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Abstract. This paper surveys the basic ideas and results on fundamental models of

drift wave turbulence, the formation of zonal flows, shear suppression of turbulence

and transport, coupled drift wave and zonal flow dynamics, and application to

transport bifurcations and transitions. Application to vortex dynamics and zonal flow

phenomena in EMHD systems are discussed, as well. These are relevant to aspects of

ICF and laser plasma physics. Throughout, an effort is made to focus on fundamental

physics ideas.
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1. Introduction

Inhomogeneity of plasma profiles in magnetically confined plasmas is responsible for

generation of various instabilities that may lead to turbulent plasma states. Study

of heat and particle confinement of plasmas in the presence of such turbulence is a

fundamental issue for the success of controlled thermonuclear fusion. We address this

issue in this manuscript. In the first part, we present the historical developments of

the theory of strong electrostatic turbulence of magnetically confined plasmas and of

the generation of azimuthal zonal flows. The model equation (the Hasegawa-Mima

equation[5]) that includes plasma density inhomogeneity, nonlinear convection of plasma

vortices, and Boltzmann electrons has two quadratic independent globally conserved

quantities in the inviscid limit, energy and potential enstrophy. This fact indicates

inverse cascade of turbulent energy spectra and the condensation of the spectrum to

form a zonal flow in the azimuthal direction[10, 11]. Supporting simulation results are

discussed.

The second part of the paper reviews the essential elements of the theory of drift

wave-zonal flow turbulence[9]. The dynamics of zonal flow generation by potential

vorticity or polarization charge transport[28] and the shearing feedback of zonal flows

on the underlying microturbulence are discussed. We show that potential vorticity

transport or mixing is fundamental to zonal flow formation. Shear decorrelation[30]

physics is elucidated. Special attention is focused on the self-consistent feedback loop

system - i.e. the predator-prey model[35, 37] - formed by the turbulence and flow

shears. Simulation results[36] supporting the predator-prey model are reviewed. The

relevance of these ideas to the ongoing quest to understand the L → H transition and

multi-predator prey models[37] relevant to the L→ H transition are discussed.

The third part deals with application to electron magnetohydro (EMHD) dynamics.

EMHD[64] plays important roles in laser plasmas[65, 66, 67, 68, 69, 70], magnetic field

reconnection plasmas[71, 72, 73, 74, 75, 76, 77] and space and astronomical plasma

phenomena[78, 79] when the space and time scales are much shorter than the ion scales.

The electro-magnetic fluctuations with frequencies much lower than the electron plasma

frequency have structures like whistler waves. The turbulence of such electro-magnetic

fluctuations are so called whistler turbulence. Examples of whistler turbulence are the

turbulence predicted by the models of gamma ray burst[78, 79] and by the models for

relativistic electron beam transport in plasmas[68, 69]. The whistler turbulence also

plays important roles in collisionless magnetic reconnection in solar flare and magneto-

sphere[71, 72, 73, 74, 75, 76, 77].

The remainder of the paper is organized as follows. Section II deals with the

formulation of the basic models and the basic aspects of zonal flow formation. Section III

continues the discussion of zonal flow physics and formation, addresses shear suppression

and describes the coupled dynamics of drift waves and zonal flows. Section IV presents

application to EMHD vortices and structures. It also addresses applications of the ideas

to problems in ICF and laser plasma physics. The last part of the paper is a brief
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conclusion and outlook.

2. Drift Wave Vortex Models and Zonal Flows

2.1. Background

The study of plasma turbulence started almost immediately following the development

of plasma physics, since plasma was recognized as intrinsically nonlinear. In the

early stages, the weak turbulence theory based on perturbation analysis was popular,

but starting in the late 1970’s, when diagnosis based on electromagnetic wave

scattering revealed strong turbulence property, attention to the theory of strong plasma

turbulence increased. Hasegawa and Mima derived a model equation that describes the

strong electrostatic turbulence based on the nonlinear convection of ion vortices that

accompanies plasma density fluctuations. The equation demonstrates an existence of

conservation of (potential) enstrophy (squared vorticity) in addition to energy. Analogy

of this property to the two dimensional Navier-Stokes equation led the authors to predict

an inverse spectral cascade and formation of self-organization of the turbulence. In the

1980’s, Hasegawa together with Wakatani, extended the Hasegawa-Mima equation to

include driving terms of the turbulence based on resistivity and magnetic field curvature

and demonstrated the inverse cascade that leads to formation of the azimuthal zonal

flow. They further predicted that the zonal flow could inhibit turbulent radial loss of

the plasmas. Anomalous plasma loss due to turbulence has been the major concern

in plasma confinement with a magnetic field, however, the prediction by Hasegawa

and Wakatani proved a hope that plasma can be confined by the its own turbulent

property. In this chapter, we also add some recent simulation results that support such

possibilities.

2.2. Derivation of the Hasegawa-Mima Equation

When Mima was visiting Hasegawa at Bell Laboratories in 1976, we were introduced

to very interesting laser scattering data by Slusher and Surko (1976)[1] obtained from

density fluctuations of drift wave frequency range of a Princeton Tokamak. The data, in

agreement with those obtained by Mazzucato (1976)[2] by microwave scattering, showed

a very broad frequency spectrum whose width is wider than the expected drift frequency

itself. Hasegawa and Mima were intrigued by the data and immediately constructed

theory of drift wave turbulence that may account for this unexpected data. In response

to answer criticism that the broad spectra might have been due the path averaging of the

scattering date, Slusher and Surko (1978)[3] later have performed pin point scattering

experiment by means of two lasers and demonstrated the validly of the earlier date.

