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Abstract

Huntington’s disease (HD) is a neurodegenerative disease that results in motor and cognitive dysfunction, leading to early death. 
HD is caused by an expansion of CAG repeats in the huntingtin gene (HTT). Here, we review the mouse models of HD. They 
have been used extensively to better understand the molecular and cellular basis of disease pathogenesis as well as to provide 
non-human subjects to test the efficacy of potential therapeutics. The first and best-studied in vivo rodent model of HD is the R6/2 
mouse, in which a transgene containing the promoter and exon 1 fragment of human HTT with 150 CAG repeats was inserted into 
the mouse genome. R6/2 mice express rapid, robust behavioral pathologies and display a number of degenerative abnormalities 
in neuronal populations most vulnerable in HD. The first conditional full-length mutant huntingtin (mHTT) mouse model of HD 
was the bacterial artificial chromosome (BAC) transgenic mouse model of HD (BACHD), which expresses human full-length 
mHTT with a mixture of 97 CAG-CAA repeats under the control of endogenous HTT regulatory machinery. It has been useful in 
identifying the role of mHTT in specific neuronal populations in degenerative processes. In the knock-in (KI) model of HD, the 
expanded human CAG repeats and human exon 1 are inserted into the mouse Htt locus, so a chimera of the full-length mouse 
protein with the N-terminal human portion is expressed. Many of aspects of the pathology and behavioral deficits in the KI model 
better mimic disease characteristics found in HD patients than other models. Accordingly, some have proposed that these mice 
may be preferable models of the disease over others. Indeed, as our understanding of HD advances, so will the design of animal 
models to test and develop HD therapies.

Keywords 

R6/2 mouse model, BACHD, Huntington’s disease, mouse models, neurodegeneration, neurodegenerative disease

Peer Review

The peer reviewers who approve this article are:

1. Scott Zeitlin, Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA 
Competing interests: No competing interests were disclosed. 

2. Irina Dudanova, Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany 
Competing interests: No competing interests were disclosed.

Julia Kaye 1 Terry Reisine 2 Steve Finkbeiner 1,3,4*



Faculty Reviews 2021 10:(77)Faculty Opinions

*Corresponding author: Steve Finkbeiner (sfinkbeiner@gladstone.ucsf.edu)

Competing interests: The authors declare that they have no competing interests.

Grant information: The funding that supported this work was from National Institutes of Health grant 1 R01 NS101996-01. 

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2021 Finkbeiner S et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Kaye J, Reisine T and Finkbeiner S. Huntington’s disease mouse models: unraveling the pathology caused by CAG 

repeat expansion. Faculty Reviews 2021 10:(77) https://doi.org/10.12703/r/10-77

Published: 21 Oct 2021, Faculty Reviews 10:(77) https://doi.org/10.12703/r/10-77

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12703/r/10-77
https://doi.org/10.12703/r/10-77


Faculty Reviews 2021 10:(77)Faculty Opinions

Introduction
Huntington’s disease (HD) is caused by an expansion of CAG 
repeats in the huntingtin gene (HTT)1, which leads to neuro-
logical deficits, including motor impairment2 and cognitive  
decline3. Normal HTT alleles contain fewer than 35 CAG repeats, 
a CAG repeat of 40 or more is considered a fully penetrant  
mutation, whereas tracts of 36 to 39 CAGs impart an increased 
risk of developing the disease4–6. There is a well-established  
correlation between the number of CAG repeats and age of  
onset7,8. With extreme CAG expansion, symptoms develop 
in childhood, pathology is extensive, and life is short. How-
ever, CAG repeat length does not fully explain the severity of  
HD: 30% to 50% of the variation in age of onset is not 
related to CAG repeat length9. Polymorphisms in genes other  
than HTT contribute to age of onset in HD9–12. For example, 
polymorphisms in the FANC1-associated nuclease 1 (FAN1) 
gene, which encodes a DNA repair enzyme, affect age of onset  
of HD11–13.

In addition to motor and cognitive decline, neuropsychiatric 
symptoms, including depression and anxiety14, are present in  
patients with HD and are thought to typically predate the onset 
of motor symptoms15. Other common systemic features of HD 
include weight loss due to changes in metabolism16 and sleep 
and circadian rhythm disturbances17. Symptoms usually begin in  
midlife, and death follows within 10 to 20 years18–20.

