PASEP)
(see [32], [36]). The PASEP is a model of interacting particles hopping left and right on a
one-dimensional lattice of N sites. Each site can be either occupied by a particle or empty
and transition rates between states are proportional to α, β and q (see Figure 2.1). Then the
partition function ZN of the PASEP can be written in terms of moments of the Al-Salam-
Chihara polynomials (see [36], Section 6.1) as follows

ZN =
N

∑
k=0

(
N

k
)(

2αβ

1 − q
)NµN−k, (2.1.1)

using the change of variables

a =
1 − q − α

α
, b =

1 − q − β

β
. (2.1.2)

β1qα

Figure 2.1: The figure shows transition rates of the PASEP

Motivated by the connection (2.1.1) with the PASEP, we consider a family (p′n(x))n≥0 of
polynomials where

p′n(x) = (
2αβ

q − 1
)npn(

q − 1

2αβ
x − 1),

using the change of variables (2.1.2). Then theN -th moment of (p′n(x))n≥0 becomes (−1)NZN ,
and we have the following three-term recurrence relation

p′n+1(x) = (x + bn)p
′
n(x) − λnp

′
n−1(x) (2.1.3)

bn = (α + β)qn + 2αβ[n]q

λn = (αβ)2[n]q[n − 1]q + αβ(α + β)q
n−1[n]q + αβ(q

2n−1 − qn−1).
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In [3], a combinatorial formula for ZN was given in terms of permutation tableaux,
showing in particular that it is a polynomial in α, β and q with positive coefficients.

Computing p′n(x) for small n we have

p′0(x) =1

p′1(x) =x + (α + β)

p′2(x) =x
2 + (α + β + αq + βq + 2αβ)x + (α2q + β2q + αβ + αβq + αβ2 + α2β)

p′3(x) =x
3 + (α + β + αq + βq + αq2 + βq2 + 4αβ + 2αβq)x2

+ (αβ + 3α2β + 3αβ2 + 3α2β2 + α2q + 2αβq + 3α2βq + β2q + 3αβ2q + 3α2β2q

+ α2q2 + 2αβq2 + 3α2βq2 + β2q2 + 3αβ2q2 + α2q3 + αβq3 + β2q3)x + (2α2β2

+ α3β2 + α2β3 + α2βq + α3βq + αβ2q + 2α2β2q + α3β2q + αβ3q + α2β3q + α2βq2

+ 2α3βq2 + αβ2q2 + 2α2β2q2 + 2αβ3q2 + α3q3 + α2βq3 + αβ2q3 + β3q3).

Note that it is not obvious from the recurrence (2.1.3) that the coefficients are polynomials
in α, β and q with positive coefficients.

It is worth noting that specializing to q = 1, the polynomial p′n(x) becomes

p′n(x) =
n

∑
k=0

((
n

k
)

n−1

∏
i=n−k

(α + β + iαβ))xn−k,

which can be easily proved by induction. The coefficients of p′n(x) have a nice factorization
formula in this case; however they do not factorize in general.

In this paper we will give two different combinatorial formulas for these coefficients mak-
ing manifest that they are polynomials in α, β and q with positive coefficients. To do this
we introduce the following more general orthogonal polynomials.

Definition 2.1.1. The transformed Al-Salam-Chihara polynomials (p̂n(x))n≥0 are the family
of orthogonal polynomials in one variable x depending on parameters α, β, ε1, ε2 and q defined
by the following three-term recurrence relation

p̂n+1(x) = (x + bn)p̂n(x) − λnp̂n−1(x) (2.1.4)
bn = (α + β)qn + (ε1 + ε2)[n]q

λn = ε1ε2[n]q[n − 1]q + (αε2 + βε1)q
n−1[n]q + αβ(q

2n−1 − qn−1).

Remark 2.1.2. The connection with the PASEP provided some inspiration for Definition
2.1.1. In particular, there is a 1-parameter generalization of the partition function ZN called
the fugacity partition function ZN(ξ) where ξ is a variable keeping track of the number
of particles for each state. This connection leads to the following family of orthogonal
polynomials defined by the three-term recurrence relation

p′′n+1(x) = (x + bn)p
′′
n(x) − λnp

′′
n−1(x) (2.1.5)

bn = (ξα + β)qn + (1 + ξ)αβ[n]q

λn = ξ(αβ)
2[n]q[n − 1]q + ξαβ(α + β)q

n−1[n]q + ξαβ(q
2n−1 − qn−1),
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which is a ξ-analogue of (2.1.3) (see [15]). We can recover (2.1.5) from the more general
setting of (2.1.4) by plugging α → ξα, ε1 → ξαβ and ε2 → αβ.

Remark 2.1.3. The coefficients [xn]pn+k(x) of the Al-Salam-Chihara polynomials and the
coefficients [xn]p̂n+k(x) of the transformed Al-Salam-Chihara polynomials are connected as
follows

[xn]pn+k(x) =
k

∑
i=0

(
n + i

n
)(
q − 1

2αβ
)k−i([xn+i]p̂n+k(x)),

where ε1 = ε2 = αβ, a = 1−q−α
α and b = 1−q−β

β .

The rest of the paper studies the transformed Al-Salam-Chihara polynomials from Defini-
tion 2.1.1. We give two formulas for the coefficient gn+k,n of xn in p̂n+k(x). Our two formulas
represent gn+k,n as polynomials in Xi = αqi + ε1[i]q and Yi = βqi + ε2[i]q (see (2.2.1)) where
the coefficients lie in Z[q]. For example, by our first result (Theorem 2.2.3) we have

g3,1 = ( ∑
0≤i<j≤2

XiXj) + (X0Y1 + Y0X2 +X1Y2 + (
3

1
)
q

X0Y0) + ( ∑
0≤i<j≤2

YiYj), (2.1.6)

and by our second result (Theorem 2.2.8) we have

g3,1 = ( ∑
0≤i<j≤2

XiXj) + (X0Y0 +X0Y1 + q
2X0Y0 +X1Y0 +X1Y1 + qX1Y1) + ( ∑

0≤i<j≤2

YiYj).

(2.1.7)

Note that (2.1.7) is invariant as a polynomial inXi’s and Yi’s under the exchangeXi↔ Yi.
This is the case in general for our second formula and will be explained in Remark 2.4.6. The
first formula, however, is not invariant as a polynomial in Xi’s and Yi’s under the exchange
Xi ↔ Yi as one can see from (2.1.6). So far, it is not clear how these two formulas are
connected.

The structure of this paper is as follows. In Section 2, we will state the main results
of this paper with examples. In Section 3, we will prove our first result (Theorem 2.2.3).
In Section 4, we will prove our second result (Theorem 2.2.8). In Section 5, we will prove
Theorem 2.2.14 which is a partial result of the conjecture regarding the minors of the matrix
of coefficients G = (gn,i)n,i.

Acknowledgments: The author is thankful to his advisor Lauren Williams for men-
torship, valuable comments, and helping me revise the draft. The author would also like to
thank Sylvie Corteel for her helpful comments and explanations.

2.2 Main Results
This section states the main results of this paper with examples. Throughout this section,

we set
Xi = αq

i + ε1[i]q, Yi = βq
i + ε2[i]q (2.2.1)

for i ≥ 0.
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The first formula for the coefficients of p̂n(x)

Definition 2.2.1. Define a sequence Zn for n ≥ 0 by

Zn =

⎧⎪⎪
⎨
⎪⎪⎩

X⌊n
2
⌋ if n is even

Y⌊n
2
⌋ if n is odd

.

For a partition (weakly decreasing sequence of non-negative integers) µ = (µ1,⋯, µl), we
define

sm(µ) = {
min(∣{i∣µi = 0}∣, ∣{i∣µi = 2m + 1}∣) if µ1 = 2m + 1

0 otherwise
.

Denoting k = sm(µ), we define a weight um(µ) to be

um(µ) = (
l−k
∏
i=1

Zµl+1−i+2(i−1))((
m + l

k
)
q

Y0⋯Yk−1).

Example 2.2.2. For m = 1, consider a partition µ = (3,3,1,0). Then s1((3,3,1,0)) =

min(∣{i∣µi = 0}∣ = 1, ∣{i∣µi = 2m + 1}∣ = 2) = 1, so we have

u1((3,3,1,0)) = Z0Z1+2Z3+4(
5

1
)
q

Y0 =X0Y1Y3(
5

1
)
q

Y0.

For a partition µ = (3,3,0,0), we have s1((3,3,0,0)) =min(∣{i∣µi = 0}∣ = 2, ∣{i∣µi = 2m+ 1}∣ =
2) = 2, so this gives

u1((3,3,0,0) = Z0Z0+2(
5

2
)
q

Y0Y1 =X0X1(
5

2
)
q

Y0Y1.

Theorem 2.2.3. The coefficient gn+k,n of xn in p̂n+k(x) is given by

gn+k,n = ∑
µ⊆(k)×(2n+1)

un(µ),

ie. it is the weighted sum over all Young diagrams contained in a (k) × (2n + 1) rectangle,
where the weight is given by Definition 2.2.1.

Example 2.2.4. By Theorem 2.2.3, we have

gk,0 = ∑
µ⊆(k)×(1)

u0(µ) =
k

∑
i=0

u0((1
k−i,0i)).

If k − i ≤ i, then

u0((1
k−i,0i)) =X0⋯Xi−1(

k

k − i
)
q

Y0⋯Yk−i−1 =X0⋯Xi−1(
k

i
)
q

Y0⋯Yk−i−1.
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If k − i > i, then

u0((1
k−i,0i)) =X0⋯Xi−1Yi⋯Yk−i−1(

k

i
)
q

Y0⋯Yi−1 =X0⋯Xi−1(
k

i
)
q

Y0⋯Yk−i−1.

In both cases, we have u0((1k−i,0i)) =X0⋯Xi−1(
k
i
)
q
Y0⋯Yk−i−1. Thus we have

gk,0 =
k

∑
i=0

(
k

i
)
q

X0⋯Xi−1Y0⋯Yk−i−1. (2.2.2)

Example 2.2.5. By Theorem 2.2.3, we have

g3,1 = ∑
µ⊆(2)×(3)

u1(µ)

=u1((0,0)) + u1((1,0)) + u1((2,0)) + u1((3,0)) + u1((1,1))

+ u1((2,1)) + u1((3,1)) + u1((2,2)) + u1((3,2)) + u1((3,3))

=X0X1 +X0Y1 +X0X2 + (
3

1
)
q

X0Y0 + Y0Y1

+ Y0X2 + Y0Y2 +X1X2 +X1Y2 + Y1Y2

=( ∑
0≤i<j≤2

XiXj) + (X0Y1 + Y0X2 +X1Y2 + (
3

1
)
q

X0Y0) + ( ∑
0≤i<j≤2

YiYj).

The second formula for the coefficients of p̂n(x)

Definition 2.2.6. For a set S with integer elements, we define S(k) to be the k-th smallest
element of the set ({0}∪N)−S. For example, when S = {1,4,7}, we have S(1) = 0, S(2) = 2,
S(3) = 3 and S(4) = 5. We also define λS to be (i1, i2−1,⋯, is−s+1) where S = {i1 < ⋯ < is}.

Definition 2.2.7. For a set A = {i1 < ⋯ < ia} ⊆ {0,⋯, n+a−1} and a set B ⊆ {0,⋯, n+a+b−1}
with ∣B∣ = b, denoting B ∩ {n + b,⋯, n + b + a − 1} = {n + b + a − jk < ⋯ < n + b + a − j1} and
µ = λA = (i1, i2 − 1,⋯, ia − a + 1), we define a weight wn(A,B) to be

wn(A,B) = (∏
i∈A
Xi)( ∏

i∈B∩{0,⋯,n+b−1}
Yi)(

k

∏
l=1

(q(n+b+a−jl)−B(µjl+l)YB(µjl+l))).

Definition 2.2.7 is motivated by the bijective proof of the simple identity

q(
a
2
)(
n + a

a
)
q

q(
b
2
)(
n + a + b

b
)
q

= q(
a
2
)(
n + a + b

a
)
q

q(
b
2
)(
n + b

b
)
q

(2.2.3)

which will be given in Section 2.4.
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Theorem 2.2.8. The coefficient gn+k,n of xn in p̂n+k(x) is given by

gn+k,n = ∑
a+b=k

( ∑
A⊆{0,⋯,(n+a−1)}

∣A∣=a

( ∑
B⊆{0,⋯,(n+a+b−1)}

∣B∣=b

wn(A,B))),

ie. it is the weighted sum over all pairs (A,B) such that A ⊆ {0,⋯, (n + a − 1)} with ∣A∣ = a
and B ⊆ {0,⋯, (n + a + b − 1)} with ∣B∣ = b, where the weight is given by Definition 2.2.7.

Example 2.2.9. We compute w0(A,B) as follows. Since n = 0 there is only one possible
choice for A which is {0,⋯, a − 1}, so µ = λA = (0,⋯,0). Suppose there are k elements in a
set B ∩ {b,⋯, b+ a− 1} then these elements will change to elements in ({0,⋯, b− 1}−B). So
we have w0(A,B) =X0⋯Xa−1(q∑

B−(b
2
))Y0⋯Yb−1. Thus we have

gk,0 = ∑
a+b=k

( ∑
B⊆{0,⋯,a+b−1}

∣B∣=b

X0⋯Xa−1(q∑
B−(b

2
))Y0⋯Yb−1)

= ∑
a+b=k

(
a + b

b
)
q

X0⋯Xa−1Y0⋯Yb−1.

In this case the formula is identical to (2.2.2).

Example 2.2.10. By Theorem 2.2.8, we have

g3,1 = ∑
B⊆{0,1,2}

∣B∣=2

w1(φ,B) + ∑
A⊆{0,1}
∣A∣=1

( ∑
B⊆{0,1,2}

∣B∣=1

w1(A,B)) + ∑
A⊆{0,1,2}

∣A∣=2

w1(A,φ)

=( ∑
0≤i<j≤2

XiXj) + (X0Y0 +X0Y1 + q
2X0Y0 +X1Y0 +X1Y1 + qX1Y1) + ( ∑

0≤i<j≤2

YiYj).

On the way to prove Theorem 2.2.8, we introduce the following, which extends q-binomial
coefficient.

Definition 2.2.11. For a weakly increasing composition µ = (µ1,⋯, µa) such that −1 ≤

µ1,⋯, µa ≤ n and a set B ⊆ {0,⋯, n+a+b−1} with ∣B∣ = b, denoting B∩{n+b,⋯, n+b+a−1} =
{n + b + a − jk < ⋯ < n + b + a − j1}, we define a weight mµ

n(B) to be

mµ
n(B) = ( ∏

i∈B∩{0,⋯,n+b−1}
Yi)(

k

∏
l=1

(q(n+b+a−jl)−B(µjl+l)YB(µjl+l)),

where we define B(0) = −1 and Y−1 = q−1(β − ε2). We also define a generalized q-binomial
coefficient Mµ

n (b) to be
Mµ

n (b) = ∑
B⊆{0,⋯,n+a+b−1}

∣B∣=b

mµ
n(B).
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We named Mµ
n (b) a generalized q-binomial coefficient because when ε2 = 0, we have

Mµ
n (b) = q

(b
2
)(n+a+b

b
)
q
(β)b, where a is a number of components in µ = (µ1,⋯, µa). Note that

q-binomial coefficients have the following well known identities

(
n + a + b + 1

b
)
q

= qn+a+1(
n + a + b

b − 1
)
q

+ (
n + a + b

b
)
q

(2.2.4)

[n + a + b + 1]q(
n + a + b

b
)
q

= [n + a + 1]q(
n + a + b + 1

b
)
q

. (2.2.5)

We will give a generalization of (2.2.4) in Lemma 2.4.10 and a generalization of (2.2.5) in
Lemma 2.4.13. These two lemmas will be key ingredients for the proof of Theorem 2.2.8.

Positivity of minors of the matrix of coefficients

Motivated by [12] (Conjecture 4.4), we make the following conjecture.

Conjecture 2.2.12. Let G = (gn,i)n,i be the infinite array of coefficients gn,i = [xi]p̂n(x)
where n, i ∈ Z≥0 and gn,i = 0 if i > n. Then the (non-vanishing) minors of G are polynomials
with positive coefficients.

Specializing α → ξα, ε1 → ξαβ and ε2 → αβ, Conjecture 2.2.12 recovers the positivity
conjecture for Koornwinder moments when γ = δ = 0 (see [12], Conjecture 4.4).

Proposition 2.2.13. Conjecture 2.2.12 is true for the following cases.
(1) α = 0 (or β = 0)
(2) α = ε1 (or β = ε2)
(3) ε1 = 0 (or ε2 = 0)

Proof. By Remark 2.3.3 and Remark 2.4.7 together with the Lindström-Gessel-Viennot
lemma (see [20]) proves the proposition.

For polynomials f1 and f2 we will write f1 ⪰ f2 if (f1 − f2) is a polynomial with positive
coefficients. The following theorem shows that 2 by 2 minors of G = (gn,i)n,i having gn,n = 1
as a lower left entry are polynomials with positive coefficients. The proof will use Theorem
2.2.8.

Theorem 2.2.14. For non-negative integers n, a and b, we have

gn+a+b,n+agn+a,n ⪰ gn+a+b,n.

Example 2.2.15. We have

g4,2g2,1 − g4,1 =α
2β + αβ2 + 2α2ε1 + 2αβε1 + β

2ε1 + βε
2
1 + α

2ε2 + 2αβε2 + 2β2ε2 + αε1ε2

+ βε1ε2 + αε
2
2 + α

3q + 2α2βq + 2αβ2q + β3q + α2ε1q + 2αβε1q + β
2ε1q

+ βε21q + α
2ε2q + 2αβε2q + β

2ε2q + αε1ε2q + βε1ε2q + αε
2
2q + α

3q2 + 2α2βq2

+ 2αβ2q2 + β3q2 + 2αβε1q
2 + β2ε1q

2 + α2ε2q
2 + 2αβε2q

2 + α2βq3 + αβ2q3.

We conclude g4,2g2,1 ⪰ g4,1.
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2.3 Proof of Theorem 2.2.3
Our goal in this section is to prove Theorem 2.2.3, which gives a combinatorial formula

for the coefficients of the transformed Al-Salam-Chihara polynomials as a weighted sum over
Young diagrams contained in a rectangle. One step along the way is to prove Proposition
2.3.2, which gives an analogous result in a simpler setting.

A motivating result

Consider the family of orthogonal polynomials (p̃n(x))n≥0 in one variable x, defined by
the following three-term recurrence relation

p̃n+1(x) = (x + b̃n)p̃n(x) − λ̃np̃n−1(x)

b̃n =Xn + Yn

λ̃n = Yn−1Xn,

where Xi’s and Yi’s are indeterminates.

Definition 2.3.1. For a partition µ = (µ1, µ2,⋯, µl), we define a weight w(µ) to be

w(µ) =
l

∏
i=1

Zµl+1−i+2(i−1) = ZµlZµl−1+2Zµl−2+4⋯Zµ1+2(l−1),

where Zn is given by Definition 2.2.1.

Proposition 2.3.2. The coefficient g̃n+k,n of xn in p̃n+k(x) is given by

g̃n+k,n = ∑
µ⊆(k)×(2n+1)

w(µ),

ie. it is the weighted sum over all Young diagrams contained in a (k) × (2n + 1) rectangle,
where the weight is given by Definition 2.3.1.

Proof. The proof goes with the induction. We first prove g̃k,0 is given by the above formula.
The base cases g̃0,0 = 1 and g̃1,0 =X0+Y0 are trivially satisfied. It suffices to prove that the for-

mula satisfies the recurrence g̃k+1,0 = b̃kg̃k,0 − λ̃kg̃k−1,0. Since ∑
µ⊆k×1

w(µ) =
k

∑
i=0
X0⋯Xi−1Yi⋯Yk−1,
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we have

∑
µ⊆(k+1)×1

w(µ) =
k+1

∑
i=0

X0⋯Xi−1Yi⋯Yk =X0⋯Xk + (
k

∑
i=0

X0⋯Xi−1Yi⋯Yk−1)Yk

=(
k

∑
i=0

X0⋯Xi−1Yi⋯Yk−1 −
k−1

∑
i=0

X0⋯Xi−1Yi⋯Yk−1)Xk

+ (
k

∑
i=0

X0⋯Xi−1Yi⋯Yk−1)Yk

=(
k

∑
i=0

X0⋯Xi−1Yi⋯Yk−1)(Xk + Yk) − (
k−1

∑
i=0

X0⋯Xi−1Yi⋯Yk−2)Yk−1Xk

=b̃k( ∑
µ⊆(k)×1

w(µ)) − λ̃k( ∑
µ⊆(k−1)×1

w(µ)).

Now we will show that for n > 0, the formula satisfies the recurrence

g̃n+k+1,n = g̃n+k,n−1 + b̃n+k(g̃n+k,n) − λ̃n+k(g̃n+k−1,n)

which is checked as follows

∑
µ⊆(k+1)×(2n+1)

w(µ)

= ∑
µ⊆(k+1)×(2n−1)

w(µ) + ∑
µ⊆(k+1)×(2n+1)

µ1=2n

w(µ) + ∑
µ⊆(k+1)×(2n+1)

µ1=2n+1

w(µ)

= ∑
µ⊆(k+1)×(2n−1)

w(µ) + ∑
µ′⊆(k)×2n

w(µ′)Xn+k + ∑
µ′⊆(k)×2n+1

w(µ′)Yn+k

= ∑
µ⊆(k+1)×(2n−1)

w(µ) +

⎛
⎜
⎜
⎜
⎝

∑
µ′⊆(k)×(2n+1)

w(µ′) − ∑
µ′⊆(k)×(2n+1)

µ′1=2n+1

w(µ′)

⎞
⎟
⎟
⎟
⎠

Xn+k

+ ∑
µ′⊆(k)×(2n+1)

w(µ′)Yn+k

= ∑
µ⊆(k+1)×(2n−1)

w(µ) + ( ∑
µ′⊆(k)×(2n+1)

w(µ′))(Xn+k + Yn+k) − ∑
µ′⊆(k)×(2n+1)

µ′1=2n+1

w(µ′)Xn+k

= ∑
µ⊆(k+1)×(2n−1)

w(µ) + b̃n+k
⎛

⎝
∑

µ′⊆(k)×(2n+1)
w(µ′)

⎞

⎠
− λ̃n+k

⎛

⎝
∑

µ′′⊆(k−1)×(2n+1)
w(µ′′)

⎞

⎠
.

Remark 2.3.3. Consider a vertex set V = {(i, j) ∈ Z × Z≥0 ∣ −2j − 1 ≤ i ≤ 0} and directed
edges connecting every horizontally or vertically adjacent pair of vertices in an increasing



CHAPTER 2. COMBINATORIAL FORMULAS FOR THE COEFFICIENTS OF THE
AL-SALAM-CHIHARA POLYNOMIALS 15

direction (see Figure 2.2). We will assign weights to directed edges as follows. For a directed
edge of the form (i, j) → (i + 1, j), we give a weight 1 and for a directed edge of the form
(i, j) → (i, j + 1), we give a weight Zi+2j+1 (defined in Definition 2.2.1). The weight W (P )

of a path P is defined to be the product of the weights of its edges. Set ui = (−2i − 1, i) and
vi = (0, i) for i ≥ 0. Then the formula for g̃n+k,n given in Proposition 2.3.2 is equivalent to
g̃n+k,n = ∑

P ∶un→vn+k
W (P ), where the sum is over all paths P from un to vn+k.

X0 Y0 X1 Y1 X2 Y2

X0 Y0 X1 Y1

X0 Y0

u3 v3

u2 v2

u1 v1

u0 v0

Figure 2.2: The figure shows the weighted directed graph constructed in Remark 2.3.3.

From now on, we specify Xi’s and Yi’s as given in (2.2.1)

Xi = αq
i + ε1[i]q, Yi = βq

i + ε2[i]q.

Then the structure constants for the transformed Al-Salam-Chihara polynomials can be
represented as follows

bn =Xn + Yn

λn = Yn−1Xn − α(β − ε2)q
n−1.

When α = 0 or β = ε2, Proposition 2.3.2 gives the formula for gn+k,n = [xn]p̂n+k(x). The
weight um(µ) given by Definition 2.2.1 can be considered as a modification of the weight
w(µ) given by Definition 2.3.1. They manifestly coincide when α = 0 or β = ε2 (Remark
2.3.4).

Remark 2.3.4. Let k = sm(µ) and assume α = 0. If k = 0, then trivially um(µ) = w(µ). If
k > 0, then both um(µ) and w(µ) have a factor Z0 = X0 = α so they are both zero. Now
assume β = ε2 then Yi equals [i + 1]qβ. This gives
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w(µ)

um(µ)
=

(
l

∏
i=1
Zµl+1−i+2(i−1))

(
l−k
∏
i=1
Zµl+1−i+2(i−1))((

m+l
k
)
q
Y0⋯Yk−1)

=

(
l

∏
i=l−k+1

Zµl+1−i+2(i−1))

((
m+l
k
)
q
Y0⋯Yk−1)

=
Ym+l−k⋯Ym+l−1

((
m+l
k
)
q
Y0⋯Yk−1)

=
βk[m + l − k + 1]q⋯[m + l]q

βk(m+lk )
q
[1]q⋯[k]q

= 1.

We conclude that w(µ) = um(µ) when α = 0 or β = ε2.

Proof of Theorem 2.2.3

We will first prove Theorem 2.2.3 for gk,0. It suffices to prove that (2.2.2) satisfies the
recurrence gk+1,0 = bkgk,0 − λkgk−1,0 (Proposition 2.3.6). The base cases g0,0 = 1 and g1,0 =

X0 + Y0 = α + β are trivially satisfied.

Lemma 2.3.5. The following equality holds (k ≥ 1)

(
k + 1

i
)
q

Xi−1Yk−i = (
k

i − 1
)
q

XkYk−i + (
k

i
)
q

Xi−1Yk − λk(
k − 1

i − 1
)
q

.

Proof. Moving the middle term on the right hand side to the left, the left hand side becomes

(
k + 1

i
)
q

Xi−1Yk−i − (
k

i
)
q

Xi−1Yk =Xi−1((
k + 1

i
)
q

Yk−i − (
k

i
)
q

Yk)

=Xi−1(q
k−i(

k

i − 1
)
q

(β − ε2)).

The remaining right hand side becomes

(
k

i − 1
)
q

XkYk−i − (XkYk−1 − α(β − ε2)q
k−1)(

k − 1

i − 1
)
q

=Xk((
k

i − 1
)
q

Yk−i − (
k − 1

i − 1
)
q

Yk−1) + α(β − ε2)q
k−1(

k − 1

i − 1
)
q

=Xk(q
k−i(

k − 1

i − 2
)
q

(β − ε2)) + α(β − ε2)q
k−1(

k − 1

i − 1
)
q

=qk−i(β − ε2)((
k − 1

i − 2
)
q

Xk + αq
i−1(

k − 1

i − 1
)
q

)

=qk−i(β − ε2)(α(q
k(
k − 1

i − 2
)
q

+ qi−1(
k − 1

i − 1
)
q

)) + ε1[k]q(
k − 1

i − 2
)
q

)

=qk−i(β − ε2)(α(q
i−1(

k

i − 1
)
q

) + ε1[i − 1]q(
k

i − 1
)
q

)

=qk−i(β − ε2)((
k

i − 1
)
q

Xi−1)).
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So the equality holds.

Proposition 2.3.6. The following equality holds (k ≥ 1)

k+1

∑
i=0

(
k + 1

i
)
q

X0⋯Xi−1Y0⋯Yk−i =bk(
k

∑
i=0

(
k

i
)
q

X0⋯Xi−1Y0⋯Yk−i−1)

− λk(
k−1

∑
i=0

(
k − 1

i
)
q

X0⋯Xi−1Y0⋯Yk−i−2).

Proof. Multiplying the equality in Lemma 2.3.5 with (X0⋯Xi−2Y0⋯Yk−i−1) gives

(
k + 1

i
)
q

X0⋯Xi−1Y0⋯Yk−i = ((
k

i − 1
)
q

X0⋯Xi−2Y0⋯Yk−i−1)(Xk) (2.3.1)

+ ((
k

i
)
q

X0⋯Xi−1Y0⋯Yk−i−2)(Yk) − ((
k − 1

i − 1
)
q

X0⋯Xi−2Y0⋯Yk−i−1)(λk).

Summing (2.3.1) for i from 0 to (k + 1) gives a desired equality.

To prove Theorem 2.2.3, it remains to show that for n > 0, the formula satisfies the
recurrence gn+k+1,n = gn+k,n−1 + bn+kgn+k,n − λn+kgn+k−1,n. In other words, we will show the
identity

∑
µ⊆(k+1)×(2n+1)

un(µ) = ∑
µ⊆(k+1)×(2n−1)

un−1(µ) + bn+k( ∑
µ⊆(k)×(2n+1)

un(µ)) (2.3.2)

− λn+k( ∑
µ⊆(k−1)×(2n+1)

un(µ)).

The middle term on the right hand side of (2.3.2) becomes

bn+k( ∑
µ⊆(k)×(2n+1)

un(µ)) =Xn+k( ∑
µ⊆(k)×(2n+1)

un(µ)) + Yn+k( ∑
µ⊆(k)×(2n+1)

un(µ))

=Xn+k( ∑
µ⊆(k)×(2n)

un(µ) + ∑
µ⊆(k)×(2n+1)
µ1=2n+1

un(µ)) + Yn+k( ∑
µ⊆(k)×(2n+1)

un(µ))

=Xn+k( ∑
µ⊆(k)×(2n)

un(µ)) + Yn+k( ∑
µ⊆(k)×(2n+1)

un(µ))

+Xn+k( ∑
µ′⊆(k−1)×(2n+1)

un((2n + 1, µ′))).

