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Abstract: Invasive melanoma, a common type of skin cancer, is considered one of the deadliest.
Pathologists routinely evaluate melanocytic lesions to determine the amount of atypia, and if the
lesion represents an invasive melanoma, its stage. However, due to the complicated nature of
these assessments, inter- and intra-observer variability among pathologists in their interpretation
are very common. Machine-learning techniques have shown impressive and robust performance
on various tasks including healthcare. In this work, we study the potential of including semantic
segmentation of clinically important tissue structure in improving the diagnosis of skin biopsy images.
Our experimental results show a 6% improvement in F-score when using whole slide images along
with epidermal nests and cancerous dermal nest segmentation masks compared to using whole-slide
images alone in training and testing the diagnosis pipeline.

Keywords: whole slide imaging; skin biopsy; melanoma diagnosis; machine learning; semantic
segmentation; transformers; accuracy

1. Introduction

Melanoma is one of the deadliest types of skin cancer, and its incidence has been
increasing faster than any other cancer [1–3]. If Melanoma is caught in its earlier stages, it
is highly curable; however, because of the complexity of skin biopsies and the subjectivity
of visual interpretation, there is significant uncertainty in the accuracy of pathology reports.
Studies have shown that pathologists’ diagnoses of moderately dysplastic nevi to thin
invasive melanomas are neither accurate nor reproducible in some cases [4]. These reports
raise concerns about appropriate treatment and the consequences of both under- and
over-diagnosis. Deep learning has shown excellent performance on various tasks, and
healthcare is not an exception [5–8]. Using deep-learning techniques to provide prognostic
and diagnostic information for pathologists during screening and treatment stages can be
an aid in clinical care.

Deep learning and artificial intelligence (AI) have achieved unparalleled success in
various tasks such as classification, segmentation, detection, etc. However, though the
state-of-the-art approaches in this field show fast and accurate performance, they face
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challenges in dealing with medical datasets. Medical datasets usually are small in sample
size, have large images, and do not have many examples of perfect annotations. As the
field of AI in healthcare has grown significantly in recent years, more robust methods in
this area have emerged.

In addition, demand for diagnostic models and classification tools based on histopatho-
logical images has increased due to inter- and intra-observer variability in pathology and
the potential solution that AI methods can produce. Providing prognostic and diagnostic
information at the time of cancer diagnosis has important implications on patient outcomes,
as automated machine-learning methods on whole-slide images provide a promising way
forward for efficient and robust pathology analysis.

Various studies have introduced diagnosis models based on whole slide images
(WSIs). In [9], the authors introduced a CNN-based deep feature extraction framework
to build slide-level feature representations via weighted aggregation of the patch repre-
sentations and overcome the challenge of working with variable-sized regions of interest.
Li et al. [10] extracted relevant patch representation using self-supervised contrastive learn-
ing and introduced a dual-stream architecture with trainable distance measurement to
train an MIL model called the dual-stream multiple instance learning network (DSMIL).
Chikontwe et al. [11] proposed a multiple instance learning (MIL) method based on a trans-
former that first selects the top-k patches, and then used these patches for instance-learning
and bag-representation learning. In addition, this method uses a center loss that maps
embeddings of instances from the same bag to a single centroid and reduces intra-class
variations for final diagnosis.

Segmentation-based methods are another approach that has been studied in the field
of histopathology image analysis, as different tissues and entities in these images might
play an important role in the diagnosis of the case. Several works with this approach first
generate semantic segmentation masks on WSIs, and using the extracted information from
those masks, produce an image-level diagnosis [12–14]. While this approach is a valuable
study direction, the challenge of dealing with imperfect annotation or lack of annotation is
not addressed in such studies.

In our prior AI-based diagnosis work in pathology, our studies utilize regions of
interest (ROI) rather than the larger whole slide images (WSI) [9,13,15]. There are two main
reasons we used the full WSI for the current study. First, Mercan et al. [16], in the effort to
find diagnostically relevant ROIs on breast biopsy WSI, reported that 74% of the output
probability map overlapped with the actual ROIs from pathologist viewing behavior, while
26% did not. If such early probability maps are utilized for diagnosis tasks, there is a chance
that important diagnostic information is missed or misused. The second reason behind
our approach using WSI relates to the interpretive process used by pathologists as they
view, assess, and interpret WSI of skin biopsies using current published definitions for
clinical classification. The pathologists’ clinical process and classification systems vary by
tissue type—for breast biopsy cases, a single ROI of an area within a duct might suffice to
allow the pathologists to come to a diagnosis. However, the process used by pathologists
of reviewing skin biopsy image data and the information within skin biopsies used to
determine a diagnosis is different—information on the image from larger structural data in
addition to image data within small clusters of cells is important to both rule in and rule
out different diagnoses. Thus, for a diagnosis of melanoma and its precursors, reviewing
information from the larger WSI is required in current clinical practice by pathologists
before they can provide a diagnosis.

In this work, we therefore incorporate tissue segmentation masks that were generated
based on sparse and coarse annotations of the full skin biopsy WSIs. The goal is to inves-
tigate the potential of providing this information in the process of skin biopsy diagnosis
using WSI. Our experimental results show that including a clinically certain important
tissue structure along with WSIs improves the learning of the model, especially in chal-
lenging diagnostic classes such as melanoma in situ (MIS) and invasive melanoma (T1a).
Examples of tissue structures that show the highest improvements are Epidermal Nests
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and melanoma dermal nests (cancerous). These tissues are considered clinically important
in the decision-making process by human pathologists. Comparing our results with 187
pathologists’ performance on the same test set shows that our model can outperform or
have comparable performance on the cases with the aforementioned diagnostic classes.