A prominent neuropathological feature of HD is neurode-
generation, including neuronal death in the striatum, which 
is a major relay center of cortical signaling through the basal  
ganglia and is critically involved in regulating motor func-
tion and cognition21,22. As a consequence, impaired striatal 
physiology, including changes at glutamatergic, dopaminer-
gic (DA), and cholinergic synapses, may be evident during the  
pre-symptomatic phase of HD23–31.

Within the striatum, the most prominent neuropathology in 
HD is the loss of medium spiny-like neurons (MSNs), also 
known as spiny projection neurons (SPNs), and their cortical  
pyramidal neuronal innervation2,32. MSNs are the earliest affected 
neuronal population in HD (Figure 1) and undergo significant 
loss of dendritic structure and spines with disease progres-
sion in humans and animal models33–39. The cortico-striatal neu-
rons are also affected in HD40 and impact cognitive decline41.  
The polyglutamine stretch in mutant huntingtin (mHTT) causes 
hyperactivity of glutamatergic cortico-striatal neurons and 
enhanced striatal glutamatergic transmission, which begins dur-
ing the asymptomatic phase of HD27–29,42 and contributes to syn-
aptic changes observed in later stages (Figure 1). Dysregulated  
glutamate release at cortico-striatal synapses results in aber-
rant calcium signaling leading to excitotoxity and is believed to  
be one of the causes of MSN vulnerability in HD24,28,29. Geneti-
cally reducing mHTT expression selectively in cortico-striatal  
neurons rescues electrophysiological alterations in striatal  
MSNs and reduces motor disabilities in mice43. Thus, early in 
the disease, a hyperactivity of glutamatergic cortico-striatal neu-
rons driven by mHTT expression causes MSN dysfunction, which  

may influence the gradual death of striatal neurons over time. 
Brain imaging studies in pre-symptomatic HD carriers have 
shown that cortical atrophy occurs early, develops progressively,  
and correlates with the expression and severity of cogni-
tive and motor symptoms44–46. The loss of cortico-striatal neu-
rons leads to hypoglutamatergic input to the striatum at later 
stages of the disease. This suggests that the circuitry within the  
cortico-striatal glutamate neurons and MSNs plays a critical  
role in striatal dysfunction, MSN death, and HD pathogenesis47.

MSNs give rise to two distinct pathways that project to 
either the substantia nigra pars reticulata (SNr) and internal  
segment of the globus pallidus (GPi) (the direct pathway) or 
the external segment of the globus pallidus (GPe), which in 
turn projects to the subthalamic nucleus (STN)48,49 (the indirect  
pathway). MSNs projecting to the GPe appear to be affected 
earlier in HD than the other projection pathway and this has  
been proposed to cause an imbalance in the two pathways 
and the emergence of involuntary movements and chorea50,51.  
Whereas MSNs are vulnerable in HD, other striatal neuronal 
types such as GABA interneurons, including those express-
ing somatostatin and calretinin, are preserved in the disease52.  
It has been suggested that MSN degeneration may be linked 
to a loss of neurotrophic support53,54 and altered glutamate  
released from cortico-striatal neurons.

In addition to glutamatergic control, the different MSN pro-
jecting neurons are regulated by DA nigrostriatal neurons via 
activation of either D1 DA receptors or D2 DA receptors. The  
different populations of striatal MSNs differentially express  
the receptors; MSNs projecting to the SNr express D1 DA 
receptors, while MSNs projecting to the GPe primarily express 
D2 DA receptors55,56. Dopamine released from nigrostriatal  
neurons diminishes cortico-striatal glutamatergic excitation 
of the D2-expressing MSN striatopallidal neurons and may be 
neuroprotective57–59. In contrast, striatal stimulation of D1 DA  
receptors in MSNs appears to enhance glutamatergic transmis-
sion and may contribute to neurodegeneration and neuronal  
loss in the striatum and MSN-SNr projecting neurons60–62.

Whereas these studies suggest opposing roles of D1 and D2 
DA receptors with regard to glutamate toxicity in the stria-
tum, other work has shown that antagonism of both receptors  
reduces neuronal loss in the striatum58 and that blocking D2 
receptor stimulation significantly reverses DA potentiation of 
mHTT-induced MSN cell death63. Consistent with the loss of  
MSNs in HD, both D1 and D2 DA receptor densities in the  
striatum are decreased in HD, even in asymptomatic patients, 
indicating that DA signaling is disrupted in the disease64–66.  
Striatal D1 and D2 DA receptor densities are also reduced in 
different animal models of HD67–70. Loss of DA receptors in 
patients with early-stage HD has been correlated with early  
cognitive decline71.