Plugging this to (2.3.2) gives

∑
µ⊆(k+1)×(2n+1)

un(µ) = ∑
µ⊆(k+1)×(2n−1)

un−1(µ) +Xn+k( ∑
µ⊆(k)×(2n)

un(µ)) (2.3.3)

+ Yn+k( ∑
µ⊆(k)×(2n+1)

un(µ)) + ( ∑
µ⊆(k−1)×(2n+1)

(Xn+kun((2n + 1, µ)) − λn+kun(µ))).
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For µ ⊆ (k + 1) × (2n + 1) we define

ūn(µ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

un−1(µ) if µ ⊆ (k + 1) × (2n − 1)

Xn+kun(µ′) if µ = (2n,µ′) for some µ′ ⊆ (k) × (2n)

Yn+kun(µ′) if µ = (2n + 1, µ′) for some µ′ ⊆ (k) × (2n + 1),

and for µ ⊆ (k − 1) × (2n + 1) we define

vi(µ) =Xn+kun((2n + 1, µ)) − λn+kun(µ).

Then (2.3.3) is represented as follows

∑
µ⊆(k+1)×(2n+1)

un(µ) = ∑
µ⊆(k+1)×(2n+1)

ūn(µ) + ∑
µ⊆(k−1)×(2n+1)

vi(µ). (2.3.4)

To prove (2.3.4) we first partition the sets {µ ⊆ (k+1)×(2n+1)} and {µ ⊆ (k−1)×(2n+1)}.

Definition 2.3.7. Define B̂n+k,n to be a subset of {µ ⊆ (k+1)×(2n+1)} consisting of µ such
that sn(µ) = 0 and sn−1(µ) = 0. For a partition µ ⊆ (k+1)×(2n−1) such that sn−1(µ) = l > 0,
denoting µ = ((2n − 1)l, µ′), we define Bµ

n+k,n to be

Bµ
n+k,n = {((2n − 1)l, µ′), ((2n + 1), (2n − 1)l−1, µ′),⋯, ((2n + 1)l, µ′)}.

Definition 2.3.8. For a partition µ ⊆ (k−1)×(2n+1) such that µk−1 ≥ 2, define s̄n(µ) to be
a mininum of two numbers ∣{i∣µi = 2}∣ and ∣{i∣µi = 2n+1}∣. If s̄n(µ) = l, denoting µ = (µ′,2l),
we define a set Cµ

n+k,n to be

Cµ
n+k,n = {(µ′,2l), (µ′,2l−1,0),⋯, (µ′,0l)}.

If l = 0, then Cµ
n+k,n consists of a single element µ.

Example 2.3.9. Consider a partition µ = (3,3,1,0,0,0). Since s1(µ) = 2, we have

B
(3,3,1,0,0,0)
7,2 = {(3,3,1,0,0,0), (5,3,1,0,0,0), (5,5,1,0,0,0)}.

For a partition µ = (5,5,2,2), we have

C
(5,5,2,2)
7,2 = {(5,5,2,2), (5,5,2,0), (5,5,0,0)}.

Definition 2.3.10. We define BX
n+k,n, B

Y
n+k,n, C

X
n+k,n and CY

n+k,n as follows

BX
n+k,n = {µ ⊆ (k + 1) × (2n + 1)∣ sn(µ) = l > 0 and µ = ((2n + 1)l,2n,µ′) for some µ′}

BY
n+k,n = {µ ⊆ (k + 1) × (2n + 1)∣ sn(µ) = l > 0 and µ = ((2n + 1)l+1, µ′) for some µ′}

CX
n+k,n = {µ ⊆ (k − 1) × (2n + 1)∣ sn(µ) = l and µ = (µ′,0l+1) for some µ′}

CY
n+k,n = {µ ⊆ (k − 1) × (2n + 1)∣ sn(µ) = l and µ = (µ′,1,0l) for some µ′}.
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Proposition 2.3.11. The set {µ ⊆ (k + 1) × (2n + 1)} is a disjoint union of B’s and the set
{µ ⊆ (k − 1) × (2n + 1)} is a disjoint union of C’s. That is

{µ ⊆ (k + 1) × (2n + 1)} = B̂n+k,n ⊍ ( ⊍
ν⊆(k+1)×(2n−1)

sn−1(ν)>0

Bν
n+k,n) ⊍B

X
n+k,n ⊍B

Y
n+k,n

{µ ⊆ (k − 1) × (2n + 1)} = ( ⊍
ν⊆(k−1)×(2n+1)

νk−1≥2

Cν
n+k,n) ⊍C

X
n+k,n ⊍C

Y
n+k,n.

Proof. For µ ⊆ (k + 1) × (2n + 1), if sn(µ) = 0 and sn−1(µ) = 0 then µ ∈ B̂n+k,n. If sn−1(µ) > 0,
then µ ∈ Bµ

n+k,n. Now assume sn(µ) = l > 0. By the definition of BX
n+k,n and BY

n+k,n, we have
µ ∈ BX

n+k,n if µl+1 = 2n and µ ∈ BY
n+k,n if µl+1 = 2n+ 1. For the remaining case µl+1 ≤ 2n− 1, let

ν = ((2n−1)l, µl+1,⋯, µk+1). Then ν is a partition inside (k+1)×(2n−1) with sn−1(ν) ≥ l > 0.
Thus we have µ ∈ Bν

n+k,n. This proves the first statement.
For the second statement, take µ ⊆ (k − 1) × (2n + 1) such that sn(µ) = l. If µk−1−l = 0

then µ ∈ CX
n+k,n and if µk−1−l = 1 then µ ∈ CY

n+k,n. For the remaining case µk−1−l ≥ 2, let
ν = (µ1,⋯, µk−1−l,2l), then we have µ ∈ Cν

n+k,n.

We have decompositions of the sets {µ ⊆ (k + 1) × (2n + 1)} and {µ ⊆ (k − 1) × (2n + 1)}.
The next proposition relates these two decompositions.

Proposition 2.3.12. The followings hold.
(a) There exists a bijection between {µ ⊆ (k + 1) × (2n − 1)∣sn−1(µ) > 0} and

{µ ⊆ (k − 1) × (2n + 1)∣µk−1 ≥ 2}.
(b) There exists a bijection between BX

n+k,n and CX
n+k,n.

(c) There exists a bijection between BY
n+k,n and CY

n+k,n.

Proof. (a) Given an element µ in the first set, the partition (µ2+2,⋯, µk+2) is in the second
set. Conversely given an element ν in the second set, the partition (2n−1, ν1−2,⋯, νk−1−2,0)
is in the first set. This gives a bijection.

(b) Given an element µ in the first set, let sn(µ) = l > 0 and denote µ = ((2n+1)l,2n,µ′).
Note that the tail of µ′ contains at least l 0’s. So we write µ = ((2n+1)l,2n,µ′′,0l). Then the
partition ν = ((2n+1)l−1, µ′′,0l) belongs to the second set. Conversely, given an element ν in
the second set, let sn(ν) = l′ (possibly zero). Likewise, we can write ν = ((2n+ 1)l

′

, ν′′,0l
′+1).

We send this to the partition µ = ((2n + 1)l
′+1,2n, ν′′,0l

′+1) then sn(µ) = l′ + 1 > 0 which
implies that µ belongs to the first set. These processes are inverse to each other thus give a
bijection.

(c) The argument goes similarly with that of (b). The partition µ = ((2n + 1)l+1, µ′′,0l)
goes to the partition ν = ((2n + 1)l−1, µ′′,1,0l−1) and conversely, the partition ν = ((2n +
1)l

′

, ν′′,1,0l
′

) goes to the partition µ = ((2n + 1)l
′+2, ν′′,0l

′+1).

Proposition 2.3.13. The following identities hold.
(a) For a partition µ ∈ B̂n+k,n, we have un(µ) = ūn(µ).
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(b) For partitions µ ⊆ (k + 1) × (2n − 1) such that sn−1(µ) > 0 and ν ⊆ (k − 1) × (2n + 1)
such that νk−1 ≥ 2 which are corresponding pair under the bijection in Proposition 2.3.12 (a),
we have

∑
µ′∈Bµ

n+k,n

un(µ
′) = ∑

µ′∈Bµ
n+k,n

ūn(µ
′) + ∑

ν′∈Cν
n+k,n

vn(ν
′).

(c) For partitions µ ∈ BX
n+k,n and ν ∈ CX

n+k,n which are corresponding pair under the
bijection in Proposition 2.3.12 (b), we have

un(µ) = ūn(µ) + vn(ν).

(d) For partitions µ ∈ BY
n+k,n and ν ∈ CY

n+k,n which are corresponding pair under the
bijection in Proposition 2.3.12 (c), we have

un(µ) = ūn(µ) + vn(ν).

Note that (2.3.4) follows from Proposition 2.3.11 and Proposition 2.3.13. So it suffices
to prove Proposition 2.3.13. To do that, we first compute vn(ν) explicitly.

Lemma 2.3.14. The following holds.
(a) For a partition ν ∈ CX

n+k,n with sn(ν) = l, we have

vn(ν) =X0⋯XlXn+k−l−1(
k−2−l
∏
i=l+1

Zνi+2(k−1−i))Y0⋯Yl−1q
l(
n + k

l + 1
)
q

(β − ε2).

(b) For a partition ν ⊆ (k − 1) × (2n + 1) such that ν ∉ CX
n+k,n with sn(ν) = l, we have

vn(ν) =X0⋯Xl(
k−1−l
∏
i=l+1

Zνi+2(k−1−i))Y0⋯Yl−1q
n+k−l−1(

n + k

l
)
q

(β − ε2).

Proof. (a) Denoting ν = ((2n + 1)l, νl+1,⋯, νk−2−l,0l+1), we have

un(ν) =X0⋯Xl(
k−2−l
∏
i=l+1

Zνi+2(k−1−i))(
n + k − 1

l
)
q

Y0⋯Yl−1.

And since sn(((2n + 1), ν)) = l + 1, we have

un(((2n + 1), ν)) =X0⋯Xl(
k−2−l
∏
i=l+1

Zνi+2(k−1−i))(
n + k

l + 1
)
q

Y0⋯Yl.
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Setting the common factor M =X0⋯Xl(
k−2−l
∏
i=l+1

Zνi+2(k−1−i))Y0⋯Yl−1, we have

vi(ν)

=Xn+kun(((2n + 1), ν)) − λn+kun(ν) =Xn+k(M(
n + k

l + 1
)
q

Yl) − λn+k(M(
n + k − 1

l
)
q

)

=M((
n + k

l + 1
)
q

Xn+kYl − (Yn+k−1Xn+k − α(β − ε2)q
n+k−1)(

n + k − 1

l
)
q

)

=M(Xn+k((
n + k

l + 1
)
q

Yl − (
n + k − 1

l
)
q

Yn+k−1) + α(β − ε2)q
n+k−1(

n + k − 1

l
)
q

)

=M(Xn+k(q
l(
n + k − 1

l + 1
)
q

(β − ε2)) + α(β − ε2)q
n+k−1(

n + k − 1

l
)
q

)

=M(β − ε2)q
l(Xn+k(

n + k − 1

l + 1
)
q

+ αqn+k−l−1(
n + k − 1

l
)
q

))

=M(β − ε2)q
l(α(qn+k(

n + k − 1

l + 1
) + qn+k−l−1(

n + k − 1

l
)
q

) + ε1(
n + k − 1

l + 1
)[n]q)

=M(β − ε2)q
l((
n + k

l + 1
)
q

Xn+k−l−1)

=X0⋯XlXn+k−l−1(
k−2−l
∏
i=l+1

Zνi+2(k−1−i))Y0⋯Yl−1q
l(
n + k

l + 1
)
q

(β − ε2).

(b) Denoting ν = ((2n + 1)l, νl+1,⋯, νk−1−l,0l), we have

un(ν) =X0⋯Xl−1(
k−1−l
∏
i=l+1

Zνi+2(k−1−i))(
n + k − 1

l
)
q

Y0⋯Yl−1.

And since sn(((2n + 1), ν)) = l, we have

un(((2n + 1), ν)) =X0⋯Xl−1(
k−1−l
∏
i=l

Zνi+2(k−1−i))(
n + k

l
)
q

Y0⋯Yl−1

=X0⋯Xl−1(
k−1−l
∏
i=l+1

Zνi+2(k−1−i))(
n + k

l
)
q

Y0⋯Yl−1Zνl+2(k−1−l)

=X0⋯Xl−1(
k−1−l
∏
i=l+1

Zνi+2(k−1−i))(
n + k

l
)
q

Y0⋯Yl−1Yn+k−l−1.
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Setting the common factor M =X0⋯Xl−1(
k−1−l
∏
i=l+1

Zνi+2(k−1−i))Y0⋯Yl−1, we have

vn(ν) =M((
n + k

l
)
q

Xn+kYn+k−l−1 − (Yn+k−1Xn+k − α(β − ε2)q
n+k−1)(

n + k − 1

l
)
q

)

=M(β − ε2)q
n+k−l−1((

n + k

l
)
q

Xl)

=X0⋯Xl(
k−1−l
∏
i=l+1

Zνi+2(k−1−i))Y0⋯Yl−1q
n+k−l−1(

n + k

l
)
q

(β − ε2).

The following lemma will be used for the proof of Proposition 2.3.13 (b).

Lemma 2.3.15. For l and n such that l ≥ 0 and n − l − 1 ≥ 0, we have

Yn−l−1⋯Yn−1 +
l+1

∑
i=1

Yn−l−1⋯Yn−i−1(
n + 1

i
)
q

Y0⋯Yi−1

=(
n

l + 1
)
q

Y0⋯Yl + Yn(
l+1

∑
i=1

Yn−l−1⋯Yn−i−1(
n

i − 1
)
q

Y0⋯Yi−2)

+ (β − ε2)(
l

∑
i=0

qn−i−1Yn−l−1⋯Yn−i−2(
n

i
)
q

Y0⋯Yi−1).

Proof. For l = 0, the identity becomes Yn−1 + (
n+1

1
)
q
Y0 = (

n
1
)
q
Y0 + Yn + (β − ε2)qn−1, which can

be checked by a direct computation. Now assume that the identity holds for (l − 1) and for
all valid n. From the identity corresponding to (l − 1) and n, we multiply both sides with
Yn−l−1 which gives

Yn−l−1⋯Yn−1 +
l

∑
i=1

Yn−l−1⋯Yn−i−1(
n + 1

i
)
q

Y0⋯Yi−1 (2.3.5)

=(
n

l
)
q

Y0⋯Yl−1Yn−l−1 + Yn(
l

∑
i=1

Yn−l−1⋯Yn−i−1(
n

i − 1
)
q

Y0⋯Yi−2)

+ (β − ε2)(
l−1

∑
i=0

qn−i−1Yn−l−1⋯Yn−i−2(
n

i
)
q

Y0⋯Yi−1).

We also have the identity

(
n + 1

l + 1
)
q

Yl = (
n

l + 1
)
q

Yl − (
n

l
)
q

Yn−l−1 + (
n

l
)
q

Yn + q
n−l−1(

n

l
)
q

(β − ε2),

that can be checked by a direct computation. Multiplying both sides with Y0⋯Yl−1 gives

(
n + 1

l + 1
)
q

Y0⋯Yl =(
n

l + 1
)
q

Y0⋯Yl − (
n

l
)
q

Y0⋯Yl−1Yn−l−1 (2.3.6)

+ (
n

l
)
q

Y0⋯Yl−1Yn + q
n−l−1(

n

l
)
q

Y0⋯Yl−1(β − ε2).
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Adding (2.3.5) and (2.3.6) gives the identity corresponding to l and n. The proof follows
from the induction.

Proof of Proposition 2.3.13.
(a) It is trivial to verify.
(b) Denote s̄n(ν) = l and ν = ((2n + 1)l, νl+1,⋯, νk−1−l,2l). Then the corresponding parti-

tion µ is ((2n − 1)l+1, (νl+1 − 2),⋯, (νk−1−l − 2),0l+1). The elements of Cν
n+k,n are denoted as

νi = ((2n + 1)l, νl+1,⋯, νk−1−l,2l−i,0i) where i ranges from 0 to l. As sn(νi) = i, by Lemma
2.3.14 we have

vn(ν
i) =X0⋯Xi(

k−1−i
∏
j=i+1

Z(νi)j+2(k−1−j))Y0⋯Yi−1q
n+k−i−1(

n + k

i
)
q

(β − ε2)

=X0⋯Xi(
k−1−l
∏
j=i+1

Z(νi)j+2(k−1−j))(
k−1−i
∏
j=k−l

Z(νi)j+2(k−1−j))Y0⋯Yi−1q
n+k−i−1(

n + k

i
)
q

(β − ε2)

=X0⋯Xl(
k−1−l
∏
j=i+1

Z(νi)j+2(k−1−j))Y0⋯Yi−1q
n+k−i−1(

n + k

i
)
q

(β − ε2)

=X0⋯Xl(
l

∏
j=i+1

Z(νi)j+2(k−1−j))(
k−1−l
∏
j=l+1

Z(νi)j+2(k−1−j))Y0⋯Yi−1q
n+k−i−1(

n + k

i
)
q

(β − ε2)

=X0⋯Xl(
k−1−l
∏
j=l+1

Zνj+2(k−1−j))(Yn+k−l−1⋯Yn+k−i−2)Y0⋯Yi−1q
n+k−i−1(

n + k

i
)
q

(β − ε2).

And the elements of Bµ
n+k,n are denoted as µi = ((2n+1)i, (2n−1)l+1−i, (νl+1−2),⋯, (νk−1−l−

2),0l+1) where i ranges from 0 to (l + 1). We have

un(µ
0) =X0⋯Xl(

k−1−l
∏
j=l+1

Zνj+2(k−1−j))(Yn+k−l−1⋯Yn+k−1)

ūn(µ
0) =X0⋯Xl(

k−1−l
∏
j=l=1

Zνj+2(k−1−j))((
n + k

l + 1
)
q

Y0⋯Yl),

and for i from 1 to (l + 1) we have

un(µ
i) =X0⋯Xl(

k−1−l
∏
j=l+1

Zνj+2(k−1−j))(Yn+k−l−1⋯Yn+k−i−1(
n + k + 1

i
)
q

Y0⋯Yi−1)

ūn(µ
i) =X0⋯Xl(

k−1−l
∏
j=l+1

Zνj+2(k−1−j))(Yn+k−l−1⋯Yn+k−i−1(
n + k

i − 1
)
q

Y0⋯Yi−2)Yn.

Taking out the common factor (X0⋯Xl(
k−1−l
∏
j=l+1

Zνj+2(k−1−j))), the desired identity follows from

Lemma 2.3.15.
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(c) Denote sn(ν) = l and ν = ((2n + 1)l, νl+1,⋯, νk−2−l,0l+1). Then the corresponding
partition µ is ((2n + 1)l+1,2n, νl+1,⋯, νk−2−l,0l+1). We have

un(µ) =X0⋯Xl(
k−l
∏
j=l+2

Zµj+2(k+1−j))(
n + k + 1

l + 1
)
q

Y0⋯Yl

=X0⋯XlXn+k−l−1(
k−2−l
∏
j=l+1

Zνj+2(k−1−j))(
n + k + 1

l + 1
)
q

Y0⋯Yl,

and

ūn(µ) =X0⋯XlXn+k−l−1(
k−2−l
∏
j=l+1

Zνj+2(k−1−j))(
n + k

l
)
q

Y0⋯Yl−1Yn+k.

So we have

un(µ) − ūn(µ)

=(X0⋯XlXn+k−l−1(
k−2−l
∏
j=l+1

Zνj+2(k−1−j))Y0⋯Yl−1)((
n + k + 1

l + 1
)
q

Yl − (
n + k

l
)
q

Yn+k)

=(X0⋯XlXn+k−l−1(
k−2−l
∏
j=l+1

Zνj+2(k−1−j))Y0⋯Yl−1)q
l(
n + k

l + 1
)
q

(β − ε2).

The proof follows from Lemma 2.3.14.
(d) Denote sn(ν) = l and ν = ((2n + 1)l, νl+1,⋯, νk−2−l,1,0l). Then the corresponding

partition µ is ((2n + 1)l+2,2n, νl+1,⋯, νk−2−l,0l+1). The proof follows similarly with (c).

2.4 Proof of Theorem 2.2.8
Our goal in this section is to prove Theorem 2.2.8, which gives a combinatorial formula

for the coefficients of the transformed Al-Salam-Chihara polynomials as a weighted sum over
pairs of sets. In Section 2.4, we start by providing a bijective proof of a combinatorial identity
(2.2.3), which motivates the formula in Theorem 2.2.8. In Section 2.4, we study generalized
q-binomial coefficients Mµ

n (b) (Definition 2.2.7) to establish key lemmas (Lemma 2.4.10,
Lemma 2.4.13) for the proof of Theorem 2.2.8. In Section 2.4, we finish the proof.

Bijective proof of the identity (2.2.3)
Definition 2.4.1. For non-negative integers n, a and b, we define T (n, a, b) to be a set of
pairs (S1, S2) such that S1 ⊆ {0,⋯, (n + a − 1)} with ∣S1∣ = a and S2 ⊆ {0,⋯, (n + a + b − 1)}
with ∣S2∣ = b. For a set S with integer elements, we define ∑S = ∑

i∈S
i.
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The identity (2.2.3) can be rephrased as follows

∑
(A1,B1)∈T (n,a,b)

q∑A1+∑B1 = ∑
(B2,A2)∈T (n,b,a)

q∑A2+∑B2 (2.4.1)

The identity (2.4.1) shows that there exists a bijection between T (n, a, b) and T (n, b, a) that
preserves the sum. Now we construct a such bijection. Recall from Definition 2.2.6 that
S(k) is the k-th smallest element of the set ({0} ∪N) − S and λS is (i1, i2 − 1,⋯, is − s + 1)
where S = {i1 < ⋯ < is}.

Definition 2.4.2. For (A1,B1) ∈ T (n, a, b), we denote A1 = {i1 < ⋯ < ia}, B1 ∩ {n + b,⋯, n +
b + a − 1} = {n + b + a − jk < ⋯ < n + b + a − j1} and µ = λA1 . We define a map ψn,a,b from
T (n, a, b) as follows

(B2,A2) = ψn,a,b((A1,B1))

A2 = {im∣m ≠ jl} ∪ {n + a + b − (B1(µjl + l) − (ijl − jl))∣l = 1,⋯, k}

B2 = (B1 ∩ {0,⋯, n + b − 1}) ∪ {B1(µjl + l)∣l = 1,⋯, k}.

Note that we have ∑A1 +∑B1 = ∑A2 +∑B2 from the construction.

Proposition 2.4.3. With the notation in Definition 2.4.2, we have (B2,A2) ∈ T (n, b, a).
And we have (A1,B1) = ψn,b,a((B2,A2)).

Proof. We have B1(µj1 + 1) < ⋯ < B1(µjk + k) and since µjk ≤ n, we have B1(µjk + k) ≤

B1(n + k). As ∣B1 ∩ {0,⋯, (n + b − 1)}∣ = b − k, we have B1(n + k) ≤ (n + b − 1), which implies
B2 ⊆ {0,⋯, (n+b−1)} with ∣B2∣ = b. Now we set rl = B1(µjl + l)−(ijl − jl). Since B1(µjl + l) is
the (µjl + l)-th smallest element in a set {0,⋯, n+b−1}−B1, there are B1(µjl + l)−(µjl + l+1)
elements in B1 smaller than B1(µjl + l). Also B1(µj1 + 1),⋯,B1(µjl−1 + l − 1) are smaller
than B1(µjl + l) so there are total (B1(µjl + l) − (µjl + l + 1) + l − 1) elements smaller than
B1(µjl + l) in B2. So B1(µjl + l) is the B1(µjl + l) − (µjl + 1) = (B1(µjl + l) − (ijl − jl)) = rl-th
smallest element in B2. This implies that 1 ≤ r1 < ⋯ < rk ≤ b, so the sets {im∣m ≠ jl} and
{n + a + b − rl∣l = 1,⋯, k} are disjoint. Thus we have A2 ⊆ {0,⋯, (n + a + b − 1)} with ∣A2∣ = a.

Denoting µ′ = λB2 , we have µ′rl+l = B1(µjl+l)−rl+1+l = ijl−jl+l+1 and A2∩{n+a,⋯, n+
a + b − 1} = {n + a + b − r1 < ⋯ < n + a + b − rk}. Since there are (jl − l) elements smaller than
ijl in A2, we have ijl = A2(ijl − jl + l+ 1) = A2(µ′rl + l). We see (A1,B1) = ψn,b,a((B2,A2)).

Example 2.4.4. For n = 1, a = 3 and b = 4, consider A1 = {0,2,3} and B1 = {2,4,5,7}
denoting µ = λA1 = (0,1,1). The above process changes the element 7 = 8 − 1 ∈ B1 to
B1(µ1 + 1) = 0 and correspondingly change the element 0 ∈ A1 to 7. Likewise, we change the
element 5 = 8−3 ∈ B1 to the element B1(µ3+2) = 3 and change the element 3 ∈ A1 to 5. So we
have ψ1,3,4((A1,B1)) = (B2,A2) = ({0,2,3,4},{2,5,7}). Since we have µ′ = λB2 = (0,1,1,1),
the element 7 = 8 − 1 ∈ A2 goes to A2(µ′1 + 1) = 0 and 0 ∈ B2 goes to 7. Likewise the element
5 = 8−3 ∈ A2 goes to A2(µ′3+2) = 3 and 3 ∈ B2 goes to 5. We see ψ1,4,3((B2,A2)) = ((A1,B1)).
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Remark 2.4.5. Consider B ⊆ {0,⋯, (n+a+b−1)} with ∣B∣ = b and ∣B∩{0,⋯, (n+b−1)}∣ = b−k.
For each positive integer l, there are (B(l) − l + 1) elements in B smaller than B(l). And
B(l) is the unique integer with that property. Since we have B(1),⋯,B(n+ k) ≤ (n+ b− 1),
for C = B ∩ {0,⋯, (n + b − 2)}, we have B(l) = C(l) for l from 1 to (n + k).

Remark 2.4.6. With the notation in Definition 2.4.2, the weight wn(A1,B1) given in Defi-
nition 2.2.7 becomes

wn(A1,B1) = q∑
B1−∑B2(∏

i∈A1

Xi)(∏
i∈B2

Yi).

Now let w̄n(A1,B1) be the one obtained by exchanging Xi ↔ Yi from wn(A1,B1). Then we
have

w̄n(A1,B1) = q∑
B1−∑B2(∏

i∈A1

Yi)(∏
i∈B2

Xi) = q∑
A2−∑A1(∏

i∈B2

Xi)(∏
i∈A1

Yi) = wn(B2,A2).

This gives

∑
a+b=k

( ∑
A1⊆{0,⋯,n+a−1}

∣A1∣=a

( ∑
B1⊆{0,⋯,n+a+b−1}

∣B1∣=b

w̄n(A1,B1)))

= ∑
a+b=k

( ∑
B2⊆{0,⋯,n+b−1}

∣B2∣=b

( ∑
A2⊆{0,⋯,n+a+b−1}

∣A2∣=a

wn(B2,A2)))

= ∑
a+b=k

( ∑
A1⊆{0,⋯,n+a−1}

∣A1∣=a

( ∑
B1⊆{0,⋯,n+a+b−1}

∣B1∣=b

wn(A1,B1))).

Thus the formula in Theorem 2.2.8 is invariant as a polynomial in Xi’s and Yi’s under the
exchange Xi↔ Yi. This was not true for the formula in Theorem 2.2.3.

Remark 2.4.7. When ε2 = 0, we have Yi = qiβ. So the weight wn(A,B) simply becomes
(∏
i∈A
Xi)(∏

i∈B
Yi). Then considering a directed graph in Figure 2.3, the formula for gn+k,n in

Theorem 2.2.8 specializes to sum over weights of all paths from un to vn+k. When ε1 = 0, we
have an analogous result by Remark 2.4.6.

Generalized q-binomial coefficients

In this section, we prove Lemma 2.4.10 and Lemma 2.4.13.
It follows from definitions (Definition 2.2.7, Definitions 2.2.11) that

∑
B⊆{0,⋯,(n+a+b−1)}

∣B∣=b

wn(A,B) = (∏
i∈A
Xi)M

λA
n (b)
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u0

u1

u2

u3

v0

v1

v2

v3

X0

X1X0

X0 X1 X2

Y0

Y1Y0

Y0 Y1 Y2

Figure 2.3: The figure shows the weighted directed graph that gives rise to gn+k,n when ε2 = 0.

where A ⊆ {0,⋯, (n+a−1)} with ∣A∣ = a. Thus the formula in Theorem 2.2.8 can be rephrased
as follows

gn+k,k = ∑
a+b=k

⎛
⎜
⎜
⎜
⎝

∑
A⊆{0,⋯,(n+a−1)}

∣A∣=a

(∏
i∈A
Xi)M

λA
n (b)

⎞
⎟
⎟
⎟
⎠

. (2.4.2)

Note that we defined Mµ
n (b) for a weakly increasing composition µ possibly starting

with (-1). To do that we introduced a dummy variable Y−1 = q−1(β − ε1) which was defined
accordingly to satisfy the recurrence Yn+1 = qYn+ε2. As λA in (2.4.2) consists of non-negative
integers, we do not see Mµ

n (b)’s such that µ starts with (-1) in (2.4.2). However, we will
need them for the proof.

When µ consists of non-negative integers, we see thatMµ
n (b) is a polynomial in Y0,⋯, Yn+b−1

with Z[q] coefficients. The next proposition computes the coefficient of each monomial.

Proposition 2.4.8. Let E ⊆ {0,⋯, n + b − 1} with ∣E∣ = b and µ = (νe11 ,⋯, ν
ep
p ) such that

0 ≤ ν1 < ⋯ < νp ≤ n with ei > 0. Denote the multiplicity of νi in λE (can be possibly zero) by
fi and write the corresponding elements of E with ci,⋯, (ci + fi − 1). Then the coefficient of
∏
i∈E
Yi in Mµ

n (b) is given as follows

[∏
i∈E
Yi]M

µ
n (b) = ∑

k1,⋯,kp
(

p

∏
i=1

(qki(di+ki−1)(
ei
ki
)
q

(
fi
ki
)
q

)) ,

where di = (n + b +
p

∑
j=i+1

ej) − (ci + fi − 1) and ki ranges from 0 to min(ei, fi).