2. Materials and Methods
2.1. M-Path Dataset

Our dataset comes from the M-Path study [4] that was approved by the Institutional
Review Board at the University of Washington (protocol number STUDY00008506) and
was conducted by a Bellevue, Washington dermatopathology laboratory. Two-hundred-
and-forty hematoxylin and eosin (H&E)-stained slides of digitized skin biopsy images from
this study are included in our project and can be classified into five different MPATH-Dx
(melanocytic pathology assessment tool and hierarchy for diagnosis) simplified categories
based on presumed risk of the lesion and suggested treatment recommendations [17].
Example diagnostic terms for each MPATH-Dx class are as follows: (I) mildly dysplastic
nevi, (II) moderately dysplastic nevi, (III) melanoma in situ and severely dysplastic nevi,
(IV) invasive melanoma stage T1a, and (V) invasive melanoma stage ≥ T1b. Table 1 shows
the distribution of the diagnostic categories of the M-path dataset. Figure 1 shows examples
of three different WSIs in the M-Path dataset.

Table 1. Distribution of diagnostic categories in M-Path data.

Diagnostic Category Number of Cases

Class I (e.g., Mildly Dysplastic Nevi) 25
Class II (e.g., Moderately Dysplastic Nevi) 36

Class III (e.g., Melanoma in Situ) 60
Class IV (e.g., Invasive Melanoma Stage T1a) 72

Class V (e.g., Invasive Melanoma Stage ≥ T1b) 47

Total 240
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Since there was a limitation of one ROI per case, there might have been other diagnosti-
cally important regions on WSIs that are not included in the final ROI. However, assigned 

Figure 1. Three examples of WSIs in the M-Path dataset. The left image is a case with class IV
diagnosis (invasive melanoma stage T1a), the middle image is a case with class V diagnosis (invasive
melanoma stage ≥ T1b), and the right image is a case with class IV diagnosis (invasive melanoma
stage T1a).

Using the MPATH-Dx classification tool [18] that is described above, a consensus panel
of three dermatopathologists with internationally recognized expertise made a consensus
diagnosis for all cases. Following these meetings, the expert panel, as well as an additional
dermatopathologist (S. Knezevich), assigned one rectangular area as a region of interest
(ROI) per case. These ROIs represent an important area of the WSI for diagnosis. Since there
was a limitation of one ROI per case, there might have been other diagnostically important
regions on WSIs that are not included in the final ROI. However, assigned regions have
valuable information that can be used for various purposes. These variable-sized ROIs
(Figure 2) can be extracted using their coordinates.
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Figure 2. Examples of variable-sized region of interests (ROI) assigned by pathologists that contain
important diagnostic information are shown in red boxes: (a) a case with class II diagnosis (moderately
dysplastic nevus), (b) a case with class V diagnosis (invasive melanoma stage ≥ T1b), (c) a case with
class IV diagnosis (invasive melanoma stage T1a).

To reduce the input image size and eliminate the unnecessary information from the
slides’ orientation (since this information is not relevant to the diagnosis of a case), we used
extracted slices from the WSIs. An example of a WSI and its corresponding extracted slices
is shown in Figure 3.
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Figure 3. An example of a WSI (left) and its corresponding slice extraction (right).

2.1.1. Segmentation Masks

In a previous study [19], using coarse and sparse annotations, we trained a two-stage
segmentation pipeline that generates tissue segmentation masks on whole slide images
of skin biopsies. The segmentation masks include epidermis (EP), dermis (DE), stratum
corneum (COR), epidermal nests (EPN), dermal nests (DMN), and background (BG). In the
first stage, using a U-Net model, a model is trained that is able to segment large entities
such as dermis, epidermis, stratum corneum, and background. In the second stage, two
models are trained on the smaller tissue structures of the skin biopsy images. This stage
includes two branches that are trained separately: (1) stage 2-dermis, which uses a U-Net to
train a model on the dermis portion of the image (i.e., DMN); (2) stage 2-epidermis, which
trains a U-Net on the epidermis portion of the image (i.e., EPN).

Using this pipeline, we were able to generate segmentation masks for both large
entities (i.e., dermis, epidermis) and smaller entities (dermal nests, epidermal nests) with
high-quality performance. However, since the annotations of DMN and EPN were coarse,
we observed over-labeling of these entities in segmentation results as well. Figure 4 shows
some examples of segmentation masks generated from WSIs.
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Figure 4. Examples of original WSIs and their corresponding segmentation mask. The segmentation
images contain the dermis, epidermis, stratum corneum, background, dermal, and epidermal nests.
The model was trained on coarse and sparse annotations.

2.2. Dermal Nest Classification

Pathologists investigate structural entities in digitized whole-slide images of melanocytic
skin lesions and assign a diagnosis class to the case based on the various factors, including
morphological characteristics of the cells present in the biopsy images. Assessment of the archi-
tecture and cytomorphology of junctional (epidermal) melanocytes and dermal melanocytes
is necessary to classify and risk-stratify melanocytic lesions.