Genetic models have been developed to study both the  
molecular and cellular basis of HD and to provide systems to  
identify novel therapeutics, including small-molecule drugs,  
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Figure 1. Alterations in Neuronal Circuitry in the Basal Ganglia in HD. A) Normal basal ganglia: The direct pathway consists of striatal 
medium spiny-like neurons (MSNs) expressing D1 dopamine receptors (D1-MSN) that project GABA/substance P (SP) neurons to the internal 
capsule of the internal globus pallidus (GPi) and the substantia nigra reticulata (SNr). The indirect pathway consists of MSNs expressing D2 
dopamine receptors (D2-MSN) that project GABA/Enkephalin (Enk) neurons to the external capsule of the external globus pallidus (GPe) 
which then projects GABA neurons to the subthalamic nucelus (STN). The STN projects glutamate neurons to the GPi and SNr. The MSNs 
are innervated by dopamine neurons from the substantia nigra compacta (SNc) and by glutamate neurons from the cortex. The GPi projects 
inhibitory GABA neurons to the thalamus, and the thalamus projects excitatory glutamate neurons to the cortex. The motor cortex also projects 
glutamate neurons to the spinal cord to control movement. B) Basal ganglia at early stages of Huntington’s disease (HD): Cortical glutamate 
neuronal input to the striatum is hyperactive at early stages of HD, based on animal model work (R6/2 mice). This causes excitotoxicity.  
D2-MSNs are believed to be more sensitive to the glutamate hyperactivity and begin to degenerate first. The diminished GABA/Enk input 
to the GPe can produce an imbalance in the basal ganglia function and increase activity in the GPe which subsequently alters activity  
in the STN. C) Basal ganglia at later stages of HD: Both the cortex and striatum show degeneration in later stages of HD. The lost cortical 
glutamate neurons result in hypoactivity in the striatum. Both the D1-MSNs and the D2-MSNs degenerate.
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biologicals, nucleic acids, and cell-based therapeutics to 
slow progression of the disease. Here, we will focus on the  
development and use of transgenic mouse models to study 
HD. We emphasize electrophysical results that have begun 
to elucidate mechanisms of neuronal circuit dysfunction that  
may be related to behavioral deficits in HD.

In vivo HTT transgenic mouse models
R6/2 mouse model of Huntington’s disease
The first in vivo rodent model of HD to be developed was the 
R6 line, including the R6/1 and R6/2 models72. (See Table 1  
for summary of results of mouse models.) The R6/2 mouse 
model, which is the most widely studied, has a transgene  
containing the promoter and exon 1 fragment of human HTT   
with 150 CAG repeats inserted into the mouse genome73.  
The R6/2 model robustly demonstrates the pathological hall-
marks of HD, such as motor dysfunction and inclusion body  
(IB) formation and premature death73–76. The mice survive for 
about 15 weeks, and mHTT aggregates and inclusions form  
before the emergence of behavioral phenotypes, which include 
irregular gait, clasping, weight loss, increased grooming, 
and cognitive deficits by 5 weeks of age73. As the mice age,  
they develop seizures. Because of the rapid progression of 
disease phenotypes, the R6/2 mice have been proposed as a  
model of juvenile HD.

R6/2 mice display a number of degenerative abnormalities in 
electrophysiological properties of MSNs and cortico-striatal  
neurons that may contribute to the rapid appearance and pro-
gression of motor and cognitive deficits. The MSNs of  
symptomatic R6/2 mice have reduced membrane capacitance 
and increased input resistance, caused by reduced K+ channel 
expression24,34,77. Spontaneous GABA currents and inhibitory  
post-synaptic currents are increased in R6/2 MSNs78,79, 
whereas excitatory post-synaptic currents (EPSCs) are  
decreased24,80–82, which together result in a decrease in burst  
firing in the striatum.