Proof. To get a monomial ∏
i∈E
Yi in Mµ

n (b) we first pick 0 ≤ ki ≤ min(ei, fi) and then ki

integers (ci + fi − ti,1) < ⋯ < (ci + fi − ti,ki) in a set {ci,⋯, ci + fi − 1} and (n+ b+
p

∑
j=i
ej −ui,ki) <



CHAPTER 2. COMBINATORIAL FORMULAS FOR THE COEFFICIENTS OF THE
AL-SALAM-CHIHARA POLYNOMIALS 28

⋯ < (n + b +
p

∑
j=i
ej − ui,1) in a set {(n + b +

p

∑
j=i+1

ej),⋯, (n + b +
p

∑
j=i
ej − 1)}. Now for a set

B = (E −
p

⋃
i=1

{ci + fi − ti,1 < ⋯ < ci + fi − ti,ki}) ∪ (
p

⋃
i=1

{n + b +
p

∑
j=i
ej − ui,ki ,⋯, n + b +

p

∑
j=i
ej − ui,1}),

we have

B(ν1 + j) = (c1 + f1 − t1,j) for j from 1 to k1

B(ν2 + k1 + j) = (c2 + f2 − t2,j) for j from 1 to k2

⋮

B(νp +
p−1

∑
i=1

ki + j) = (cp + fp − tp,j) for j from 1 to kp,

which gives mµ
n(B) = q∑B−∑E ∏

i∈E
Yi. Summing over all possible such B with fixed ki’s, we

get
p

∏
i=1

(qki(di+ki−1)(
ei
ki
)
q

(
fi
ki
)
q

)∏
i∈E
Yi. (2.4.3)

Summing (2.4.3) over all possible ki’s gives the formula for the coefficient.

Example 2.4.9. Let E = {0,1} (λE = (0,0)) and µ = (0,0). Then the coefficient of Y0Y1 in
Mµ

2 (2) comes from the following terms

mµ
2({0,1}) = Y0Y1

mµ
2({0,4}) = q3Y0Y1,m

µ
2({0,5}) = q4Y0Y1,m

µ
2({1,4}) = q4Y0Y1,m

µ
2({1,5}) = q5Y0Y1

mµ
2({4,5}) = q8Y0Y1.

So we have

[Y0Y1]M
µ
2 (2) = 1 + (q3 + 2q4 + q5) + q8 = (

2

0
)
q

(
2

0
)
q

+ q1⋅3(
2

1
)
q

(
2

1
)
q

+ q2⋅4(
2

2
)
q

(
2

2
)
q

.

Now we give a generalization of (2.2.4).

Lemma 2.4.10. For a weakly increasing composition µ = (µ1,⋯, µa) with 0 ≤ µ1,⋯µa ≤ n+1,
n ≥ 0 and b ≥ 1, the following identity holds

Mµ
n+1(b) = Yn+a+bM

µ
n+1(b − 1) +Mµ−1

n (b),

where µ − 1 = (µ1 − 1,⋯, µa − 1).
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Proof. We have

Mµ
n+1(b) − (Yn+a+bM

µ
n+1(b − 1) +M

(µ1−1,⋯,µa−1)
n (b)) (2.4.4)

= ∑
B⊆{0,⋯,n+a+b}
∣B∣=b,(n+a+b)∈B

(mµ
n+1(B) − Yn+a+bm

µ
n+1(B − {n + a + b}))

+ ∑
B⊆{0,⋯,n+a+b−1}

∣B∣=b

(mµ
n+1(B) −m

(µ1−1,⋯,µa−1)
n (B)).

We may assume Yn = β1qn+ε after the change of variables, β1 = β−
ε2

1−q and ε =
ε2

1−q . For a
set C ⊆ {0,⋯, n+ b−1} such that ∣C ∣ = b−k and an increasing integer sequence J = (j1,⋯, jk)
such that 1 ≤ j1,⋯, jk ≤ a + 1, we define

fJC(l) =

⎧⎪⎪
⎨
⎪⎪⎩

q(n+b+a+1−jl)−C(µjl+l)YC(µjl+l) if jl ≠ a + 1

Yn+b if jl = a + 1

dJC(k) = {
(n + b + a + 1 − jl) −C(µjl + l) if jl ≠ a + 1

0 if jl = a + 1
.

We also define

f̄JC(l) =

⎧⎪⎪
⎨
⎪⎪⎩

= q(n+b+a+1−jl)−C(µjl−1+l−1)YC(µjl−1+l−1) if jl ≠ 1

Yn+a+b if jl = 1

d̄JC(k) = {
(n + b + a + 1 − jl) −C(µjl−1 + l − 1) if jl ≠ 1

0 if jl = 1
.

Then by Definition 2.2.11 and Remark 2.4.5, for B = C∪{n+b+a+1−jk < ⋯ < n+b+a+1−j1},
we have

mµ
n+1(B) = (∏

i∈C
Yi)(f

J
C(k)⋯f

J
C(1))

Yn+b+am
µ
n+1(B − {n + b + a}) = (∏

i∈C
Yi)(f̄

J
C(k)⋯f̄

J
C(1)) if (n + b + a) ∈ B

m
(µ1−1,⋯,µa−1)
n (B) = (∏

i∈C
Yi)(f̄

J
C(k)⋯f̄

J
C(1)) if (n + b + a) ∉ B.

So (2.4.4) can be written as follows

∑
k≥0

( ∑
C⊆{0,⋯,n+b−1}

∣C∣=b−k

(∏
i∈C
Yi)( ∑

J=(j1,⋯,jk)
1≤j1<⋯<jk≤a+1

(fJC(k)⋯f
J
C(1) − f̄

J
C(k)⋯f̄

J
C(1)))). (2.4.5)

We first rewrite the quantity

∑
J=(j1,⋯,jk)

1≤j1<⋯<jk≤a+1

(fJC(k)⋯f
J
C(1) − f̄

J
C(k)⋯f̄

J
C(1)) (2.4.6)
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as follows

∑
J=(j1,⋯,jk)

1≤j1<⋯<jk≤a+1

(fJC(k)⋯f
J
C(1) − f̄

J
C(k)⋯f̄

J
C(1))

= ∑
J=(j1,⋯,jk)

1≤j1<⋯<jk≤a+1

(
k

∑
l=1

f̄JC(k)⋯f̄
J
C(k − l + 2) (fJC(k − l + 1) − f̄JC(k − l + 1)) fJC(k − l)⋯f

J
C(1))

= ∑
J=(j1,⋯,jk)

1≤j1<⋯<jk≤a+1

(
k

∑
l=1

f̄JC(k)⋯f̄
J
C(k − l + 2) (qd

J
C(k−l+1)ε − qd̄

J
C(k−l+1)ε) fJC(k − l)⋯f

J
C(1))

=ε
k

∑
l=1

( ∑
J=(j1,⋯,jk)

1≤j1<⋯<jk≤a+1

f̄JC(k)⋯f̄
J
C(k − l + 2)(qd

J
C(k−l+1))fJC(k − l)⋯f

J
C(1)) (2.4.7)

− ε
k

∑
l=1

( ∑
J=(j1,⋯,jk)

1≤j1<⋯<jk≤a+1

f̄JC(k)⋯f̄
J
C(k − l + 2)(qd̄

J
C(k−l+1))fJC(k − l)⋯f

J
C(1)).

For J = (j1,⋯, jk) such that jk−l+1 = jk−l + 1, we have

f̄JC(k − l + 1)(qd
J
C(k−l)) = (qd̄

J
C(k−l+1))fJC(k − l)

since C(µ(jk−l+1−1) + k − l) = C(µjk−l + k − l). So we have

f̄JC(k)⋯f̄
J
C(k − l + 1)(qd

J
C(k−l))fJC(k − l − 1)⋯fJC(1)

= f̄JC(k)⋯f̄
J
C(k − l + 2)(qd̄

J
C(k−l+1))fJC(k − l)⋯f

J
C(1).

Applying this cancellation to (2.4.7), it becomes

ε( ∑
J=(j1,⋯,jk)

1≤j1<⋯<jk≤a+1

qd
J
C(k)fJC(k − 1)⋯fJC(1)) (2.4.8)

+ ε
k

∑
l=2

( ∑
J=(j1,⋯,jk)l−1
1≤j1<⋯<jk≤a

f̄JC(k)⋯f̄
J
C(k − l + 2)(qd

J
C(k−l+1))fJC(k − l)⋯f

J
C(1))

− ε
k−1

∑
l=1

( ∑
J=(j1,⋯,jk)l
1≤j1<⋯<jk≤a

f̄JC(k)⋯f̄
J
C(k − l + 2)(qd̄

J
C(k−l+1))fJC(k − l)⋯f

J
C(1))

− ε( ∑
J=(j1,⋯,jk)

1≤j1<⋯<jk≤a+1

f̄JC(k)⋯f̄
J
C(2)q

d̄JC(1)),

where (j1,⋯, jk)l ∶= (j1,⋯, jk−l, (jk−l+1 + 1),⋯, jk + 1). We regard (j1,⋯, jk)0 = (j1,⋯, jk) by
convention. Now define

W J
C(l) = f̄

J ′

C (k)⋯f̄J
′

C (k − l + 2)(qd
J′

C (k−l+1))fJ
′

C (k − l)⋯fJ
′

C (1),
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where J ′ = J l−1 and

W̄ J
C(l) = f̄

J ′

C (k)⋯f̄J
′

C (k − l + 2)(qd̄
J′

C (k−l+1))fJ
′

C (k − l)⋯fJ
′

C (1)),

where J ′ = J l. We also define

V J
C = fJC(k)⋯f

J
C(1),

V̄ J
C = f̄J

′

C (k + 1)⋯fJ
′

C (2),

where J ′ = (1, Jk) and k is a length of J . Since we have

∑
J=(j1,⋯,jk)

1≤j1<⋯<jk≤a+1

qd
J
C(k)fJC(k − 1)⋯fJC(1)

= ∑
J=(j1,⋯,jk)

1≤j1<⋯<jk≤a

qd
J
C(k)fJC(k − 1)⋯fJC(1) + ∑

J=(j1,⋯,jk)
1≤j1<⋯<jk=a+1

fJC(k − 1)⋯fJC(1)

= ∑
J=(j1,⋯,jk)

1≤j1<⋯<jk≤a

W J
C(1) + ∑

J ′=(j1,⋯,jk−1)
1≤j1<⋯<jk−1≤a

V J ′

C ,

∑
J=(j1,⋯,jk)

1≤j1<⋯<jk≤a+1

f̄JC(k)⋯f̄
J
C(2)q

d̄JC(1)

= ∑
J=(j1,⋯,jk)k
1≤j1<⋯<jk≤a

f̄JC(k)⋯f̄
J
C(2)q

d̄JC(1) + ∑
J=(j1,⋯,jk)

1=j1<⋯<jk≤a+1

f̄JC(k)⋯f̄
J
C(2)

= ∑
J=(j1,⋯,jk)

1≤j1<⋯<jk≤a

W̄ J
C(k) + ∑

J ′=(j1,⋯,jk−1)
1≤j1<⋯<jk−1≤a

V̄ J ′

C ,

the quantity (2.4.8) can be written as

ε( ∑
J=(j1,⋯,jk)

1≤j1<⋯<jk≤a

k

∑
l=1

(W J
C(l) − W̄

J
C(l))) + ε( ∑

J ′=(j1,⋯,jk−1)
1≤j1<⋯<jk−1=a

(V J
C − V̄ J

C ).

Plugging this to (2.4.5) and dividing with ε yields

∑
k≥0

( ∑
C⊆{0,⋯,n+b−1}

∣C∣=b−k

(∏
i∈C
Yi)( ∑

J=(j1,⋯,jk)
1≤j1<⋯<jk≤a

k

∑
l=1

(W J
C(l) − W̄

J
C(l))))

+∑
k≥0

( ∑
D⊆{0,⋯,n+b−1}

∣D∣=b−k−1

(∏
i∈D

Yi)( ∑
J=(j1,⋯,jk)

1≤j1<⋯<jk≤a

(V J
D − V̄ J

D))

= ∑
J=(j1,⋯,jk)

1≤j1<⋯<jk≤a

( ∑
C⊆{0,⋯,n+b−1}

∣C∣=b−k

(∏
i∈C
Yi)

k

∑
l=1

(W J
C(l) − W̄

J
C(l)) (2.4.9)

+ ∑
D⊆{0,⋯,n+b−1}

∣D∣=b−k−1

(∏
i∈D

Yi)((V
J
D − V̄ J

D))).
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We will show that the quantity

∑
C⊆{0,⋯,n+b−1}

∣C∣=b−k

(∏
i∈C
Yi)

k

∑
l=1

(W J
C(l) − W̄

J
C(l)) + ∑

D⊆{0,⋯,n+b−1}
∣D∣=b−k−1

(∏
i∈D

Yi)((V
J
D − V̄ J

D)) (2.4.10)

vanishes as a polynomial in Yi’s for every J = (j1,⋯, jk) with 1 ≤ j1 < ⋯ < jk ≤ a. Then it
shows that (2.4.9) vanishes. We will denote (µj1 ,⋯, µjk) as (νe11 ,⋯, ν

ep
p ) such that ν1 < ⋯ < νp

and ei > 0. Then we have Wl = W̄l−1 if l = (
p

∑
i=r+1

ei + 2),⋯, (
p

∑
i=r
ei) for r = 1,⋯, p. So (2.4.10)

becomes

∑
C⊆{0,⋯,n+b−1}

∣C∣=b−k

(∏
i∈C
Yi)

p

∑
r=1

(W J
C(

p

∑
i=r+1

ei + 1) − W̄ J
C(

p

∑
i=r
ei)) (2.4.11)

+ ∑
D⊆{0,⋯,n+b−1}

∣D∣=b−k−1

(∏
i∈D

Yi)((V
J
D − V̄ J

D)).

Now we will take the coefficient of the monomial ∏
i∈E
Yi in the quantity. Denote the multiplicity

of νi in λE with fi (can be possibly zero) and corresponding elements of E with ci,⋯, (ci +

fi−1). Let di,h = (n+ b+a− js)−(ci+fi) where s =
i−1

∑
l=1
el +h for 1 ≤ h ≤ ei. To get a monomial

∏
i∈E
Yi in (∏

i∈C
Yi)(W J

C(
p

∑
i=r+1

ei + 1) − W̄ J
C(

p

∑
i=r
ei)) we should take C as

C = E − (
p

⋃
i=1
i≠r

{ci + fi − ti,ei < ⋯ < ci + fi − ti,1}) − {cr + fr − tr,er−1 < ⋯ < cr + fr − tr,1}

such that 1 ≤ ti,h ≤ fi. Then for such C we have (J ′ = J
p

∑
i=r+1

ei
)

fJ
′

C (
i−1

∑
l=1

el + h) = q
di,h+ti,h+1Yci+fi−ti,h for 1 ≤ i ≤ r − 1 and 1 ≤ h ≤ ei

fJ
′

C (
r−1

∑
l=1

el + h) = q
dr,h+tr,h+1Ycr+fr−tr,h for 1 ≤ h ≤ er − 1

fJ
′

C (
r

∑
l=1

el) = q
dr,er+1Ycr+fr → dJ

′

C (
r

∑
l=1

el) = dr,er + 1

f̄J
′

C (
i−1

∑
l=1

el + h) = q
di,h+ti,hYci+fi−ti,h for r + 1 ≤ i ≤ p and 1 ≤ h ≤ ei,

which gives

(∏
i∈C
Yi)W

J
C(

p

∑
i=r+1

ei + 1) = q
∑
i,h
di,h
q

r

∑
l=1

el
q
∑
i,h
ti,h
∏
i∈E
Yi.
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And we have (J ′ = J
p

∑
i=r

ei
)

f̄J
′

C (
r−1

∑
l=1

el + 1) = qdr,1+fr+1Ycr−1 → dJ
′

C (
r

∑
l=1

el) = dr,1 + fr + 1

f̄J
′

C (
r−1

∑
l=1

el + h + 1) = qdr,h+tr,hYcr+fr−tr,h for 1 ≤ h ≤ er − 1,

which gives

(∏
i∈C
Yi)W̄

J
C(

p

∑
i=r
ei) = q

∑
i,h
di,h
q

r−1

∑
l=1

el
q
(∑
i,h
ti,h)+fr+1

∏
i∈E
Yi.

So we have

(∏
i∈C
Yi)(W

J
C(

p

∑
i=r+1

ei + 1) − W̄ J
C(

p

∑
i=r
ei))

=q
∑
i,h
di,h
q

r−1

∑
l=1

el
q
∑
i,h
ti,h

(qer − qfr+1)∏
i∈E
Yi.

Summing over all possible ti,h’s we have

[∏
i∈E
Yi]

⎛
⎜
⎜
⎜
⎝

∑
C⊆{0,⋯,n+b−1}

∣C∣=b−k

(∏
i∈C
Yi)(W

J
C(

p

∑
i=r+1

ei + 1) − W̄ J
C(

p

∑
i=r
ei))

⎞
⎟
⎟
⎟
⎠

=q
∑
i,h
di,h
q

r−1

∑
l=1

el
q(
er
2
)(

fr
er − 1

)
q

(

p

∏
l=1
l≠r

(q(
el+1
2

)(
fl
el
)
q

))(qer − qfr+1)

=q
∑
i,h
di,h
q

r−1

∑
l=1

el
(

p

∏
l=1

(q(
el+1
2

)(
fl
el
)
q

))(1 − qer) = q
∑
i,h
di,h

(

p

∏
l=1

(q(
el+1
2

)(
fl
el
)
q

))(q

r−1

∑
l=1

el
− q

r

∑
l=1

el
).

Now summing over all r = 1,⋯, p we have

[∏
i∈E
Yi]

⎛
⎜
⎜
⎜
⎝

∑
C⊆{0,⋯,n+b−1}

∣C∣=b−k

(∏
i∈C
Yi)

p

∑
r=1

(W J
C(

p

∑
i=r+1

ei + 1) − W̄ J
C(

p

∑
i=r
ei))

⎞
⎟
⎟
⎟
⎠

(2.4.12)

=q
∑
i,h
di,h

(

p

∏
l=1

(q(
el+1
2

)(
fl
el
)
q

))(1 − q

p

∑
l=1

el
).

To get a monomial ∏
i∈E
Yi in (∏

i∈D
Yi)((V J

D − V̄ J
D), we should take D as

D = E −
p

⋃
i=1

{ci + fi − ti,ei < ⋯ < ci +mi − ti,1}
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such that 1 ≤ ti,h ≤ fi. Then for such D we have

fJD(
i−1

∑
l=1

el + h) = q
di,h+ti,h+1Yci+fi−ti,h for 1 ≤ i ≤ p and 1 ≤ h ≤ ei

f̄J
′

D (
i−1

∑
l=1

el + h + 1) = qdi,h+ti,hYci+fi−ti,h for 1 ≤ i ≤ p and 1 ≤ h ≤ ei,

where J ′ = (0, Jk). So we have

(∏
i∈D

Yi)V
J
C = q

∑
i,h
di,h
q

p

∑
l=1

el
q
∑
i,h
ti,h
∏
i∈E
Yi

(∏
i∈D

Yi)V̄
J
C = q

∑
i,h
di,h
q
∑
i,h
ti,h
∏
i∈E
Yi,

which gives

(∏
i∈D

Yi)(V
J
C − V̄ J

C ) = q
∑
i,h
di,h
q
∑
i,h
ti,h

(q

p

∑
l=1

el
− 1)∏

i∈E
Yi.

Summing over all possible ti,h’s we have

[∏
i∈E
Yi]

⎛
⎜
⎜
⎜
⎝

∑
D⊆{0,⋯,n+b−1}

∣D∣=b−k−1

(∏
i∈D

Yi)((V
J
D − V̄ J

D)

⎞
⎟
⎟
⎟
⎠

(2.4.13)

=q
∑
i,h
di,h

(

p

∏
l=1

(q(
el+1
2

)(
fl
el
)
q

))(q

p

∑
l=1

el
− 1).

Adding (2.4.12) and (2.4.13), we see that the coefficient vanishes.

Next, we generalize (2.2.5) (Lemma 2.4.13). Before stating and proving the generaliza-
tion, we prepare with a definition and a lemma.

Definition 2.4.11. For ν = (τ e11 ,⋯, τ
ep
p ) such that −1 ≤ τ1 < ⋯ < τp and ei > 0, we define

ν(i) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(i, τ e11 ,⋯, τ
ep
p ) if −1 ≤ i ≤ τ1 − 1

(τ e11 ,⋯, τ
el
l , i, τ

el+1
l+1 ,⋯, τ

ep
p ) if τl ≤ i ≤ τl+1 − 1

(τ e11 ,⋯, τ
ep
p , i) if τp ≤ i

.

For example, if ν = (−1,−1,1), we have ν(−1) = (−1,−1,−1,1), ν(0) = (−1,−1,0,1),
ν(1) = (−1,−1,1,1) and ν(2) = (−1,−1,1,2).

Lemma 2.4.12. For ν = (ν1,⋯, νa−1) such that 0 ≤ ν1 ≤ ⋯ ≤ νa−1 ≤ n + 1, we have

M
(−1,ν−1)
n (b) = qn+a+bY−1M

ν
n+1(b − 1) +Mν−1

n (b).
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Proof. We have m(−1,ν−1)
n (B ∪ {n+ a+ b− 1}) = qn+a+bY−1mν

n+1(B) for B ⊆ {0,⋯, n+ a+ b− 2}

with ∣B∣ = b − 1 and m(−1,ν−1)
n (B) =mν−1

n (B) for B ⊆ {0,⋯, n + a + b − 2} with ∣B∣ = b.

Lemma 2.4.13. For ν = (τ e11 ,⋯, τ
ep
p ) such that 0 ≤ τ1 < ⋯ < τp ≤ n and ei > 0, we have

[n + b + 1 +
p

∑
i=1

ei]qM
ν
n(b) =(

p

∑
i=1

q
(τi+

i−1

∑
l=1

el)
[ei + 1]qM

ν(τi)
n (b)) +

τ1−1

∑
l=0

qlM
ν(l)
n (b) (2.4.14)

+

p−1

∑
i=1

(
τi+1−1

∑
l=τi+1

q
(
i

∑
j=1

ej)+l
M

ν(l)
n (b)) +

n

∑
l=τp+1

q
(
p

∑
j=1

ej)+l
M

ν(l)
n (b).

For ν = ((−1)e1 , τ e22 ,⋯, τ
ep
p ) such that 0 ≤ τ2 < ⋯ < τp ≤ n and ei > 0, we have

[n + b + 1 +
p

∑
i=1

ei]qM
ν
n(b) =(

p

∑
i=2

q
(τi+

i−1

∑
l=1

el)
[ei + 1]qM

ν(τi)
n (b)) + [e1]qM

ν(−1)
n (b) (2.4.15)

+

p−1

∑
i=1

(
τi+1−1

∑
l=τi+1

q
(
i

∑
j=1

ej)+l
M

ν(l)
n (b)) +

n

∑
l=τp+1

q
(
p

∑
j=1

ej)+l
M

ν(l)
n (b).

Proof. We first prove (2.4.14). We will show that the equality holds as a polynomial in Yi’s.
Consider a length b integer vector µ = (0f0 ,⋯, nfn) such that fi ≥ 0, then we will compare

the coefficients of Yµ(∶=
b

∏
i=1
Yµi+i−1) in both sides of (2.4.14). First define the following

g(k1,⋯,kp)(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qi + q
n+(

n

∑
j=i+1

fj)+(
p

∑
j=1

ej)+1

[fi]q if 0 ≤ i ≤ τ1 − 1

q
i+(

l

∑
j=1

kj+(
l

∑
j=1

ej)
+ q

n+(
n

∑
j=i+1

fj)+(
p

∑
j=1

ej)+(
l

∑
j=1

kj)+1

[fi]q if τl + 1 ≤ i ≤ τl+1 − 1

q
i+(

p

∑
j=1

kj+(
p

∑
j=1

ej)
+ q

n+(
n

∑
j=i+1

fj)+(
p

∑
j=1

ej)+(
p

∑
j=1

kj)+1

[fi]q if τp + 1 ≤ i ≤ n

q
τl+(

l−1

∑
j=1

ej)+(
l−1

∑
j=1

kj)
[el + kl + 1]q

+q
n+(

n

∑
j=τl+1

fj)+(
p

∑
j=1

ej)+(
l

∑
j=1

kj)+1

[fτl − kl]q if i = τl

d(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n + b + (
p

∑
j=1
ej) − (i + (

i

∑
j=0
fj) − 1) if 0 ≤ i ≤ τ1 − 1

n + b + (
p

∑
j=l+1

ej) − (i + (
i

∑
j=0
fj) − 1) if τl ≤ i ≤ τl+1 − 1

n + b − (i + (
i

∑
j=0
fj) − 1) if τp ≤ i ≤ n

,
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where ki is an integer from 0 to min(ei, fτi). Then we have
n

∑
i=0

g(k1,⋯,kp)(i) = [n + b + 1 +
p

∑
i=1

ei]q. (2.4.16)

Next we will define the following

Sν(k1,⋯, kp) = q

p

∑
i=1

ki(d(τi)+ki−1) p

∏
i=1

((
ei
ki
)
q

(
fτi
ki

)
q

)

Sν(i)(k1,⋯, kp)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q

p

∑
i=1

ki(d(τi)+ki−1)
(
p

∏
i=1

((
ei
ki
)
q
(
fτi
ki
)
q
))(1 + qd(i)[fi]q) if 0 ≤ i ≤ τ1 − 1

q

l

∑
i=1

ki
q

p

∑
i=1

ki(d(τi)+ki−1)
(
p

∏
i=1

((
ei
ki
)
q
(
fτi
ki
)
q
))(1 + qd(i)[fi]q) if τl + 1 ≤ i ≤ τl+1 − 1

q

p

∑
i=1

ki
q

p

∑
i=1

ki(d(τi)+ki−1)
(
p

∏
i=1

((
ei
ki
)
q
(
fτi
ki
)
q
))(1 + qd(i)[fi]q) if τp + 1 ≤ i ≤ n

q

l−1

∑
i=1

ki
q

p

∑
i=1

ki(d(τi)+ki−1)
(
p

∏
i=1
i≠l

((
ei
ki
)
q
(
fτi
ki
)
q
))(

el+1
kl

)
q
(
fτl
kl
)
q

if i = τl

.

By Proposition 2.4.3, we have

[Yµ](M
ν
n(b)) = ∑

k1,⋯,kp
Sν(k1,⋯, kp)

[Yµ](M
ν(i)
n (b)) = ∑

k1,⋯,kp
Sν(i)(k1,⋯, kp).

Taking the coefficient of Yµ in the left hand side of (2.4.14) and using (2.4.16) gives

( ∑
k1,⋯,kp

Sν(k1,⋯, kp))[n + b + 1 +
p

∑
i=1

ei]q =
n

∑
i=0

( ∑
k1,⋯,kp

Sν(k1,⋯, kp))g
(k1,⋯,kp)(i)).

It is straightforward to check the following

Sν(k1,⋯, kp)g
(k1,⋯,kp)(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

qiSν(i)(k1,⋯, kp) if 0 ≤ i ≤ τ1 − 1

q
(
l

∑
j=1

ej)+i
Sν(i)(k1,⋯, kp) if τl + 1 ≤ i ≤ τl+1 − 1

q
(
p

∑
j=1

ej)+i
Sν(i)(k1,⋯, kp) if τp + 1 ≤ i ≤ n

,

so it suffices to prove

∑
k1,⋯,kp

Sν(k1,⋯, kp))g
(k1,⋯,kp)(τl) = [Yµ](q

τl+(
l−1

∑
i=1

ei)
[el + 1]qM

ν(τl)
n (b)). (2.4.17)
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We first claim the following identity

q
τl+(

l−1

∑
j=1

ej)
[el + 1]qS

ν(τl)(k1,⋯, kp) = S
ν(k1,⋯, kp)(q

τl+(
l−1

∑
j=1

ej)+(
l−1

∑
j=1

kj)
[el + kl + 1])q (2.4.18)

+Sν(k1,⋯, kl − 1,⋯, kp)(q
n+(

n

∑
j=τl+1

fj)+(
p

∑
j=1

ej)+(
l

∑
j=1

kj)
[fτl − kl + 1]q),

which is equivalent to the following (after cancelling a common factor)

[el + 1]q(
el + 1

kl
)
q

(
fτl
kl

)
q

= [el + kl + 1]q(
el
kl
)
q

(
fτl
kl

)
q

+qel−kl+1[fτl − kl + 1]q(
el

kl − 1
)
q

(
fτl
kl − 1

)
q

.

And this can be checked by a direct computation. Now the left hand side of (2.4.17) becomes

∑
k1,⋯,kp

Sν(k1,⋯, kp)g
(k1,⋯,kp)(τl)

= ∑
k1,⋯,kp

Sν(k1,⋯, kp))(q
τl+(

l−1

∑
j=1

ej)+(
l−1

∑
j=1

kj)
[el + kl + 1]q + q

n+(
n

∑
j=τl+1

fj)+(
p

∑
j=1

ej)+(
l

∑
j=1

kj)+1

[fτl − kl]q)

= ∑
k1,⋯,kp

Sν(k1,⋯, kp)(q
τl+(

l−1

∑
j=1

ej)+(
l−1

∑
j=1

kj)
[el + kl + 1])q

+ ∑
k1,⋯,kp

Sν(k1,⋯, kl − 1,⋯, kp)(q
n+(

n

∑
j=τl+1

fj)+(
p

∑
j=1

ej)+(
l

∑
j=1

kj)
[fτl − kl + 1]q).