We recognized that in order to account for the density fluctuation observed by

those data, one needs to take into account of compressible ion flow. Since E×B drift is

incompressible, we recognized importance of the polarization drift, which is intrinsically

nonlinear because of the convective electric field. We then realized that this nonlinear
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polarization drift could best be recognized as nonlinear. The ion vorticity Ω due to the

E ×B drift can be describing of the Laplacian of the electrostatic potential φ,

Ω = (∇× v⊥) · ẑ = ∇×
(
−∇φ× ẑ

B0

)
· ẑ =

∇2
⊥φ

B0

(1)

Here, B0 is the flux density of the ambient magnetic field and ∇2
⊥ is the Laplacian

operator in the direction perpendicular to the magnetic field. The equation of ion

vorticity can be constructed by taking a curl of the ion equation of motion in the

direction normal to the ambient magnetic field. If the pressure and density gradients

are parallel, the equation reads,

d

dt
(Ω + ωci) + (Ω + ωci)∇ · v⊥ = 0 (2)

Here ωci is the ion cyclotron frequency. The compressible ion flow is related to the ion

density fluctuation, n, through the continuity equation,

∇ · v⊥ = − d

dt
lnn = − d

dt

(
lnn0 +

eφ

Te

)
(3)

Here, quasi-neutrality condition relates the ion density fluctuation to that of electrons,

which will obey the Boltzmann equilibrium in this frequency range due to their inertia-

less motions along the magnetic field. At this point the reader should recognize that

even if we treat ions in two-dimensional plane normal to the direction of the magnetic

field, we allow electron dynamics in three dimensions here.

From Eqns (2) and (3), we can construct the equation for ion vorticity for its

compressible flow,

d

dt

(
ln
ωci
n0

+
Ω

ωci
− eφ

Te

)
=

(
∂

∂t
− ∇φ× ẑ

B0

· ∇
)(

ln
ωci
n0

+
Ω

ωci
− eφ

Te

)
(4)

Equation (4) shows that the time evolution of vorticity and potential becomes nonlinear

due to the nonlinear convection of the ion vorticity, as is expected, while the nonlinear

convection of the potential does not contribute to nonlinear responses. Furthermore, if

the spatial scale is on the order of the ion gyro radius at the electron temperature, which

is the case of drift wave type fluctuations, the space time evolution of the potential field

becomes fully nonlinear if the normalized potential field, eφ/Te becomes of the order of

the ratio of drift wave frequency to the ion cyclotron frequency, which is very small.

Thus, for these space-time scales, the evolution of the potential field becomes fully

nonlinear and is given by,

∂

∂t
(∇2

⊥φ− φ)−∇φ× ẑ · ∇
[
∇2

⊥φ−
1

ε
ln

(
n0

ωci

)]
= 0 (5)

Here the small parameter ε represents the normalized amplitude as well as the time as

shown below,

εωcit ≡ t, x/ρs ≡ x, eφ/Te ≡ εφ, where ρs =
√
Te/mi/ωci (6)

Equation (5) describes a fundamental property of electrostatic plasma turbulence in the

drift wave frequency range in the absence of dissipations and often referred to as the

Hasegawa-Mima equation[5].
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2.3. Conservation laws, inverse cascades in kinetic and hydrodynamic regime

The model equation (5) that describes the drift wave turbulence demonstrates that drift

wave becomes fully nonlinear even at a very low fluctuation level. In this section, we

describe general properties of drift wave turbulence in hydrodynamic as well as in kinetic

regimes based on this model equation.

2.3.1. Conservation laws Equation (5) has interesting conservation laws and its

consequences. First it has energy conservation, which can be constructed by multiplying

it with φ and integrating over the volume,

∂W

∂t
≡ ∂

∂t

∫
[(∇⊥φ)2 + φ2]dV = 0 (7)

Thus the sum of the kinetic and potential energies is conserved. The interesting part

of the conservation law is that there exists additional conservation. The secondary

conservation is the sum of the enstrophy, the squared vorticity, and the kinetic energy,

sometimes called as potential enstrophy,

∂U

∂t
≡ ∂

∂t

∫
[(∇⊥φ)2 + (∇2

⊥φ)2]dV = 0 (8)

The presence of conservation of the enstrophy in addition to the energy has been familiar

in two-dimensional hydrodynamics and the interesting nature of its turbulence has been

studied.

2.3.2. Boltzmann statistics In the absence of dissipation, the Boltzmann statistics that

is obtained by minimizing the entropy in such a system has a strange character because

of the additional constraint that comes from enstrophy conservation: the distribution

function f that maximizes entropy with constraints of conservation of energy and

enstrophy should read,

δ(

∫
f ln fdV − λ1W − λ2U) = 0 (9)

Here λs are Lagrange multipliers, and the resultant distribution function is given by

f ∼ exp(−λ1W − λ2U) (10)

In the wave number space, since Uk = k2Wk, the average energy per mode becomes,

〈Wk〉 =
1

λ1 + k2λ2
(11)

As pointed out by Onsager (1949)[6], this result not only violates the equipartition law

but also could results in a negative temperature if the product of λ1 and λ2 is negative,

thus modal statistics can be strange, indicating consequences that may lead unexpected

states.
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2.3.3. Self-organized state in hydrodynamic regime In the presence of dissipation,

turbulence described by the Hasegawa-Mima equation may lead to a dual cascade of the

spectrum as pointed out by Kraichnan for two-dimensional Navier-Stokes turbulence.

The inertial range Kolmogorov spectra (1949)[7] can be defined dually, one for energy

and the other for enstrophy. Since the enstrophy spectrum has larger k dependency, it

tends to get dissipated by viscosity preferentially and as a result the energy spectrum

cascades to small wavenumbers and condensates to a minimum wave number that

the system allows. This is a process of self-organization of turbulence. The self-

organized state can simply be described by variation of minimizing the enstrophy with

the constraint of constant energy,

δ(U − λW ) = 0 (12)

With the help of the definition of the energy and the enstrophy in Eqs (7) and (8), Eq.

(12) gives the eigenvalue equation for φ,

∇2φ+ λφ = 0 (13)

Thus may be solved for a given boundary condition and the smallest eigen value gives

the self-organized state.