The evaluation of dermal nests is key in distinguishing a melanocytic nevus from
invasive melanoma. It can also represent one of the most challenging tasks for a pathologist,
especially in the absence of additional lab testing. Generally, dermal nests are categorized
into the two sub-groups of nevus nests and melanoma nests. Dysplastic melanocytic
nevi and severely dysplastic nevi may contain benign dermal melanocytic nests, but only
invasive melanoma contains malignant dermal melanocytic nests.

In [19], we proposed a two-stage segmentation pipeline in which epidermal nests
(EPN) and dermal nests (DMN) were segmented in its second stage. However, since not
enough examples of nevus dermal nests (DMN-N) were available, especially compared to
other entities such as melanoma dermal nests (DMN-M) and epidermal nests (EPN), we
decided to combine nevus dermal nests (DMN-N) and melanoma dermal nests (DMN-M)
into one class of dermal nests (DMN) in that project. In this paper, we propose an additional
step to the output of our segmentation model that allows us to classify segmented DMNs
into two sub-categories of nevus or melanoma. We train a CNN model that is able to
segment dermal nest into melanoma dermal nest and nevus dermal nest. The classes of
epidermal nests, melanoma dermal nests, and nevus dermal Nests can now be used in our
experimental pipeline.

2.2.1. Dermal Nest Dataset

To train a dermal nest classifier, some ground truth on different categories of dermal
nests is required. The ground-truth annotations in this project are a subset of the coarse
and sparse annotations that were introduced in Section 2.1.1. The original set contained a
small number of examples of nevus dermal nests on ROIs with the diagnostic classes of
I, II, and III, while there was a relatively larger number of examples of melanoma dermal
nests on ROIs belonging to cases with diagnostic classes IV and V. The main challenges
in working with these annotations were two-fold: (1) There was a huge gap between the
sample size of nevus dermal nests and melanoma dermal nests in which melanoma dermal
nests contained ~400 M pixels, which is eight times the size of nevus dermal nests with
~50 M pixels and (2) no examples of nevus dermal nests on any invasive melanoma cases
were annotated. The only examples of dermal Nest annotation in these classes belonged to
melanoma dermal nests, while in reality, both types of nests can be present in one invasive
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melanoma case. Hence, in the segmentation model of [19], all dermal nest annotations were
combined into a single class of dermal nests (DMN). Figure 5 shows example annotations of
nevus dermal nests (DMN-M) (Figure 5b) and melanoma dermal nests (DMN-M) (Figure 5e)
and their conversion to dermal nests (DMN) ((Figure 5c) and (Figure 5f)), which were used
for the dataset of [19].
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the original melanoma nests annotation in red, (f) is the converted version of (e) in which red annotation
of melanoma dermal nests (DMN-M) are converted to green markings of dermal nest (DMN).

In this paper, instead of combining the two types of dermal nests, we kept them
separate and extracted them into two categories of nevus dermal nests (DMN-M) (Figure 5b)
and melanoma dermal nests (DMN-M) (Figure 5e). For the nest extraction step, after
masking out everything other than dermal nests in the ROIs, we sampled the nests into two
classes of “nevus” and “melanoma”. The sampling window size is 100 × 100. As expected,
there was a noticeable imbalance in the final dataset between the two classes of “nevus”
and “melanoma” nests. The number of extracted nevus nests was 604 samples, while the
number of extracted melanoma nests was 5732 samples. To solve this imbalanced dataset
issue, we used the result of our previous segmentation model as explained in Section 2.2.2.

2.2.2. Solving Nest Sample Imbalance in the Training Dataset

After acquiring the segmentation model output, the opportunity of overcoming the
annotation imbalance in dermal nests arises. It is known that cases with a diagnosis class of
I, II, and III only contain nevus dermal nests, while both nevus dermal nests and melanoma
dermal nests can appear in a case with diagnostic class IV or V. Although the segmentation
model of [19] does not distinguish between nevus dermal nests and melanoma dermal
nests, we know that all the nests on class I, class II, and class III cases are nevus dermal
nests. The reason is that if there is any appearance of a melanoma dermal nest on a case,
that case will move to one of the invasive melanoma diagnostic categories. Figure 6a shows
an example of segmented dermal nests on a class II case in which we assume all nests are of
nevus type based on the diagnosis of the case. Figure 6b shows an example of segmented
dermal nests on a class V case. Such a case would not be usable for training in this project
since it is not specified which parts of the segmented dermal nests are nevus and which
parts are melanoma.
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Figure 6. Example of dermal nest segmentation (in light green) on WSI: (a) a moderate nevi case; all
the dermal nests are nevi type. (b) An invasive melanoma stage ≥ T1b case; the segmented dermal
nests might contain both nevi and melanoma dermal nests.

Since the training and testing split of the dataset is consistent throughout all the
projects, in addition to the fact that all the dermal nests in cases with diagnosis classes of I,
II, and III must be nevus dermal nests, it is only logical to apply the trained segmentation
model from [19] to WSI of cases I, II, and III to detect dermal nests (DMN); extract them; and
re-label them as nevus dermal nests. Using the new nevus dermal nests, we can randomly
extract DMN-N samples and add them to the nest classification training set to reach a
balanced number of samples for both classes of DMN-N and DMN-M in the training set.