The electrophysiological properties of the two populations of 
striatal MSNs—those innervating the SNr and those innervating  
GPe—are differentially affected in R6/2 mice, resulting in 
an imbalance in striatal output that may contribute to motor  
dysfunction83. GABAergic MSNs that innervate the SNr have 
reduced activity in R6/2 mice, resulting in reduced GABA

A
  

receptor–mediated responses in the SNr and hyperactiv-
ity of DA neurons. This hyperactivity may contribute to HD  
progression57. In contrast to the MSNs projecting to the SNr, 
GABAergic MSNs projecting to the GPe showed increased 
responses in the GPe. In addition, early on, the cortical  
pyramidal glutamatergic neurons that project to MSNs 
become hyperexcitable in R6/2 mice and this enhanced activ-
ity precedes behavioral symptoms84. This was shown in a study  
by Burgold et al. (2019)85, who used chronic in vivo  
two-photon calcium imaging to study neurons in the motor 
cortex of behaving R6/2 mice. The R6/2 mice showed hyper-
activity of the cortical neurons prior to the appearance of  
motor deficits. Furthermore, Fernández-García et al. (2020)86 
used optogenetic techniques to show that stimulation of  

degenerating secondary motor cortex neurons of R6/1 mice 
that project to the dorsolateral striatum reversed motor defi-
cits and changes in long-term depression and normalized  
spine density within the striatum. The cortical neurons in 
the R6/2 mice exhibit decreased synchrony87, and synchrony  
between the cortex, striatum, and STN is disrupted88,89. In addi-
tion, glutamate uptake may be impaired47. Lack of uptake can 
lead to an overabundance of synaptic glutamate, which in turn  
can initiate an excitotoxic neuronal death cascade.

Relatedly, decreased expression of the glutamate transporter 
1 (GLT-1) has been reported in the striatum and cortex of  
postmortem HD brains and R6/2 mice90–96. Studies in R6/2 mice 
showed that cortical pyramidal neurons are more sensitive  
to compromised glutamate reuptake and that failure in this 
system might lead to overactivation of glutamate receptors 
in the frontal cortex and striatum91. Interestingly, as frontal  
cortical pyramidal neurons in the R6/2 mice are more prone 
to paroxysmal activity, this brain area might be a trigger 
for the development of epileptic seizures observed in R6/2  
mice84,97. GLT-1 is predominantly expressed in astrocytes98, 
suggesting a critical role of astrocytes in neurodegeneration, 
revealing that the pathology caused by mHTT is not limited to  
neurons99,100. The rapid progression of phenotypes in R6/2 
mice is particularly useful in trying to identify potential  
disease-modifying agents. Indeed, recent studies using R6/2 
mice have revealed a promising cell-based therapy to treat HD 
using human embryonic stem cell–derived neuronal stem cells 
(hNSCs)101.

Although the R6/2 model exhibits robust disease-related  
phenotypes, there are caveats. Primarily, the transgene con-
tains only the first exon of HTT; therefore, the protein lacks 
motifs such as the HEAT domain, through which HTT inter-
acts with other proteins102,103. In addition, this fragment lacks  
post-translational modification sites that control HTT cleav-
age and may contribute to toxicity of mHTT104–106. These limita-
tions may explain why the pathological consequences of R6/2 
mice differ from those of other transgenic mouse models of  
HD, described in more detail below.

N171-82Q mouse model of Huntington’s disease
Another HD model that expresses an N-terminal fragment of 
human mHTT is the N171-82Q mouse. The mouse carries a 
cDNA encoding the N-terminus of human HTT with the initial  
171 amino acids and 82 CAG repeats, driven by the mouse prion 
promoter107. N171-82Q mice show striatal atrophy and mod-
est MSN degeneration, ventricular enlargement, and a fail-
ure to gain weight108,109. They develop tremors, hypokinesia, 
and lack of coordination. The N171–82Q mice have a more  
delayed disease onset and longer survival than R6/2 mice107.

N171–82Q mice also exhibit altered functional neuronal con-
nectivity, as assessed by functional magnetic resonance imaging  
(fMRI)110. Bilateral connectivity between the motor corti-
ces and somatosensory cortices is reduced in these mice, as is  
intrastriatal connectivity. The weak intrastriatal connectivity is 
positively correlated with striatal atrophy and reduced motor  
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function. In these respects, the mice mirror patients with HD, 
as fMRI also shows altered functional connectivity of cortical  
and thalamic regions associated with impaired motor func-
tion in patients with HD111–116. Reduced intrinsic functional  
connectivity is present even in premanifest HD gene carriers 
and to a much larger extent in patients with manifest HD111–116.  
These studies suggest that mHTT causes disruption of normal 
neuronal and functional linkage of brain regions involved in  
motor control and cognition.