= ∑
k1,⋯,kp

(q
τl+(

l−1

∑
j=1

ej)
[el + 1]qS

ν(τl)(k1,⋯, kp)),

where the last equality uses (2.4.18). So this proves (2.4.17).
We will show (2.4.15) using an induction on e1. The base case e1 = 0 is same as (2.4.14).

Assume (2.4.15) holds for ν = ((−1)e1 , τ e22 ,⋯, τ
ep
p ). And let ν′ = (−1, ν) and ν+ = ν + 1, then

we have
ν′(i) = (−1, ν(i)), ν+(i) = ν(i − 1) + 1. (2.4.19)

Writing (2.4.15) for ν and (2.4.14) for ν+, we have

[n + b + 1 +
p

∑
i=1

ei]qM
ν
n(b) =(

p

∑
i=2

q
(τi+

i−1

∑
l=1

el)
[ei + 1]qM

ν(τi)
n (b)) + [e1]qM

ν(−1)
n (b) (2.4.20)

+

p−1

∑
i=1

(
τi+1−1

∑
l=τi+1

q
(
i

∑
j=1

ej)+l
M

ν(l)
n (b)) +

n

∑
l=τp+1

q
(
p

∑
j=1

ej)+l
M

ν(l)
n (b)
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[n + b + 1 +
p

∑
i=1

ei]qM
ν+

n+1(b − 1) (2.4.21)

=

p

∑
i=2

q
(τi+

i−1

∑
l=1

el+1)
[ei + 1]qM

ν+(τi+1)
n+1 (b − 1)) + [e1 + 1]qM

ν+(0)
n+1 (b − 1)

+

p−1

∑
i=1

(
τi+1−1

∑
l=τi+1

q
(
i

∑
j=1

ej)+l+1

M
ν+(l+1)
n+1 (b − 1)) +

n

∑
l=τp+1

q
(
p

∑
j=1

ej)+l+1

M
ν+(l+1)
n+1 (b − 1).

Multiplying q to (2.4.20), multiplying (q
n+b+2+(

p

∑
i=1

ei)
Y−1) to (2.4.21) and adding these two

we have

q[n + b + 1 +
p

∑
i=1

ei]q(M
ν
n(b) + q

n+b+1+(
p

∑
i=1

ei)
Y−1M

ν+

n+1(b − 1))

=

p

∑
i=2

q
(τi+

i−1

∑
l=1

el+1)
[ei + 1]q(M

ν(τi)
n (b) + q

n+b+2+(
p

∑
i=1

ei)
Y−1M

ν+(τi+1)
n+1 (b − 1))

+ q[e1]q(M
ν(−1)
n (b) + q

n+b+2+(
p

∑
i=1

ei)
Y−1M

ν+(0)
n+1 (b − 1)) + q

n+b+2+(
p

∑
i=1

ei)
Y−1M

ν+(0)
n+1 (b − 1)

+

p−1

∑
i=1

(
τi+1−1

∑
l=τi+1

q
(
i

∑
j=1

ej)+l+1

(M
ν(l)
n (b) + q

n+b+2+(
p

∑
i=1

ei)
Y−1M

ν+(l+1)
n+1 (b − 1))))

+
n

∑
l=τp+1

q
(
p

∑
j=1

ej)+l+1

(M
ν(l)
n (b) + q

n+b+2+(
p

∑
i=1

ei)
Y−1M

ν+(l+1)
n+1 (b − 1))).

By Lemma 2.4.12 and (2.4.19), it becomes

q[n + b + 1 +
p

∑
i=1

ei]qM
ν′

n (b)

=(

p

∑
i=2

q
(τi+

i−1

∑
l=1

el+1)
[ei + 1]qM

ν′(τi)
n (b)) + q[e1]qM

ν′(−1)
n (b) + q

n+b+2+(
p

∑
i=1

ei)
Y−1M

ν+(0)
n+1 (b − 1)

+

p−1

∑
i=1

(
τi+1−1

∑
l=τi+1

q
(
i

∑
j=1

ej)+l+1

M
ν′(l)
n (b)) +

n

∑
l=τp+1

q
(
p

∑
j=1

ej)+l+1

M
ν′(l)
n (b).

Adding Mν′
n (b)(=Mν(−1)

n (b)) to both sides gives (2.4.15) for ν′.

Proof of Theorem 2.2.8

For a weakly increasing composition µ = (µ1,⋯, µa), we define Xµ =
a

∏
i=1
Xµi+i−1. Then

(2.4.2) can be rephrased as follows

gn+k,n = ∑
a+b=k

( ∑
µ=(µ1,⋯,µa)

0≤µ1≤⋯≤µa≤n

XµM
µ
n (b)). (2.4.22)
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Since we already know that Theorem 2.2.8 is true for gk,0 (Example 2.2.9, Proposition 2.3.6),
it suffices to prove that (2.4.22) satisfies the recurrence relation

gn+1+k,n+1 = gn+k,n + (bn+k)gn+k,n+1 − (λn+k)gn+k−1,n+1. (2.4.23)

We will show the identity

∑
µ=(µ1,⋯,µa)

0≤µ1≤⋯≤µa≤n+1

XµM
µ
n+1(b) = ∑

µ=(µ1,⋯,µa)
0≤µ1≤⋯≤µa≤n

XµM
µ
n (b) +Xn+a+b( ∑

µ=(µ1,⋯,µa−1)
0≤µ1≤⋯≤µa−1≤n+1

XµM
µ
n+1(b))

(2.4.24)
+Yn+a+b( ∑

µ=(µ1,⋯,µa)
0≤µ1≤⋯≤µa≤n+1

XµM
µ
n+1(b − 1)) − (λn+a+b)( ∑

µ=(µ1,⋯,µa−1)
0≤µ1≤⋯≤µa−1≤n+1

XµM
µ
n+1(b − 1)),

which gives (2.4.23) when summed over all possible a and b such that a+b = k. Using Lemma
2.4.10 and Lemma 2.4.12, the identity (2.4.24) becomes

↔ ∑
µ=(µ1,⋯,µa)

0≤µ1≤⋯≤µa≤n+1

Xµ(M
µ
n+1(b) − Yn+a+b(M

µ
n+1(b − 1)) = ∑

µ=(µ1,⋯,µa)
0≤µ1≤⋯≤µa≤n

XµM
µ
n (b)

+Xn+a+b( ∑
µ=(µ1,⋯,µa−1)

0≤µ1≤⋯≤µa−1≤n+1

Xµ(M
µ
n+1(b) − Yn+a+b−1(M

µ
n+1(b))

+(αqn+a+bY−1)( ∑
µ=(µ1,⋯,µa−1)

0≤µ1≤⋯≤µa−1≤n+1

XµM
µ
n+1(b − 1))

↔ ∑
µ=(µ1,⋯,µa)

0≤µ1≤⋯≤µa≤n+1

Xµ(M
µ−1
n (b)) = ∑

µ=(µ1,⋯,µa)
0≤µ1≤⋯≤µa≤n

XµM
µ
n (b)

+Xn+a+b( ∑
µ=(µ1,⋯,µa−1)

0≤µ1≤⋯≤µa−1≤n+1

Xµ(M
µ−1
n (b)) + (αqn+a+bY−1)( ∑

µ=(µ1,⋯,µa−1)
0≤µ1≤⋯≤µa−1≤n+1

XµM
µ
n+1(b − 1))

↔ ∑
µ=(µ1,⋯,µa)

0≤µ1≤⋯≤µa≤n

Xµ(M
µ−1
n (b)) + ∑

µ=(µ1,⋯,µa−1,n+1)
0≤µ1≤⋯≤µa−1≤n+1

Xµ(M
µ−1
n (b)) = ∑

µ=(µ1,⋯,µa)
0≤µ1≤⋯≤µa≤n

XµM
µ
n (b)

+Xn+a+b( ∑
µ=(µ1,⋯,µa−1)

0≤µ1≤⋯≤µa−1≤n+1

Xµ(M
µ−1
n (b)) + (αqn+a+bY−1)( ∑

µ=(µ1,⋯,µa−1)
0≤µ1≤⋯≤µa−1≤n+1

XµM
µ
n+1(b − 1))

↔

∑
ν=(ν1,⋯,νa−1)

0≤ν1≤⋯≤νa−1≤n+1

(X(ν,n+1)M
(ν,n+1)−1
n (b) −Xn+a+bXνM

ν−1
n (b) − αqn+a+bY−1XνM

ν
n+1(b − 1))

= ∑
µ=(µ1,⋯,µa)

0≤µ1≤⋯≤µa≤n

Xµ(M
µ
n (b) −M

µ−1
n (b)).
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↔

∑
ν=(ν1,⋯,νa−1)

0≤ν1≤⋯≤νa−1≤n+1

(X(ν,n+1)M
(ν,n+1)−1
n (b) − (Xn+a+b −X0)XνM

ν−1
n (b) −X0XνM

(−1,ν−1)
n (b))

(2.4.25)
= ∑

µ=(µ1,⋯,µa)
0≤µ1≤⋯≤µa≤n

Xµ(M
µ
n (b) −M

µ−1
n (b)).

We will show (2.4.25) by showing its refinement (Proposition 2.4.15).

Definition 2.4.14. For ν = (τ e11 ,⋯, τ
ep
p ) such that 0 ≤ τ1 < ⋯ < τp and ei > 0, we define

ν̄(i) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(i, (τ1 − 1)e1 ,⋯, (τp − 1)ep) if −1 ≤ i ≤ τ1 − 1

(τ e11 ,⋯, τ
el
l , i, (τl+1 − 1)el+1 ,⋯, (τp − 1)ep) if τl ≤ i ≤ τl+1 − 1

(τ e11 ,⋯, τ
ep
p , i) if τp ≤ i

Proposition 2.4.15. For ν = (ν1,⋯, νa−1) such that 0 ≤ ν1 ≤ ⋯ ≤ νa−1 ≤ n + 1, denoting
ν− = ν − 1, we have

X(ν,n+1)M
(ν,n+1)−1
n (b) − (Xn+a+b −X0)XνM

ν−1
n (b) −X0XνM

(−1,ν−1)
n (b) (2.4.26)

=
n

∑
i=0

Xv̄(i)(M
ν−(i)
n (b) −M

ν−(i−1)
n (b)).

Proof. Note that we have

ν−(n) = (ν, n + 1) − 1, ν−(−1) = (−1, ν − 1), ν̄(n + 1) = (ν, n + 1).

So the identity (2.4.26) becomes

(Xn+a+b−X0)XνM
ν−

n (b) =M
ν−(−1)
n (b)(Xv̄(0)−XνX0)+

n

∑
i=0

M
ν−(i)
n (b)(Xv̄(i+1)−Xv̄(i)). (2.4.27)

Writing ν− = (τ e11 ,⋯, τ
ep
p ) such that −1 ≤ τ1 < ⋯ < τp and ei > 0, we have

Xv̄(0) −XvX0 = {
0 if τ1 > −1

Xν(Xe1 −X0) if τ1 = −1

Xv̄(i+1) −Xv̄(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xν(Xi+1 −Xi) if 0 ≤ i ≤ τ1 − 1

Xν(Xk+1 −Xk) if τl + 1 ≤ i ≤ τl+1 − 1 and k = (
l

∑
j=1
ej) + i

Xν(Xk+1 −Xk) if τp + 1 ≤ i ≤ n and k = (
p

∑
j=1
ej) + i

Xν(Xk+el+1 −Xk) if i = τl and k = (
l−1

∑
j=1
ej) + τl

.

Since Xk+i −Xk = qk[i]q(X1 −X0), dividing (2.4.27) with Xν(X1 −X0), we have (2.4.14) or
(2.4.15) for ν− which was proved in Lemma 2.4.13.
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Proof of the identity (2.4.25). By Proposition 2.4.15, the left hand side of (2.4.25) be-
comes

∑
ν=(ν1,⋯,νa−1)

0≤ν1≤⋯≤νa−1≤n+1

(
n

∑
i=0

Xv̄(i)(M
ν−(i)
n (b) −M

ν−(i−1)
n (b))) , (2.4.28)

where ν− = ν − 1. For µ = (µ1,⋯, µa) such that 0 ≤ µ1 ≤ ⋯ ≤ µa ≤ n, the term Xµ appears on
(2.4.28) when ν = (µ1,⋯, µl−1, µl+1+1,⋯, µa+1) with the coefficient (M (µ1−1,⋯,µl−1−1,µl,⋯,µa)

n (b)−

M
(µ1−1,⋯,µl−1,µl+1,⋯,µa)
n (b)) for l = 1,⋯, a. So (2.4.28) becomes

∑
µ=(µ1,⋯,µa)

0≤µ1≤⋯≤µa≤n

Xµ(
a

∑
l=1

(M
(µ1−1,⋯,µl−1−1,µl,⋯,µa)
n (b) −M

(µ1−1,⋯,µl−1,µl+1,⋯,µa)
n (b)))

= ∑
µ=(µ1,⋯,µa)

0≤µ1≤⋯≤µa≤n

Xµ(M
µ
n (b) −M

µ−1
n (b)).

◻

2.5 Proof of Theorem 2.2.14
We prepare with lemmas to prove Theorem 2.2.14. Recall that we write f1 ⪰ f2 if (f1−f2)

is a polynomial with positive coefficients.

Lemma 2.5.1. Let f1,⋯, fi and h1,⋯, hi be polynomials such that fj ⪰ hj for all j and
h1,⋯, hi−1 ≥ 0. Then f1⋯fi ⪰ h1⋯hi.

Proof. We have f1⋯fi −h1⋯hi = (f1⋯fi −h1⋯hi−1fi)+h1⋯hi−1(fi −hi) and it is trivial to see
(f1⋯fi − h1⋯hi−1fi) ⪰ 0 and h1⋯hi−1(fi − hi) ⪰ 0.

Lemma 2.5.2. For weakly increasing compositions µ and ν such that l1 = length(µ) ≥ l2 =
length(ν), µ1 ≥ −1, ν1 ≥ 0 and µi ≤ νi for all possible i, we have Mν

n−l2(b) ⪰M
µ
n−l1(b) for all

valid n and b.

Proof. It is enough to show mν
n−l2(B) ⪯ mµ

n−l1(B) for all B ⊂ {0,⋯, n + b − 1} with ∣B∣ = b.
Let B ∩ {n+ b− l2,⋯, n+ b− 1} = {n+ b− jk⋯ < n+ b− j1} and B ∩ {n+ b− l1,⋯, n+ b− l2 − 1} =
{n + b − jk+k′⋯ < n + b − jk+1}. Then we have

mµ
n−l1(B) = ( ∏

i∈B∩{0,⋯,n+b−l1−1}
Yi)(

k+k′

∏
i=1

q(n+b−ji)−B(µji+i)YB(µji+i))

mν
n−l2(B) = ( ∏

i∈B∩{0,⋯,n+b−l1−1}
Yi)(

k+k′

∏
i=k+1

Yn+b−ji)(
k′

∏
i=1

q(n+b−ji)−B(νji+i)YB(νji+i)).

Since µji ≤ νji we have B(µji + i) ≤ B(νji + i), which implies

q(n+b−ji)−B(µji+i)YB(µji+i) ⪯ q
(n+b−ji)−B(νji+i)YB(νji+i)
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for 1 ≤ i ≤ k. We also have

q(n+b−ji)−B(µji+i)YB(µji+i) ⪯ Yn+b−ji

for k + 1 ≤ i ≤ k + k′. And every term is a polynomial with positive coefficients except for
q(n+b−1)−B(0)YB(0) = qn+bY−1 when (n+b−1) ∈ B and µ1 = −1. So we havemν

n−l2(B) ⪯mµ
n−l1(B)

for all B ⊂ {0,⋯, n + b − 1} by Lemma 2.5.1.

Example 2.5.3. For µ = (−1,1,1), ν = (0,1) and B = {0,5,6,7}, we have

mµ
1(B) =m

(−1,1,1)
1 ({0,5,6,7}) = Y0(qY4)(q

3Y3)(q
8Y−1)

mν
2(B) =m

(0,1)
2 ({0,5,6,7}) = Y0(Y5)(q

3Y3)(q
6Y1).

Since qY4 ⪯ Y5, q8Y−1 ⪯ q6Y1 and every term except (q8Y−1) is a polynomial with positive
coefficients, we have mµ

1(B) ⪯mν
2(B).

Lemma 2.5.4. For µ = (µ1,⋯, µl) such that 0 ≤ µ1 ≤ ⋯ ≤ µl ≤ n, we have

Mµ
n (b) ⪯

l

∑
j=1

( ∑
0≤ν1≤⋯≤νk≤n+l
ν1=n+l+1−j

(M
(µj ,⋯,µl)
n (b − k)

k

∏
i=1

Yνi+b−k+i−1)) (2.5.1)

+ ∑
0≤ν1≤⋯≤νk≤n+l

ν1≤n

(Mν1(b − k)
k

∏
i=1

Yνi+b−k+i−1).

Proof. By Lemma 2.4.10, we haveMµ
n (b) = Yn+l+b−1M

µ
n (b−1)+Mµ−1

n−1 (b) and by Lemma 2.5.4,
we have Mµ−1

n−1 (b) ⪯M
(µ2,⋯,µl)
n (b) which gives

Mµ
n (b) ⪯ Yn+l+b−1M

µ
n (b − 1) +M

(µ2,⋯,µl)
n (b). (2.5.2)

Applying (2.5.2) to M (µ2,⋯,µl)
n (b) on the right hand side, we have

Mµ
n (b) ⪯ Yn+l+b−1M

µ
n (b − 1) + Yn+l+b−2M

(µ2,⋯,µl)
n (b − 1) +M

(µ3,⋯,µl)
n (b − 1). (2.5.3)

Keeping this process, we have

Mµ
n (b) ⪯ Yn+l+b−1M

µ
n (b − 1) + Yn+l+b−2M

(µ2,⋯,µl)
n (b − 1) +⋯ (2.5.4)

+Yn+bM
(µl)
n (b − 1) +Mn(b).

Since Mn(b) is an elementary symmetric polynomial of degree b with variables from Y0 to
Yn+b−1, we have

Mn(b) = Yn+b−1Mn(b − 1) + Yn+b−2Mn−1(b − 1) +⋯ + Yb−1M0(b − 1). (2.5.5)
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Applying (2.5.5) to (2.5.4) gives

Mµ
n (b) ⪯ Yn+l+b−1M

µ
n (b − 1) + Yn+l+b−2M

(µ2,⋯,µl)
n (b − 1) +⋯ (2.5.6)

+Yn+bM
(µl)
n (b − 1) + Yn+b−1Mn(b − 1) + Yn+b−2Mn−1(b − 1) +⋯ + Yb−1M0(b − 1).

The inequality (2.5.6) corresponds to the case k = 1 of (2.5.1). Applying (2.5.5) and (2.5.6)
to Mµ

n (b − 1),⋯,M
(µl)
n (b − 1),Mn(b − 1),⋯,M0(b − 1) on the right hand side of (2.5.6) gives

k = 2 of (2.5.1). Subsequently applying (2.5.5) and (2.5.6) gives (2.5.1) for any k.

Note that we have M (µj ,⋯,µl)
n (b − k) ⪯Mµ

n (b − k) for 1 ≤ j ≤ l and Mj(b − k) ⪯M
µ
n (b − k)

for 0 ≤ j ≤ n. Applying this to inequality (2.5.1) gives

Mµ
n (b) ⪯M

µ
n (b − k)( ∑

0≤ν1≤⋯≤νk≤n+l
(
k

∏
i=1

Yνi+b−k+i−1)),

and since ∑
0≤ν1≤⋯≤νk⪯n+l

(
k

∏
i=1
Yνi+b−k+i−1) ⪯Mn+l+b−k(k), we have

Mµ
n (b) ⪯M

µ
n (b − k)Mn+l+b−k(k). (2.5.7)

Proof of Theorem 2.2.14. By Theorem 2.2.8, we have

gn+a+b,n =
a+b
∑
c=0

( ∑
µ=(µ1,⋯,µc)

0≤µ1≤⋯≤µc≤n

XµM
µ
n (a + b − c)).

When c ≥ a, let µ′ = (µ1,⋯, µa) and ν = (µa+1+a,⋯, µc+a) thenXµ =Xµ′Xν andMµ
n (a+b−c) ⪯

Mν
n+a(a + b − c) by Lemma 2.5.2. So we have

XµM
µ
n (a + b − c)) ⪯Xµ′(XνM

ν
n+a(a + b − c)). (2.5.8)

When c < a, by (2.5.7), we have

Mµ
n (a + b − c) ⪯M

µ
n (a − c)M

µ
n+a(b),

which gives
XµM

µ
n (a + b − c)) ⪯ (XµM

µ
n (a − c))Mn+a(b). (2.5.9)

Terms on the right hand sides of (2.5.8) and (2.5.9) appear in gn+a+b,n+agn+a,n and they do
not overlap. So summing up (2.5.8) and (2.5.9) for all possible c and µ gives

gn+a+b,n ⪯ gn+a+b,n+agn+a,n.

◻
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Chapter 3

Schubert polynomials and the
inhomogeneous TASEP on a ring

The results of this chapter were announced in [26], and the proofs will appear in [25].

3.1 Introduction
In recent years, there has been a lot of work on interacting particle models such as the

asymmetric simple exclusion process (ASEP), a model in which particles hop on a one-
dimensional lattice subject to the condition that at most one particle may occupy a given
site. The ASEP on a one-dimensional lattice with open boundaries has been linked to Askey-
Wilson polynomials and Koornwinder polynomials [36, 13, 5, 12], while the ASEP on a ring
has been linked to Macdonald polynomials [7, 10]. The inhomogeneous totally asymmetric
simple exclusion process (TASEP) is a variant of the exclusion process on the ring in which
the hopping rate depends on the weight of the particles. In this paper we build on works
of Lam-Williams [28], Ayyer-Linusson [3], and especially Cantini [6] to give formulas for
many steady state probabilities of the inhomogeneous TASEP on a ring in terms of Schubert
polynomials.

Definition 3.1.1. Consider a lattice with n sites arranged in a ring. Let St(n) denote
the n! labelings of the lattice by distinct numbers 1,2, . . . , n, where each number i is called
a particle of weight i. The inhomogeneous TASEP on a ring of size n is a Markov chain
with state space St(n) where at each time t a swap of two adjacent particles may occur: a
particle of weight i on the left swaps its position with a particle of weight j on the right with
transition rate ri,j given by:

ri,j =

⎧⎪⎪
⎨
⎪⎪⎩

xi − yn+1−j if i < j
0 otherwise.

In what follows, we will identify each state with a permutation in Sn. Following [28,
6], we multiply all steady state probabilities for St(n) by the same constant, obtaining
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“renormalized” steady state probabilities ψw, so that

ψ123...n =∏
i<j

(xi − yn+1−j)
j−i−1. (3.1.1)

See Figure 3.1 for the transition diagram and renormalized steady state probabilities when
n = 3.

321
x1 + x2 − y1 − y2

213 x1 + x2 − y1 − y2132x1 + x2 − y1 − y2

312x1 − y1 231 x1 − y1

123

x1 − y1

x1 − y1

x2 − y1 x1 − y2

x1 − y1 x1 − y1

x1 − y2 x2 − y1

Figure 3.1: The transition diagram for the inhomogeneous TASEP on St(3), with transition
rates shown in blue, and renormalized steady state probabilities ψw in red. Though not
shown, the transition rate 312→ 213 is x2 − y1 and the transtition rate 231→ 132 is x1 − y2.

In the case that yi = 0, Lam and Williams [28] studied this model1 and conjectured that
after a suitable normalization, each steady state probability ψw can be written as a monomial
factor times a positive sum of Schubert polynomials, see Table 3.1 and Table 3.2. They
also gave an explicit formula for the monomial factor, and conjectured that under certain
conditions on w, ψw is a multiple of a particular Schubert polynomial. Subsequently Ayyer
and Linusson [3] gave a conjectural combinatorial formula for the stationary distribution
in terms of multiline queues, which was proved by Arita and Mallick [1]. In [6], Cantini
introduced the version of the model given in Definition 3.1.12 with yi general, and gave a
series of exchange equations relating the components of the stationary distribution. This
allowed him to give explicit formulas for the steady state probabilities for n of the n! states
as products of double Schubert polynomials.

In this paper we build on [6, 3, 1], and give many more explicit formulas for steady state
probabilities in terms of Schubert polynomials: in particular, we give a formula for ψw as a

1However the convention of [28] was slightly different; it corresponds to labeling states by the inverse of
the permutations we use here.

2We note that in [6], the rate ri,j was xi − yj rather than xi − yn+1−j as we use in Definition 3.1.1.
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State w Probability ψw
1234 (x1 − y1)

2(x1 − y2)(x2 − y1)

1324 (x1 − y1)S1432

1342 (x1 − y1)(x2 − y1)S1423

1423 (x1 − y1)(x1 − y2)(x2 − y1)S1243

1243 (x1 − y2)(x1 − y1)S1342

1432 S1423S1342

Table 3.1: The renormalized steady state probabilities for n = 4.

product of (double) Schubert polynomials whenever w is evil-avoiding, that is, it avoids the
patterns 2413,4132,4213 and 3214. We show that there are (2+

√
2)n−1+(2−

√
2)n−1

2 evil-avoiding
permutations in Sn, so this gives a substantial generalization of Cantini’s previous result [6]
in this direction.

In order to state our main results, we need a few definitions. First, we say that two
states w and w′ are equivalent, and write w ∼ w′, if one state is a cyclic shift of the other, e.g.
(w1, . . . ,wn) ∼ (w2, . . . ,wn,w1). Because of the cyclic symmetry inherent in the definition of
the TASEP on a ring, it is clear that the probabilities of states w and w′ are equal whenever
w ∼ w′. We will therefore often assume, without loss of generality, that w1 = 1. Note that up
to cyclic shift, St(n) contains (n − 1)! states.

We now introduce some definitions needed to characterize the Schubert polynomial factors
that appear in the probabilities ψw.

Definition 3.1.2. Let w = (w1, . . . ,wn) ∈ St(n). We say that w is a k-Grassmannian
permutation, and we write w ∈ St(n, k) if: w1 = 1; w is evil-avoiding, i.e. w avoids the
patterns 2413, 3214, 4132, and 4213; and w has k recoils, that is, letters a in w such that
a + 1 appears to the left of a in w. (Equivalently, w−1 has exactly k descents.)

Definition 3.1.3. We associate to each w ∈ St(n, k) a sequence of partitions Ψ(w) =

(λ1, . . . , λk) as follows. Write the Lehmer code (cf. Definition 3.2.3) of w−1 as c(w−1) = c =
(c1, . . . , cn); since w−1 has k descents, c has k descents in positions we denote by a1, . . . , ak.
Set a0 = 0. For 1 ≤ i ≤ k, define λi = (n − ai)ai − (0,⋯,0

´¹¹¹¹¸¹¹¹¹¶
ai−1

, cai−1+1, cai−1+2, . . . , cai).

See Table 3.3 for examples of the map Ψ(w).

Definition 3.1.4. Given a positive integer n and a partition λ properly contained in a
length(λ)×(n− length(λ)) rectangle (we will later use the notation λ ∈ Val(n)), we define an
integer vector gn(λ) = (v1, . . . , vn) of length n as follows. Write λ = (µk11 ,⋯, µ

kl
l ) where ki > 0
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State w Probability ψw
12345 x(6,3,1)

12354 x(5,2,0)S13452

12435 x(4,1,0)S14532

12453 x(4,1,1)S14523

12534 x(5,2,1)S12453

12543 x(3,0,0)S14523S13452

13245 x(3,1,1)S15423

13254 x(2,0,0)S15423S13452

13425 x(3,2,1)S15243

13452 x(3,3,1)S15234

13524 x(2,1,0)(S164325 +S25431)

13542 x(2,2,0)S15234S13452

14235 x(4,2,0)S13542

14253 x(4,2,1)S12543

14325 x(1,0,0)(S1753246 +S265314 +S2743156 +S356214 +S364215 +S365124)

14352 x(1,1,0)S15234S14532

14523 x(4,3,1)S12534

14532 x(1,1,1)S15234S14523

15234 x(5,3,1)S12354

15243 x(3,1,0)(S146325 +S24531)

15324 x(2,1,1)(S15432 +S164235)

15342 x(2,2,1)S15234S12453

15423 x(3,2,0)S12534S13452

15432 S15234S14523S13452

Table 3.2: The renormalized steady state probabilities for n = 5, when each yi = 0. In the
table, x(a,b,c) denotes xa1xb2xc3.

and µ1 > ⋯ > µl. We assign values to the entries (v1, . . . , vn) by performing the following
step for i from 1 to l.

• (Step i) Set vn−µi equal to µi. Moving to the left, assign the value µi to the first (ki−1)
unassigned components.

After performing Step l, we assign the value 0 to any entry vj which has not yet been given
a value.

Remark 3.1.5. Note that in Step 1, we set vn−µ1 , vn−µ1−1,⋯, vn−µ1−k1+1 equal to µ1.
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Example 3.1.6.

g5((2,1,1)) = (0,1,2,1,0)

g6((3,2,2,1)) = (0,2,3,2,1,0)

g6((3,1,1)) = (0,0,3,1,1,0).

The main result of this paper is Theorem 3.1.8. The definition of Schubert polynomial
can be found in Section 3.2.

Definition 3.1.7. We write a → b → c if the letters a, b, c appear in cyclic order in w. So
for example, if w = 1423, we have that 1 → 2 → 3 and 2 → 3 → 4, but it is not the case that
3→ 2→ 1 or 4→ 3→ 2. We then define

xyFact(w) =
n−2

∏
i=1

∏
i+2≤k≤n
i→i+1→k

(x1 − yn+1−k)⋯(xi − yn+1−k). (3.1.2)

Theorem 3.1.8. Let w ∈ St(n, k) be a k-Grassmannian permutation, as in Definition 3.1.2,
and write Ψ(w) = (λ1,⋯, λk). Then the (renormalized) steady state probability is given by

ψw = xyFact(w)
k

∏
i=1

Sc−1(gn(λi)), (3.1.3)

where Sc−1(gn(λi)) is the double Schubert polynomial associated to the permutation with Lehmer
code gn(λi), and gn is given by Definition 3.1.4.