2.2.3. Dermal Nest Classifier

Since convolutional neural networks (CNNs) have shown good performance in various
computer vision and machine-learning tasks, we used this approach in training our dermal
nest classifier. We trained three different architectures, using PyTorch torchvision [20]
pre-trained CNN models, trained on the ImageNet dataset [21]:

• DenseNet: Huang, G., et al. [22], introduced a densely connected convolutional neural
network that improves the flow of information between different stacked convolutional
layers. In our experiments, we used a pre-trained torchvision densenet161 architecture
as a nest classifier model.

• ShuffleNet: ShuffleNet [23] is a convolutional neural network that utilized two new
operations, point-wise group convolution, and channel shuffle, to reduce computation
cost while maintaining accuracy. We used a pre-trained torchvison shufflenet_v2 for
our experiments.

• ResNet: A residual neural network [24] is a CNN that utilizes skip connections to
jump over some layers. We used a pre-trained torchvison resnet18 for two of our
experiments with different training datasets.

In the preprocessing step, we included random cropping, random rotation, horizon-
tal flip, and normalization in the Dataloader function. All the models were trained for
20 epochs with cross-entropy [25] as a loss function, and Adam optimizer [26] with a learn-
ing rate of 0.001. After the training, we evaluated each model’s performance on the same
testing dataset and compared the results.

2.3. WSI Diagnosis Using Tissue Segmentation

In this section, we study the impact of adding each tissue mask to the WSIs in the
classification of our dataset into diagnostic categories. The M-path dataset described in
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Section 2.1 with five diagnostic classes of (1) Class I: mild dysplastic nevi, (2) class II: moderate
dysplastic nevi, (3) Class III: (e.g., melanoma in situ and severely dysplastic nevi), (4) Class
IV: invasive melanoma stage T1a, and (5) Class V: invasive melanoma stage ≥ T1b. The only
difference is that since the clinical risk for progression of both Class I and Class II is extremely
low, and we have a limited sample size in the aforementioned classes, we regrouped the five
classes to four diagnostic classes by combining samples from class I and II into one class. The
final four classes will be (1) Class I–II: mild and moderate dysplastic nevi (MMD), (2) Class III:
(e.g., melanoma in situ, severely dysplastic nevi) (MIS), (3) Class IV: invasive melanoma stage
T1a (T1a), and (4) Class V: invasive melanoma stage ≥ T1b (T1b).

As mentioned in Section 2.1, we used extracted slices to train and evaluate our diagno-
sis models. The main resolution that we used to extract individual slices was 20×. Using
this resolution, we extracted lower resolutions of 7.5×, 10×, and 12.5×, which we later
used for our experimental studies.

2.3.1. Binarized Segmentation Masks

The segmentation masks generated by the proposed pipeline in Section 2.1.1 were
used in the current project. Each tissue mask from that project (epidermis (EP), dermis
(DE), epidermal nest (EPN), and dermal nest (DMN)) was separated into a single binary
mask in order to have more control over tissue combination in our experimental studies on
the diagnosis accuracy. In addition to the aforementioned tissue masks, we included the
two types of dermal masks from 2.2 as two separate binary masks of nevus dermal nest
(DMN-N) and melanoma dermal nest (DMN-M). Figure 7 shows examples of binary masks
for two classes of mild and moderate nevi (MMD) and invasive melanoma stage ≥ T1b
(T1b). Note that the moderate nevi (MMD) case does not include any DMN-M; hence, the
corresponding mask is all zeros.
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Figure 7. Examples of binarized segmentation masks: (a) a moderate nevi case; (b) an invasive
melanoma stage ≥ T1b. From top to bottom, one extracted slice from a WSI, all segmentation masks
in one mask (containing EP, DE, EPN, and DMN), binary Epidermis (EP) mask, binary dermis (DE)
mask, binary epidermal nest (EPN) mask, binary dermal nest (DMN) mask, binary melanoma dermal
nest (DMN-M), and binary nevus dermal nest (DMN-N) mask are shown.

2.3.2. Dataset Split

The dataset of WSIs before the extraction of slices was divided in half, conserving the
original set’s diagnostic class distribution over both subsets. One-half of the dataset was
used for training and validation subsets, and the other half of the dataset was kept unseen
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from the model during the training and solely used for the final evaluation of the trained
model. This split was kept fixed over all the experiments. After splitting the dataset, the
extraction step that is explained in Section 2.1 was applied to all the WSIs in the training,
validation, and testing subsets.

2.3.3. Soft Labels

Usually, each WSI has multiple slices from the same skin biopsy; however, not all the
slices contain related information to the assigned diagnostic class of the case. In clinical
practice, if a pathologist detects invasive melanoma in just one or two slices on one case,
the overall biopsy is diagnosed as invasive melanoma to guide clinical care and treatment.
In our dataset, the ROIs (some examples in Figure 2) that helped pathologists in diagnosis
belong to one or two tissue slices, while the other tissue slices may correspond to other
diagnostic categories. If all the extracted slices from a WSI are assigned to one diagnostic
class, there is the risk of false representation of that diagnostic class, which can interfere
with the learning process of a model. To handle this issue, we used a method that was
previously developed by our group in which, using a singular-value decomposition (SVD),
soft labels are assigned to the slices that do not have an ROI on them. For more information
about the details of this method, refer to [27].

2.3.4. Combining WSI and Segmentation Masks

We tried various methods to combine the information from WSIs and corresponding
segmentation masks. The final method that we chose to implement and run our experiments
is as follows: Each WSI has three channels of RGB: red (R), green (G), and blue (B). In order
to add segmentation mask information to our data, we concatenate each mask as a new
channel to the image. For example, if we add a DMN channel to the WSI, we will have a
new input with four channels: R, G, B, and DMN. This approach gives the flexibility of
investigating any combination of tissue masks that are of interest. In addition, the feature
extractor obtains the information of appended tissue masks along with the original WSI,
which might result in a more representative feature set.

