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CW laser induced heat in turbid media

Hakan Erkol,1,∗ Farouk Nouizi,1 Alex Luk,1 Mehmet Burcin Unlu,2

and Gultekin Gulsen1

1Center for Functional Onco Imaging, Department of Radiological Sciences, University of
California, Irvine, CA, USA

2Department of Physics, Bogazici University, Bebek, 34342, Istanbul, Turkey
∗herkol@uci.edu

Abstract: In this work, we present a new analytical approach to model
continuous wave laser induced temperature in highly homogeneous turbid
media. First, the diffusion equation is used to model light transport and
a comprehensive solution is derived analytically by obtaining a special
Greens’ function. Next, the time-dependent bio-heat equation is used to
describe the induced heat increase and propagation within the medium.
The bio-heat equation is solved analytically utilizing the separation of
variables technique. Our theoretical model is successfully validated using
numerical simulations and experimental studies with agarose phantoms
and ex-vivo chicken breast samples. The encouraging results show that our
method can be implemented as a simulation tool to determine important
laser parameters that govern the magnitude of temperature rise within
homogenous biological tissue or organs.

© 2015 Optical Society of America

OCIS codes: (170.3660) Light propagation in tissues; (170.5280) Photon migration;
(350.5340) Photothermal effects.
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tion of a recently introduced 2-μm continuou-wave thulium laser for vaporesection of the prostate,” J. Endourol.
22(5), 1041–1045 (2008).

17. Y. Xu, D. Sun, Z. Wei, B. Hong, and Y. Yang, “Clinical study on the application of a 2-μm continuous wave laser
in transurethral vaporesection of the prostate,” Exp. Ther. Med. 5, 1097–1100 (2013).
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1. Introduction

The use of lasers has become considerably attractive for a variety of basic biological research
and biomedical applications such as hypothermia laser therapy, photodynamic therapy (PDT)
and thermal ablation therapy. Hypothermia laser therapy or low-level laser therapy (LLLT) has
been used for the treatment of various diseases and injuries from muscle and brain injuries to
cardiac disorders [1–3]. LLLT has a great potential to provide highly conformal thermal therapy
without any harmful impact to the patient. Visible or near infrared (NIR) lasers (600-1064 nm)
at the intensity level of about 0.001-5 W/cm2 are typically used for LLLT with an irradiation
time of a few seconds or longer [4, 5]. Unfortunately, the mechanism of laser-tissue interaction
during LLLT is not well understood and also the optimal treatment parameters have not been
systematically established yet. Therefore, modeling of laser-tissue interaction for LLLT can
play an important role in determining these parameters. Indeed, some recent work revealed the
importance of the modeling of laser-tissue interaction since it showed that the skin temperature
may reach as high as 44 ◦C during LLLT therapy [6]. When the tissue temperature rises beyond
42 ◦C, conformational changes of molecules take place and they are accompanied by bond
destruction and membrane alterations [4]. At that rate, it is possible that a significant thermal
damage may occur in biological tissues during LLLT therapy. Local tissue temperature is also
one of the most important factors affecting the efficacy of PDT, which uses stationary laser
[7, 8]. In this technique, a stationary laser beam is used to excite the tissue. The efficacy of the
PDT has been shown with clinical trials and emerging data support the benefits of PDT for
several applications involving management of nonmelanoma skin cancer and port wine stain
birthmarks by combining PDT with pulsed dye laser therapy [9–14]. Since laser illumination
can be utilized to warm up the tissue, modeling of laser-tissue interaction would be important
for these type of applications.