2.3.4. Weak turbulence theory If the normalized amplitude of the wave is much smaller

than the ratio of the drift wave frequency to the ion cyclotron frequency, the nonlinear

term in the Hasegawa-Mima equation may be treated as perturbation and the evolution

of the turbulent spectrum may be studied using the weak turbulence theory. We take

three waves with wave numbers k1, k2, and k3, such that

k21 ≤ k22 ≤ k23 (14)

The linearized Hasegawa-Mima equation gives the drift wave frequency given by

ωk =
k× ẑ · ∇ ln(n0/ωci)

ε(1 + k2)
(15)

and the nonlinear term can be treated as a perturbation to produce coupling of the

three waves (Hasegawa et al 1979[11]). In the three wave couplings, the number of wave

quanta defined by

Np = (1 + k2p)|φp|2/|k2q − k2r |, k2p 6= k2r (16)

is conserved so that

N3 −N1 = const., N1 +N2 = const., N2 +N3 = const. (17)

This result shows that a loss of one quantum of the wave with wave number k2 appears

as a gain in one quantum of the wave with the wave numbers given by k1 or k3. This

indicates a dual cascade of energy to smaller and larger wave numbers. A clearer

picture that is consistent with the well-known weak turbulence result can be obtained

by requiring resonant three wave interactions such that the wave matching condition is

satisfied. This is possible in small wave number region such that,

k2q − k2r = kqy/ωq − kry/ωr = ωpM (18)
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Figure 1. Zonal flow pattern predicted from the weak turbulence theory.

where ky is the wave number in the direction of ẑ ×∇ lnn0 and

M ≡ ωp(kry − kqy) + ωq(kpy − kry) + ωr(kqy − kpy)
3ωpωqωr

(19)

In this regime, the wave energy decays into smaller frequencies since the wave quanta

defined by

Nk = Wk/~ωk (20)

is conserved. Since the drift wave frequency is proportional to ky this result indicates

that the wave energy decays to that with smaller kykeeping kx more or less constant

at 1/ρs(≡ kc). In a cylindrical plasma, this indicates that the wave energy cascades

to a mode having zero azimuthal wave numbers as shown in Fig.1, with radial wave

number being kept at kc. The theory presented by Hasegawa et al (1979)[11] is the first

prediction of the formation of the zonal flow.
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2.4. Introduction of the Hasegawa-Wakatani Model and Prediction of the Zonal Flow

in Hydrodynamic Regime

If the free energy source is large enough, the level of wave amplitude will approach to

the ratio of the drift wave frequency to the ion cyclotron frequency. Then the drift

wave becomes fully nonlinear as indicated by the Hasegawa-Mima equation. This may

be the case when the wave is generated by a combination of magnetic field curvature

and pressure gradient. Hasegawa and Wakatani (1987) [12] developed a model that

describes evolution of the electrostatic potential φ and the density fluctuation n for such

a case. They included electron resistivity and ion viscosity, which are responsible to the

excitation of the curvature driven instability and dissipation of the excited turbulence.

In a cylindrical geometry the equation of vorticity reads,

ρ2s
a2

d

dt
∇2

⊥φ = (∇ lnn×∇Λ) · ẑ +
ωce
νei

( a
R

)2
∇2

‖(lnn− φ) +
µ

ωcia2
∇4

⊥φ (21)

Here ∇Λ represents the curvature of the toroidal magnetic field, ωce and νei are electron

cyclotron frequency and electron-ion collision frequency, a and R are minor and major

radius of the toroidal container, and µ represents the ion viscosity. The equation of

continuity is also modified due to the curvature and reads,

d

dt
lnn = (∇ lnn×∇Λ) · ẑ +

ωce
νei

( a
R

)2
∇2

‖(lnn− φ) (22)

Equations (21) and (22) form closed set of nonlinear equations that describe evolution of

the potential and density fields. Even in the presence of the curvature terms, it can be

shown that in the inviscid limit, the total energy and potential enstrophy are conserved;

W =
1

2

∫
dV

[
(lnn)2 +

ρ2s
a2

(∇⊥φ)2
]

(23)

and

U =
1

2

∫
dV

[
ρ2s
a2
∇2

⊥φ− lnn

]2
(24)

The conservation of W and U indicates that the existence of inverse cascade of energy

spectrum as discussed earlier. In the case of toroidal plasma, in addition to these two

conservations, the total angular momentum in the poloidal direction (which should be

zero) should also be conserved. Thus the self-organized state should be obtained by

minimizing the potential enstrophy, (23) with constrains of conservation of energy (24)

as well as the total toroidal angular momentum. This will lead to a self-organized

structure in which the minimum eigen value having a node between the center and the

wall. As a result, at self-organization, the radial electric field reverses its sign at some

radial position. The minimization of the potential enstrophy with these constraints

will lead to generation of global azimuthal flow of the plasma that will have a shear.

Equations (21) and (22) are numerically solved to trace the evolution of the turbulence

spectrum excited by the magnetic field curvature. Results of the simulation are shown

in Fig. 2. Here the left figure is initial potential profile (stream function), which is
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Figure 2. Equipotential contour of simulation results obtained from Eq. (21) and

(22). The solid (dotted) lines are for positive (negative) equipotentials. It is clear

that the curvature driven plasma turbulence produces a self-organized state in which

a global equipotential that has a φ = 0 closed surface near outer edge of the plasma.

randomly given, and the right figure shows the potential profile at a final time. Here

dotted lines show negative equipotential lines. One can see in this figure that the self-

organized state produces equipotential line that has a closed node at some outer radial

position indicating formation of a global azimuthal shear flow.

In Fig.3 we show the evolution of the radial potential profile in the simulation.

Here the solid line indicates the theoretically predicted self-organized state based on the

minimization of the potential enstrophy with constraints of both the total energy and

the global angular momentum. This figure shows clearly that the self-organized state

produces a global radial electric field that reverses its sign. This electric field creates

an E ×B rotation of plasma in the azimuthal direction that changes direction at some

radius indicating a generation of an azimuthal shear flow. This we believe is the first

observation of a zonal flow generation in turbulent plasma. The zonal flow structure is

global rather than microscopic as indicated in the kinetic theory, Fig.1. It may be due

to the fact that the instability here is driven by global magnetic field curvature, which

is hydrodynamic.

2.5. What are the effects of Zonal Flow on Plasma Transport?

Zonal flows have been observed to inhibit transport of vortex eddies across the flows.