2.3.5. Feature Extraction

We used MobileNetv2 [28] pre-trained on the ImageNet dataset [21] as a feature
extractor on our extracted patches. MobileNetv2 outputs 1280-dimensional patch-wise
features after global average pooling. Since the pre-trained network on the ImageNet
dataset is essentially a network with three input channels of RGB, we modified the first
layer of the network by replacing it with a Conv2d layer that has input channels equal
to the number of input image channels. The number is not fixed since, as explained in
Section 2.3.4, the number of input image channels depends on the tissue mask combination
in a specific experiment. Changing the first layer of the network, which is not pre-trained on
any image, has the potential of negatively impacting the feature extraction step; however,
as we will see in the next sections, the results do not show any clear effect of such. The
reason might be the nature of CNNs in which the first few layers are focused on low-level
features, while the middle layers mainly extract high-level and fine detailed features.

2.3.6. Scale-Aware Transformer Network (ScATNet)

In previous work, Wu et al. [27] proposed scale-aware transformer network (ScATNet)
for diagnosing melanocytic lesions using WSIs. ScATNet uses local and global represen-
tations from various scales. In this architecture, the first step is to learn local patch-level
embeddings on each scale using a pre-trained CNN. Then, using a transformer, the model
learns the contextualized patch embeddings for each scale. In the last step, scale-aware
embeddings across various scales are trained to the model [27].

ScATNet projects extracted patch-wise features explained in Section 2.3.5 linearly to a
128-dimensional space. In the second and third steps of the ScATNet pipeline, a stack of
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two transformer units is used. Each transformer unit has four heads in the self-attention
layer with a feed-forward dimension of 512.

2.3.7. Experimental Studies

In order to investigate the impact of different tissue types, we designed several ex-
periments with various combinations of tissue segmentation masks, using ScATNet as
the basic model. In each experiment, we included specific segmentation masks along
with the WSI; extracted the features as explained in Section 2.3.5; and using the extracted
features, we trained and tested a diagnosis model. We ran the experiments with various
resolution scales (7.5×, 10×, 12.5×, combination of two scales, and all three scales), with
different hyperparameters, and after finding the best setting, we ran all the experiments
with different random seeds.

Figure 8 shows an overview of our approach.
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Figure 8. Overview of our diagnosis pipeline. The WSI goes to the segmentation pipeline to generate
a tissue segmentation mask. Then, four clinically important tissue structures: epidermis (EP), dermis
(DE), epidermal nest (EPN), and dermal nest (DMN) will be extracted into four corresponding binary
masks. Extracted Dermal Nests will go through a dermal nests classification step to generate two
sub-categories of melanoma dermal nest (DMN-M) and nevus dermal nest (DMN-N). Then, the
selected tissue masks based on the experiment will be concatenated to the RGB channels of the WSI
image. Each image will be cropped into smaller patches afterward. The patches go through the
ScATNet pipeline that extracts patch embeddings, then, using contextualized patch-embedding and
scale-aware embedding across available scales, chooses the diagnostic class of the case from mild
and moderate dysplastic nevi (MMD), melanoma in situ and severely dysplastic nevi (MIS), invasive
melanoma T1a (T1a) and melanoma invasive ≥ T1b (T1b). Note that the concatenated masks to
the WSI (DMN-M and EPN) and ScATNet scales (7.5× and 12.5×) shown in this figure are just one
example of our multiple experimental studies.

2.3.8. Hyperparameters

ScATNet was trained for 200 epochs in an end-to-end fashion using the ADAM
optimizer with a linear learning rate warm-up strategy and step learning rate decay. The
best result in our experimental studies was achieved using a single scale of 7.5×.

3. Results
3.1. Dermal Nest Classification Results

All the models from both approaches were evaluated by a testing set of ROI images
that was kept unseen from the model during the training process. Note that in the testing
dataset, no nest samples from the segmentation model are included. The testing dataset
only contains extracted nests from ROIs in which we had a pathologist’s annotation as
ground-truth to compare model prediction against them. Using the model with the best
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performance on ROI images, we generate DMN-M and DMN-N on extracted slices of
the WSI.

3.1.1. Quantitative Results on ROIs

All the trained models were evaluated on the same ROI testing set. Each nest classi-
fier’s performance was measured using these metrics: F-score, precision, sensitivity (recall),
and specificity. The results of this evaluation are summarized in Table 2.

Table 2. Quantitative nest classification results on ROIs-CNN models.

Method F-Score Precision Sensitivity Specificity

DenseNet 0.88 0.87 0.89 0.82
ShuffleNet 0.78 0.80 0.76 0.74

ResNet 0.96 0.95 0.97 0.93

As a model selection step after training each experiment for 200 epochs, and to
improve the model’s robustness against stochastic noise, we averaged the best five model
checkpoints within a single training process inspired by [29]. Then we evaluated all our
experiments over the same testing set. A WSI might contain multiple tissue slices, which
were extracted into single slices, and each of these slices might have a different diagnostic
class prediction. To decide on the final diagnosis of a specific WSI, we used max-voting,
which means if one of the tissue slices in a WSI is invasive melanoma, then the entire
WSI corresponds to invasive melanoma and cannot be MMD or MIS. This approach was
inspired by how pathologists make their diagnosis decision on skin biopsy images.