Another important technique using the modeling of light due to the laser illumination is
laser induced thermal ablation therapy [15–18]. This treatment method is a minimally invasive
and alternative technique to the conventional surgery and can provide faster recovery times as
well as less complication rates [19–21]. The increased temperature due to light absorption also
promotes the tumor destruction. Two important factors should be considered in this technique,
namely the magnitude and the duration of temperature increase in tissue. Generally, these two
factors are monitored in real-time, e.g. using real-time magnetic resonance thermometry (MRT)
monitoring. Nevertheless, simulation studies are performed prior to the laser irradiation in order
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to adjust the important laser parameters such as wavelength, power, and the irradiation time that
govern the magnitude of temperature rise in tissue. Performing these simulation studies consists
in the estimation of spatiotemporal distribution of heat deposited by the laser in the tissue. These
simulations are performed by modeling the light transport within the tissue and the subsequent
time-dependent temperature increase and propagation.

Biological tissue is usually considered a turbid medium characterized with given optical
absorption and scattering. Light propagation is this type of media can be modeled using the ra-
diative transfer equation [22, 23]. However, the diffusion approximation has been the preferred
method since it is substantially easier to solve. The diffusion equation is generally solved us-
ing numerical methods such as the finite element method (FEM) [24–26]. Nevertheless, many
researchers proposed analytical solutions to the diffusion equation [27–36]. Although struc-
tural inhomogeneities in tissue and its irregular geometry make it complex to obtain analytical
solutions, these analytical methods can still be used on some regular geometries such as cylin-
drical, spherical and infinite or semi-infinite slabs [24, 36–41]. These analytical methods are
usually based on the Greens’ function and series expansion methods [30, 41–43]. Meanwhile,
the spatiotemporal temperature distribution in the medium can be described by the Pennes’ bio-
heat equation. Like the diffusion equation, the bio-heat equation has been solved analytically,
numerically and using Monte Carlo methods [44–57]. Technically, the diffusion and bio-heat
equations are combined in order to model the laser induced temperature. To be able to achieve
this combination, the source term of the bio-heat equation is expressed as a function of the so-
lution of the diffusion equation and local absorption of the medium [58–66]. In these previous
works, the combined diffusion and bio-heat equation system is solved analytically by using
simple photon density expressions to describe the source term of the bio-heat equation.

In this study, we propose a new approach that not only provides a very comprehensive pho-
ton density expression but presents a very detailed analytical temperature expression for laser-
induced temperature as well. For the first part, a detailed analytical solution is obtained for the
diffusion equation based on an integral approach using the Robin boundary condition, which
is more adequate for tissue modeling. For the second part, the heterogeneous heat equation
is solved using the separation of variables technique considering that the temporal and spatial
parts of the heat equation can be separable. Here, the heat convection boundary condition is
used to derive the solution. In addition, our approach allows the implementation of any bound-
ary condition making it a very flexible method. A simplified result for the zero (Dirichlet)
boundary condition can also be obtained by just setting the refractive index mismatched con-
stant in the Robin boundary condition to zero.

The results obtained by our method are validated using both numerical simulations as well
as experimental phantom and ex-vivo tissue sample studies. In fact, the time-dependent tem-
perature increase in the medium obtained with our method is in very good agreement with the
FEM solutions and the experimental MRT measurements. Therefore, we believe that our ap-
proach will provide a suitable fast simulation platform for laser induced temperature rise and
propagation in homogeneous organs such as liver [67, 68].

2. Methods

2.1. Analytical solution to the combined diffusion and heat equation

As mentioned above, estimating laser induced temperature requires solution of a multiphysics
problem, namely a combined diffusion and bio-heat equation system. The first one is the light
propagation in tissue and the second one is the heat transfer. The photon transport in tissue can
be described by the continuous wave diffusion equation [30, 69, 70]

−∇D∇Φ(rrr)+μaΦ(rrr) = S(rrr) (1)
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where Φ, D, μa, and S are the photon density, the diffusion coefficient, the absorption coefficient
and the light source, respectively. The diffusion coefficient is D(r) = 1