In the case that each yi = 0, Theorem 3.1.8 becomes Theorem 3.1.9 below.

Theorem 3.1.9. Let w ∈ St(n, k), and let Ψ(w) = (λ1, . . . , λk). Let µ be the vector µ ∶=

((
n−1

2
), (n−2

2
), . . . , (2

2
)) −

k

∑
i=1
λi, where we view each partition λi as a vector in Zn−2

≥0 , adding

trailing 0’s if necessary. Then when each yi = 0, the renormalized steady state probability ψw
is given by

ψw = xµ
k

∏
i=1

Sc−1(gn(λi)),

where Sc−1(gn(λi)) is the Schubert polynomial of the permutation with Lehmer code gn(λi).

We illustrate Theorem 3.1.9 in Table 3.3 in the case that n = 5. The quantity s(w) is
defined in Definition 3.5.8.
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k w ∈ St(5, k) Ψ(w) probability ψw s(w)

0 12345 ∅ x(6,3,1) (0)
1 12354 (1,1,1) x(5,2,0)S13452 (0)
1 12435 (2,2,1) x(4,1,0)S14532 (0)
1 12453 (2,2) x(4,1,1)S14523 (0)
1 12534 (1,1) x(5,2,1)S12453 (0)
1 13245 (3,2) x(3,1,1)S15423 (0)
1 13425 (3,1) x(3,2,1)S15243 (0)
1 13452 (3) x(3,3,1)S15234 (0)
1 14235 (2,1,1) x(4,2,0)S13542 (0)
1 14253 (2,1) x(4,2,1)S12543 (0)
1 14523 (2) x(4,3,1)S12534 (0)
1 15234 (1) x(5,3,1)S12354 (0)
2 12543 (2,2), (1,1,1) x(3,0,0)S14523S13452 (0,−1)
2 13254 (3,2), (1,1,1) x(2,0,0)S15423S13452 (0,0)
2 13542 (3), (1,1,1) x(2,2,0)S15234S13452 (0,−1)
2 14352 (3), (2,2,1) x(1,1,0)S15234S14532 (0,−1)
2 14532 (3), (2,2) x(1,1,1)S15234S14523 (0,−1)
2 15342 (3), (1,1) x(2,2,1)S15234S12453 (0,−1)
2 15423 (2), (1,1,1) x(3,2,0)S12534S13452 (0,−2)
3 15432 (3), (2,2), (1,1,1) S15234S14523S13452 (0,−1,−2)

Table 3.3: Special states w ∈ St(5, k) and the corresponding sequences of partitions Ψ(w),
together with steady state probabilities ψw and vectors s(w).

Proposition 3.1.10. The number of evil-avoiding permutation in Sn satisfies the recurrence
e(1) = 1, e(2) = 2, e(n) = 4e(n − 1) − 2e(n − 2) for n ≥ 3, and is given explicitly as

e(n) =
(2 +

√
2)n−1 + (2 −

√
2)n−1

2
. (3.1.4)

This sequence begins as 1,2,6,20,68,232, and occurs in Sloane’s encyclopedia as sequence
A006012. The cardinalities ∣St(n, k)∣ also occur as sequence A331969.

Remark 3.1.11. Let w(n,h) ∶= (h,h− 1, . . . ,2,1, h+ 1, h+ 2, . . . , n) ∈ St(n). In [6, Corollary
16], Cantini gives a formula for the steady state probability of state w(n,h), as a trivial factor
times a product of certain (double) Schubert polynomials. Note that our main result is a
significant generalization of [6, Corollary 16]. For example, for n = 4, Cantini’s result gives a
formula for the probabilities of three states – (1,2,3,4), (1,3,4,2), and (1,4,3,2). And for
n = 5, his result gives a formula for four states – (1,2,3,4,5), (1,3,4,5,2), (1,4,5,3,2), and
(1,5,4,3,2). On the other hand, Theorem 3.1.9 gives a formula for all six states when n = 4
(see Table 3.1) and 20 of the 24 states when n = 5. Asymptotically, since the number of
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special states in Sn is given by (3.1.4), Theorem 3.1.9 gives a formula for roughly (2+
√

2)n−1
2

out of the (n − 1)! states of St(n).
Another point worth mentioning is that the Schubert polynomials that occur in the

formulas of [6] are all of the form Sσ(a,n), where σ(a,n) denotes the permutation (1, a +
1, a+ 2, . . . , n,2,3, . . . , n). However, many of the Schubert polynomials arising as (factors) of
steady probabilities are not of this form. Already we see for n = 4 the Schubert polynomials
S1432 and S1243, which are not of this form.

3.2 Background on partitions, permutations and
Schubert polynomials

We let Sn denote the symmetric group on n letters, which is a Coxeter group generated
by the simple reflections s1, . . . , sn−1, where si is the simple transposition exchanging i and
i + 1. We let w0 = (n,n − 1, . . . ,2,1) denote the longest permutation.

For 1 ≤ i < n, we have the divided difference operator ∂i which acts on polynomials
P (x1, . . . , xn) as follows:

(∂iP )(x1, . . . , xn) =
P (. . . , xi, xi+1, . . . ) − P (. . . , xi+1, xi, . . . )

xi − xi+1

.

If si1 . . . sim is a reduced expression for a permutation w, then ∂i1 . . . ∂im depends only on w,
so we denote this operator by ∂w.

Definition 3.2.1. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two sets of variables, and let

∆(x,y) = ∏
i+j≤n

(xi − yj).

To each permutation w ∈ Sn we associate the double Schubert polynomial

Sw(x,y) = ∂w−1w0
∆(x,y),

where the divided difference operator acts on the x-variables.

Definition 3.2.2. A partition λ = (λ1, . . . , λr) is a weakly decreasing sequence of positive
integers. We say that r is the length of λ, and denote it r = length(λ). We also define λlast

to be the smallest part of λ.

Definition 3.2.3. The Rothe diagram of a permutation w is

D(w) = {(i, j) ∣ 1 ≤ i, j ≤ n,w(i) > j,w−1(j) > i}.

Graphically, we may construct the diagram by taking the complement of the hooks with
vertices (i,w(i)), for 1 ≤ i ≤ n.
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The sequence of the numbers of the points of the diagram in successive rows is called the
Lehmer code or code c(w) of the permutation. If (v1, . . . , vn) is the code of a permutation,
we also define c−1(v1, . . . , vn) to be the permutation whose Lehmer code is (v1, . . . , vn). The
partition obtained by sorting the components of the code is called the shape λ(w) of w.

Example 3.2.4. The permutation w = (1,3,5,4,2) has Lehmer code (0,1,2,1,0) and shape
λ(w) = (2,1,1).

The following is well-known.

Lemma 3.2.5. Given a vector (c1,⋯, cn) ∈ Zn≥0, there exists a permutation w ∈ Sn such that
c(w) = (c1,⋯, cn) if and only if ci + i ≤ n for all 1 ≤ i ≤ n.

3.3 Combinatorics of evil-avoiding and k-Grassmannian
permutations

In this section we study the special states of our Markov chain whose probabilities are
proportional to products of Schubert polynomials. Recall our definition of k-Grassmannian
permutations St(n, k) from Definition 3.1.2. As we will see, the set St(n, k) is in bijection
with a certain set ParSeq(n, k) of sequences (λ1, . . . , λk) of k partitions. Recall that our main
result (see Theorem 3.1.8) states that the probability of each state in St(n, k) is proportional
to a product of k Schubert polynomials, which are determined by the corresponding sequence
of partitions.

Remark 3.3.1. Note that w contains a pattern p if and only if w−1 contains the pattern
p−1. So w is evil-avoiding if and only if w−1 avoids 3142, 2431, 3241, and 3214.

We say that a sequence (w1,w2, . . . ,wn) ∈ Zn has a descent in position j if wj > wj+1.

Proposition 3.3.2. Let c = (c1, c2, . . . , cn) be the code of w ∈ Sn. Then w avoids the patterns
3142, 3214, 2431, and 3241 (equivalently, w−1 is evil-avoiding) if and only if for each descent
position j, if there is a b ≤ j such that:

• wb < wb+1 < ⋅ ⋅ ⋅ < wj and 0 < cb < n − j, and b is maximal with these properties,

then we must have cj+1 = cj+2 = ⋅ ⋅ ⋅ = cj+cb = 0.

Remark 3.3.3. Let w = (w1, . . . ,wn) ∈ Sn. Note that having the bth entry of the code
c = code(w) equal to cb means that there are precisely cb letters less than wb which do not
occur in positions 1 through b. The condition cj+1 = cj+2 = ⋅ ⋅ ⋅ = cj+cb = 0 means that these
letters must occur in increasing order in positions j + 1, . . . , j + cb.

Remark 3.3.4. If k = 1, then w ∈ St(n,1) implies that code(w−1) has a unique descent.
By [30, Definition 2.2.3], this means that w−1 is a Grassmannian permutation. Equivalently,
there is precisely one letter a in w such that a + 1 appears to the left of a in w.
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Proof of Proposition 3.3.2. We start by showing that if w fails to satisfy the condition of
Proposition 3.3.2, then it must contain one of the patterns 3142, 3214, 2431, and 3241. If
w fails to satisfy the condition of Proposition 3.3.2, then there is a descent position j and a
b ≤ j with wb < wb+1 < ⋅ ⋅ ⋅ < wj and 0 < cb < n− j, and b is maximal with this property, but we
do not have cj+1 = cj+2 = ⋅ ⋅ ⋅ = cj+cb = 0.

1. We have wb < wb+1 < ⋅ ⋅ ⋅ < wj > wj+1.

2. By the definition of code, there must be cb letters C smaller than wb which appear to
the right of wb; they must therefore appear to the right of wj.

3. Since cb < n−j, there must be at least one letter w` > wb which appears among positions
[j, n]. Let ` be minimal with this property.

4. The fact that we do not have cj+1 = cj+2 = ⋅ ⋅ ⋅ = cj+cb = 0 implies that the letter w`
appears to the left of some letter wr ∈ C, i.e. ` < r.

Let us first consider the case that b = j. If cb+1 ≠ 0 then wb+1 is not the smallest letter to
appear in positions [b + 1, n], so there exists some m > b + 1 such that wb+1 > wm. Therefore
the letters {wb,wb+1,wm,w`} give either an instance of the pattern 3214 or of the pattern
3241, depending on whether m < ` or ` <m.

If b = j and cb+1 = 0 then wb+1 is the smallest letter to appear in positions [b + 1, n]. But
then the letters {wb,wb+1,w`,wr} form the pattern 3142.

If b < j, then the fact that b is maximal such that j + cb < n implies that j + cb+1 ≥ n.
Since wb+1 < ⋅ ⋅ ⋅ < wj, the cb+1 letters which are less than wb+1 and to the right of position
b + 1 must actually lie in positions [j + 1, n]. However, now since cb+1 ≥ n − j, all the letters
in positions [j + 1, n] must be less than wb+1. In particular the letter w` defined in (3) must
be less than wb+1. But now the letters {wb,wb+1,w`,wr} form the pattern 2431.

Therefore, we have shown that if w avoids the patterns 3142, 3214, 2431, and 3241, then
it satisfies the condition of Proposition 3.3.2.

In the other direction, suppose that w contains the pattern 3214. Let i < k < ` <m denote
the positions of the letters of this pattern. Then wi > wk implies that there exists some j
with i ≤ j < k such that wi < wi+1 < ⋅ ⋅ ⋅ < wj > wj+1. We have ci ≥ 2 since wk and w` are both
less than wi. And all of the ci letters less than wi which occur to the right of wi must occur
in positions [j+1, n]. Moreover, the 4 in the pattern, representing the letter wm > wi, occurs
in a position in [j + 1, n]. Therefore ci < n − j.

Therefore there exists some b with i ≤ b ≤ j with wi ≤ wb < wb+1 < ⋅ ⋅ ⋅ < wj and 0 < cb < n−j,
and we choose b to be maximal with these properties. We have that wb is greater than both
wk and w`. But then it is impossible for cj+1 = cj+2 = ⋅ ⋅ ⋅ = cj+cb = 0: by Remark 3.3.3 this
means that the cb letters less than wb that appear to the right of wb must occur in increasing
order in positions j + 1, j + 2, . . . , j + cb, but this is false since wk and w` (the 2 and 1 of
the pattern) occur in the wrong order. Exactly the same argument holds if w contains the
pattern 3241.
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Nearly the same argument holds if w contains the pattern 3142. Again, let i < k < ` <m
denote the positions of the letters of this pattern. As before, since wi > wk, we can find
i ≤ j < k such that wi < wi+1 < ⋅ ⋅ ⋅ < wj > wj+1, and we have 2 ≤ ci < n − j. We then choose b
maximal with i ≤ b ≤ j such that 0 < cb < n − j. But again using Remark 3.3.3 we see it is
impossible to have cj+1 = cj+2 = ⋅ ⋅ ⋅ = cj+cb = 0 – the 142 in the pattern 3142 (i.e. the letters
in positions k, `,m) means that the letters less than wb do not occur in increasing order in
consecutive positions.

Finally, suppose that w contains the pattern 2431. Let h < i < ` <m denote the positions
of the letters of this pattern. The fact that wi > w` implies there must be a descent position
j with j < `. Let j be minimal such that wh < wh+1 < ⋅ ⋅ ⋅ < wj > wj+1. Because wm < wh, we
know that ch ≥ 1. Moreover, the letters less than wh which are to the right of it must appear
in positions [j + 1, n]. Because w` > wh, we know that ch < n − j. Therefore, there exists
some b ≥ h with wb < wb+1 < ⋅ ⋅ ⋅ < wj and 0 < cb < n − j; we choose b to be maximal with this
property. But then by Remark 3.3.3, the cb letters less than wb which appear to the right of
wb must appear in increasing order in positions j+1, j+2, . . . , j+cb. This is impossible, since
w` and wm lie weakly to the right of position j + 1 but in the wrong order (since w` > wm).
This completes the proof.

Definition 3.3.5. We say that a partition λ is valid for n if λ is properly contained in a
length(λ)× (n− length(λ)) rectangle. Let Val(n) denote the collection of all valid partitions
for n.

Remark 3.3.6. One can show that ∣Val(n)∣ = 2n−1 − (n − 1) − 1. They are in bijection with
Grassmannian permutations in Sn that starts with 1.

Definition 3.3.7. For 1 ≤ k ≤ n − 2, we let ParSeq(n, k) denote the set of all sequences of
partitions (λ1, . . . , λk) such that each λi is valid for n, and for all 1 ≤ i ≤ k − 1 we have:

• if ` is the smallest part of λi, then the first (n − `) parts of λi+1 are equal.

If k = 0 then ParSeq(n, k) consists of one element, the empty sequence.

Example 3.3.8. If n = 6, then ((3), (2,2,2,1)) and ((4,2), (1,1,1,1)) lie in ParSeq(6,2)
but ((3), (2,2,1,1)) and ((4,2), (1,1,1) do not lie in ParSeq(6,2).

Remark 3.3.9. It follows from Definition 3.3.7 that if (λ1, . . . , λk) ∈ ParSeq(n, k), then for
all 1 ≤ i ≤ k − 1:

• the number of parts of λi is less than the number of parts of λi+1

• every part of λi is greater than every part of λi+1.

Remark 3.3.10. Let v(n) denote the vector v(n) ∶= ((
n−1

2
), (n−2

2
), . . . , (2

2
)). Then it follows

from Definition 3.3.7 that µ ∶= v −∑k
i=1 λ

i is a partition. (Here we think of each partition λi
as a vector in Zn−2

≥0 by adding extra parts equal to 0 if necessary.) Note that the vector µ
appears in the steady steady probability formula from Theorem 3.1.9.
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Proposition 3.3.11. The map Ψ ∶ St(n, k) → ParSeq(n, k) (cf. Definition 3.1.3) is well-
defined and bijective. The inverse map Ψ−1 ∶ ParSeq(n, k) → St(n, k) can be described as
follows. Let (λ1, . . . , λk) ∈ ParSeq(n, k), and let (f1, . . . , fk) be the sequence of first parts of
λ1, . . . , λk, i.e. fi = λi1. Then ((fn−f11 − λ1) + (fn−f22 − λ2) + ⋅ ⋅ ⋅ + (fn−fkk − λk)) is the code of a
permutation w−1 of w ∈ St(n, k). We define Ψ−1(λ1, . . . , λk) = w.

Proof. We first show that when we apply the map Ψ, we obtain a vector that satisfies the
properties of Definition 3.3.7. Write code(w−1) = c = (c1, . . . , cn) and let a1, . . . , ak denote
the positions of the descents of c. We have λj = (n−aj)aj − (0,⋯,0, caj−1+1,⋯, caj). If we take
the maximal b such that aj−1 < b ≤ aj and aj + cb < n, then by Proposition 3.3.2, we have
caj+1 = caj+2 = ⋅ ⋅ ⋅ = caj+cb = 0. Since λj+1 = (n − aj+1)

aj+1 − (0,⋯,0, caj+1,⋯, caj+1), t he first
aj + cb parts of λj+1 are equal. Let l be the smallest part of λj, then l = (n − aj) − cb. So the
first (n − l) = aj + cb parts of λj+1 are equal.

Now we show that when we apply the map Ψ−1 to (λ1, . . . , λk) ∈ ParSeq(n, k), we get an
element in St(n, k). Let c = ((fn−f11 −λ1)+(fn−f22 −λ2)+ ⋅ ⋅ ⋅ +(fn−fkk −λk)). Since the smallest
part of λi is no greater than fi, the first n − fi parts of λi+1 are equal. So the first n − fi
components of the vector (fn−fi+1i+1 − λi+1) are zero. We write c = (c1, . . . , cn) as follows

cj =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

f1 − λ1
j , if 1 ≤ j ≤ n − f1

fi − λij, if n − fi−1 < j ≤ n − fi, for 2 ≤ i ≤ k

0, if n − fk < j,

where we regard λij = 0 if j is bigger that the length of λi.
We claim that cn−fi > cn−fi+1. If λin−fi = 0 then we have cn−fi = fi > fi+1 ≥ fi+1 − λi+1

n−fi+1 =

cn−fi+1. If λin−fi > 0 then λin−fi < fi since λ
i ∈ Val(n). The first n−λin−fi parts of λ

i+1 are equal
so λi+1

n−fi+1 = fi+1. Thus we have cn−fi = fi − λin−fi > 0 = cn−fi+1.
We see that the descents of c are at n− f1, . . . , n− fk. Now take the maximal b such that

n − fi−1 < b ≤ n − fi and n − fi + cb < n. Then cb = fi − l where l is the smallest part of λi. So
the first n − l parts of λi+1 are equal which implies cn−fi+1 = ⋅ ⋅ ⋅ = cn−fi+cb as n − fi + cb = n − l.
We conclude that c is the code of w−1 for some w ∈ St(n, k) by Proposition 3.3.2.

Example 3.3.12. If code(w−1) = (0,3,1,1,0) then Ψ(w) = ((3), (1,1)). If code(w−1) =

(0,2,2,1,0) then Ψ(w) = ((2), (1,1,1)).

Remark 3.3.13. While we have not found any previous works studying evil-avoiding per-
mutations, we note that the sequence {e(n)} of cardinalities of evil-avoiding permutations
in Sn has several other combinatorial interpretations listed in Sloane:

• e(n) counts permutations π ∈ Sn for which the pairs (i, π(i)) with i < π(i), considered
as closed intervals [i + 1, π(i)], do not overlap; equivalently, for each i ∈ [n] there is at
most one j ≤ i with π(j) > i.
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• e(n) is the number of permutations on [n] with no subsequence abcd such that (i) bc
are adjacent in position and (ii) max(a, c) < min(b, d). For example, the 4 permutations
of [4] not counted by a(4) are 1324,1423,2314,2413.

• e(n) is the number of rectangular permutations on [n], i.e. those permutations which
avoid the four patterns 2413, 2431, 4213, 4231, see [8].

It would be interesting to find a bijection between the k-Grassmannian permutations in
Sn (where we let k vary) and either of the above sets of permutations.

Remark 3.3.14. Given (the Young diagram of) a partition contained in an r × (n − r)
rectangle, we identify it with the lattice path cutting out the Young diagram which takes
unit steps south and east from the upper right corner (r, n− r) to the lower left corner (0,0)
of the rectangle. Label the steps of that lattice path with the numbers 1 through n. If we
first read off the labels of the vertical steps (in order) and then read off the labels of the
horizontal steps, we obtain a permutation w(λ) which is Grassmannian, i.e. it has a unique
descent. For example, for n = 5 and λ = (2,2), we have w(λ) = (1,2,5,3,4).

1

2

5

4 3

Figure 3.2: Reading off the (Grassmann) permutation from a partition

If w ∈ St(n,1), then Ψ(w) consists of a single partition, the unique partition λ such
that w(λ) = w−1. For example, for w = (1,2,4,3,5), we have Ψ(w) = ((2,2,1)), and for
w = (1,2,4,5,3), we have Ψ(w) = ((2,2)).

Proposition 3.3.15. For k ≥ 1, we have that

∣ParSeq(n, k)∣ = 2∣ParSeq(n − 1, k)∣ +
n−1

∑
i=k+1

∣ParSeq(i, k − 1)∣.

Proof. To prove Proposition 3.3.15, we define two different injective maps Ψi ∶ ParSeq(n −
1, k)→ ParSeq(n, k) for i = 1,2 as well as a family of injective maps Φi,k,n ∶ ParSeq(i, k−1)→
ParSeq(n, k) for k + 1 ≤ i ≤ n − 1. The statement then follows from the claim that every
element of ParSeq(n, k) lies in the image of precisely one of these maps.

We define Ψ1 ∶ ParSeq(n − 1, k) → ParSeq(n, k) to be the map which takes (λ1, . . . , λk)
to (µ1, . . . , µk), where µi is obtained from λi by duplicating its first part. That is, if λi =
(λi1, λ

i
2, . . . , λ

i
r), then µi = (λi1, λ

i
1, λ

i
2, . . . , λ

i
r). So for example,

Ψ1((2), (1,1)) = ((2,2), (1,1,1)).
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We define Ψ2 ∶ ParSeq(n−1, k)→ ParSeq(n, k) to be the map which takes (λ1, . . . , λk) to
(µ1, . . . , µk), where for i ≥ 2, µi is obtained from λi by duplicating its first part. For i = 1, let
λi = (λi1, . . . , λ

i
r). If all parts of λi are equal, then we define µi = (λi1+1, λi1, . . . , λ

i
r). Otherwise,

we define µi = (λi1 + 1, λi2, . . . , λ
i
r). So if λ1 = (λ1

1, λ
1
2, . . . , λ

1
r), then µ1 = (λ1

1 + 1, λ1
1, λ

1
2, . . . , λ

1
r).

So for example,
Ψ2((2), (1,1)) = ((3,2), (1,1,1)).

For k+1 ≤ i ≤ n−1, we define Φi,k,n ∶ ParSeq(i, k−1)→ ParSeq(n, k) to be the map which
takes (λ1, . . . , λk) to ((i − 1), µ1, . . . , µk−1), where µj is obtained from λj by duplicating the
first part of λj n−i times. That is, if λj = (λj1, λ

j
2, . . . , λ

j
r), then µj = (λj1, λ

j
1, . . . , λ

j
1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n − i + 1

, λj2, . . . , λ
j
r).

So for example, we have that

Φ4,2,5((1)) = ((3), (1,1)),

Φ4,2,5((2)) = ((3), (2,2, )),

Φ4,2,5((1,1)) = ((3), (1,1,1)),

Φ4,2,5((2,1)) = ((3), (2,2,1)).

And
Φ3,2,5((1)) = ((2), (1,1,1)).

The above examples express the seven elements of ParSeq(5,2) as images of elements of
ParSeq(4,2), ParSeq(4,1), and ParSeq(3,1).

Corollary 3.3.16. Define the number T (n, k) by

T (n, k) =
n−k−2

∑
i=0

2i(
i + k − 1

k − 1
)(
n − 2 − i

k
). (3.3.1)

(These numbers appear in A331969.) Then we have

∣St(n, k)∣ = ∣ParSeq(n, k)∣ = T (n, k).

Equivalently, the number of evil-avoiding permutations w in Sn−1 such that w−1 has exactly
k descents is T (n, k).

Proof. The formula (3.3.1) is equivalent to the generating function given in A331969. We
will prove that

T (n, k) = 2T (n − 1, k) +
n−1

∑
i=k+1

T (i, k − 1).

Once we have done this, the result will follow from Proposition 3.3.15 and Proposition 3.3.11.

https://oeis.org/A331969
https://oeis.org/A331969
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We have

T (n, k) − 2T (n − 1, k) =
n−k−2

∑
i=0

2i(
i + k − 1

k − 1
)(
n − 2 − i

k
) − 2

n−k−3

∑
i=0

2i(
i + k − 1

k − 1
)(
n − 3 − i

k
)

= (
n − 2

k
) + 2

n−k−3

∑
i=0

2i((
i + k

k − 1
)(
n − 3 − i

k
) − (

i + k − 1

k − 1
)(
n − 3 − i

k
))

= (
n − 2

k
) + 2

n−k−3

∑
i=0

2i+2(
i + k − 1

k − 2
)(
n − 3 − i

k
).

Thus

(T (n, k) − 2T (n − 1, k)) − (T (n − 1, k) − 2T (n − 2, k))

= ((
n − 2

k
) +

n−k−3

∑
i=0

2i+1(
i + k − 1

k − 2
)(
n − 3 − i

k
)) − ((

n − 3

k
) +

n−k−4

∑
i=0

2i+1(
i + k − 1

k − 2
)(
n − 4 − i

k
))

= (
n − 3

k − 1
) +

n−k−4

∑
i=0

2i+1(
i + k − 1

k − 2
)(
n − 4 − i

k − 1
) + 2n−k−2(

n − 4

k − 2
) = T (n − 1, k − 1).

Now the proof follows from the induction on n.

Proof of Proposition 3.1.10) Since e(n) =
n−2

∑
k=0

∣St(n, k)∣, by Proposition 3.3.15 we have

e(n) =
n−2

∑
k=0

∣St(n, k)∣ = 1 +
n−2

∑
k=1

(2∣St(n − 1, k)∣ +
n−1

∑
j=k+1

∣St(j, k − 1)∣)

= (3
n−3

∑
k=0

∣St(n − 1, k)∣ − 1) +
n−3

∑
k=1

n−2

∑
j=k+1

∣St(j, k − 1)∣

= 4e(n − 1) − (
n−3

∑
k=0

∣St(n − 1, k)∣ + 1 −
n−3

∑
k=1

n−2

∑
j=k+1

∣St(j, k − 1)∣)

= 4e(n − 1) − (1 +
n−3

∑
k=1

(2∣St(n − 2, k)∣) = 4e(n − 1) − 2e(n − 2).

3.4 Cantini’s z-deformation of steady state probabilities
In [6], Cantini associated to each w ∈ St(n) a deformed steady state probability ψw(z) =

ψw(z1,⋯, zn) which recovers the usual steady state probability ψw for w in the inhomogeneous
TASEP when “z =∞,” or in other words, when one reads off the coefficient LCz(ψw(z)) of
the largest monomial in z.

Note that the symmetric group Sn acts on states. Our convention is that for 1 ≤ i ≤ n−1,
the simple transposition si acts on a state w = (w1, . . . ,wn) ∈ St(n) by

si(w1, . . . ,wi,wi+1, . . . ,wn) = (w1, . . . ,wi+1,wi, . . . ,wn).
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In what follows, the indices of states are always considered modulo n, e.g. for w =

(w1, . . . ,wn) ∈ St(n), the notation wn+1 means w1. Correspondingly we let sn act by

sn(w1,w2, . . . ,wn−1,wn) = (wn,w2, . . . ,wn−1,w1).

We use the notation cyc(w,k) to denote a cyclic shift of the state w by k positions, i.e.
cyc(w,k) = (w1+k,⋯,wn+k). If f is a multivariate polynomial in z1, . . . , zn, we let si act on
f by permuting variables z1, . . . , zn. And define LCz(f) to be the coefficient of the highest
degree term with respect to the z variables. In this section we will also consider the indices
for z modulo n.

Proposition 3.4.1. [6, Equations (2), (24), (27), (28), (34)]
We associate to each w ∈ St(n) the quantity ψw(z) = ψw(z1, . . . , zn), which is computed

as follows:

ψ(1,2,⋯,n)(z) = ∏
1≤i<j≤n

(xi − yn+1−j)
j−i−1

n

∏
i=1

(
i−1

∏
j=1

(zi − xj)
n

∏
j=i+1

(zi − yn+1−j)),

ψslw(z) = πl(wl,wl+1;n)ψw(z) if wl > wl+1,

where πl(β,α;n) is the isobaric divided difference operator defined by

πl(β,α;n)G(z) =
(zl − yn+1−β)(zl+1 − xα)

xα − yn+1−β

G(z) − slG(z)
zl − zl+1

.

Then we have that for cyclically equivalent w and w′ = cyc(w,k) in St(n),

ψw′(z1,⋯, zn) = ψw(z1+k,⋯, zn+k), (3.4.1)

where the indices on the z-variables are considered modulo n.
Moreover,

LCz(ψw(z)) = ψw. (3.4.2)

Because of (3.4.2), we refer to ψw(z) as the deformed steady state probability.

In what follows, we will often omit n in the operator πl(wl,wl+1;n) and just write
πl(wl,wl+1) when n is clear from the context.