One well-known example is the atmospheric dynamics of the planet Jupiter. As has

been demonstrated by Hasegawa et al (1979) [11], the Hasegawa Mima equation has

a structure mathematically identical to that which describes the horizontal motion of

planet atmosphere with gravity and gradient of Coriolis force. On a planet surface, the

latitudinal direction in which the Coriolis parameter varies corresponds to the radial
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Figure 3. Temporal variations of the radial profile of axis symmetric potential profile

are shown for different time. The solid line is the theoretically predicted potential

profile obtained from the self-organization theory.

direction in cylindrical plasma, the longitudinal direction corresponds to the azimuthal

direction and the vertical direction to the axial direction. Fig.4 is the well-known picture

of Jovian atmosphere.

Analogy of the mathematical structure of the model equation that describes the

plasma turbulence in the magnetic field to that of the planetary atmospheric motion

indicates that a similar turbulent dynamics may operate also in plasmas. The simulation

result obtained by Hasegawa and Wakatani (1987) [12] in fact indicate that convection

of the plasma vortices seems to be inhibited across the equipotential surface of φ = 0.
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Figure 4. A profile of atmospheric motion on Jovian surface. Existence of longitudinal

zonal flows is clearly visible. The zonal flows are seen to inhibit convection of

atmospheric vortices in the latitudinal direction crossing the flow.

Since electrons are expected to move on the constant φ surface, if vortices cannot convect

across this surface, zonal flows are expected to inhibit electron transport in the radial

direction. This fact is indicative of a very interesting process in which instability excited

self-organized state of plasma may inhibit anomalous electron transport in the radial

direction. This contradicts to previously known effect of plasma turbulence that predicts

anomalous diffusion. In fact, the reduction of the transport in the presence of zonal

flows is verified numerically in resistive pressure-gradient-driven turbulence[13], ion

temperature gradient turbulence[14], collisionless trapped electron mode turbulence[15],

as well as other models. Fig. 5 shows the reduction of electron heat conduction in the

presence of zonal flows.

Although at present existence of zonal flows and their possible role in reduction of

anomalous transports have been confirmed in various experiments, theoretical studies
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Figure 5. Simulation result obtained by Xiao et al (2010) [15]. The figure shows time

evolution of electron heat transport. The solid line is the heat transport obtained in

the simulation where self-generated zonal flow is present, while the dotted lines is the

heat transport in which the zonal flows are artificially removed.

on the stability of the zonal flow and its influence on plasma transport are still actively

persuaded. This is the subject of study presented in the next section.

3. Zonal Flows and Shear Suppression in Drift Wave Turbulence

In this section, we briefly summarize progress in the theory of zonal flows and velocity

shear suppression of drift wave turbulence. The discussion consists of a review of basic

zonal flow physics, the dynamics of shearing and its relation to zonal flow formation

and the behavior of the dynamical system defined by the coupled flows and fluctuations.

Some applications of the theory to problems of current interest are discussed.

A zonal flow[9] is an n = 0, m = 0 potential fluctuation with finite kr. Given their

structure, zonal flows may be thought of as secondary (nonlinearly driven) modes of

minimal inertia[10, 11] and minimal damping[16] which drive no transport. Zonal flows

are thus natural repositories in which to safely retain energy released by gradient driven
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microturbulence.

While there are several approaches to explain zonal flow generations, including

modulational calculations via the reductive perturbation method[17, 18, 19, 20], the

fundamental mechanism of zonal flow formation in a quasi-2D fluid or plasma is potential

vorticity (PV) transport or mixing in a system with one direction of symmetry[21].

Kelvin’s theorem underpins this idea. The physics of zonal flow formation was studied

within the geophysical fluid dynamics community long before it became a hot topic in the

plasma community. Indeed, the quasi-geostrophic equation was first derived by Charney

in 1948[22], and within a few years, Charney and Drazin[23] obtained a momentum

conservation theorem which elucidated the nonlinear origin and dynamics of zonal flows.

In a plasma, vorticity transport or mixing (i.e. −ρ2〈ṽr∇2φ̃〉 where 〈...〉 is an ensemble

average) results from the breaking of guiding center ambipolarity and the structure of the

gyrokinetic Poisson equation. The flux of vorticity or polarization charge is equivalent to

a Reynolds force, as first shown by G.I. Taylor[24], i.e. −ρ2〈ṽr,E∇2φ̃〉 = −∂r〈ṽr,E ṽ⊥,E〉,
where 〈ṽr,E ṽθ,E〉 is the Reynolds stress. The first discussion of the relation between

vorticity and wave momentum transport and zonal flow formation were by Diamond

and Kim[25] and Diamond, et. al.[26]. The fluctuation-driven Reynolds force in turn

drives the flow. Vorticity transport depends critically upon the phase relation between

ṽr and ∇2φ̃. This cross phase is determined by the micro dynamics of the mixing

process, i.e. in particular, the velocity shear. There are several viable candidate mixing

processes, which include:

(i) direct dissipation, as by viscosity

(ii) nonlinear coupling to small scale dissipation by the forward cascade of potential

vorticity. This effectively replaces the molecular viscosity by an eddy viscosity.

(iii) Rossby or drift wave absorption at critical layers, where ω = kx〈Vx(y)〉. This

is essentially Landau resonance. Transport or mixing of PV region requires the

overlap of neighboring critical layers, leading to stochastization of flow streamlines.

Stochastization of streamlines guarantees PV mixing much like stochastization of

orbits leads to mixing of 〈f〉 in quasilinear theory.

(iv) stochastic nonlinear wave-fluid element scattering, which is analogous to transport

induced by nonlinear Landau damping.

Note that the more general concepts are stochasticity of streamlines and forward

potential enstrophy cascade to small scale dissipation. Interestingly, when looking at

the phenomenon of zonal flow self-organization from the standpoint of PV transport

and mixing, it is the forward enstrophy cascade which is critical, and not the inverse

energy cascade, as is conventionally mentioned!! Finally, we observe that zonal flow

acceleration is not necessarily a strongly nonlinear process. PV mixing can occur via

wave absorption, and can be manifested in weak turbulence, as an essentially quasilinear

process. In this regard, the reader should consult[27]. To relate the transport of PV to

the energetics of an open system, it is useful to consider the simplest non-trivial system,

namely that of Hasegawa and Wakatani[8]. This system has a conserved inviscid PV
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q = n−∇2φ. Note the obvious analogy between total PV and total charge (i.e. guiding

center + polarization). Conservation of potential enstrophy 〈q2〉 and some straight

forward algebra yield the identity:

〈ṽr∇2φ̃〉 = 〈ṽrñ〉+ (∂t〈q̃2〉+ ∂r〈ṽrq̃2〉+D0〈(∇q̃)2〉)/〈q〉′ (25)

Here 〈q̃2〉 denotes fluctuation potential enstrophy, which was previously defined as U .