YAC72 and YAC128 mouse models of Huntington’s disease
The first full-length human mHTT transgenic animal mod-
els harbored HTT with either 72 or 128 CAG repeats in a yeast  
artificial chromosome (YAC) that includes all of the human 
regulatory elements, such as the introns, integrated into the  
mouse117,118. These models displayed a less severe pheno-
type than the R6/2 mice and express mHTT at levels similar 
to endogenous HTT118. At about 2 or 3 months of age, the mice  
develop symptoms, including motor and cognitive deficits that 
correlate with the appearance of mHTT aggregates and stri-
atal and cortical atrophy104,117,119. The progression of symptoms  
begins with hyperactivity, followed by difficulty in walking 
along a rotating rod, and then hypokinesia. Deficits in rotarod  
performance correlate with loss of striatal neurons117. Many 
of the electrophysiological abnormalities of the MSNs and 
cortico-striatal neurons observed in R6/2 mice are similarly 
found in the YAC128 mice24,28,80. There is also reduced syn-
chrony between the cortex, striatum, and STN in the YAC128  
mouse88,89. This is consistent with findings in HD brain show-
ing a progressive disconnect between the cortex and striatum  
with progression of striatal degeneration39,146.

In 2015, Pancani et al. reported that a muscarinic M4 receptor 
drug reduced the excessive cortical glutamatergic transmission 
in cortico-striatal slices of YAC128 mice147. The normalization  
of glutamate transmission occurred via M4 receptors localized  
pre-synaptically to the cortical neuronal input. The drug also 
reduced motor deficits in the mice, suggesting that therapeu-
tics designed to normalize the cortical striatal imbalance might  
be therapeutically useful.

Furthermore, Al-Gharaibeh et al. used the YAC128 model to 
demonstrate that induced pluripotent stem cell (iPSC)-derived  
NSCs have the potential as a treatment of HD148. Mouse  
iPSC-NSCs bilaterally implanted into the striatum of YAC128 
mice differentiated into MSNs and reduced motor deficits.  
The protective effect of the cells was suggested to be related 
to their ability to increase levels of brain-derived neurotrophic 
factor, which supports the survival of remaining neurons  
in the striatum149–151.

BACHD mouse model of Huntington’s disease
The first conditional full-length mHTT mouse model of HD was 
the bacterial artificial chromosome (BAC) transgenic mouse 
model of HD (BACHD), which expresses human full-length  
mHTT with a mixture of 97 CAG and CAA repeats under the 
control of endogenous HTT regulatory machinery120. In terms 
of phenotype, the BACHD model is similar to the YAC128  

HD mouse in many ways; progressive motor deficits are  
apparent as early as 2 months of age, and striatal and cor-
tical atrophy occur at 12 months70. BACHD mice display 
hypoactivity in the open-field test121 as well as changes in  
affective behavioral phenotypes such as increased anxiety and  
depressive behavior at 6 months122.

Many of these phenotypes parallel the development of electro-
physiological deficits in cortical pyramidal neurons, cortical  
interneurons, and striatal MSNs. This progressive synaptic 
pathology occurs around 3 months of age, when the motor defi-
cits are still mild123. Electrophysiological analysis of MSNs  
of 6-month-old BACHD mice demonstrated selective reduc-
tion of large-amplitude EPSCs in striatal neurons120. These 
changes are paralleled by decreased cortical parvalbumin (PV) 
interneuron excitation and decreased pyramidal cell inhibi-
tion, resulting in increased cortico-striatal excitability onto  
striatal MSNs and a decline in motor function123.

Because synaptic dysfunction in cortico-striatal neurons and 
striatal MSNs is a critical neurodegenerative process in HD,  
researchers have used the BACHD mouse to study the effect 
of mHTT deletion in cortical pyramidal neurons, striatal 
MSNs, or both43. BACHD mice show significant reductions in  
N-methyl-d-aspartate (NMDA)-evoked synaptic responses in 
striatal MSNs in slices, and genetically reducing mHTT lev-
els in either cortical pyramidal neurons or MSNs partially  
reversed this deficit. Furthermore, the MSNs of BACHD 
mice show reduced activity, indicated by reduced spontane-
ous EPSCs and increased spontaneous inhibitory post-synaptic  
currents (IPSCs), and these deficits are ameliorated by reduc-
ing mHTT levels in cortical pyramidal neurons. The synap-
tic deficits were more effectively improved when mHTT was 
removed from both MSNs and cortical pyramidal neurons.  
In addition, reducing mHTT levels in cortical neurons also 
improved neuronal activity in cortical neurons124. These findings 
suggest that mHTT in both cortico-striatal pyramidal neurons  
and MSNs contributes to synaptic deficits in striatal MSNs.