Example 3.4.2. For n = 3, we have

ψ(1,2,3)(z) = (x1 − y1)(z1 − y2)(z1 − y1)(z2 − x1)(z2 − y1)(z3 − x1)(z3 − x2),



CHAPTER 3. SCHUBERT POLYNOMIALS AND THE INHOMOGENEOUS TASEP
ON A RING 59

which gives

ψ(3,2,1)(z) = π3(3,1)ψ(1,2,3)(z) = (z1 − x1)(z2 − x1)(z2 − y1)(z3 − y1)×

((x1 + x2 − y1 − y2)z3z1 + (x1x2 − y1y2)(z3 + z1) − x1x2y1 − x1x2y2 + x1y1y2 + x2y1y2))

ψ(2,3,1)(z) = π1(3,2)ψ(3,2,1)(z)

= (x1 − y1)(z3 − y2)(z3 − y1)(z1 − x1)(z1 − y1)(z2 − x1)(z2 − x2)

ψ(3,1,2)(z) = π2(2,1)ψ(3,2,1)(z)

= (x1 − y1)(z2 − y2)(z2 − y1)(z3 − x1)(z3 − y1)(z1 − x1)(z1 − x2)

ψ(1,3,2)(z) = π1(3,1)ψ(3,1,2)(z) = (z2 − x1)(z3 − x1)(z3 − y1)(z1 − y1)×

((x1 + x2 − y1 − y2)z1z2 + (x1x2 − y1y2)(z1 + z2) − x1x2y1 − x1x2y2 + x1y1y2 + x2y1y2))

ψ(2,1,3)(z) = π2(3,1)ψ(2,3,1)(z) = (z3 − x1)(z1 − x1)(z1 − y1)(z2 − y1)×

((x1 + x2 − y1 − y2)z2z3 + (x1x2 − y1y2)(z2 + z3) − x1x2y1 − x1x2y2 + x1y1y2 + x2y1y2)).

Taking the leading coefficients with respect to z-variables recovers the probabilities from
Figure 3.1, namely

ψ(1,2,3) = ψ(2,3,1) = ψ(3,1,2) = x1 − y1

ψ(1,3,2) = ψ(2,1,3) = ψ(3,2,1) = x1 + x2 − y1 − y2.

3.5 The z-deformation of our main result and
z-Schubert polynomials

In this section we present a z-deformation of our main result (see Theorem 3.5.9); it says
that for w ∈ St(n, k), the z-deformed steady state probability ψw(z) is equal to a “trivial
factor” TF(w) times a product of z-Schubert polynomials – certain polynomials in x,y,z
which reduce to double Schubert polynomials when z =∞.

We note that the z-Schubert polynomials Sn
λ(z;x;y) ∈ R[z;x;y]

(where z = {z1, . . . , zn}, x = {x1, . . . , xn−1}, y = {y1, . . . , yn−1}) are not defined for any permu-
tation but rather depend on a choice of positive integer n and a partition λ ∈ Val(n).

Given λ = (λ1, . . . , λk), the polynomial Sn
λ(z;x;y) has the property that: when z = ∞,

this polynomial reduces to the double Schubert polynomial of the permutation with Lehmer
code gn(λ), see Lemma 3.5.7;

Definition 3.5.1. Let x be an ordered set of variables x = (x1, x2, x3, . . . ). Then we let σ(x)
denote (x2, x3, . . . , ) and σm(x) denote (xm+1, xm+2, . . . ).

If I is a set of integers then the notation xÎ means xÎ = x∖ {xi ∣ i ∈ I}, keeping the order
inherited from x. We abuse notation and use xî to denote x{̂i}.
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Example 3.5.2. For f(z;x;y) = x2z1z2 + z1 + z2 + x1 + x2 + x3, we have

f(σ2(z);x;y) = x2z3z4 + z3 + z4 + x1 + x2 + x3

f(z;x1̂;y) = x3z1z2 + z1 + z2 + x2 + x3 + x4

f(z;x2̂;y) = x3z1z2 + z1 + z2 + x1 + x3 + x4

f(z;x{2̂,3};y) = x4z1z2 + z1 + z2 + x1 + x4 + x5.

We now define z-Schubert polynomials Sn
λ(z;x;y).

Definition 3.5.3. For a positive integer n and a partition λ ∈ Val(n), we define
Sn
λ(z;x;y) recursively as follows

∂n−λ1−mul(λ)⋯∂1(S
n−1
λ′ (σλ1−λ2+1z;x1̂;y)

n−mul(λ)

∏
l=1

(x1−yl)
(λ1−λ2+1)

∏
i=1

n−λ1−mul(λ)+1

∏
m=2

(zi−xm)). (3.5.1)

where λ′ is the partition obtained by deleting the first part of λ. If λ′ is an empty partition
then we set Sn−1

λ′ (z;x;y) = 1 by convention and regard λ2 = 0. Note that the divided
difference operators act on the x-variables.

Remark 3.5.4. It is easy to show that Sn
λ(z;x;y) depends on z-variables

z1,⋯, zλ1+length(λ) using an induction on n.

Remark 3.5.5. For positive integers r and s, Cantini introduced a polynomial that he
denoted Sr,s in [6]. In our notation this is the same as Sr+s−1

((r−1)s−1)(z;x;y).

Example 3.5.6. We have

S3
(1)(z;x;y) = ∂1((x1 − y1)(x1 − y2)(z1 − x2)(z2 − x2))

=
(x1 − y1)(x1 − y2)(z1 − x2)(z2 − x2) − (x2 − y1)(x2 − y2)(z1 − x1)(z2 − x1)

x1 − x2

= z1z2(x1 + x2 − y1 − y2) − (z1 + z2)(x1x2 + y1y2) + (x1x2(y1 + y2) − y1y2(x1 + x2)).

Observe that LCz(S3
(1)(z;x;y)) = x1+x2−y1−y2, the double Schubert polynomialS(1,3,2)(x,y).

It also appears as a renormalized steady state probability in Figure 3.1.

The next proposition shows that in general the leading coefficient LCz(Sn
λ(z;x;y)) is the

double Schubert polynomial of the permutation whose Lehmer code is gn(λ), where gn(λ)
is the vector from Figure 3.1.4.

Proposition 3.5.7. Fix n and choose a partition λ ∈ Val(n). Then the leading coefficient
LCz(Sn

λ(z;x;y)) of Sn
λ(z;x;y) is the double Schubert polynomial Sc−1(gn(λ)) of the permu-

tation c−1(gn(λ)) ∈ Sn whose Lehmer code is gn(λ).
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We will prove Lemma 3.5.7 in the next section.
In Theorem 3.5.9 below we give a z-deformation of our main result (Theorem 3.1.8); it

says that for w ∈ St(n, k), the z-deformed steady state probability ψw(z) is equal to a “trivial
factor” TF(w) times a product of z-Schubert polynomials.

Recall that we defined xyFact(w) in Definition 3.1.7. We also define

xzFact(w) =
n

∏
i=1

∏
j≠wi

min{wi,wi−1,wi−2,...,j}=j

(zi − xj) (3.5.2)

and
yzFact(w) =

n

∏
i=1

∏
j≠n+1−wi

max{wi,wi+1,wi+2,...,n+1−j}=n+1−j

(zi − yj). (3.5.3)

Finally we set
TF(w) = xyFact(w)xzFact(w)yzFact(w). (3.5.4)

We associate to a partition sequence (λ1, . . . , λk) a vector (a1, . . . , ak) as follows.

Definition 3.5.8. Let (λ1, . . . , λk) be a sequence of partitions. We denote the parts of λj
by λj1, λ

j
2, etc. We define s((λ1, . . . , λk);n) = (a1, . . . , ak) ∈ Zk by setting a1 = 0, and for each

2 ≤ i ≤ k,
ai = ai−1 + λ

i−1
1 + length(λi−1) − n.

If w ∈ St(n, k) such that Ψ(w) = (λ1, . . . , λk), then abusing notation, we also refer to
s((λ1, . . . , λk);n) as s(w).

See Table 3.3 for examples of s(w).

Theorem 3.5.9. Let w ∈ St(n, k), and write Ψ(w) = (λ1,⋯, λk) and s(w) = (a1,⋯, ak).
Then we have

ψw(z) = TF(w)
k

∏
i=1

Sn
λi(σ

ai(z);x;y) (3.5.5)

where subscripts for z variables are considered modular n.

Theorem 3.5.9 will be proved in Section 3.7.

3.6 Properties of z-Schubert polynomials

Double Schubert polynomials

We review an algorithmic formula for computing double Schubert polynomials in terms
of rc-graphs, based on [4].



CHAPTER 3. SCHUBERT POLYNOMIALS AND THE INHOMOGENEOUS TASEP
ON A RING 62

i

i −m

j j + 1

i

i −m

j j + 1

Figure 3.3: The figure shows the ladder move Li,j.

Definition 3.6.1. Given a finite subset D ⊊ {1,2,⋯} × {1,2,⋯} we define the weight of D
to be

wt(D)(x,y) = ∏
(i,j)∈D

(xi − yj).

The initial diagram of the permutation w is

Din(w) = {(i, j) ∣ 1 ≤ j ≤ c(w)i}.

Definition 3.6.2. For a finite subsetD ⊊ {1,2,⋯}×{1,2,⋯}, assume the following conditions
are satisfied for some i and j:

• (i, j) ∈D, (i, j + 1) ∉D,

• (i −m,j), (i −m,j + 1) ∉D for some 0 <m < i,

• (i − k, j), (i − k, j + 1) ∉D for each 1 ≤ k <m.

Then we define the ladder move Li,j to be Li,j(D) = D ∪ {(i − m,j + 1)} ∖ {(i, j)}. We
represent diagrams D as above as collections of +’s, see Figure 3.3. We also define L(D) to
be the set of all D′ that can be obtained by applying ladder moves to D.

Billey and Bergeron [4, Theorem 3.7] showed that L(Din(w)) gives the set of rc-graphs
for w. Combining this with the well-known formula of double Schubert polynomials gives
the following formula.

Theorem 3.6.3. [4, Theorem 3.7 and Lemma 3.2] Let w be a permutation.

(a) We have Sw(x,y) = ∑
D′∈L(Din(w))

wt(D′)(x,y).

(b) The map sending D′ to its transpose (D′)t is a bijection between L(Din(w)) and
L(Din(w−1)).
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Example 3.6.4. There are three diagrams in L(Din(1,4,2,3)), see Figure 3.4. So we have

S(1,4,2,3)(x,y) = (x2 − y1)(x2 − y2) + (x2 − y1)(x1 − y3) + (x1 − y2)(x1 − y3).

2

1

1 2 3

Din((1,4,2,3))

2

1

1 2 3

2

1

1 2 3

Figure 3.4: The figure above shows three diagrams in L(Din(1,4,2,3))

Note that rc-graphs are transparently in bijection with reduced pipe dreams (where each
+ becomes a crossing of two wires and each empty position becomes a pair of “elbows”).

We will need the following result about linear factors of certain double Schubert polyno-
mials. Note that in the case that each yi = 0, Proposition 3.6.5 follows from [4, Corollary
3.11].

Proposition 3.6.5. Let w ∈ Sn be a permutation, and let c(w) = (c1, . . . , cn) and c(w−1) =

(c̃1, . . . , c̃n) denote the codes of w and w−1. Suppose that l ≥ 0 has the property that c̃m = 0
for all m > l, and suppose that w′ is the permutation with code c(w′) = (l, c1, . . . , cn) (whose
existence follows from Lemma 3.2.5). Then

Sw′(x,y) =Sw(x1̂,y)
l

∏
k=1

(x1 − yk).

Remark 3.6.6. Note that the condition that c̃m = 0 for all m > l is equivalent to the
condition that w has an increasing subsequence of the form l + 1, l + 2, . . . , n.

Proof. We first claim that no D′ ∈ L(Din(w)) contains a + in a column greater than l, i.e.
there is no (i, j) ∈ D′ with j > l. If there were such a D′, then we’d have (j, i) ∈ (D′)t. But
Din(w−1) does not have an element whose x-coordinate is bigger than l and ladder moves
never increase the x-coordinates of the +’s involved. This proves the claim.

By the claim, Din(w) does not contain a + in a column greater than l, which implies the
same is true for Din(w′) and hence for L(Din(w′)).

Now we define a map f ∶ L(Din(w))→ L(Din(w′)) by

f(D′) = {(i + 1, j) ∣ (i, j) ∈D′} ∪ {(1,1), (1,2),⋯, (1, l)}.

This map is clearly injective, and is well defined since f(Din(w)) = Din(w′). We claim that
f is surjective. Assume not. Then we can find D1,D2 ∈ L(Din(w′) such that D2 = Li,j(D1),
and D1 is in the image of f but D2 is not.
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Clearly the only way that there would be a viable ladder move Lij on D1 which does not
have a counterpart for f−1(D1) is if Lij adds a + in row 1, necessarily in some column j > l
(since the first component of c(w′) is l). But we know that no diagram in L(Din(w′)) can
have a + in a column greater than l. Therefore, the map f is surjective and hence bijective.

We conclude that

Sw′(x,y) = ∑
D′′∈L(Din(w′))

wt(D′′)(x,y) = ∑
D′∈L(Din(w))

wt(f(D′))(x,y)

= ∑
D′∈L(Din(w))

l

∏
k=1

(x1 − yk) wt(D′)(x1̂,y)

=
l

∏
k=1

(x1 − yk) ∑
D′∈L(Din(w))

wt(D′)(x1̂,y) =
l

∏
k=1

(x1 − yk)Sw(x1̂,y).

The proof of Lemma 3.5.7.

The following lemma is easy to verify from the definitions.

Lemma 3.6.7. Let w ∈ Sn with code c(w) = (v1,⋯, vn). Then wi > wi+1 if and only if
vi > vi+1. In this case we have

∂iSw =Swsi , (3.6.1)
and c(wsi) = (v′1,⋯, v

′
n), where v′i = vi+1, v′i+1 = vi − 1, and v′j = vj for j ∉ {i, i + 1}.

If we iterate (3.6.1), we find that if v1 − i ≥ vi+1 for all 1 ≤ i ≤ r, then

∂r∂r−1 . . . ∂1Sc−1(v1,...,vn)(x,y) =Sc−1(v2,v3,...,vr+1,v1−r,vr+2,...,vn)(x,y). (3.6.2)

We are now ready to prove Lemma 3.5.7.

Proof of Lemma 3.5.7. We use induction on the number of parts of λ. If λ = (`) has one
part, then using the definition of z-Schubert polynomials together with (3.6.2), we obtain

LCz(S
n
(`)(z;x;y)) = ∂n−`−1⋯∂1(

n−1

∏
l=1

(x1 − yl)) = ∂n−`−1⋯∂2∂1(Sc−1(n−1,0,⋯,0)(x,y))

= ∂n−`−1⋯∂2(Sc−1(0,n−2,0,⋯,0)(x,y)) =Sc−1(0,⋯,0,`,0,⋯,0)(x,y)

=Sc−1(gn((`)))(x,y).

Now let λ = (λ1,⋯, λk) with k > 1 and assume the statement holds for partitions with at
most k − 1 parts. Setting λ′ = (λ2,⋯, λk) and using the induction hypothesis, we have

LCz(S
n
λ(z;x;y)) = ∂n−λ1−mul(λ)⋯∂1(LCz(S

n−1
λ′ (σλ1−λ2+1z;x1̂;y))

n−mul(λ))

∏
l=1

(x1 − yl))

= ∂n−λ1−mul(λ)⋯∂1(Sc−1(gn−1(λ′))(x1̂,y)
n−mul(λ)

∏
l=1

(x1 − yl)).
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Let gn−1(λ′) = (v1,⋯, vn−1) and let w = c−1(v1, . . . , vn−1) ∈ Sn−1. From Remark 3.1.5 we have
vi = λ′1 for n − 1 − λ′1 ≤ i ≤ n −mul(λ′) − λ′1. This plus Definition 3.1.4 implies that

wn−mul(λ′)−λ′1 = n −mul(λ′)

⋮

wn−2−λ′1 = n − 2

wn−1−λ′1 = n − 1.

It follows from Remark 3.6.6 that if we write c(w−1) = (c̃1, . . . , c̃n−1), then c̃m = 0 for all
m > n−mul(λ′)−1. Since n−mul(λ) ≥ n−mul(λ′)−1, we have c̃m = 0 for all m > n−mul(λ),
and Proposition 3.6.5 implies that

Sc−1(v1,...,vn−1)(x1̂,y)
n−mul(λ)

∏
l=1

(x1 − yl) =Sc−1(n−mul(λ),v1,⋯,vn−1)(x,y).

Therefore we have that

LCz(S
n
λ(z;x;y)) = ∂n−λ1−mul(λ)⋯∂1(Sc−1(n−mul(λ),v1,⋯,vn−1)(x,y)).

We will apply (3.6.2), but need to first check that n−mul(λ1) ≥ vi+i for 1 ≤ i ≤ n−λ1−mul(λ).
To see this, note that since (v1, . . . , vn−1) = gn−1(λ′), each vi ≤ λ1. But then vi + i ≤ λ1 + n −
λ1 −mul(λ) = n −mul(λ), as desired. Applying (3.6.2) now gives

LCz(S
n
λ(z;x;y)) =Sc−1(v1,⋯,vn−λ1−mul(λ),λ1,vn−λ1−mul(λ)+1,⋯,vn−1)(x,y) =Sc−1(gn(λ))(x,y).

3.7 Proof of Theorem 3.5.9
In this section, we prove Theorem 3.5.9, which in turn implies Theorem 3.1.8 and Theorem

3.1.9. Our strategy will be to prove Theorem 3.5.9 first in the case of w ∈ St(n,1), and then
use induction on k to prove it for w ∈ St(n, k).

We note that in this section, the divided difference operators act on the z-variables.
For brevity we will often denote the z-Schubert polynomial Sn

λ(σ
a(z);x;y) with shifted

z-variables by Sn
λ(σ

a(z)). As in the previous section, the subscripts for z-variables are
considered modulo n.

Definition 3.7.1. For a partition λ ∈ Val(n), we identify it with the lattice path L(λ;n)
cutting out the Young diagram that takes unit steps south and east from the upper right
corner (λ1, n − λ1) to the lower left corner (0,0) of the rectangle. Label the vertical steps
from the top to bottom with numbers 1 through n − λ1. Then label the horizontal steps
from the right to the left with numbers n − λ1 + 1 through n. We define w(λ;n) to be the
permutation of length n obtained by reading off the numbers through the lattice path.
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Figure 3.5: For λ = (6,6,4,4,2,2) ∈ Val(13), we can read off w(λ; 13) =

(1,2,8,9,3,4,10,11,5,6,12,13,7) from the lattice path L(λ; 13) cutting out the Young dia-
gram.

See Figure 3.5 for an example. Clearly w(λ;n) ∈ St(n,1). As we will see in Proposition
3.7.3 (1), Ψ(w(λ;n)) = (λ).

Our first goal is to analyze the trivial factor TF(w) for w = w(λ;n) (Corollary 3.7.5).
This will help us prove Theorem 3.5.9 in the case of w ∈ St(n,1). We start by refining the
quantities introduced in (3.1.2), (3.5.2), and (3.5.3).

Definition 3.7.2. Fix a positive integer n and choose w ∈ St(n). We define

xyFact(w; i) = ∏
i+1<k≤n
i→i+1→k

(x1 − yn+1−k)⋯(xi − yn+1−k) for 1 ≤ i ≤ n − 2

xzFact(w; i) = ∏
j≠wi

min{wi,wi−1,wi−2,...,j}=j

(zi − xj) for 1 ≤ i ≤ n

yzFact(w; i) = ∏
j≠n+1−wi

max{wi,wi+1,wi+2,...,n+1−j}=n+1−j

(zi − yj) for 1 ≤ i ≤ n.

Clearly we have that

xyFact(w) =
n−2

∏
i=1

xyFact(w; i),xzFact(w) =
n

∏
i=1

xzFact(w; i),yzFact(w) =
n

∏
i=1

yzFact(w; i).

Proposition 3.7.3. Let λ ∈ Val(n) and w = (w1, . . . ,wn) = w(λ;n). Recall that w ∈ St(n,1).
The following statements hold:

1. We have that Ψ(w(λ;n)) = (λ). Equivalently, c(w−1) = λn−λ11 − λ, where we regard the
vectors on the right-hand side as vectors of length n by adding trailing 0’s.
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2. Suppose that wi lies on a vertical step of L(λ;n). Let A be the set of numbers on the
horizontal steps below wi and B be the set of numbers on the vertical steps that are on
the same vertical line as wi and below wi. We have

xzFact(w; i) =
wi−1

∏
k=1

(zi − xk)

yzFact(w; i) = ∏
k∈A∪B

(zi − yn+1−k).

3. Suppose wi lies on a horizontal step of L(λ;n). Let C be the set of numbers on the
vertical steps above wi and D be the set of numbers on the horizontal steps that are on
the same horizontal line of wi and to the right of wi. We have

xzFact(w; i) = ∏
k∈C∪D

(zi − xk)

yzFact(w; i) =
n

∏
k=wi+1

(zi − yn+1−k).

Proof. (1) The numbers n − λ1 + 1 through n appear in increasing order in w so c(w−1)

vanishes after the (n − λ1)st component. For 1 ≤ k ≤ n − λ1, let wi be the letter on the kth
vertical step of L(λ;n). Then there are λ1−λk numbers bigger than wi in w1,⋯,wi−1 (where
we regard λk = 0 if k > length(λ). Thus the kth component of c(w−1) is λ1 − λk, and c(w−1)

has a unique descent in position n − λ1. The fact that Ψ(w(λ;n)) = λ now follows from the
definition of Ψ.

(2) The numbers 1 through wi appear in increasing order in w so we have xzFact(w; i) =
wi−1

∏
k=1

(zi − xk). To compute yzFact(w; i), we need to find all letters ` which are maximum

among {wi,wi+1, . . . , `} and for each one we pick up a factor of (zi − yn+1−`). Clearly these
letters are precisely the ones in A ∪B.

(3) The proof is similar to part (2).

Example 3.7.4. Let λ = (6,6,4,4,2,2) ∈ Val(13) as in Figure 3.5. We have

w = w(λ; 13) = (1,2,8,9,3,4,10,11,5,6,12,13,7)

c(w−1) = (0,0,2,2,4,4,6,0,0,0,0,0,0)

λn−λ11 − λ = (0,0,2,2,4,4,6).

For w5 = 3, we have

xzFact(w; 5) = (z5 − x1)(z5 − x2)

yzFact(w; 5) = (z5 − y10)(z5 − y1)(z5 − y2)(z5 − y3)(z5 − y4).

Proposition 3.7.5. Let λ ∈ Val(n) with mul(λ) = b. Write λ = ((λ1)
b, λ̃) for some λ̃. For

w = w(((λ1)
b, λ̃);n) and w′ = w(((λ1)

b−1, λ1 − 1, λ̃);n), the following statements are true.
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1. If b > 1, we have w′ = sbw and wb < wb+1.

2. If b = 1, we have cyc(w′,1) = s1w and w1 < w2.

3. If b > 1, we have

TF(sbw) =M1(xb − yλ1)
mul((λ1−1,λ̃))−1

∏
i=1

(zb+1 − yn+1−b−i)

TF(w) =M1(zb − yλ1)(zb+1 − xb)
b−1

∏
i=1

(zi − yn+1−b)
b+λ1−λ̃1
∏
i=b+2

(zi − xn+1−λ1).

for some rational expression M1 which is symmetric in variables zb and zb+1.

4. If b = 1 , we have

TF(s1w) =M2(x1 − yλ1)
n−λ1
∏
i=1

(z1 − xi)
mul((λ1−1,λ̃))−1

∏
i=1

(z2 − yn−i)

TF(w) =M2(z1 − yλ1)(z2 − x1)
1+λ1−λ̃1
∏
i=3

(zi − xn+1−λ1).

for some rational expression M2 which is symmetric in variables z1 and z2.

Proof. Part (1) and part (2) are straightforward from Definition 3.7.1.
(3) For 1 ≤ i ≤ b − 1, wb = b is on the same vertical line with wi in L(((λ1)

b, λ̃);n) but
w′
b+1 = b is not on the same vertical line with wi in L(((λ1)

b−1, λ1 − 1, λ̃);n). By Proposition
3.7.3 (2), whenever 1 ≤ i ≤ b − 1, we have

xzFact(w; i)yzFact(w; i) = xzFact(w′; i)yzFact(w′; i)(zi − yn+1−b). (3.7.1)

For b+2 ≤ i ≤ b+λ1−λ̃1, wb+1 = n+1−λ1 is on the same horizontal line with wi in L(((λ1)
b, λ̃);n)

but w′
b = n+ 1−λ1 is not on the same horizontal line with wi in L(((λ1)

b−1, λ1 − 1, λ̃);n). By
Proposition 3.7.3 (3), whenever 1 ≤ i ≤ b − 1, we have

xzFact(w; i)yzFact(w; i)(zi − xn+1−λ1) = xzFact(w′; i)yzFact(w′; i). (3.7.2)

Note that w′
b+1,w

′
b+2,⋯,w

′
b+mul(λ̃)+1

are on the same vertical line if and only if λ1 − 1 = λ̃1. By
Proposition 3.7.3 (2), we have

xzFact(w; b)yzFact(w; b) =
b−1

∏
k=1

(zb − xk)
λ1

∏
k=1

(zb − yk) (3.7.3)

xzFact(w′; b + 1)yzFact(w′; b + 1) (3.7.4)

=
b−1

∏
k=1

(zb+1 − xk)
λ1−1

∏
k=1

(zb+1 − yk)
mul((λ1−1,λ̃))−1

∏
k=1

(zb+1 − yn+1−b−k).
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And by Proposition 3.7.3 (3), we have

xzFact(w; b + 1)yzFact(w; b + 1) =
b

∏
k=1

(zb+1 − xk)
λ1−1

∏
k=1

(zb+1 − yk) (3.7.5)

xzFact(w′; b)yzFact(w′; b) (3.7.6)

=
b−1

∏
k=1

(zb − xk)
λ1−1

∏
k=1

(zb − yk).

For w, we have b−1→ b→ wb+1 = n+1−λ1 while for w′ we have b→ b+1→ w′
b = n+1−λ1.

So we conclude

xyFact(w)

xyFact(w′)
=

b−1

∏
k=1

(xk − yλ1)

b

∏
k=1

(xk − yλ1)

=
1

xb − yλ1
. (3.7.7)

Combining (3.7.1), (3.7.2), (3.7.3),(3.7.5) and (3.7.7) proves the argument.
(4) The proof is similar to part (3).

Proposition 3.7.6. Theorem 3.5.9 is true for w ∈ St(n,1).

Proof. We use induction on ∣λ∣ for Ψ(w) = (λ). The base case ∣λ∣ = 0 corresponds to the
identity permutation in St(n,0). Take any w ∈ St(n,1) such that Ψ(w) = (λ). Let b = mul(λ)
and write λ = ((λ1)

b, λ̃) for some λ̃. Denoting w′ = w(((λ1)
b−1, λ1 − 1, λ̃);n), by induction

hypothesis we have
ψw′(z) = TF(w′)Sn

((λ1)b−1,λ1−1,λ̃)(z).

We first prove the induction step when b > 1. By Corollary 3.7.5 (1) and Proposition
3.4.1, we have

ψw(z) = πb(wb+1,wb)ψw′(z) =
(zb − yλ1)(zb+1 − xb)

xb − yλ1
∂b (TF(w′)Sn

((λ1)b−1,λ1−1,λ̃)(z)) . (3.7.8)

By Corollary 3.7.5 (3) we can write

TF(w′) =M1(xb − yλ1)
mul((λ1−1,λ̃))−1

∏
i=1

(zb+1 − yn+1−b−i)

TF(w) =M1(zb − yλ1)(zb+1 − xb)
b−1

∏
i=1

(zi − yn+1−b)
b+λ1−λ̃1
∏
i=b+2

(zi − xn+1−λ1)

for some M1 that is symmetric in variables zb and zb+1. Plugging to (3.7.8) gives

ψw(z) =M1(zb − yλ1)(zb+1 − xb)∂b
⎛

⎝
Sn

((λ1)b−1,λ1−1,λ̃)(z)
mul((λ1−1,λ̃))−1

∏
i=1

(zb+1 − yn+1−b−i)
⎞

⎠
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By Proposition 3.8.5 we have

ψw(z) =M1(zb − yλ1)(zb+1 − xb)
⎛

⎝
Sn

((λ1)b,λ̃)
(z)

b−1

∏
i=1

(zi − yn+1−b)
b+λ1−λ̃1
∏
i=b+2

(zi − xn+1−λ1)
⎞

⎠

= TF(w)Sn
λ(z).

Now consider the case b = 1. By Corollary 3.7.5 (2) and Proposition 3.4.1, we have

ψw(z) = π1(w2,w1)ψcyc(w′,1)(z) =
(z1 − yλ1)(z2 − x1)

x1 − yλ1
∂1 (TF(cyc(w′,1))Sn

(λ1−1,λ̃)(σ(z))) .

(3.7.9)
By Corollary 3.7.5 (4) we can write

TF(cyc(w′,1)) =M2(x1 − yλ1)
n−λ1
∏
i=1

(z1 − xi)
mul((λ1−1,λ̃))−1

∏
i=1

(z2 − yn−i)

TF(w) =M2(z1 − yλ1)(z2 − x1)
1+λ1−λ̃1
∏
i=3

(zi − xn+1−λ1).

for some M2 that is symmetric in variables z1 and z2. Plugging to (3.7.9) gives

ψw(z) =M2(z1 − yλ1)(z2 − x1)∂1

⎛

⎝
Sn

(λ1−1,λ̃)(σ(z))
n−λ1
∏
i=1

(z1 − xi)
mul((λ1−1,λ̃))−1

∏
i=1

(z2 − yn−i)
⎞

⎠

By Proposition 3.8.4 we have

ψw(z) =M2(z1 − yλ1)(z2 − x1)
⎛

⎝
Sn

(λ1,λ̃)
(z)

1+λ1−λ̃1
∏
i=3

(zi − xn+1−λ1)
⎞

⎠

= TF(w)Sn
λ(z).

Definition 3.7.7. If π ∈ Sm and σ ∈ Sp, the direct sum π ⊕ σ ∈ Sm+p is the permutation

defined by (π ⊕ σ)(i) =

⎧⎪⎪
⎨
⎪⎪⎩

π(i) if 1 ≤ i ≤m

σ(i −m) +m if m + 1 ≤ i ≤m + n.