This choice is motivated by the consideration that the potential vorticity q is conserved

inviscidly and thus is the fundamental quantity in drift wave - zonal flow dynamics.

The prime (〈...〉′) denotes the radial derivative and the Prandtl number Pr ≡ µ/D0 = 1

is assumed for simplicity, where D0 is the particle diffusivity and µ is the viscosity.

Equation (25) locks the Reynolds force to the driving flux and the local dissipation of

fluctuation potential enstrophy(either by viscosity or local divergence/convergence of

the turbulence spreading flux). Using large scale momentum balance, we can extend

Equation (25) to derive a zonal flow momentum theorem in the style of a Charney-Drazin

theorem[23, 28], i.e.

∂t{(GWMD) + 〈vθ〉} = −〈ṽrñ〉 − δt〈q̃2〉/〈q〉′ − ν〈vθ〉 (26a)

GWMD = −〈q̃2〉/〈q〉′ (26b)

Here GWMD is the generalized wave momentum density (i.e. pseudomomentum) and

δt〈q̃2〉/〈q〉′ ≡ (∂r〈ṽrq̃2〉+ D0〈(∇q̃)2〉)/〈q〉′. Equation (26a) states that in the absence of

a driving flux or a local potential enstrophy decrement, it is impossible to accelerate

or maintain a zonal flow against drag with time stationary fluctuations. Physically,

Equation (26a) expresses the freezing in of quasi-particles into the flow, unless ‘slippage’

due to drive or dissipation is induced. Equation (26a) imposes a fundamental constraint

on models of stationary zonal flows. These must be constructed using an explicit

connection to the driving turbulent flux and fluctuation dissipation. Note that flow

acceleration requires relative spatial separation of fluctuation drive and damping, as in

drift wave eigenfunctions with outgoing wave structure[25].

Of course, zonal flows are of great interest in fusion due to the fact that they can

regulate turbulence by shearing. FIg.6 illustrates the effect of a self-generated shear flow

on extended turbulent eddys. This effect was first explicitly stated and developed in the

seminal paper by Biglari, Diamond and Terry in 1990[30]. Time stationary, coherent

shearing has long been know to couple to diffusive scattering to yield an enhanced, hybrid

decorrelation rate. This process was discussed by Kelvin, G.I. Taylor[24], Dupree[29],

and then applied to tokamak shear flows by Biglari, Diamond and Terry. The hybrid

decorrelation rate is

1

τc,k
=

(
k2θ〈vE〉′

2D⊥

3

)1/3

(27)

When kθ〈vE〉′∆r > D⊥/∆
2
r, decorrelation will be enhanced relative to the rate for zero

shear. Important corrections to the theory of shear decorrelation related to shaping and

compression were noted by Hahm and Burrell[31]. Other, linear shearing effects include
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spatial resonance dispersion (ω − k‖v‖ → ω − k‖v‖ − kθ〈vE〉′(r − r0)) and differential

response rotation. An important caveat is that modes can adjust to weaken the effects of

externally prescribed shear[32]. Thus, there is a qualitative difference between the effects

of self-consistent, energy conserving zonal shears and externally prescribed shears. Zonal

shears are most effectively described by wave kinetics, based on eikonal theory[9, 33]. In

wave kinetics, shear acts to tilt and stretch vortices, thus increasing kr. For a coherent

shear, we have kr = k
(0)
r − kθ〈vE〉′τ after a time duration τ , while for wave packet

propagation in a complex shearing pattern, the wave packet undergoes induced diffusion

in kr, so 〈δk2r〉 = Dkτ , where Dk =
∑

q k
2
θ |ṽE, q′|2τk,q. The physics of induced diffusion

is a random walk of the wave packet kr due to wave ray chaos, caused by overlap of

resonances between zonal shear phase velocities and wave packet group velocity. Here

τk,q is the correlation time of a wave packet k with zonal mode q. The mean wave action

(population) density equation thus becomes:

∂

∂t
〈N〉 − ∂

∂kr
Dk

∂〈N〉
∂kr

= γk〈N〉 − 〈C{N}〉 (28)

As a consequence, the effect of zonal flow shearing on wave energy is given by

∂

∂t
〈ε〉 = −

∫
dkvgr(k)Dk

∂〈N〉
∂kr

(29)

so that for wave enstrophy density decreasing with kr (i.e. d〈Ω〉/dkr < 0), wave energy is

damped. The fate of the energy is clear - it goes to the zonal flow via Reynolds work, as

can be demonstrated by a modulational instability calculation[9, 34]. The bottom line,

then, is that for zonal flows “Reynolds work” and “flow shearing” emerge as relabelings

of one another, so that the energy budget always balances, intrinsically. This relation

is the energy counterpart of the Charney-Drazin theorem for momentum[28] and of the

proof of conservation of energy between waves (zonal modes) and particles (drift wave

packets) in quasi-linear theory. In this light, the zonal flow damping mechanism emerges

as critical to the self-regulation process, as it is a damping for the whole system. This

follows from the structure of the predator-prey dynamics paradigm applicable to the

drift wave-zonal flow interaction.

We have established that zonal flows regulate drift waves by shearing, while at the

same time drift wave turbulence pumps the zonal flows. These two populations thus

naturally form a self-regulating ‘predator-prey’ feedback loop. This loop is depicted in

Fig.8. The control parameters for this system are the sources (i.e. heat flux, etc.) and

the zonal flow damping. Interestingly, the predator-prey system reflects the underlying

dual cascade of quasi-2D fluids. To see this, note that the prey equation for mean wave

action density (related to wave potential enstrophy density) involves induced diffusion

to high kr, which is analogous to the forward enstrophy cascade. Likewise, the prey

equation for the zonal flow energy describes the ‘negative viscosity phenomenon’ of

zonal flow growth by wave Reynolds work and so is clearly analogous to the inverse

energy cascade. We emphasize, however, that these two transfer processes are not be

local, as in the conventional cascade picture. The mean field predator-prey system may
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Figure 6. Flow effect on fluctuation. This figure, from ref.[36], illustrates the effect

of shearing on fluctuation structure and scale.