Removal of mHTT from cortical pyramidal neurons or MSNs 
partially reversed motor behaviors measured in the rotarod  
and locomotion tests, but removal of mHTT from both neuro-
nal populations was required to restore these motor behaviors 
to wild-type control levels43. BACHD mice also exhibit anxi-
ety-like behaviors as measured by light–dark box exploration  
and depression-like behavior in a forced swimming test. 
Reducing mHTT in cortico-striatal pyramidal neurons or both  
cortico-striatal pyramidal neurons and MSNs significantly 
improved these psychiatric behavioral deficits, whereas mHTT  
reduction in MSNs alone did not.

These studies suggest that mHTT in striatal MSNs contrib-
utes to some aspects of striatal pathogenesis, but the patho-
genesis of many behavioral and neurodegenerative phenotypes  
likely requires mHTT expression in other populations. In  
particular, dysfunction of cortical pyramidal neurons due to  
expression of mHTT contributes to synaptic deficits in MSNs 
and motor and psychiatric behavioral deficits. These findings  
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indicate distinct but interacting roles of cortical and stri-
atal mHTT in HD pathogenesis and support a role for  
non-cell-autonomous mHTT toxicity in striatal pathogenesis.

There is also significant evidence that non-neuronal popula-
tions contribute to HD152. The BACHD model was recently 
used to investigate the role of mHTT in astrocytes on disease  
phenotypes125. That study showed that selective reduction of 
mHTT in astrocytes in the cortex and striatum improved stri-
atal MSN synaptic responses and behavioral phenotypes. mHTT  
in astrocytes may contribute to neuronal dysfunction by altering 
the regulation of extracellular glutamate and other key aspects  
of synaptic transmission. Altered glutamate release in HD 
models has been described both in vitro and in vivo110,153, and  
impaired glutamate signaling might further occur in HD as a 
consequence of decreased glutamate uptake. Studies of HD  
postmortem brain and HD transgenic models have consist-
ently shown decreased GLT-1, which is responsible for 
the bulk of glutamate uptake in astrocytes93–95. These find-
ings support the role of astrocytes in mHTT-induced HD  
pathophysiology.

BACHD mice have also been used to study the role of post-
translational modifications of mHTT, in particular protein  
phosphorylation, in disease pathogenesis. Three potential 
phosphorylation sites—serines 13 and 16 in the N-terminal 
region and serine 421 in the Akt consensus sequence—were  
studied154,155. Biochemical studies have shown that phospho-
rylation at serines 13 and 16 significantly alters the structure  
of mHTT155, and phosphorylation at serine 421 alters the trans-
port of mHTT156, suggesting that post-translational modifica-
tions at these sites may affect function of this protein. For the 
studies in BACHD mice, mHTT constructs were generated in  
which the serines were converted to aspartates to mimic  
phosphorylation or to alanine to prevent phosphorylation. 
The phosphomimetic substitutions were protective and res-
cued locomotor deficits and anxiety-like behaviors and reduced  
striatal neuronal loss, whereas the alanine mutations did not 
hinder the pathogenic actions of mHTT. In the case of the serine  
421 site, the phosphomimetic substitution reduced steady-state 
levels of pathogenic soluble mHTT and increased turnover  
to improve clearance of mHTT. These studies thus identified 
specific structural changes in mHTT that may be responsible  
for pathophysiology in HD.