For example, (3,2,1)⊕ (3,1,2,5,4) = (3,2,1,6,4,5,8,7).

The following lemma is easy to verify.

Lemma 3.7.8. Given λ ∈ Val(n), let

u = (u1, . . . , un) ∶= cyc(w(λ;n), length(λ) + λ1 − n).

Let w̄(λ;n) ∶= (u1, . . . , un−λlast). Then w̄(λ;n) ∈ Sn−λlast and u = w̄(λ;n)⊕ idλlast , where idm is
the identity permutation on m letters.
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Example 3.7.9. Let n = 5 and λ = (2,2) ∈ Val(5), so that λlast = 2. Then w(λ; 5) =

(1,2,4,5,3) and length(λ)+λ1 −n = −1. We have u = cyc((1,2,4,5,3),−1) = (3,1,2,4,5), so
w̄(λ; 5) = (3,1,2). We have u = (3,1,2)⊕ id2.

Proposition 3.7.10. Let w ∈ St(n, k) for k ≥ 2 with Ψ(w) = (λ1, λ2,⋯, λk) and s(w) =

(a1, . . . , ak). Then we can write cyc(w,a2) = w̄(λ1;n) ⊕ w′ for some w′. If we let w↓ ∶=
idn−λ1

last
⊕w′, then w↓ ∈ St(n, k − 1) and Ψ(w↓) = (λ2,⋯, λk).

Example 3.7.11. Let w = (1,2,5,4,3) ∈ St(5,2). Then Ψ(w) = ((2,2), (1,1,1)) and s(w) =

(a1, a2) = (0,−1). From the previous example, w̄(λ; 5) = (3,1,2). We have cyc(w,a2) =

(3,1,2,5,4) = (3,1,2) ⊕ w′ where w′ = (2,1). And we have w↓ = idn−λ1
last

⊕w′ = (1,2,3) ⊕

(2,1) = (1,2,3,5,4) ∈ St(5,1) with Ψ(w↓) = (λ2) = ((1,1,1)).

Proof. Note that a2 = length(λ1)+λ1
1−n. We have c(w−1) = ((λ1

1)
n−λ11 −λ1)+((λ2

1)
n−λ21 −λ2)+

⋯ + ((λk1)
n−λk1 − λk) and by the definition of ParSeq(n, k) we know that the first (n − λ1

last)

parts of ((λi1)
n−λi1 − λi) are zero for 2 ≤ i ≤ k. So the first (n − λ1

last) parts of c(w−1) equals
((λ1

1)
n−λ11 − λ1) which is same as c((w(λ1;n))−1) by Proposition 3.7.3 (1). So the positions

of the numbers 1 through (n − λ1
last) are same in w and w(λ1;n). Since taking the first

(n − λ1
last) parts of cyc(w(λ1;n), length(λ1) + λ1

1 − n) gives w̄(λ;n), we conclude taking the
first (n − λ1

last) parts of cyc(w, length(λ1) + λ1
1 − n) also gives w̄(λ;n).

Note that i-th component of c(w−1) counts number of wj > i for 1 ≤ j ≤ w−1(i). Thus
c(w−1) and c((cyc(w, length(λ1)+λ1

1−n))
−1) coincide after (n−λ1

last)-th component as taking
the numbers smaller than (n − λ1

last) to the front does not affect the code of its inverse after
(n − λ1

last)-th component. Thus c((idn−λ1
last

⊕w′)−1) coincides with c(w−1) after (n − λ1
last)-th

component and the first (n−λ1
last) parts are zero as the permutation starts with idn−λ1

last
. We

conclude c((idn−λ1
last

⊕w′)−1) = ((λ2
1)
n−λ21 − λ2) +⋯ + ((λk1)

n−λk1 − λk) and we are done.

Lemma 3.7.12. Let u and u′ be permutations in Sn and w and w′ be permutations in Sm.
We have

TF(u′ ⊕w)

TF(u⊕w)
=

TF(u′ ⊕w′)

TF(u⊕w′)
.

Proof. It is enough to show the following three equations

xyFact(u′ ⊕w)

xyFact(u⊕w)
=

xyFact(u′ ⊕w′)

xyFact(u⊕w′)
(3.7.10)

xzFact(u′ ⊕w)

xzFact(u⊕w)
=

xzFact(u′ ⊕w′)

xzFact(u⊕w′)
(3.7.11)

yzFact(u′ ⊕w)

yzFact(u⊕w)
=

yzFact(u′ ⊕w′)

yzFact(u⊕w′)
. (3.7.12)

For 1 ≤ i ≤ n − 1 we have xyFact(u ⊕ w; i) = xyFact(u ⊕ w′; i) and xyFact(u′ ⊕ w; i) =

xyFact(u′ ⊕w′; i). For n + 1 ≤ i ≤ n +m − 1 we have xyFact(u⊕w; i) = xyFact(u′ ⊕w; i) and
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xyFact(u⊕w′; i) = xyFact(u′⊕w′; i). And for i = n we have xyFact(u⊕w; i) = xyFact(u′⊕w; i)
and xyFact(u⊕w′; i) = xyFact(u′ ⊕w′; i). So the first equation (3.7.10) follows.

For 1 ≤ i ≤ n we have xzFact(u⊕w; i) = xzFact(u⊕w′; i) and xzFact(u′⊕w; i) = xzFact(u′⊕
w′; i). Now consider the case n + 1 ≤ i ≤ n +m. For 1 ≤ j ≤ n, xzFact(u ⊕w; i) has a factor
(zi−xj) for xzFact(u⊕w′; i) has a factor (zi−xj). And the same is true for xzFact(u′⊕w; i)
and xzFact(u′ ⊕ w′; i). For n + 1 ≤ j ≤ n + m xzFact(u ⊕ w; i) has a factor (zi − xj) for
xzFact(u′ ⊕ w; i) has a factor (zi − xj). And the same is true for xzFact(u ⊕ w′; i) and
xzFact(u′ ⊕w′; i). So the second equation (3.7.11) follows.

The proof for (3.7.12) is similar to the proof for (3.7.11).

Proposition 3.7.13. [6, Theorem 20] Let u ∈ Sn and w ∈ Sm. Then we can write

ψu⊕w(z) = ψ
1
u(z)ψ

2
w(z)

where ψ1
u(z) (respectively ψ2

w(z)) depends only on u (respectively w).3

Corollary 3.7.14. Let u and u′ be permutations in Sn and w and w′ be permutations in
Sm. We have

ψu′⊕w(z)

ψu⊕w(z)
=
ψu′⊕w′(z)

ψu⊕w′(z)
.

Proof of Theorem 3.5.9. We prove Theorem 3.5.9 for w ∈ St(n, k) using induction on
k. Theorem 3.5.9 holds for k = 1 by Proposition 3.7.6. Suppose the theorem holds for all
elements in St(n, k − 1).

We now consider w ∈ St(n, k). Let Ψ(w) = (λ1, λ2,⋯, λk) and s(w) = (a1, a2,⋯, ak). By
Proposition 3.7.10, we have cyc(w,a2) = w̄(λ1;n) ⊕ w′ for some w′. Moreover, if we set
w↓ ∶= idn−λ1

last
⊕w′, we have that w↓ ∈ St(n, k − 1) and Ψ(w↓) = (λ2,⋯, λk). Using Definition

3.5.8 it is easy to see that s(w↓) = (0, a3 − a2,⋯, ak − a2). By the induction hypothesis we
have

ψid
n−λ1

last
⊕w′(z) = TF(idn−λ1

last
⊕w′)

k

∏
i=2

Sn
λi(σ

ai−a2(z)). (3.7.13)

By Lemma 3.7.8, and using the fact that a2 = length(λ1) + λ1
1 − n, we have that w̄(λ1;n) ⊕

idλ1
last

= cyc(w(λ1;n), a2), where w(λ1;n) ∈ St(n,1). Therefore the induction hypothesis and
(3.4.1) implies that

ψw̄(λ1;n)⊕id
λ1
last

(z) = TF(w̄(λ1;n)⊕ idλ1
last

) Sn
λ1(σ

a1−a2(z)). (3.7.14)

By Corollary 3.7.14 we have

ψw̄(λ1;n)⊕w′(z) =
ψw̄(λ1;n)⊕id

λ1
last

(z) ψid
λ1
n−last

⊕w′(z)

ψid
n−λ1

last
⊕ id

λ1
last

(z)

3The result stated in [6, Theorem 20] concerns the skew sum of the permutations u and w, not the direct
sum; however, the direct sum of u and w is a cyclic rotation of the skew sum of w and u, so the result we’ve
stated follows.
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Plugging in (3.7.13) and (3.7.14) together with Lemma 3.7.12 gives

ψw̄(λ1;n)⊕w′(z) =
ψw̄(λ1;n)⊕id

λ1
last

(z) ψid
λ1
n−last

⊕w′(z)

ψid
n−λ1

last
⊕ id

λ1
last

(z)

=
TF(w̄(λ1;n)⊕ idλ1

last
)TF(idλ1

n−last
⊕w′)

TF(idn−λ1
last

⊕ idλ1
last

)

k

∏
i=1

Sn
λi(σ

ai−a2(z))

= TF(w̄(λ1;n)⊕w′)
k

∏
i=1

Sn
λi(σ

ai−a2(z)).

Now using (3.4.1) and cyclically shifting z-variables completes the proof.

3.8 Appendix: technical results for the proof of
Theorem 3.5.9

In this section, we collect some technical results (Proposition 3.8.4 and Proposition 3.8.5)
which are needed for the proof of Theorem 3.5.9.

Lemma 3.8.1. [6, Lemma 22] Let K(x1;x2,⋯, xm+1) be a rational expression in
x1, . . . , xm+1 which is symmetric in the variables x2,⋯, xm+1. We have

∂m⋯∂1K =
m+1

∑
i=1

K(xi;x1,⋯, x̂i,⋯, xm+1)

m+1

∏
j=1
j≠i

(xi − xj)

.

Now we rewrite (3.5.1).

Lemma 3.8.2. For λ ∈ Val(n), let mul(λ) ≥ k for some k. Denote λ̃ to be the partition
obtained by deleting the first k parts of λ. Then we have the equation

Sn
λ(z;x;y) = (3.8.1)

∑
I⊆[n−λ1−mul(λ)+k]

∣I ∣=k

Sn−k
λ̃

(σλ1−λk+1+k(z);xÎ ;y) ∏
1≤l≤n−mul(λ)

i∈I

(xi − yl) ∏
1≤i≤λ1−λk+1+k

j∈[n−λ1−mul(λ)+k]−I

(zi − xj)

∏
i∈I

j∈[n−λ1−mul(λ)+k]−I

(xi − xj)
.

Proof. Note that (3.8.1) implies that Sn
λ(z;x;y) is symmetric in variables

x1,⋯, xn−λ1−mul(λ)+k. Since we can take k = mul(λ), (3.8.1) implies that Sn
λ(z;x;y) is sym-

metric in variables x1,⋯, xn−λ1 . Now we proceed with the induction on n. Assume the
equations hold for (n − 1).
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Let λ′ to be the partition obtained by deleting the first part of λ. By induction hypothesis,
Sn−1
λ′ (z;x;y) is symmetric in variables x1,⋯, x(n−1)−λ′1 . Note that we have (n − 1 − λ′1) ≥

n − λ1 −mul(λ). Thus we rewrite (3.5.1) using Lemma 3.8.1 as follow

Sn
λ(z;x;y) (3.8.2)

=

n−λ1−mul(λ)+1

∑
i=1

Sn−1
λ′ (σλ1−λ2+1(z);xî;y) ∏

1≤l≤n−mul(λ)
(xi − yl)

λ1−λ2+1

∏
l=1

n−λ1−mul(λ)+1

∏
j=1
j≠i

(zl − xj)

n−λ1−mul(λ)+1

∏
j=1
j≠i

(xi − xj)

,

which implies k = 1 case of (3.8.1).
Assume k > 1. In this case, we have mul(λ) > 1, which implies mul(λ′) = mul(λ) − 1 and

λ′1 = λ2 = λ1. Applying (3.8.1) to Sn−1
λ′ (z;x;y) and (k − 1) gives

Sn−1
λ′ (z;x;y) = ∑

I⊆[n−1−λ1−mul(λ)+k]
∣I ∣=k−1

(3.8.3)

Sn−k
λ̃

(σλ1−λk+1+k−1(z);xÎ ;y) ∏
1≤l≤n−mul(λ)

i∈I

(xi − yl) ∏
1≤i≤λ1−λk+1+k−1

j∈[n−1−λ1−mul(λ)+k]−I

(zi − xj)

∏
i∈I

j∈[n−1−λ1−mul(λ)+k]−I

(xi − xj)
.

and (3.8.2) becomes

Sn
λ(z;x;y) =

n−λ1−mul(λ)+1

∑
j=1

Sn−1
λ′ (σ(z);xĵ;y)

n−mul(λ)
∏
l=1

(xj − yl)
n−λ1−mul(λ)+1

∏
m=1
m≠j

(z1 − xm)

n−λ1−mul(λ)+1

∏
m=1
m≠j

(xj − xm)

. (3.8.4)

Plugging in (3.8.3) to (3.8.4) gives

Sn
λ(z;x;y) (3.8.5)

= ∑
I⊆[n−1−λ1−mul(λ)+k]

∣I ∣=k−1

n−λ1−mul(λ)+1

∑
j=1

fI(σ
λ1−λk+1+k(z);xĵ;y)MI(z;xĵ;y)

n−mul(λ)

∏
l=1

(xj − yl) (3.8.6)
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where

fI(z;x;y) =Sn−k
λ̃

(z;xÎ ;y)

MI(z;x;y) =

∏
1≤l≤n−mul(λ)

i∈I

(xi − yl) ∏
2≤i≤λ1−λk+1+k

m∈[n−1−λ1−mul(λ)+k]−I

(zi − xm)
n−λ1−mul(λ)

∏
m=1

(z1 − xm)

∏
i∈I

m∈[n−1−λ1−mul(λ)+k]−I

(xi − xm)
n−λ1−mul(λ)

∏
m=1

(xj − xm)

.

For a fixed I0 = {i1 < ⋯ < ik} ⊆ [n − λ1 −mul(λ) + k], to have

fI(σ
λ1−λk+1+k(z);xĵ;y) =Sn−k

λ̃
(σλ1−λk+1+k(z);xÎ0 ;y)

we need to take I = Ih = {i1 < ⋯ < ih−1 < ih+1 − 1 < ⋯ < ik − 1} and j = ih ≤ n− λ1 −mul(λ)+ 1.
For such I = Ih and j = ih we have

MIh(z;xîh ;y) =

∏
1≤l≤n−mul(λ)

i∈I0

(xi − yl) ∏
2≤i≤λ1−λk+1+k

m∈[n−λ1−mul(λ)+k]−I0

(zi − xm)
n−λ1−mul(λ)+1

∏
m=1
m≠ih

(z1 − xm)

∏
i∈I0,i≠ih

m∈[n−λ1−mul(λ)+k]−I0

(xi − xm)
n−λ1−mul(λ)+1

∏
m=1
m≠ih

(xih − xm)

,

so taking the coefficient of Sn−k
λ̃

(σλ1−λk+1+k(z);xÎ0 ;y) in (3.8.5) gives

∑
h≥1

ih≤n−λ1−mul(λ)+1

MIh(z;xîh ;y).

We claim

∏
1≤l≤n−mul(λ)

i∈I0

(xi − yl) ∏
1≤i≤λ1−λk+1+k

m∈[n−λ1−mul(λ)+k]−I0

(zi − xm)

∏
i∈I0

m∈[n−λ1−mul(λ)+k]−I0

(xi − xm)
= ∑

h≥1
ih≤n−λ1−mul(λ)+1

MIh(z;xîh ;y). (3.8.7)

We view both sides as polynomials in z1 in a degree at most (n − λ1 − mul(λ)). So it is
enough to show that they coincide when we plug in z1 = x1,⋯, xn−λ1−mul(λ)+1. If we plug in
z = xm for m ∉ I0 then both sides are zero. If we plug in z1 = xit for some it ∈ I0 then only
MIt,it does not vanish and we have

MIt(z;xît ;y)∣z1=xit =

∏
1≤l≤n−mul(λ)

i∈I0

(xi − yl) ∏
2≤i≤λ1−λk+1+k

m∈[n−λ1−mul(λ)+k]−I0

(zi − xm)

∏
i∈I0,i≠it

m∈[n−λ1−mul(λ)+k]−I0

(xi − xm)
.
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This is the same as the left hand side of (3.8.7) evaluated at z1 = xit .
In conclusion (3.8.4) becomes

Sn
λ(z;x;y) =

∑
I0⊆[n−λ1−mul(λ)+k]

∣I0∣=k

Sn−k
λ̃

(σλ1−λk+1+k(z);xÎ0 ;y) ∏
1≤l≤n−mul(λ)

i∈I0

(xi − yl) ∏
1≤i≤λ1−λk+1+k

m∈[n−λ1−mul(λ)+k]−I0

(zi − xm)

∏
i∈I0

m∈[n−λ1−mul(λ)+k]−I0

(xi − xm)
,

which completes the proof.

Proposition 3.8.3. For λ ∈ Val(n), the z-Schubert polynomial Sn
λ(z;x;y) satisfies the

following property. When we set z1 = xa for 1 ≤ a ≤ n − λ1 we have

Sn
λ(z;x;y))∣z1=xa = (3.8.8)

Sn−1
λ′ (σλ1−λ2+1(z);xâ;y))

n−mul(λ)

∏
l=1

(xa − yl)
(λ1−λ2+1)

∏
i=2

n−λ1−mul(λ)+1

∏
m=1
m≠a

(zi − xm),

where λ′ is the partition obtained by deleting the first part of λ. If length(λ) = 1 then we
regard λ2 = 0.

Proof. Taking k = mul(λ) in (3.8.1), we deduce that Sn
λ(z;x;y) is symmetric in variables

x1,⋯, xn−λ1 . So it is enough to show (3.8.8) for a = 1. And the case a = 1 is covered by
(3.8.2).

In Proposition 3.8.4 and Proposition 3.8.5 the divided difference operator ∂i acts on
z-variables.

Proposition 3.8.4. For λ ∈ Val(n) such that λ1 > λ2 we denote λ = (λ1, λ′) for some λ′.
We have

Sn
(λ1,λ′)(z;x;y)

λ1−λ2+1

∏
i=3

(zi − xn+1−λ1) (3.8.9)

= ∂1(S
n
(λ1−1,λ′)(σ(z);x;y)

n−λ1
∏
i=1

(z1 − xi)
mul((λ1−1,λ′))−1

∏
i=1

(z2 − yn−i)).

Proof. We will view each side of the equation as a polynomial in z1 and analyze its degree
to use interpolation. Note that Sn

(λ1−1,λ′)(σ(z);x;y) does not depend on z1 so exchanging
variables z1 and z2 is same as plugging in z1 in the place of z2. So the right hand side of
(3.8.9) becomes
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RHS =[Sn
(λ1−1,λ′)(σ(z);x;y)

n−λ1
∏
i=1

(z1 − xi)
mul((λ1−1,λ′))−1

∏
i=1

(z2 − yn−i)

−Sn
(λ1−1,λ′)(σ(z);x;y)∣z2=z1

n−λ1
∏
i=1

(z2 − xi)
mul((λ1−1,λ′))−1

∏
i=1

(z1 − yn−i)]/(z1 − z2).

By (3.5.1), Sn
(λ1−1,λ)(z;x;y) is of degree at most (n − (λ1 − 1) − mul((λ − 1, λ′))) in z1.

So the numerator of RHS is of degree at most (n − λ1) in z1, which implies RHS is of
degree at most (n − λ1 − 1) in z1. And the left-hand side of (3.8.9) is of degree at most
(n − λ1 −mul(λ)) = (n − λ1 − 1) in z1 by (3.5.1). So it is enough to show that they are the
same when we plug in z1 = xh for any 1 ≤ h ≤ n − λ1. For the right-hand side we have

RHS∣z1=xh =

−Sn
(λ1−1,λ′)(σ(z);x;y)∣z2=xh

n−λ1
∏
i=1

(z2 − xi)
mul((λ1−1,λ′))−1

∏
i=1

(xh − yn−i)

xh − z2

=Sn
(λ1−1,λ′)(σ(z);x;y)∣z2=xh

n−λ1
∏
i=1
i≠h

(z2 − xi)
mul((λ1−1,λ′))−1

∏
i=1

(xh − yn−i).

And by Proposition 3.8.3 we have

Sn
(λ1−1,λ′)(z;x;y))∣z1=xh

=Sn−1
λ′ (σλ1−λ2(z);xĥ;y))

n−mul((λ1−1,λ′))

∏
l=1

(xh − yl)
(λ1−λ2)

∏
i=2

n−λ1−mul((λ1−1,λ′))+2

∏
m=1
m≠h

(zi − xm)

=Sn−1
λ′ (σλ1−λ2(z);xĥ;y))

n−mul((λ1−1,λ′))

∏
l=1

(xh − yl)
(λ1−λ2)

∏
i=2

n−λ1+1

∏
m=1
m≠h

(zi − xm),

where the last equality uses the fact that when mul((λ1 − 1, λ′)) > 1 we have λ1 − λ2 = 1 so
the product over i = 2 to λ1 − λ2 is vacuous. Shifting variables by z→ σ(z) we deduce

Sn
(λ1−1,λ)(σ(z);x;y)∣z2=xh

=Sn−1
λ′ (σλ1−λ2+1(z);xĥ;y)

n−mul((λ1−1,λ′))

∏
l=1

(xh − yl)
(λ1−λ2+1)

∏
i=3

n−λ1−1

∏
m=1
m≠h

(zi − xm).
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Plugging it to RHS∣z1=xh gives

RHS∣z1=xh =Sn−1
λ′ (σλ1−λ2+1(z);xĥ;y)

n−1

∏
i=1

(xh − yi)
n−λ1
∏
i=1
i≠h

(z2 − xi)
(λ1−λ2+1)

∏
i=3

n−λ1+1

∏
m=1
m≠h

(zi − xm)

=Sn−1
λ′ (σλ1−λ2+1(z);xĥ;y)

n−1

∏
i=1

(xh − yi)
(λ1−λ2+1)

∏
i=2

n−λ1
∏
m=1
m≠h

(zi − xm)
λ1−λ2+1

∏
i=3

(zi − xn+1−λ1)

=Sn
(λ1,λ′)(z;x;y)∣z1=xh

λ1−λ2+1

∏
i=3

(zi − xn+1−λ1) = LHS∣z1=xh .

Proposition 3.8.5. For λ ∈ Val(n) with mul(λ) = b > 1. Write λ = ((λ1)
b, λ̃) for some λ̃.

We have

Sn
((λ1)b,λ̃)

(z;x;y)
b−1

∏
i=1

(zi − yn+1−b)
b+λ1−λ̃1
∏
i=b+2

(zi − xn+1−λ1) (3.8.10)

= ∂b
⎛

⎝
Sn

((λ1)b−1,λ1−1,λ̃)(z;x;y)
mul((λ1−1,λ̃))−1

∏
i=1

(zb+1 − yn+1−b−i)
⎞

⎠

Proof. We view both sides as polynomials in z1 and analyze their degrees to use interpolation.
By (3.5.1), Sn

((λ1)b,λ̃)
(z;x;y) is of degree at most (n − λ1 − b) in z1 so the right hand side is

of degree at most (n−λ1 − b+ 1) in z1. Likewise, Sn
((λ1)b−1,λ1−1,λ̃)

(z;x;y) is of degree at most
(n − λ1 − b + 1) in z1 so the right hand side is of degree at most (n − λ1 − b + 1) in z1. Since
b > 1, it is enough to show that they coincide when we plug in z1 = xa for 1 ≤ a ≤ n − λ1.

We proceed with the induction on b. First assume b = 2. Plugging in z1 = xa to both
sides, Proposition 3.8.3 gives

LHS∣z1=xa =Sn−1
(λ1,λ̃)

(z;xâ;y)
n−1

∏
l=1

(xa − yl)
2+λ1−λ̃1
∏
i=4

(zi − xn+1−λ1)

RHS∣z1=xa = ∂2

⎛
⎜
⎝
Sn−1

(λ1−1,λ̃)(σ(z);xâ;y)
n−1

∏
l=1

(xa − yl)
n−λ1
∏
m=1
m≠a

(z2 − xm)

mul((λ1−1,λ̃))−1

∏
i=1

(z3 − yn−1−i)
⎞
⎟
⎠
.

So the equality LHS∣z1=xa = RHS∣z1=xa comes from Proposition 3.8.4 with variables shifted
by x→ xâ and z→ σ(z).
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For b > 2, assume we have the equation for (b − 1). Plugging in z1 = xa to both sides,
Proposition 3.8.3 gives

LHS∣z1=xa =Sn−1
((λ1)b−1,λ̃)

(z;xâ;y)
n−b+1

∏
l=1

(xa − yl)
b−1

∏
i=2

(zi − yn+1−b)
b+λ1−λ̃1
∏
i=b+2

(zi − xn+1−λ1)

RHS∣z1=xa = ∂b
⎛

⎝
Sn−1

((λ1)b−2,λ1−1,λ̃)(z;xâ;y)
n−b+1

∏
l=1

(xa − yl)
mul((λ1−1,λ̃))−1

∏
i=1

(zb+1 − yn+1−b−i)
⎞

⎠
.

The equality LHS∣z1=xa = RHS∣z1=xa comes from induction hypothesis with variables shifted
by x→ xâ and z→ σ(z).
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Chapter 4

A combinatorial formula for the Ehrhart
h∗-vector of the hypersimplex

The results of this chapter are based on [23].

4.1 Introduction
For two integers 0 < k < n, the (k,n)-th hypersimplex is defined to be

∆k,n = {(x1,⋯, xn) ∈ Rn ∣ 0 ≤ xi ≤ 1, x1 +⋯ + xn = k}.

It is an (n − 1)-dimensional polytope inside Rn whose vertices are (0,1)-vectors with
exactly k 1’s. In particular it is an integral polytope. The hypersimplex can be found in
several algebraic and geometric contexts, for example, as a moment polytope for the torus
action on the Grassmannian, or as a weight polytope for the fundamental representation of
GLn.

For an n-dimensional integral polytope P ⊂ RN , it is well known from Ehrhart theory
that the map r → ∣rP ∩ZN ∣ is a polynomial function in r of degree n, which we call Ehrhart
polynomial, and corresponding Ehrhart series ∑∞

r=0 ∣rP ∩ ZN ∣tr is a rational function of the
form

∞
∑
r=0

∣rP ∩ZN ∣tr =
h∗(t)

(1 − t)n+1
,

such that h∗(t) is a polynomial of degree ≤ n (see [34]). Define h∗d to be the coefficient of
td in h∗(t). The vector (h∗0,⋯, h

∗
n) is called the Ehrhart h∗-vector of P and h∗(t) is called

the h∗-polynomial of P . A standard result from Ehrhart theory is that
n

∑
i=0
h∗i equals the

normalized volume of P .
For a permutation w ∈ Sn, we say i ∈ [n−1] is a descent of w if w(i) > w(i+1) and define

des(w) to be the number of descents of w. The Eulerian number Ak,n−1 is the number of
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w ∈ Sn−1 with des(w) = k − 1. A well-known fact about the hypersimplex ∆k,n is that its
normalized volume is Ak,n−1 (see [35]). So we have

n−1

∑
d=0

h∗d(∆k,n) = Ak,n−1.

In general, the entries of the h∗-vector of an integral polyotope are nonnegative integers
(see [33]). It has been an open problem for some time to give a combinatorial interpretation
of h∗d(∆k,n). In [29], N. Li gave a combinatorial interpretation of h∗d(∆

′

k,n), where ∆
′

k,n

is the hypersimplex with the lowest facet removed, using permutations w ∈ Sn−1 and their
descents, excedances, and covers. In [17], N. Early conjectured a combinatorial interpretation
for h∗d(∆k,n) using hypersimplicial decorated ordered set partitions of type (k,n).

In [22], Katzman computed the Hilbert series of algebras of Veronese type, which gives
a formula for the Ehrhart series of the hypersimplex ∆k,n as a special case. The formula is

∑
i≥0

(−1)i(ni)((∑
j≥0

(
i
j
)(t − 1)j(∑

l≥0
(
n−j
l(k−i))k−i

tl))

(1 − t)n
(4.1.1)

where the notation (
n
b
)
a
means the coefficient of tb in (1 + t + ⋯ + ta−1)n. For example,

when a = 2, it becomes an ordinary binomial coefficient. The numerator of (1.1.1) is the
h∗-polynomial of the hypersimplex ∆k,n, thus giving an explicit formula for its h∗-vector.
However, it doesn’t give a combinatorial or manifestly positive formula for the h∗-vector.

In this paper, we prove N. Early’s conjecture by relating it to ((4.1.1)). We now explain
the conjecture. A decorated ordered set partition ((L1)l1 ,⋯, (Lm)lm) of type (k,n) consists
of an ordered partition (L1,⋯, Lm) of {1,2, ..., n} and an m-tuple (l1,⋯, lm) ∈ Zm such that
l1 + ⋯ + lm = k and li ≥ 1. We call each Li a block and we place them on a circle in a
clockwise fashion then think of li as the clockwise distance between adjacent blocks Li and
Li+1 (indices are considered modulo m). So the circumference of the circle is l1 +⋯+ lm = k.
We regard decorated ordered set partitions up to cyclic rotation of blocks (together with
corresponding li). For example, decorated ordered set partition ({1,2,7}2,{3,5}3,{4,6}1) is
same as ({3,5}3,{4,6}1,{1,2,7}2). A decorated ordered set partition is called hypersimplicial
if it satisfies 1 ≤ li ≤ ∣Li∣ − 1 for all i. For the motivation and more background on decorated
ordered set partitions, see [16].

Example 4.1.1. Consider a decorated ordered set partition ({1,2,7}2,{3,5}3,{4,6}1) of
type (6,7) (see Figure 4.1). This is not hypersimplicial as 3 > ∣{3,5}∣ − 1.