3.1.2. Qualitative Results on WSIs

After acquiring our best nest classifier (ResNet), we ran the model on all the dermal
nests (DMN) extracted from the previous segmentation mask of invasive melanoma stage
T1a and ≥ T1b WSIs to generate melanoma dermal nests (DMN-M). Any segmented DMN
samples in these classes that were not classified as a DMN-M by the nest classifier model
are assigned to nevus dermal nest (DMN-N). Figure 9 shows examples of an extracted slice
of invasive melanoma WSI, corresponding dermal nest mask generated by our previous
segmentation model, melanoma dermal nest (DMN-M) portion of the dermal nest (DMN)
as a result of nest classifier output, and nevus dermal nest (DMN-N) portion of dermal nest
(DMN) as a result of the complement of DMN-M on DMN.
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M) portion of DMN; (d) nevus dermal nest (DMN-N) portion of DMN. 

Figure 9. Examples of our best nest classifier, ResNet’s results on WSI: (a) extracted slices of invasive
melanoma WSIs; (b) dermal nest results of segmentation model; (c) melanoma dermal nest (DMN-M)
portion of DMN; (d) nevus dermal nest (DMN-N) portion of DMN.

3.2. Diagnosis Experiment Results

We evaluated all the models based on micro F-score, sensitivity (recall), and specificity.
Note that in dealing with a multi-class classification, where every test datum should belong
to only 1 class and not multi-label, we cannot use the same F-score as in binary class
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classification (i.e., macro F-score in multi-class classification). The correct way to report an
F-score in multi-class classification is to calculate the micro-averaged F-score (AKA micro
F-score) based on micro-precision and micro-recall. Micro-precision measures the precision
of the aggregated contributions of all classes, and micro-recall measures the recall of the
aggregated contributions of all classes.

• Micro_precision = TPsum/(TPsum + FPsum)
• Micro_recall = TPsum/(TPsum + FNsum)
• Micro F-score = 2 × (micro_precision × micro_recall)/(micro_precision + micro_recall)
• Sensitivity (recall) = TPsum/(TPsum + FNsum)
• Specificity = TNsum/(TNsum + FPsum)

3.2.1. Experimental Results

The summary of the results is shown in Table 3. The F-score of each experiment is
reported based on 10 different random seeds, along with average sensitivity and specificity
over the 10 random seeds per experiment. In our experiments, the (average, max) F-scores
were (0.54, 0.58) for the raw WSI with no segmentation masks, which improved to a high
of (0.60, 0.62) for the raw WSI plus the epidermis mask and the dermal melanoma mask
(i.e., the cancerous nests in the dermis). The addition of the dermal melanoma mask was
important as it gave a significant gain over just providing dermal nests. Note that we
started with a rather low F-score for the raw WSI and fixed those parameters to achieve
stability, so it is possible that even higher values [27] can be achieved by starting with a
different set of parameters for the WSI run. However, we favored stability, and the (0.54,
0.58) scores were stable, in that they could be achieved repeatably.

Table 3. Experimental results of WSI diagnosis along with segmentation masks.

Experiments
F-Score *

Sensitivity ** Specificity **
Average Min Max Median

WSI + EPN + DMN-M 0.60 0.58 0.63 0.59 0.60 0.87
WSI + EPN + DMN 0.57 0.54 0.61 0.56 0.57 0.85

WSI + EPN + DMN-M + DMN-N 0.56 0.53 0.60 0.55 0.56 0.85
WSI + EP + DE + EPN + DMN 0.55 0.53 0.59 0.54 0.55 0.85

WSI 0.54 0.53 0.58 0.54 0.54 0.85
WSI + EPN 0.54 0.52 0.58 0.53 0.54 0.85

WSI + DMN 0.54 0.51 0.56 0.54 0.54 0.85
WSI + DMN-M + DMN-N 0.54 0.52 0.55 0.54 0.54 0.86

WSI + DMN-M 0.52 0.50 0.55 0.51 0.52 0.84

* F-score is reported for 10 random seeds; ** sensitivity and specificity are average scores over 10 random seeds
per experiment.

3.2.2. Comparison of Confusion Matrices

Table 4 shows a comparison of two experiments’ confusion matrices. Table 4a is an
example of a multi-class confusion matrix of experiments that only contain RGB channels
of the WSI in the dataset, while Table 4b shows an example of an experiment in which we
had R, G, and B channels of the WSI along with two extra channels of epidermal nest (EPN)
binary segmentation mask and melanoma dermal nest (DMN-M) binary segmentation
mask (a total of five channels per image).

As shown in the tables, the number of true positives (TP) of classes MIS, T1a, and
T1b increased in the experiment in which we included segmentation masks along with
WSI. Another important finding is that the misclassified cases of MIS when we have EPN
and DMN-M information are mostly on T1b. In the real world, MIS is a challenging case
for pathologists to make a definite diagnosis. The comparison of confusion matrices in
Table 4 and tissue experiments’ results in Table 4b shows that the model is able to learn
more information when segmentation masks are introduced along with the WSI, which can
be an assistance to pathologists in challenging cases.
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Table 4. Comparison of two confusion matrices. Rows are defined by expert consensus and columns
are by model predictions. (a) An example experiment with only WSI and no segmentation mask.
(b) An example experiment of WSI + EPN + DMN-M.