Knock-in Huntington’s disease mouse models
Knock-in (KI) mouse models of HD consist of the human HD 
mutation inserted into the mouse HTT gene locus. Because 
the mutation is expressed in its appropriate genomic and  
protein context, these models are believed to more accurately 
represent the genetic basis of HD and have been used exten-
sively to investigate the pathophysiology of HD and potential  
treatments126. The three KI models that have been studied the 
most are the Q140, Hdh(CAG)150, and Q175 mice, although 
other models with varying CAG expansions, including those with  
50, 92, and 111 CAG repeats, have also been developed and 
studied157,158. In the Q140 mice, mouse exon 1 of HTT is 
replaced by a mutated version of human exon 1127,128. Robust  

behavioral deficits as well as motor abnormalities have been 
detected in homozygous CAG140 mice128,135,136. The neuropa-
thology consists of mHTT nuclear staining and aggregates in  
the striatum and cortex, which become intense and widespread 
at only 4 months of age. The early pathology corresponds 
to brain regions that receive DA inputs, supporting the rela-
tionship between dopamine and HD pathology128,159. mHTT  
aggregates are also first seen in the striosomes, consistent 
with the early vulnerability of this region in humans137. These 
mice also show early loss of thalamic-striatal neuronal input 
to MSNs, which may contribute to striatal dysfunction mani-
fest as diminished excitatory drive in the striatum138. In old age  
(1–2 years), CAG140 mice show late striatal neuronal loss 
and atrophy. Surviving neurons express loss of spines and  
reduced dendritic complexity. The olfactory system displays 
early and marked aggregate accumulation, which may be rel-
evant to the early deficit in odor discrimination observed in  
patients with HD139,140.

In the Hdh(CAG)150 model, 150 CAG repeats were inserted 
into the mouse HTT but no human sequences are included129. 
This model shows a delayed onset of symptoms compared with  
CAG140 mice but exhibit motor defects, such as balance 
and gait abnormalities, as well as clasping and weight loss, 
by 40 weeks of age131. Cognitive deficits occur at around 
24 weeks of age132. By 22 months, they show widespread 
mHTT aggregation throughout the brain and transcriptional  
dysregulation160.

Interestingly, a study by Arnoux et al. (2018)161 using in vivo 
two-photon Ca2+ imaging in premanifest Hdh(CAG)150 KI mice  
showed increased neuronal activity in the visual cortex. This 
finding is consistent with early signs of hyperactivity in cortical  
networks found in other HD models and the finding that early 
in HD the visual cortex is one of the first brain regions to  
show dysfunction162.

Side-by-side comparison of CAG140 and Hdh(CAG)150 mice 
by Franich et al. (2019)133 showed that CAG140 mice exhibit  
earlier onset of behavioral deficits and formation of nuclear 
inclusions. The authors proposed that these differences may 
be due to an incompletely spliced HTT exon 1 transcript in the  
CAG140 mouse, which encodes the highly pathogenic exon 
1 mHTT protein163,164 which leads to early aggregation. The 
very early phenotypic deficits in the Q140 mice have made  
them an ideal model for testing novel therapeutic interventions.

The Q175 KI mouse is a spontaneous extension of the Q140 
KI130. The Q175 KI mouse shows behavioral changes, includ-
ing motor, cognitive, and circadian deficits130. These mice 
exhibit gait abnormalities at 4 weeks of age, hypoactivity  
as measured in the open-field test by 4 months130,134, rotarod 
and climbing abnormalities at 30 weeks of age, and cog-
nitive deficits at 12 months. mHTT aggregates are widely  
distributed throughout the brain, and the number of neu-
rons containing nuclear inclusions increases with age in both 
the striatum and cortex134. Morphological alterations include  
decreased numbers of MSNs and striatal volume loss81.
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Both CAG140 and Q175 mice have been used to study synap-
tic changes caused by mHTT. Within the striatum, there is a  
decrease in burst firing in CAG140 KI mice142,143, consistent with 
decreases in EPSCs and increases in IPSCs, much like those 
found in R6/2 mice24,78. The cortex of CAG140 mice shows  
increased EPSC frequency84 and decreased synchrony87. Donzis 
et al. (2020)165 used two-photon laser-scanning microscopy  
on symptomatic Q175 mice to study network circuitry in the 
motor cortical neurons and found that calcium transients had 
reduced amplitude, suggesting decreased bursting activity. In  
contrast, in pre-symptomatic Q175 mice, neuronal activity was 
increased, consistent with a switch in activity of these neurons  
over time.

Electrophysiological studies have shown that spontaneous 
GABAergic currents in striatal MSNs are increased in sympto-
matic Q175 mice78 but that EPSCs in MSNs are decreased24,80–82  
because of alterations in glutamatergic inputs from the cor-
tex and thalamus28,78,144. Significant decreases in spine density of 
MSNs were found in Q175 mice. The increase in frequency of  
IPSCs combined with the decrease in frequency of EPSCs 
generate an imbalance in the ratio of inhibition to excitation,  
which is relevant for understanding phenotype progression.