3[μa(r)+μ ′
s (r)]

where μ ′
s is

the reduced scattering coefficient. On the other hand, the temperature distribution in tissue can
be described by the Pennes’ bio-heat thermal diffusion equation. In this paper, the validation
of the approach is carried out using agar phantoms and ex-vivo tissue samples. For this reason,
the blood perfusion is considered null so that the Pennes’ bio-heat thermal equation reduces to

ρc
∂T (rrr, t)

∂ t
= ∇[k∇T (rrr, t)]+E(rrr) (2)

where ρ , c, k represent the density, specific heat and thermal conductivity for tissue, respec-
tively. Here, E(r) = μaφ is the thermal energy absorbed from the laser heating [71]. Now, we
first solve the diffusion equation for a spatially invariant diffusion coefficient so that the diffu-
sion equation becomes

−∇2Φ(rrr)+
μa

D
Φ(rrr) =

γ
D

δ (rrr,rrr
′
) (3)

for a point light source term modeled by the Dirac delta function δ (rrr,rrr′) where rrr
′
and γ are the

position and the strength of the light source, respectively.
The solution of the homogeneous diffusion equation in 2D cylindrical polar coordinates is

Φ(r,θ) =
∞

∑
m=−∞

[Am(β )Jm(β r)+Bm(β )Ym(β r)][Cm(β )cos(mθ)+Dm(β )sin(mθ)] (4)

where β = i
√

μa
D , Jm and Ym are the first and second kind Bessel functions, respectively and i

is the complex number. Here, Am and Bm are the constants resulting from the radial solutions
while Cm and Dm are the constants resulting from the angular ones. If the source is placed in the
x axis (θ = 0), the photon density is symmetric with respect to this axis. It is important to note
that our approach is valid provided that the source position is different from the origin (ri �= 0).
The schematic of the problem can be seen in Fig. 1.

x

y

θ
r
ri

Source

Fig. 1. The schematic representing the geometry of a homogeneous medium with a δ func-
tion source located at r = ri.

Thus, the constant Dm(β ) in Eq. (4) is zero and hence only cos(mθ) term contributes to the
solution leading to
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Φ(r,θ) =
∞

∑
m=−∞

[am(β )Jm(β r)+bm(β )Ym(β r)] cos(mθ) (5)

where am(β ) and bm(β ) are defined as am(β ) = Am(β ).Cm(β ) and bm(β ) = Bm(β ).Cm(β ) for
calculational simplicity, respectively. Next, we solve the non-homogeneous diffusion equation
with a source term represented by the Dirac δ function. We consider the tissue domain as
two sub-domains according to the source position. For r ≤ ri, the Bessel function of first kind
Jm(β r) only contributes to the solution since the Bessel function of the second kind tends to
infinity when r → 0. Therefore, the solution takes the following form

Φ<(r,θ) =
∞

∑
m=−∞

am(β )Jm(β r)cos(mθ) (6)

for r ≤ ri. On the other hand, for R ≥ r ≥ ri, the photon density consists of the two radial
solutions since it has a finite value in this region. Therefore, the photon density becomes

Φ>(r,θ) =
∞

∑
m=−∞

[bm(β )Jm(β r)+ cm(β )Ym(β r)]cos(mθ) (7)

for R ≥ r ≥ ri. We have three unknown differential constants am(β ), bm(β ) and cm(β ). To find
these constants, we introduce three expressions. The first one is the utilization of the Robin
boundary condition at the tissue boundary:

Φ(R,θ)+2ξD
∂Φ(r,θ)

∂ r
|r=R= 0 (8)

where ξ is the refractive index mismatched constant [72–74]. The other two expressions are ob-
tained using the mathematical properties of the Dirac delta source. Firstly, the photon densities
given by Eqs. (6) and (7) are equal at the source position

Φ<(r,θ) |r=ri= Φ>(r,θ) |r=ri . (9)

The second expression can be obtained based on the fact that the derivative of the photon density
has an abrupt change at the source position. Considering this sudden change, the diffusion
equation for the whole domain becomes