MMD MIS T1a T1b MMD MIS T1a T1b

MMD 17 8 4 0 MMD 17 9 3 0
MIS 7 12 9 2 MIS 3 16 10 1
T1a 0 9 18 4 T1a 5 2 18 4
T1b 0 2 9 12 T1b 0 0 8 15

(a) WSI (b) WSI + EPN + DMN-M

3.2.3. Single-Scale vs. Multi-Scale

In our experiments, we ran each setting of tissue experiments with single scale,
two scales, and three scales. A summary of results for one example tissue experiment
(WSI + EPN + DMN-M) in comparison with a raw WSI, which has the exact same parame-
ters and scales, are summarized in Table 5. These results suggest that having segmentation
masks does not improve the performance when ScATNet is trained on multiple scales,
and the gain of improvement is lower when the higher resolution of WSI along with
segmentation masks is used.

Table 5. Comparison of F-score results of raw WSI and tissue experiment (WSI + EPN + DMN-M) on
single-scale experiments and multi-scale experiments.

Scale WSI WSI + EPN + DMN-M

7.5× 0.54 0.60
12.5× 0.56 0.57

7.5× & 12.5× 0.57 0.56
7.5× & 10× & 12.5× 0.57 0.55

This behavior can be explained by the specific strategy of ScATNet in patching in-
put images on different scales. For example, images in 7.5× resolution are divided into
5 × 5 = 25 crops while 12.5× images are divided into 9 × 9 = 81 crops. In addition, the
transformer unit in the ScATNet architecture includes a self-attention module that learns to
pay more attention (i.e., assign higher weight) to specific patches in an image. When we
introduce a WSI along with its corresponding dermal nests and epidermal nests, the model
learns during the training process that these structures are important in decision making.
Hence, when these tissue structures appear in a testing case’s segmentation mask, the model
assigns higher weights to the patches that contain those structures. If a segmentation mask
of a testing case is inaccurate, especially when some important structures are over-labeled,
it can negatively impact the model’s decision-making and lead to a false prediction. The
possibility of such an impact could be higher in higher resolutions since there will be more
patches with inaccurate tissue labels; hence, higher weights on irrelevant patches. Figure 10
shows an example of a test set WSI and corresponding segmentation mask (Figure 10a)
that includes dermis, epidermis, melanoma dermal nest, epidermal nest, corneum, and
background. The segmentation of epidermal nests is inaccurate and over-labeled, and
potentially led to a wrong prediction on resolution 12.5× (Figure 10c), since the number of
patches with noise at that resolution is more than at resolution 7.5× (Figure 10b).
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Figure 10. Low-resolution vs. high-resolution patching when there is an inaccurate segmentation
mask in the testing case. (a) A WSI and corresponding segmentation mask that includes dermis,
epidermis, melanoma dermal nest, epidermal nest, corneum, and background. In this example
case, epidermal nests are inaccurately segmented and over-labeled. (b) The segmentation mask
in 7.5× scale divided into 25 crops as input patches for ScATNet. (c) The segmentation mask in
12.5× scale divided into 81 crops as input patches for ScATNet. There is a higher number of patches
with inaccurate and noisy segmentation on the 12.5× scale compared to the 7.5× scale, which possibly
led to a false prediction on the 12.5× scale using ScATNet.

3.2.4. Comparison to US Pathologists

We have access to the interpretation of 187 US pathologists on the same testing set that
we used in our experimental studies. Table 6 shows the comparison of the F-score, sensitiv-
ity, and specificity of pathologists’ performance and our best model (WSI + EPN + DMN-M)
performance. We observe that our model either outperforms the pathologists’ results on
the challenging classes of MIS and T1a or has a comparable performance. This finding
shows the potential that providing an assistant tool can have in the time of cancer diagnosis
and treatment.

Table 6. Comparison of class-based F-score, sensitivity, and specificity of 187 US pathologists and our
best model (WSI + EPN + DMN-M) on the same testing set.

Class
F-Score Sensitivity Specificity

Pathologists Ours Pathologists Ours Pathologists Ours

MMD 0.71 0.67 0.92 0.76 0.76 0.81
MIS 0.49 0.50 0.46 0.44 0.85 0.89
T1a 0.62 0.57 0.51 0.64 0.95 0.79
T1b 0.72 0.67 0.78 0.57 0.97 0.96

3.2.5. Comparison to Other Baselines

We compared our results with several other methods developed to make a diagnosis
based on histopathology images.

• Weighted Feature Aggregation: Deep Feature Representations for Variable-Sized Re-
gions of Interest was introduced by [9]. In this method, a CNN-based deep feature
extraction framework builds slide-level feature representations via weighted aggre-
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gation of the patch representations. In this pipeline, the patch-wise feature will be
extracted by a VGG16 pre-trained CNN, then using two different approaches of
either penultimate layer features (penultimate-weighted) or hypercolumn features
(hypercolumn-weighted), the features are concatenated in a weighted manner. As the
last step, using average pooling, a slide-level representation is generated, which is
later used for training and testing the diagnosis CNN model.

• Dual-stream Multiple Instance Learning Network (DSMIL): In this work, Li et al. [10]
used self-supervised contrastive learning to extract good representations from patches
and using an aggregator that models the relations of the instances in a dual-stream
architecture with trainable distance measurement, trained a MIL model.