Figure 7. Stretching of eddy

be reduced to a simple dynamical system,

∂tN = γN − αV 2N −∆ωN2 (30a)

∂tV
2 = αNV 2 − γdV 2 − α2V

4 (30b)

Here γ is the drift wave growth rate, ∆ω is the turbulence nonlinear decorrelation

rate, γd is the frictional zonal flow damping and α, α2 are coefficients in the model,

as given by Eqs.30a and 30b and discussed in ref.[9]. This system exhibits multiple
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fixed points corresponding to no-flow and finite-flow states, respectively. These are

discussed in [9, 35]. The roots and states are tabulated in Fig.9. A value of the local

growth, operationally set by the heat flux, sets the transition threshold, and the state

transition occurs by a super-critical bifurcation in which a relaxation mode softens

and goes unstable. Simple numerical experiments[36] have verified the predictions of

this model(Fig.10). In particular, these demonstrate the important role of zonal flow

damping in regulating the drift wave-zonal flow system - see Fig.11. This system, while

conceptually instructive, is over-idealized. To address realistic problems, such as the

L → H and ITB transition, models with multiple predators, corresponding to zonal

and mean shear flows, have been developed. Here, ‘mean flows’ refer to mean field

〈E〉 × B shear flows, where the radial electric field 〈Er〉 must satisfy the radial force

balance equation. Thus, mean flows vary in space on profile scales. In contrast, zonal

flows can occur on all meso scales l, ∆c < l < Lp where Lp is a profile scale length

and ∆c is the turbulence correlation length. Zonal flow spatial scales are set by those

of the turbulence fluctuation intensity. The two predator-one prey model of Kim and

Diamond[37], introduces such competition between mean and zonal shears, as well as

a link between growth and mean shear on account of the common role of the pressure

gradient in determining each. In this scenario, the zonal flow triggers the transition

while the mean diamagnetic flow locks it in. Note that the concept of local gradient

transport bifurcations builds upon the work of Itoh and Itoh[38], and F.L. Hinton[39].

The system evolution as predicted by this models is shown in Fig.12. A slow power

ramp reveals a period of dithering or limit cycle oscillations as the transition threshold is

approached. During this period, turbulent fluctuations, zonal flows, and ∇p all oscillate

with a heat flux dependent relative phase. The competition between mean and zonal

shears leaves a distinct signature upon the evolving wave form. In the fully evolved

H-mode, turbulence is heavily suppressed. Thus, the zonal flow collapses, leaving only

the mean flow to support the transport barrier. The multi-predator models (Malkov

and Diamond[40]) exhibit hysteresis (even in 0D!). Hysteresis is stronger in 1D models.

Note that in these multi predator-prey models, the zonal flow controls access to the

intermediate phase while the mean flow ‘locks in’ the H-phase.

Here, an interesting question arises, concerning the interplay of mean electric fields

(n.b. we include neoclassical fields in the label ‘mean’) and zonal flows. The evolution

of the sheared neoclassical electric field has been studied extensively[41] and recently

has been included in full-f , global gyrokinetic simulations[42]. It is important to note

that, as stated in ref.[37], the mean and zonal electric shears are not simply additive,

but instead have a rather complex network of feedback loops. In the multi-predator

prey model:

(i) the pressure gradient can contribute to both prey and predator populations - the

former via, say, ITG mode growth (i.e. γ = γ(∇p)) and the latter by its contribution

to mean shears via radial force balance.

(ii) mean field shear has a strong effect on the cross-phase of the fluctuation Reynolds
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Figure 8. Predator-prey feedback loop structure[9] for the drift wave-zonal flow

system, i.e. Eqs. (30a) and (30b).

stress 〈ṽrṽθ〉, which drives the zonal flow. As a consequence, mean field shear

enters zonal flow dynamics multiplicatively and nonlinearly, so mean field shar can

effectively reduce and/or cut off the generation of zonal flows by potential vorticity

transport or inverse cascade. This is part of the L−H transition model proposed

in ref.[37].

(iii) zonal flows can, of course, enhance the growth of the mean shear by extracting

fluctuation energy, thus reducing transport and so allowing ∇p to steepen, as

discussed in ref.[37].

(iv) the mean electric field directly enters the zonal flow dielectric [16, 43].

Indeed, the interaction of mean (neoclassical) and zonal shears is especially interesting

in the context of stellerators, where purely neoclassical electric field bifurcations are

possible and additional control parameters are availabel. All told, while the interaction

of zonal and mean flows has been studied extensively, much work is still required for a

complete understanding.

The basic ideas of zonal flow physics discussed here have been applied to numerous
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Figure 9. Roots of predator-prey system. This, from [9], gives the various roots of

the multi-state predators-prey system. Note that both no flow and finite flow states

are possible.

problems of current interest, which include but are not limited to: poloidal rotation[44],

turbulence spreading[45, 46], confinement in plasmas with RMP[47, 48] and beta-plane

MHD models of the solar tachocline[49, 50]. The interested reader is referred to the

literature, as space does not permit even a short discussion of these. Rather we briefly

discuss the current status of our understanding of flow shear dynamics in the L → H

transition.