This notion is supported by evidence that shows a decline in 
the glutamate-to-GABA ratio measured by high-performance  
liquid chromatography in 6-month-old Q175 mice141. Striatal 
interneurons—both persistent, low threshold-spiking somato-
statin-expressing interneurons and fast-firing PV-expressing  
interneurons—are principal sources of the rise in inhibition seen 
in MSNs in the R6/2 and BACHD models166. Loss of excita-
tory inputs to MSNs, which seem to be associated with loss of  
dendritic spines and increased inhibitory inputs to MSNs, is  
exhibited by the Q175 mice.

Studies in R6/2 mice showed that in addition to an alteration of 
striatal MSN properties, there were changes in output regions 
of MSNs that may contribute to the pathophysiology of HD.  
Similarly, Atherton et al. showed that in Q175 mice, STN  
neurons have altered synaptic properties indicative of dysfunc-
tion and degeneration145. The STN is a critical component of 
the direct and indirect MSNs output pathways and is criti-
cal for constraining cortico-striatal activity underlying action  
selection48,167. In Q175 mice, autonomous STN activity is 
impaired because of activation of KATP channels. STN neurons  
exhibit prolonged NMDA receptor–mediated synaptic currents 
due to deficient glutamate uptake, which can be rescued by 
NMDA receptor antagonism. At 12 months of age, about 30% 
of STN neurons are lost in these mice141. The STN dysfunction  
and neuronal loss precede striatal cell death and cortico- 
striatal abnormalities and occur prior to the onset of major 
behavioral symptoms. Thus, dysfunction and degeneration of  
cortical and striatal neurons occur in concert with profound 
changes in other elements of the basal ganglia. Dysfunction 
within the STN is an early HD feature that may contribute to  
its expression and course145.

Interestingly, the availability of KI mouse models with a  
large range of CAG repeats (50, 92, 111, 140, 150, and 175 
CAG repeats) has facilitated studies to establish the relation-
ship between CAG repeat length and the changes in behav-
ior and brain transcription that are linked to the progression 
of pathogenesis168,169. Similarly, Ament et al. (2017)170 used  
KI mice with different CAG repeats to begin to understand 
the molecular basis of CAG repeat instability in the striatum  
linked to neurodegeneration. Others have also used the KI 
mice to investigate the role of epigenetic changes that con-
tribute to chromatin remodeling171 and DNA repair alterations  
in HD172,173.

Conclusions
The development of in vivo animal models of HD has greatly 
added to our understanding of the biology of HD and the molec-
ular and cellular pathways that drive pathogenesis. One issue  
to consider in the different mouse models is the different forms 
of mHTT expressed in each. Those with fragments, such as 
the R6/2 mouse, may produce exaggerated phenotypes and,  
because the expressed protein lacks downstream regulatory 
sites, may lack the full range of mutant HTT gene and protein– 
protein interactions. Although the BACHD model has pro-
vided important information on structural aspects of the mHTT 
protein that impact disease behaviors such as locomotion and  
anxiety, this model is unusual in that the mice gain excessive 
weight whereas most patients with HD generally have greatly  
reduced weight. Similarly, the YAC128 mice which express 
full-length human mHTT also exhibit weight gain. This anom-
aly may be unrelated to CAG repeat length and has been pro-
posed to be due to the impact of HTT on the expression of  
IgF-1174. In the KI model, the expanded human CAG repeats 
and human exon 1 are inserted into the mouse Htt locus, so a  
chimera of the full-length mouse protein with the N-terminal 
human portion is expressed. Many aspects of the pathology 
and behavioral deficits in the Q140 KI mouse and the spon-
taneously expanded Q175 KI mouse mimic disease charac-
teristics found in patients with HD, and importantly those  
phenotypes are robust. Accordingly, some have proposed that  
these mice may be preferable models of the disease133.

The best model is the one that is the most predictive of human 
disease. Unfortunately, animal models for most human neuro-
degenerative diseases have historically been poor at predict-
ing which therapeutics are most likely to work in humans.  
However, as our understanding of the disease mechanisms of 
HD advances, so will the design of animal models to discover 
and test innovative therapeutics that may be translated into  
treatment to slow the onset and progression of HD.
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