• Multiple Instance Learning with Center Embeddings (ChikonMIL): [11] proposed a
multiple instance learning (MIL) method that first selects the top-k patches, and then
uses these patches for instance-learning and bag-representation learning. In addition,
this method uses a center loss that maps embeddings of instances from the same bag
to a single centroid and reduces intra-class variations for the final diagnosis.

The results of all the baseline methods and their comparison with our best model are
summarized in Table 7. Our model using the epidermal nests and dermal melanoma nests
is able to beat all of them.

Table 7. Comparison of baseline methods with our best model (WSI + EPN + DMN-M).

Method F-Score Sensitivity Specificity

penultimate-weighted [9] 0.44 0.44 0.81
hypercolumn-weighted [9] 0.43 0.43 0.81

DSMIL [10] 0.50 0.50 0.83
ChikonMIL [11] 0.56 0.56 0.85

Ours * 0.60 0.60 0.87
* Our model is the tissue experiment with (WSI + EPN + DMN-M).

4. Discussion

The rapidly growing number of melanoma cases along with inter- and intra-observer
variability of diagnosis by human pathologists is of concern in this field. On the other
hand, advances in machine learning and artificial intelligence methods have presented
the potential to provide assistant tools for the pathologists to analyze whole-slide images
(WSIs) for diagnosis and prognosis objectives.

In recent years, interest in artificial intelligence research in various fields including
healthcare has been increasing rapidly. Deep-learning methods have shown impressive
and robust performance on various tasks and hold promise for providing assistant tools in
healthcare research including pathology. Dermatopathology research is not an exception
in benefiting from the advancement of artificial intelligence [30–32]. In the time of cancer
monitoring and treatment, AI-developed tools have the potential to assist dermatopatholo-
gists especially with challenging cases. In addition, the educational and research aspects
of AI-developed methods in tutoring practicing pathologists introduce new prospects for
reducing the diagnostic errors in clinical care.

In recent years, deep-learning methods have proven to have excellent performance in
different tasks such as image classification. However, most of the state-of-the-art methods
either require a fairly large dataset to train a model or a large amount of pixel-level annota-
tion. Both of these requirements are a challenge in dealing with medical datasets as these
datasets are usually small, especially compared to general datasets such as ImageNet [21],
and obtaining fine manual annotation on them is not a time or cost-effective task.

In this work, we proposed an approach that uses the segmentation masks that we
previously obtained using sparse and coarse annotation [19], and adds information to
WSI from a dataset of skin biopsy images. In this work, we first designed a dermal nest
classifier that can classify segmented dermal nests (DMN) into two sub-categories of nevus
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dermal nests (DMN-N) and melanoma dermal nests (DMN-M). Using the previous and
new masks, the goal was to investigate the potential of each important tissue mask in skin
biopsy images to improve the results of a multi-class diagnosis model.

Our experiments showed that including certain segmentation masks along with WSIs
yields a better diagnosis output with one scale. One of the foremost tissue types in skin
biopsy images are nests that contain various types such as epidermal nests (EPN), nevus
dermal nests (DMN-N), and melanoma dermal nest (DMN-M). We observed significant
improvement when including EPN and DMN-M (which is considered the cancerous type
of dermal nests) along with the corresponding WSI, compared to the experiments that do
not include any segmentation masks. Further analysis showed that including the aforemen-
tioned entities improved the learning of the model on invasive melanoma and melanoma
in situ, which are challenging classes on which to make a consensus decision. Improvement
in the challenging classes proves the potential AI has in healthcare and pathology.

As mentioned in Section 2, each WSI in the M-path dataset has an expert-assigned
ROI that carries either important diagnostic or prognostic information. However, since
(1) experts were limited to one ROI per case, and (2) the diagnosis of some skin biopsies
requires review of the full whole slide image, we designed our diagnosis pipeline to utilize
full WSIs rather than a single ROI per case. One might wonder if multiple ROIs would be
sufficient in place of the WSI, and perhaps more efficient. For example, if multiple ROIs
were generated by an AI program for use in diagnosis, these may actually slow down
the diagnosis process if provided to human pathologists who are used to their own way
of examining slides. If multiple ROIs were identified by expert pathologists and were
provided to a computer program classifier, it would not know which (if any) were more
important, and thus, looking at the WSI is still the best course for the computer diagnosis
for skin biopsy specimens.

Certain limitations need to be considered. The dataset that we used in this project is
small and of melanocytic skin lesions, and while the cases included were carefully selected
to represent the full spectrum of cases in clinical practices in the US, we are not certain
how well the method would perform on the full spectrum of skin biopsies (e.g., including
non-melanocytic lesions). In addition, the sparse annotations for the segmentation project
were provided on ROIs on the WSI, which means there was prior knowledge of which part
of the WSI contained valuable information. Not all medical datasets benefit from having
ROI assigned to each case.

The unique strengths of this work include the ability to compare our results to the
diagnostic interpretations given to the cases by actively practicing U.S. pathologists. This
comparison showed that our model could outperform or have comparable performance
to pathologists in some challenging classes. Ours is the first deep-learning model to add
segmentation data of the clinically important tissue structure to the raw images to improve
melanoma diagnosis. Since our segmentation model was trained on a sparse and coarse
annotation set, providing a diagnosis pipeline that improves the outcome by leveraging the
imperfect segmentation masks highlights the potential of AI approaches in dealing with
challenges and shows a promising future for AI in healthcare.
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