The L→ H transition problem is singled out because since its discovery in 1982[51],

the L → H transition has driven much of the thinking and research on flows in

magnetic fusion. In some sense, it has become the classic paradigm problem on flows

in tokamaks. Also, the past 2 years have witnessed a remarkable spurt of progress in

diagnosing flow and fluctuation behavior in edge plasmas at the transition threshold. In

particular, studies by Conway, et.al. on AUG[52], Estrada and Hidalgo[53, 54] on TJ-II,

Schmitz[55] on DIII-D, McKee and Z. Yan on DIII-D[56, 57], Kamiya and Ida[58] on

JT-60U, G.S. Xu[59] on East, A.Hubbard[60] on Alcator C-Mod, and S.J. Zweben[61]

on NSTX stand out as significant contributions. The gist of this wealth of information

is that for P ∼ Pth, limit cycle or dithering oscillations are observed in the flows and

turbulence. These cyclic phenomena characterize what is now called the I-phase (I

for intermediate, between L and H),. Multi-Shear flow competition is at work in the

I-phase, and the flow structure evolves as the transition progresses. Many aspects of

the observed phenomena are consistent with the multi-predator shearing model[37]. In

particular, the variation of relative phases with increasing heat flux is observed. These
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Figure 10. Time evolution of fluctuation intensity and turbulence driven flow from

the simulation of ref.[36]

are a variety of suggestions or hints as to the trigger mechanism. These include the

GAM, zonal flow, mean E × B0 flow, mean poloidal flow and more. It is not at all

obvious to this author that there need be a unique route to the transitions. Different

shear flows may act as trigger under different circumstances. To face this challenge,

theory should forsake the 0D models for one space-one time dimensional models of edge

layer evolution. Theory should predict something qualitatively new. One suggestions

as to where to look is the flow shear and fluctuation evolution during a slow, ELM

free back-transition. Also, theory should link micro-dynamics to macroscopics, such as

the power threshold scalings. Both theory and experiment should elucidate SOL flow

effects[62] on the shear structure inside the separatrix. This important issue remains

terra incognita. Finally, basic experiments should be confronted to elucidate the details

of the microscopic physical processes involved in shear layer formation[63]. Readers

should stay tuned for excitement in the near future.

4. Inverse cascade and whistlerization of self-generated low frequency

electro-magnetic fluctuation: An extension of Hasegawa-Mima equation

In this section, the nonlinear dynamics of electron magneto hydrodynamics (EMHD)

is reviewed. The EMHD plays an important role in space and magnetic confinement



Vorticity dynamics, Drift Wave Turbulence, and Zonal Flows: A Look Back and A Look Ahead21

Figure 11. Fluctuation and flow damping. This, from a simulation of negative

compressibility turbulence presented in ref.[36], presents the scaling of the saturated

fluctuation intensity ((〈ñ/n0)2〉) with zonal flow damping µ. Note for small or moderate

damping, the saturated intensity scales linearly with µ, as predicted by the predator-

prey model. For strong damping, the zonal flow is effectively suppressed, so 〈(ñ/n0)2〉
becomes independent of µ.

plasmas, in particular, in collisionless reconnection and in relativistic laser plasmas

produced by ultra intense short pulse laser, in particular, in the relativistic electron

transport. In laser plasmas, magnetic fields are generated by the Weibel instability

related to the relativistic electron transport which has been widely investigated in the

fast ignition research. In this section, the inverse cascade and the whistlerization in the

Weibel turbulence are discussed in some detail.

4.1. Basic equations

The low frequency electro-magnetic fluctuations (whistler turbulence) are generated

by relativistic electron beams ( electro-magnetic two stream instability ) and/or by

non-isotropy of electron momentum distribution (Weibel instability). When the scale

length or the time scale of fluctuation is much shorter or faster than the ion scales,

ions are assumed immobile and the incompressible electron fluid dynamics is taken into

account. Namely, nonlinear dynamics of the fluctuation is described by the electron

hydro dynamics (EMHD). The basic equations of EMHD are; The magnetic field



Vorticity dynamics, Drift Wave Turbulence, and Zonal Flows: A Look Back and A Look Ahead22

Figure 12. 2 predators and 1 prey. This figure, from ref.[37], shows the evolution

of the turbulence intensity, zonal flow intensity, and mean pressure gradient during

a power ramp through an L → H transition. Here the solid line is the fluctuation

(drift wave) intensity, the dotted line is the zonal flow intensity, and the dashed line is

the mean pressure gradient. The x axis is normalized heat flux Q. Note that as heat

flux Q increases, the system first enters a cyclic state, where fluctuation intensity and

zonal flow intensity oscillate, while ∇p grows very slowly. At sufficient Q, turbulence

and zonal flow collapse, and ∇p increases rapidly. This final state corresponds to an

H-mode.

induction equation:

∂tB = −∇× E (31)

Electron fluid equation of motion:

∂tp + v · ∇p = −e(E + v ×B)− 1

n
∇P − νp (32)

Ampere’s law:

∇×B

µ
= j = −en0v + jex (33)

Here, ions are immobile back ground and the electron fluid is assumed incompressible

and the external current, jex represents current carried by beam and/or high energy

electron.
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By introducing generalized vorticity, Ω = ΩB − ∇ × v, Eqs. (31) and (32) yield

the vorticity equation;

∂tΩ−∇× (v ×Ω) = ∇×
(
∇P
mn

+ νev

)
(34)

The right hand side of equation (34) is the source (thermo electric effect ) and dissipation

of the vorticity. When the thermoelectric effects and the external current do not exist,

the equation (33) and (34) are combined to obtain a magnetic field evolution equation;

∂tΩ−∇× (v ×Ω) = ∇× νev (35)

Ω = ΩB −
c2

ω2
p

∇2ΩB (36)

v = − c
2

ω2
p

∇×ΩB (37)

where ΩB = eB/m is the electron cyclotron frequency. In the equation (36), the second

term is finite only when the magnetic fluctuation scale length is the order of electron

skin depth. This is the electron Hall effect and the set of equations (35),(36), and (37)

are the Hall EMHD equations. For the Weibel instability, beam instability or magnetic

reconnection, the turbulence is essentially two dimensional like the drift wave turbulence.