∞

∑
m=−∞

{1
r

d
dr

[r
d
dr

Gm(β r)]cos(mθ)+
1
r2

d2

dθ 2 [cos(mθ)]Gm(β r)− μa

D
Gm(β r)cos(mθ)}

=− γ
D

δ (r,ri) (10)

where Gm(β r) = {Jm(β r),Ym(β r)} is the radial solutions. By multiplying Eq. (10) with
r cos(nθ) and integrating over r and θ between the intervals (r = ri − ε,r = ri + ε) and
(θ = 0,θ = 2π) as ε → 0 leads to

∞

∑
m=∞

∫ ri+ε

ri−ε
[

d
dr

(r
dGm(β r)

dr
)]dr

∫ 2π

0
cos(mθ)cos(nθ)dθ

=− 1
D

γ
∫ ri+ε

ri−ε

∫ 2π

0
δ (r,ri)cos(nθ)rdrdθ . (11)
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Here, n, which is an integer between −∞ and ∞, is introduced for another set of cosine functions
(or angular solutions, cos(nθ)) to drop the summation in the left hand side of Eq. (11). In Eq.
(10), only the first term on the left hand side survives and the others become zero since the
photon densities for the sub-domains are equal to each other at the source position. We use the
expression of the Dirac delta function in 2D polar coordinates, δ (r,ri) =

δ (r−ri)δ (θ−θi)
r and the

orthogonality relation for cosine functions,
∫ 2π

0 cos(mθ)cos(nθ)dθ = πδm,n if both m and n
are not equal to zero (the integral is simply 2π if m = 0 and n = 0). Substituting these relations
into Eq. (11) and using the equality of the photon density yields

dGm(β r)
dr

|r=ri+ε −dGm(β r)
dr

|r=ri−ε=− γ
πDri

cos(mθi) (12)

for the sudden increase of the derivative of the photon density. The Robin boundary condition
and the photon densities for each sub-domain given by Eqs. (9) and (12) can be simplified
further to give

bm(β )Jm(β R)+ cm(β )Ym(β R) =−2ξD[bm(β )
dJm(β r)

dr
+ cm(β )

dYm(β r)
dr

] |r=R, (13)

bm(β )Jm(β ri)+ cm(β )Ym(β ri) = am(β )Jm(β ri) (14)

and

[bm(β )
dJm(β r)

dr
+ cm(β )

dYm(β r)
dr

−am(β )
dJm(β r)

dr
] |r=ri=− γ

πDri
cos(mθi). (15)

Solving Eqs. (13)-(15) for the differentiation constants am(β ) , bm(β ) and cm(β ) yields

am(β ) =
γ cos(mθi)

2D[2DβξRJm−1(βR)+(R−2Dmξ )Jm(βR)]

×{Jm(β ri)[2DβξRYm−1(βR)+(R−2Dmξ )Ym(βR)]

+Ym(β ri)[−2DβξRJm−1(βR)− (R−2Dmξ )Jm(βR)]}, (16)

bm(β ) = γR
Dβξ [Ym−1(βR)−Ym+1(βR)]+Ym(βR)

2D[2DβξRJm−1(βR)+(R−2Dmξ )Jm(βR)]

×Jm (β ri)cos(mθi) (17)

and

cm(β ) =− γ
2D

Jm (β ri)cos(mθi) , (18)

respectively for ri �= 0. Therefore, the photon density reaches its final form with the constants
am(β ) , bm(β ) and cm(β )

Φ(r,θ) =
∞

∑
m=−∞

{
am(β )Jm(β r)cos(mθ) if r ≤ ri

(bm(β )Jm(β r)+ cm(β )Ym(β r))cos(mθ) if r ≥ ri
. (19)

Now, we introduce the following heat convection boundary condition to solve the Pennes’
bio-heat thermal diffusion equation

−k
∂T (r)