By inserting empty spots, we can encode the distance information. For example, the
(clockwise) distance between {1,2,7} and {3,5} is 2 so we insert one empty spot on the
circle between those blocks. The distance between {3,5} and {4,6} is 3 so we insert two
empty spots. We obtain the figure on the right as a result. Including empty spots, there will
be k = 6 spots total.
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{1,2,7}

{3,5}

{4,6}

{1,2,7}

{3,5}

{4,6}2

3

1

Figure 4.1: The figure on the left is the picture associated to the decorated ordered set
partition ({1,2,7}2,{3,5}3,{4,6}1). The figure on the right is the picture obtained after
inserting empty spots.

Given a decorated ordered set partition, we define the winding vector and the winding
number. To define the winding vector, let wi be the distance of the path starting from the
block containing i to the block containing (i + 1) moving clockwise (where i and (i + 1) are
considered modulo n). If i and (i + 1) are in the same block then wi = 0. In Figure 4.1, the
winding vector is w = (0,2,3,3,3,1,0).

The total length of the path is (w1 + ⋯ + wn), which should be a multiple of k as we
started from 1 and came back to 1 moving clockwise. If (w1 +⋯ +wn) = kd, then we define
the winding number to be d. In Figure 4.1, the winding number is 2.

Remark 4.1.2. It is known that hypersimplicial decorated ordered set partitions of type
(k,n) are in bijection with w ∈ Sn−1 such that des(w) = k − 1 (see [31]).

Now we will state the conjectures of N. Early.

Conjecture 4.1.3 ([17], Conjecture 1). The number of hypersimplicial decorated ordered
set partitions of type (k,n) with winding number d is h∗d(∆k,n).

Next we will state a more general version of Conjecture 4.1.3 for a generic cross section
of a hypercube.

Definition 4.1.4. For positive integers r, k, and n, the generic cross section of a hypercube
is

Inr,k = {(x1,⋯, xn) ∈ [0, r]n ∣
n

∑
i=1

xi = k}.

When r = 1, it is the hypersimplex ∆k,n.

Definition 4.1.5. A decorated ordered set partition P = ((L1)l1 ,⋯, (Lm)lm) is r-
hypersimplicial if 1 ≤ li ≤ r∣Li∣ − 1 for all i.
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Note that the notions of hypersimplicial and 1-hypersimplicial are equivalent. The deco-
rated ordered set partition ({1,2,7}2,{3,5}3,{4,6}1) in Example 4.1.1 is not hypersimplicial,
but it is r-hypersimplicial for r ≥ 2.

Conjecture 4.1.6 ([17], Conjecture 6). The number of r-hypersimplicial decorated ordered
set partitions of type (k,n) with winding number d is h∗d(I

n
r,k).

Our goal is to prove Conjecture 4.1.6 and derive Conjecture 4.1.3 as specializing to r = 1.

4.2 Proof of Conjecture 4.1.6

A simplification of Katzman’s formula

Again using the formula for Hilbert series of algebras of Veronese type (see [22]), the
Ehrhart series of Inr,k is

∑
i≥0

(−1)i(ni)(∑
j≥0

(
i
j
)(t − 1)j(∑

l≥0
(

n−j
l(k−ri))k−ri

tl))

(1 − t)n
. (4.2.1)

Now we simplify ((4.2.1)) to get a simple description for the h∗-vector of Inr,k.

Lemma 4.2.1. For positive integers n,m,and a, we have

(
n

m
)
a

− (
n

m − 1
)
a

= (
n − 1

m
)
a

− (
n − 1

m − a
)
a

.

Proof. By a combinatorial argument, we have (
n
m
)
a
=
a−1

∑
k=0

(
n−1
m−k)a and (

n
m−1

)
a
=
a−1

∑
k=0

(
n−1

m−1−k)a.

Subtracting these two gives the lemma.

Proposition 4.2.2. For positive integers s and a, we have

∑
j≥0

(
s

j
)(t − 1)j(∑

l≥0

(
n − j

la
)
a

tl) =∑
l≥0

(
n

la − s
)
a

tl.

Proof. We proceed by induction on s. For s = 0, this is a trivial identity. Let’s assume that
the proposition holds for s = u − 1 and for all n, which means

∑
j≥0

(
u − 1

j
)(t − 1)j(∑

l≥0

(
n − j

la
)
a

tl) =∑
l≥0

(
n

la − u + 1
)
a

tl. (4.2.2)

Now replacing n with (n − 1) and multiplying by (t − 1) we have

∑
j≥0

(
u − 1

j
)(t − 1)j+1(∑

l≥0

(
n − 1 − j

la
)
a

tl) =∑
l≥0

(
n − 1

la − u + 1
)
a

tl(t − 1).
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Replacing j with (j − 1) and rearranging the right-hand side gives

∑
j≥0

(
u − 1

j − 1
)(t − 1)j(∑

l≥0

(
n − j

la
)
a

tl) =∑
l≥0

((
n − 1

(l − 1)a − u + 1
)
a

− (
n − 1

la − u + 1
)
a

)tl. (4.2.3)

Summing ((4.2.2)) and ((4.2.3)), and using Lemma 4.2.1 gives

∑
j≥0

(
u

j
)(t − 1)j(∑

l≥0

(
n − j

la
)
a

tl) =∑
l≥0

(
n

la − u
)
a

tl.

Using Proposition 2.3.6, the Ehrhart series of Inr,k ((4.2.1)) becomes

∑
i≥0

(−1)i(ni)(∑
l≥0

(
n

l(k−ri)−i))k−ri
tl)

(1 − t)n
.

Thus we have
h∗d(I

n
r,k) =∑

i≥0

(−1)i(
n

i
)(

n

(k − ri)d − i
)
k−ri

. (4.2.4)

In Section 2.2, we will prove Conjecture 4.1.6 which contains Conjecture 4.1.3 as a special
case when r = 1. Since we have an explicit formula for h∗d(I

n
r,k), our strategy is to count the

number of r-hypersimplicial decorated ordered set partitions of type (k,n) with winding
number d and compare the formulas.

Enumeration of r-hypersimplicial decorated ordered set partitions
with a fixed winding number

We start with an elementary lemma, skipping the proof.

Lemma 4.2.3. The Z/nZ action on {1,2,⋯, n} by cyclic shift does not change the winding
number of decorated ordered set partitions.

For example, decorated ordered set partitions ({1,2,7}2,{3,5}3,{4,6}1) and
({2,3,1}2,{4,6}3,{5,7}1) have the same winding number.

Next we will show that a winding vector determines a decorated ordered set partition.
We observed that when the winding number is d, then w1 +⋯ +wn = kd. And 0 ≤ wi ≤ k − 1
since the circumference of the circle is k (if wi = k, then i and (i + 1) are in a same block
which means wi = 0). It turns out that these are the only restrictions for winding vectors.

Proposition 4.2.4. Decorated ordered set partitions of type (k,n) with winding number d
are in bijection with elements of {(w1,⋯,wn) ∈ Zn ∣ 0 ≤ wi ≤ k − 1, w1 +⋯ +wn = kd}.
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Proof. It is enough to construct a decorated ordered set partition of type (k,n) with winding
number d from a winding vector satisfying the above conditions. First, draw k spots on the
circle in clockwise order and put 1 in one spot. Having put i in some spot, move clockwise wi
spots and put i + 1 in that spot. After placing all elements, nonempty spots become blocks
and the clockwise distance from Li and Li+1 is li.

Example 4.2.5. For type (k,n) = (6,7), we will construct a decorated ordered set partition
from the vector (0,2,3,3,3,1,0). See Figure 4.2. First, draw k = 6 spots and put 1 in
one spot (upper-left figure). Then put elements according to the given vector (upper-right
figure). {1,2,7}, {3,5}, and {4,6} will be blocks. There is one empty spot between {1,2,7}
and {3,5} so the distance is 2. The distance between {3,5} and {4,6} is 3 as there are two
empty spots. Resulting decorated ordered set partition is ({1,2,7}2,{3,5}3,{4,6}1) (lower
figure). We recovered Example 4.1.1.

From Proposition 4.2.4, we know that the number of decorated ordered set partitions of
type (k,n) with winding number d is ∣{(w1,⋯,wn) ∈ Zn ∣ 0 ≤ wi ≤ k − 1, w1 + ⋯ +wn = kd}∣.
A simple combinatorial argument shows this number is the same as the coefficient of tkd in
(1 + ⋯ + tk−1)n, which is (

n
kd
)
k
. So the number of decorated ordered set partitions of type

(k,n) with winding number d is (
n
kd
)
k
.

Recall that we are interested in the number of r-hypersimplicial decorated ordered set
partitions of type (k,n) with winding number d. Throughout the rest of this section, when
we say decorated ordered set partition, we always assume it is of type (k,n) with
winding number d.

Definition 4.2.6. For a decorated ordered set partition P = ((L1)l1 , (L2)l2 , ..., (Lm)lm), a
block Li is r-bad if li ≥ r∣Li∣. Let Ir(P ) = {Li ∣ Li is r-bad}.

For example, the set I1(({1,2,7}2,{3,5}3,{4,6}1)) is {{3,5}}. Recall that r-
hypersimpilcial decorated ordered set partitions satisfy 1 ≤ li ≤ r∣Li∣ − 1 for all blocks. So a
decorated ordered set partition is r-hypersimplicial if and only if Ir(P ) is empty.

Definition 4.2.7. For a set T , define UP (T ) to be a set of all (unordered) partitions of T .
For example, the partition {{1,2,4},{3},{5}} is in UP ({1,2,3,4,5}).

Definition 4.2.8. For T ⊆ {1,2,⋯, n} and S ∈ UP (T ), define
Kr(S) = {P : decorated ordered set partition such that S ⊆ Ir(P )}.

In other words, the set Kr(S) consists of all decorated ordered set partitions (of type
(k,n) with winding number d) having elements of S as r-bad blocks. For example, when
S = φ, the set Kr(φ) consists of all decorated ordered set partitions (of type (k,n) with
winding number d).

Definition 4.2.9. For T ⊆ {1,2,⋯, n}, let Hr(T ) = ∑
S∈UP (T )

(−1)∣S∣∣Kr(S)∣.
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{1} {1,2,7}

{3,5}

{4,6}

{1,2,7}2

{3,5}3

{4,6}1 2

3

1

Figure 4.2: Constructing the decorated ordered set partition associated to the winding vector
(0,2,3,3,3,1,0).

Set Elements
K1({{1,2,3}}) ({1,2,3}3,{4,5}1)

K1({{1,2},{3}}) ({1,2}2,{3}1,{4,5}1)

K1({{2,3},{1}}) ({1}1,{2,3}2,{4,5}1)

K1({{1,3},{2}})
K1({{1},{2},{3}}) ({1}1,{2}1,{3}1,{4,5}1)

Table 4.1: Listing K1(S) for S ∈ UP ({1,2,3}), among decorated ordered set partitions of
type (4,5) with winding number 1.
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Example 4.2.10. Table 4.1 shows the lists of K1(S) for S ∈ UP ({1,2,3}), among decorated
ordered set partitions of type (4,5) with winding number 1.

Note that K1({{1,3},{2}}) is an empty set, as it is impossible to have a winding number
1 with 1-bad blocks {1,3} and {2}. In this case we have,

H1({1,2,3}) = −∣K1({{1,2,3}})∣ + ∣K1({{1,2},{3}})∣ + ∣K1({{2,3},{1}})∣

+∣K1({{1,3},{2}})∣ − ∣K1({{1},{2},{3}})∣

= −1 + 1 + 1 − 1 = 0.

Now we relate Hr(T ) with the number of r-hypersimplicial decorated ordered set parti-
tions (of type (k,n) with winding number d).

Proposition 4.2.11. The number of r-hypersimplicial decorated ordered set partitions (of
type (k,n) with winding number d) is

∑
T⊆{1,2,...,n}

Hr(T ).

Proof. It is enough to compute ∑
T⊆{1,2,⋯,n}

( ∑
S∈UP (T )

(−1)∣S∣∣Kr(S)∣), by the definition of Hr(T ).

A decorated ordered set partition P belongs to Kr(S) if and only if S is a subset of Ir(P ).
So if Ir(P ) is empty then P will be counted once when S = φ. If Ir(P ) is non empty, say
∣Ir(P )∣ = m, then P will be counted (

m
i
) times with the sign (−1)i as S ranges over all i-

element subsets of Ir(P ). Thus the contribution of P to ( ∑
T⊆{1,2,...,n}

Hr(T )) is
m

∑
i=0

(−1)i(mi ) = 0.

So the above sum counts P such that Ir(P ) is empty, which means r-hypersimplicial.

Now it remains to give a formula for Hr(T ). When S ∈ UP ({1,2,⋯, n}), elements of
Kr(S) are decorated ordered set partitions P = ((L1)l1 ,⋯, (Lm)lm) whose blocks are all r-
bad, which means li ≥ r∣Li∣ for all i. Summing inequalities for all i gives ∑ li ≥ r∑ ∣Li∣ that
implies k ≥ rn which is impossible as k < n. ThusKr(S) is an empty set, so Hr({1,2,⋯, n}) =
0. So we will only consider when T is a proper subset of {1,2,⋯, n}. By Lemma 4.2.3, we
may assume that n ∉ T since Hr(T ) is invariant under cyclic shifts of {1,2,⋯, n}.

Definition 4.2.12. For a fixed T ⊊ {1,2,⋯, n} such that n ∉ T , a T-singlet block is a block
with only one element t and t ∈ T . A sequence of consecutive blocks (Li,⋯, Li+j) consisiting
of T -singlet blocks in a decorated ordered set partition P (indices are considered modulo
number of blocks in P ) is r-packed if li = ⋯ = li+j−1 = r and li+j ≥ r. An r-packed sequence
is increasing r-packed if elements in each block (Li,⋯, Li+j) are in increasing order. Such a
sequence is maximal if it is not a subsequence of another increasing r-packed sequence.

The increasing r-packed condition highly depends on T since it only applies to consecutive
T -singlet blocks. Note that T -singlet blocks in r-packed sequence are all r-bad. It is the
most concentrated arrangement that makes these blocks all r-bad. We allow an increasing
r-packed sequence of length 1 by convention.
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Example 4.2.13. For T = {1,2,4,6} and r = 2, Figure 4.3 is the picture for the decorated
ordered set partition ({1}2,{2}2,{4}2,{5,8,9,10}1,{6}2,{7}2,{11,12,13}1). The maximal
increasing r-packed sequences here are ({1},{2},{4}) and ({6}). Note that the sequence
({6},{7}) is not r-packed since {7} is not a T -singlet block.

{1}

{2}

{4}

{5,8,9,10}
{6}

{7}

{11,12,13}

Figure 4.3: Reading off r-packed sequences for r = 2.

Lemma 4.2.14. Let S = {M1,M2,⋯,Mj} ∈ UP (T ), where T = {t1 < t2 < ⋯ < tm} and
n ∉ T . Enumerate the elements of Mi in increasing order, so Mi = {ti1 < ti2 < ⋯ < tiw}.
Then elements of Kr(S) are in bijection with elements of Kr({{t1},{t2},⋯,{tm}}) having
an increasing r-packed sequence ({ti1},{t2},⋯,{tiw}) for all i.

Proof. Given a decorated ordered set partition P ∈ Kr(S), we pick a block (Mi)l which is
r-bad. So l ≥ r∣Mi∣ = rw. Change (Mi)l to {ti1}r,{ti2}r,...,{tiw}l−r(w−1). Since l− r(w − 1) ≥ r,
the sequence ({ti1},{ti2},⋯,{tiw}) will be increasing r-packed. This process does not change
the winding number and new T -singlet blocks are all r-bad (see Example 4.2.15). Repeating
this process for all i we get the desired correspondence.

Example 4.2.15. See Figure 4.4. The figure on the left is a decorated ordered partition
({1,2,4}6,{5,8,9,10,13}1,{6,7}4,{11,12}1). When T = {1,2,4,6,7} and r = 2, the figure
on the left has r-bad blocks {1,2,4} and {6,7}, so belongs to Kr({{1,2,4},{6,7,}}). Under
the correspondence stated in Lemma 4.2.14, this goes to

({1}2,{2}2,{4}2,{5,8,9,10,13}1,{6,}2,{7}2{11,12}1), a decorated ordered set partition
for the figure on the right. The winding number does not change.

Remark 4.2.16. The condition n ∉ T is essential for Lemma 4.2.14. Without this condition,
the correspondence might change the winding number as shown in Figure 4.5. The winding
number on the left figure is 1 but the winding number on the right is 2. We spread elements
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{1,2,4}

{5,8,9,10,13}
{6,7}

{11,12}
{1}

{2}

{4}

{5,8,9,10,13}
{6}

{7}

{11,12}

Figure 4.4: Correspondence in Lemma 4.2.14 for T = {1,2,4,6,7} and r = 2.

in blocks in increasing order but since there is a cyclic symmetry, "increasing" might not be
meaningful if n ∈ T .

{1,7}

{2,3,4}

{5,6}

{1}

{7}{2,3,4}

{5,6}

Figure 4.5: Correspondence in Lemma 4.2.14 for T = {1,7} and r = 2.

Now fix T = {t1 < t2 < ⋯ < tm} ⊊ {1,2,⋯, n} such that n ∉ T . For S ∈ UP (T ), the
correspondence in Lemma 4.2.14 gives an embedding

iS ∶Kr(S)→Kr({{t1},{t2},⋯,{tm}}).

Let χS ∶ Kr({{t1},{t2},⋯,{tm}}) → {0,1} to be the characteristic function of iS(Kr(S))
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which means χS(P ) = 0 if P ∉ iS(Kr(S)) and χS(P ) = 1 if P ∈ iS(Kr(S)). Then we have

Hr(T ) = ∑
S∈UP (T )

(−1)∣S∣∣Kr(S)∣ = ∑
S∈UP (T )

(−1)∣S∣∣iS(Kr(S))∣ (4.2.5)

= ∑
S∈UP (T )

(−1)∣S∣( ∑
P ∈Kr({{t1},{t2},⋯,{tm}})

χS(P ))

= ∑
P ∈Kr({{t1},{t2},⋯,{tm}})

( ∑
S∈UP (T )

(−1)∣S∣χS(P )).

Proposition 4.2.17. For a fixed T = {t1 < t2 < ⋯ < tm} ⊊ {1,2,⋯, n} such that n ∉ T , if a
decorated ordered set partition P ∈ Kr({{t1},{t2},⋯,{tm}}) does not have an increasing r-
packed sequence of length greater than 1, then ∑

S∈UP (T )
(−1)∣S∣χS(P ) equals (−1)∣T ∣. Otherwise

it is zero.

Proof. For P ∈ Kr({{t1},{t2},⋯,{tm}}), define Ŝ(P ) to be an unordered partition of T by
putting ti and tj in same part if they belong to same increasing r-packed sequence (this will
partition T by maximal increasing r-packed sequences of P ). An unordered partition S is
a finer partition than Ŝ(P ) if and only if χS(P ) = 1. When P has no increasing r-packed
sequence of length greater than 1, we have Ŝ(P ) = {{t1},{t2},⋯,{tm}}, the finest unordered
partition of T . So χS(P ) = 1 only when S = Ŝ(P ) thus ∑

S∈UP (T )
(−1)∣S∣χS(P ) = (−1)∣T ∣. Now

assume there is M = {m1 < ⋯ <ma} ∈ Ŝ(P ) such that ∣M ∣ = a ≥ 2. To split M into b parts so
that resulting finer partition S still satisfies χS(P ) = 1, we choose (b−1) elements i1 < ⋯ < ib−1

in a set {1,⋯, a − 1} and split M into {m1,⋯,mi1},{mi1 ,⋯,mi2},⋯,{mib−1 ,⋯,ma}. There
are (

a−1
b−1

) ways to do that and this process can be done independently on each M ∈ Ŝ(P )

such that ∣M ∣ ≥ 2. So we have

∑
S∈UP (T )

(−1)∣S∣χS(P ) = ∏
M∈Ŝ(P ),∣M ∣≥2

(

∣M ∣

∑
b=1

(−1)b(
∣M ∣ − 1

b − 1
)) ∏

M∈Ŝ(P ),∣M ∣=1

(−1).

Since
∣M ∣
∑
b=1

(−1)b(∣M ∣−1
b−1

) = 0, we have ∑
S∈UP (T )

(−1)∣S∣χS(P ) = 0 whenever P has an increasing

r-packed sequence of length greater than 1, that is, the set Ŝ(P ) has a part with more than
one element.

Example 4.2.18. For T = {1,2,3,4}, assume P ∈ Kr({{1},{2},{3},{4}}) has (maximal)
increasing r-packed sequence ({1},{2},{3},{4}). We will list S ∈ UP (T ) such that χS(P ) = 1
by number of elements.

∣S∣ = 1 → {{1,2,3,4}}
∣S∣ = 2 → {{1},{2,3,4}},{{1,2},{3,4}},{{1,2,3},{4}}
∣S∣ = 3 → {{1},{2},{3,4}},{{1},{2,3},{4}},{{1,2},{3},{4}}
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∣S∣ = 4 → {{1},{2},{3},{4}}
So we have ∑

S∈UP (T )
−(1)∣S∣χS(P ) = −1 + 3 − 3 + 1 = −(3

0
) + (

3
1
) − (

3
2
) + (

3
3
) = 0.

Definition 4.2.19. For a fixed T = {t1 < t2 < ⋯ < tm} ⊊ {1,2,⋯, n} such that n ∉ T ,
define K̂r(T ) to be the subset of Kr({{t1},{t2},⋯,{tm}}) consisting of decorated ordered
set partitions without increasing r-packed sequence of length greater than 1.

By Proposition 4.2.17 and (4.2.5), we have

Hr(T ) = (−1)∣T ∣∣K̂r(T )∣. (4.2.6)

We will count the number of elements in K̂r(T ) by defining the second winding vector for
each element. The second winding vector is a modified version of the winding vector that
we previously defined.

Assume we are given P ∈ K̂r(T ). There are k spots total on the circle including empty
spots that are recording distances and T -singlet blocks {t1},{t2},⋯,{tm} are r-bad blocks
so for each {ti}, there will be at least (r − 1) empty spots after {ti} as the distance to the
next block is at least r. Color these r spots, that is, the spot occupied by {ti} with (r − 1)
empty spots after that red. Doing this for all i, total r∣T ∣ = rm spots will be colored red.
And color the remaining (k − rm) spots blue.

Definition 4.2.20. For P ∈ K̂r(T ), second winding vector v = (v1, v2,⋯, vn) is defined by
setting vi to be the number of blue spots passed while moving from i to (i+1) in clockwise
fashion. Do not include the starting point but include the arriving point (if it’s blue) and
when the starting point and the arriving point are in same block (spot), set vi = 0.

Since the winding number is d, the whole path winds around the circle d times. So we
have v1 +⋯ + vn = (k − rm)d.

If i ∉ T , we are starting from the blue spot so vi can range from 0 to (k−rm−1). However
when i ∈ T , we claim vi cannot be zero. If vi = 0, then the path from i to i+1 should not include
any blue spots. So the path will be of the form {i}, φ,⋯, φ,{a1}, φ,⋯, φ,⋯,{aq}, φ,⋯, φ,{i+1}
where φ means an empty spot. Thus the sequence ({i},{a1},⋯,{aq},{i + 1}) is r-packed.
Since P does not have increasing r-packed sequence of length greater than 1, the sequence
(i, a1,⋯, a2, i+ 1) should be a decreasing sequence which is impossible. It is possible to have
vi = k − rm as the path can encounter every blue spot (see Example 4.2.21). We conclude
1 ≤ vi ≤ k − rm.

Example 4.2.21. Figure 4.6 explains the way to read off second winding vector. Let P =

({2}2,{1}2,{5,6}1,{7,8}1,{9}3,{11,12,13}1,{10,14}1,{3,4}1), and fix T = {1,2,9} and r =
2. The upper left figure is a picture for P . Note that the sequence ({2},{1}) is r-packed but
not increasing r-packed. So P has no increasing r-packed sequence of length greater than
1. After coloring spots with the rule above we get the upper right figure. There will be r∣T ∣

(=6) red spots and (k−r∣T ∣) (=6) blue spots. To get v1, wind from 1 to 2 clockwise as shown
in the lower figure, and count the number of blue spots passed. Here v1 = 6. Continuing this
process we have the second winding vector v = (6,6,0,1,0,1,0,0,3,5,0,0,1,1).



CHAPTER 4. A COMBINATORIAL FORMULA FOR THE EHRHART h∗-VECTOR
OF THE HYPERSIMPLEX 92

{2}

{1}

{5,6}

{7,8}{9}

{11,12,13}

{10,14}

{3,4} {2}

{1}

{5,6}

{7,8}{9}

{11,12,13}

{10,14}

{3,4}

{2}

{1}

{5,6}

{7,8}{9}

{11,12,13}

{10,14}

{3,4}

Figure 4.6: Reading off the second winding vector.

We saw that a second winding vector v = (v1, v2,⋯, vn) satisfies v1 +⋯ + vn = (k − rm)d.
And it also satisfies 0 ≤ vi ≤ k − rm − 1 if i ∉ T , and 1 ≤ vi ≤ k − rm if i ∈ T.

It turns out these are the only restrictions for the second winding vectors of the elements
of K̂r(T ).

Proposition 4.2.22. Elements of K̂r(T ), where ∣T ∣ = m, are in bijection with elements of
{(v1, v2,⋯, vn) ∈ Zn ∣ 0 ≤ vi ≤ k−rm−1 if i ∉ T,1 ≤ vi ≤ k−rm if i ∈ T, v1+⋯+vn = (k−rm)d}.

Proof. The forward direction is done by the second winding vector. For the reverse direction,
we should recover the decorated ordered set partition (in K̂r(T )) whose second winding vector
is the specified vector (v1, v2,⋯, vn). First draw (k − rm) spots on the circle (recall ∣T ∣ =m)
and put 1 in one spot. Having put i in some spot, move clockwise wi spots and put i + 1
in that spot. After placing every element, let’s denote the resulting decorated ordered set
partition with P . We construct P̃ ∈ K̂r(T ) as follows. For each block B of P with B∩T ≠ φ,
let B ∩T = {i1 < ⋯ < is}. We replace B with B/T and then add (rs) spots immediately after
B/T as follows: first a T -singlet block {is} then (r − 1) empty spots then T -singlet block
{is−1} then (r − 1) empty spots ⋯ T -singlet block {i1} then (r − 1) empty spots. Resulting
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decorated ordered set partition P̃ belongs to K̂r(T ) as all element in T are in T -singlet
blocks and there is no increasing r-packed sequence of length greater than 1 since we placed
i1 < ⋯ < is in a decreasing order.

It remains to prove the second winding vector (ṽ1, ṽ2,⋯, ṽn) of P̃ is the given vector
(v1, v2,⋯, vn). If i and (i + 1) were in different blocks in P , then vi = ṽi as we ignore red
spots on the way. If i and (i+ 1) were in a same block in P and i ∉ T , then vi = 0. From the
construction of P̃ , there is no blue spot on the way from i to (i+ 1) except the starting spot
so ṽi = 0. If i and (i+ 1) were in a same block in P and i ∈ T , then vi = k − rm. Since (i+ 1)
is located behind i, to get from i to (i + 1) in P̃ the path winds the circle and encounters
every blue spot. Thus ṽi = k − rm. We conclude that the second winding vector of P̃ is the
given vector.

Example 4.2.23. Figure 4.7 shows how to recover a decorated ordered set partition from
a second winding vector as stated in Proposition 4.2.22. We are given T = {1,2,9}, the
number r = 2, and the second winding vector v = (6,6,0,1,0,1,0,0,3,5,0,0,1,1). In the
upper left figure, there are 6 = k − r∣T ∣ spots (k = 12) on the circle and 1 is in one spot.
Then put elements according to the second winding vector. The upper right figure shows
this. The elements in T are denoted with a tilde. Consider the first block {1̃, 2̃,3,4}. The
numbers 3 and 4 will form a block and 1 and 2 will spread to the right into the space between
blocks {1̃, 2̃,3,4} and {5,6}, making four new red spots. The same thing happens for the
block {7,8, 9̃}, making two new red spots. The lower figure is the picture for the resulting
decorated ordered set partition in K̂r(T ). We recovered Example 4.2.21.

For a second winding vector v = (v1,⋯, vn), let v′ = (v′1,⋯, v
′
n) be a vector such that

v′i = vi if i ∉ T , and v′i = vi − 1 if i ∈ T . By the property of a second winding vector, we have
0 ≤ v′i ≤ (k − rm− 1) and v′1 +⋯+ v′n = (k − rm)d− ∣T ∣ = (k − rm)d−m. So the number of such
v′ is (

n
(k−rm)d−m)k−rm

which gives

Hr(T ) = (−1)∣T ∣∣K̂r(T )∣ = (−1)m(
n

(k − rm)d −m
)
k−rm

. (4.2.7)

Proof of Conjecture 4.1.6) By Proposition 4.2.11, and the equation (4.2.7), the number
of r-hypersimplicial decorated ordered set partitions (of type (k,n) with winding number d)
is

∑
T⊆{1,2,...,n}

Hr(T ) = ∑
m≥0

⎛

⎝
∑

∣T ∣=m
Hr(T )

⎞

⎠
= ∑
m≥0

(−1)m(
n

m
)(

n

(k − rm)d −m
)
k−rm

.

Now comparing with the formula (4.2.4), we obtain Conjecture 4.1.6. By specializing to
r = 1 we obtain Conjecture 4.1.3.
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{1} {1̃,2̃,3,4}

{5,6}

{7,8,9̃}{11,12,13}

{10,14}

{3,4} {2}

{1}

{5,6}{7,8}{9}

{11,12,13}
{10,14}

Figure 4.7: Constructing the decorated ordered set partition associated to the second winding
vector v = (6,6,0,1,0,1,0,0,3,5,0,0,1,1).
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