In the two dimensional turbulence, it is possible to introduce two scalar quantities, ψ

and b and represent ΩB = eB/m as

ΩB = ẑ ×∇ψ + ẑb (38)

Note that ψ is the magnetic flux function and the equi-contours of ψ represent magnetic

field lines. The equations for ψ and b are obtained from the Eqs. (35),(36), and (37) by

normalizing the space variables by the electron skin depth as follows,

∂t(ψ −∇2ψ) + ẑ ×∇b · ∇(ψ −∇2ψ) = η∇2ψ (39)

∂t(b−∇2b)− ẑ ×∇b · ∇∇2b+ ẑ ×∇ψ · ∇∇2ψ = η∇2b (40)

Here, the right hand side of the Eqs. (39) and (40) is the magnetic field dissipation

due to resistivity. These equations are derived in [75]. It is known that the turbulence

described by the Eqs.(39) and (40) exhibits inverse cascade or beam current filament

merging. Note also that the first two terms of the Eq. (40) are the same as Hasegawa-

Mima equation and the other nonlinear terms have similar structure, namely, vector

nonlinearity. From those characters of the equations, it is predicted that the inverse

cascade occurs.

4.2. An example of nonlinear evolution of EMHD turbulence and self-organization in

laser plasmas

The quasi-static magnetic field fluctuations are generated in relativistic laser plasmas.

The Fig.13(a) shows that an intense laser irradiates the over-dense from the left hand

side and relativistic electrons are generated and propagate from the left to right.

Magnetic fields perpendicular to the simulation plane are generated and amplified. In
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Figure 13. Quasi-static magnetic field generation by transverse two stream / Weibel

instability by intense electron beam. (a) 2-D PIC simulation for the laser interaction

with over dense plasma (5 times cut-off density). Magnetic field generation by the

instability in laser produced plasmas, (b) 2-D Hybrid simulation: particle (electron

beam) and fluid (background plasma with the density of 10 times electron beam

density). The electron beam density is shown in the figure. This figure indicates

beam driven transverse two stream instability and merging of electron beam.

the Fig.13(b), initially a relativistic beam is injected perpendicular to the simulation

plane and temporal evolution of beam density distribution in the transverse plane

is shown. This indicates that the electron beam break up into filaments and then

they merged into few filaments. In the following, the merging process of electron

beam filaments is discussed as the inverse cascade in the low frequency magnetic field

turbulence. The Fig.14 [68] shows self generated magnetic filed temporal evolution,

where the center of the initial beam is at the upper right corner. At the beginning,

cylindrically symmetric magnetic field is generated due to the background electron shear

flow.

Assuming the total vorticity of back ground electron is conserved, then,

(ẑ ×∇(ψ −∇2ψ))θ ∼ ∂r(ψ − ∂2rψ) = Aδ(r − r0) (41)

The solution of the Eq. (41) is easily obtained to show that the B field is localized

and reversed at r = r0 with the thickness of the order of the skin depth. This initial

cylindrically symmetric magnetic field structure is consistent with the Fig.13-a. The

cylindrical symmetry of the magnetic field is broken by the tearing instability.
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Figure 14. 2-D Hybrid simulation where a relativistic electron beam propagates

perpendicular to the X-Y plane. Temporal evolution of magnetic field lines excited by

an electron beam (electron beam density is 10% of the back ground electron density)

at ωpt = 67 and (b) ωpt = 81. The arrows in the figures show total electron fluxes.

Let us take a initial magnetic field as

ψ0 = A exp(ik0x) + c.c. (42)

and take perturbed magnetic fields as

ψ1 = g exp(iky) and b = h exp(ik0x+ iky) (43)

This mode structure is essentially the same as that of the Fig.13-b. The growth rate

can be obtained by the linearized equation for ψ1 and b;

∂t(ψ1 −∇2ψ1) + ẑ ×∇b · ∇(ψ0 −∇2ψ0) = 0 (44)

∂t(b−∇2b) + ẑ ×∇ψ1 · ∇∇2ψ0 = 0 (45)

The growth rate of this mode is given as follows.

γ(k) = B0kk0

{
(1 + k20)(k20 − k2)

(1 + k20 + k2)(1 + k2)

}1/2

(46)

This result indicates that both shorter and longer wavelength magnetic field fluctuations

are simultaneously excited. The ratio of the energy of longer wavelength mode to that

of the shorter wavelength mode is,

(1 + k2)B2
⊥

(1 + k20 + k2)B2
z

=
k2(1 + k20)

k20 − k2
(47)

This ratio is greater than unity for the maximum growing mode. This indicates the

inverse cascade of the two dimensional EMHD is similar to the case of Hasegawa-Mima

equation [79]. The corresponding growth rate for the Hasegawa-Mima equation is

γ(k) = Ak2k0

{
k20 − k2

(1 + k20 + k2)(1 + k2)

}1/2

(48)
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Figure 15. Maximum magnetic field strength in the simulation region. Here, BT is

the transverse component to the beam propagation, and Bz is the parallel components

to it.

In the simulation of [68], k0 > 1.0, namely, the wavelength is comparable to the skin

depth, c/ωp, then the maximum growth rate is γ(k) = 1.2ωc for kc/ωp = 1.5, k0c/ωp = 3.

According to the simulation γ ∼ 0.24ωp for ωc ∼ 0.2ωp.

After the long time inverse cascade, k20, k
2 � 1 and γ(k) ∼ ωc(kc/ωp)

2 is the

time scale of long wave length whistler wave and (Bz/B⊥)2 will be 1 for the fastest

growing mode according to Eqs. (46) and (48). The Fig.15 [68] shows that the nonlinear

evolution of beam driven magnetic fluctuations can be reasonably described by the back

ground electron nonlinearity, although high energy electron beams also respond to the

magnetic field fluctuations.

As the final state, it is expected that magnetic bubbles of helical structure are

formed in the two dimensional EMHD turbulence. The equations (39) and (40) have

three conserved quantities, which are energy, magnetic flux, and cross helicity as derived

by A. Das et. al. [75]. Minimizing the energy for a fixed flux and cross helicity, an

attractor of magnetic structure evolution can be obtained. It will be a helical structure

with 〈Bz〉2 = 〈B⊥〉2. Further analysis will be continued in future studies.
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5. Conclusion

As to conclusions, there are none. This topic is alive and well, and will evolve

dynamically. The cross-disciplinary dialogue with the geophysical and astrophysical

fluids has surely been beneficial and should continue. Indeed, we still have much to

learn. As theorists should predict, rather than merely explain, here we predict that this

will not be the last prize awarded for the theory of drift wave-zonal flow turbulence.
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