∂ t
= h(Ts −T (r)) (20)
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where h and Ts are the heat transfer coefficient and the surrounding temperature, respectively.
For calculational simplicity, we define a shifted temperature T̃ , T̃ = T −Ts. First, we consider
the homogeneous case for the bio-heat thermal diffusion equation

ρc
∂ T̃ (rrr, t)

∂ t
= ∇[k∇T̃ (rrr, t)]. (21)

Now, we use the separation of variables method and assume that k is homogeneous. In our case,
the solution is symmetric with respect to the x axis since the light source is in the x axis and the
phantom is a disk shaped with a radius R. For this reason, the solutions Yn(λ r) and sin(pθ) are
excluded. Therefore, the solution becomes

T̃ (t,r,θ) = {exp(
−k
ρc

λ 2t),Jp(λ r),cos(pθ)}. (22)

Here λ is a constant (to be determined from the boundary condition) and p is an integer ranging
from -∞ to ∞. In order to determine the constant λ , we use the heat convention boundary
condition given by Eq. (20) for the shifted temperature T̃

−k
∂ T̃ (R)

∂ t
= hT̃ (R) (23)

leading to

Jp(λ r) |r=R − k
h

dJp(λ r)

dr
|r=R= 0. (24)

There are infinite number of solutions for this equation. In other words, the solutions are the
roots of Eq. (24), which are λ = λl where l = 0,1,2....

Therefore, the solution for the homogeneous part of the bio-heat equation is

T̃ (r,θ , t) =
∞

∑
p=−∞

∞

∑
l=0

Tp, l exp(
−k
ρc

λ 2
l t)Jp(λlr)cos(pθ) (25)

where Tp, l is constant. In order to find Tp, l , we use the following initial condition at t = 0

T (r,θ ,0) = Ts (26)

or
T̃ (r,θ ,0) = 0. (27)

As a result, both Tp, l and the solution to the homogeneous part of the bio-heat equation become
zero.

Now we consider the non-homogeneous bio-heat equation and define the non-homogeneous
part in terms of the solutions of the homogenous part

μaΦ(r,θ)
ρc

=
∞

∑
p=−∞

∞

∑
l=0

ω(t)Jp(λlr)cos(pθ). (28)

Writing Eq. (28) into the Pennes’ bio-heat thermal diffusion equation given by Eq. (2) and using
the radial and the angular equations yields the temporal solution

Ω(t) = exp(
−k
ρc

λ 2
l t)

∫ t

0
exp(

k
ρc

λ 2
l t ′)ω(t ′)dt ′. (29)
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In our case, the source term is time independent so that ω can be taken out of the integral. Thus,
Ω(t) takes the following form

Ω(t) =
ρc

kλ 2
l

ω[1− exp(
−k
ρc

λ 2
l t)]. (30)

To find ω , we write the solution of the diffusion equation Φ(r,θ) into Eq. (28)

μa

ρc

∞

∑
m=−∞

Λm(β r)cos(mθ) =
∞

∑
p=−∞

∞

∑
l=0

ωJp(λlr)cos(pθ) (31)

where Λm(β r) is the radial solution of the tissue diffusion equation, which is

Λm(β r) =

{
am(β )Jm(β r) if r ≤ ri

bm(β )Jm(β r)+ cm(β )Ym(β r) if R ≥ r ≥ ri
. (32)

Multiplying Eq. (31) with rJp′(λl′r)cos(p′θ) and then integrating between the intervals r ∈
[0,R] and θ ∈ [0,2π] gives

ωm,l =
μa

ρc
∑∞

m=−∞
∫ R

0 Λm(β r)Jm(λlr)rdr
∫ 2π

0 cos(mθ)cos(pθ)dθ∫ R
0 J2

p(λlr)rdr
∫ 2π

0 cos2(pθ)dθ
. (33)

Utilization of the orthogonality relation of cosine functions drops the summation in Eq. (33).
Calculating the other integrals in Eq. (33) yields

ωm,l =
μa

ρc
{−am(β )ri [βJm−1 (β ri)Jm (riλl)−λlJm (β ri)Jm−1 (riλl)]

+bm(β )ri [βJm−1 (β ri)Jm (riλl)−λlJm (β ri)Jm−1 (riλl)]

−βRJm−1(Rβ )Jm (Rλl)+RλlJm(Rβ )Jm−1 (Rλl)

+cm(β )ri [βYm−1 (β ri)Jm (riλl)−λlYm (β ri)Jm−1 (riλl)]

−βRYm−1(Rβ )Jm (Rλl)+RλlYm(Rβ )Jm−1 (Rλl)}
× 1

1
2 R(β 2 −λ 2

l )
{

R [Jm−1 (Rλl) 2 + Jm (Rλl) 2]− 2mJm−1(Rλl)Jm(Rλl)
λl

} (34)

where am(β ), bm(β ) and cm(β ) have been presented in the previous section. Therefore, the
temperature distribution can be calculated by the following solution

T (r,θ , t) = Ts +
∞

∑
m=−∞

∞

∑
l=0

ρc

kλ 2
l

ωm,lJm(λlr)cos(mθ)[1− exp(
−k
ρc

λ 2
l t)]. (35)

2.2. MRT spatiotemporal temperature measurements

To validate our approach experimentally, we first perform experiments with homogeneous
phantoms mimicking biological tissue. These phantoms are mainly prepared using agarose
(OmniPur Agarose, Lawrence, KS). Intralipid and Indian ink are added in order to set the
optical properties of the phantom. Secondly, the performance of our method is validated us-
ing chicken breast tissue sample. Although chicken breast tissue is considered homogeneous,
it contains thick fibers which makes it moderately heterogenous. The spatiotemporal tempera-
ture distribution inside the media under investigation is measured using magnetic resonance
thermometry (MRT), while it is illuminated with laser light as shown in Fig. 2.
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Fig. 2. The schematic of the interface used in the experiment. The laser beam is collimated
using a GRIN lens and delivered to the homogeneous phantom from a hole prepared at the
side of the custom built RF coil. The total power is distributed to three point light sources
and simulation results for individual sources are superimposed.

The laser diode emitting at 808 nm and its driver are both placed in the MRI control room.
Light is transferred to the MRI bore using 15 meter long 400 μm diameter optical fiber. After
being collimated by a GRIN lens, the laser beam (1.8 mm diameter) is delivered to the phan-
tom from a hole prepared at the side of the custom built RF coil, Fig. 2. The power of the laser
is adjusted to 4.5 W. The light output of the fiber is collimated and the spot size of the beam
illuminating the surface of the phantom is 1.8 mm. When using diffusion approximation, an
isotropic point source located a transport mean free path (1/μ ′

s) beneath the surface is generally
utilized to model a point light source at the surface of the phantom. Since our solution is valid
for a point source, a finite number of point sources can be utilized to model the collimated light
beam of 1.8 mm diameter. Our simulation studies showed that three point sources located a
transport mean free path beneath the surface are enough for accurate modeling of this colli-
mated beam with a small spot size. Hence, the solution of the combined equation is calculated
for each source separately and summed to get the effect of the collimated beam. The optical
and thermal properties of the homogeneous agar phantom are listed in Table 1.

Table 1. Agar phantom parameters used in the experiment.

Abbreviation Parameter Value Unit
c specific heat 4200 J (kg ◦C)−1

k thermal conductivity 5.8 10−4 W (mm ◦C)−1

h heat transfer coefficient 8.0 10−6 W (mm2 ◦C)−1

Ts surrounding temperature 14 ◦C
ρ density 1000 kg/m3

The MRT experiments are conducted inside a Philips 3T Achieva system and data acquisition
is synchronized with the laser driver. MRT measurements can be performed using any phase
sensitive technique such as Proton Resonance Frequency (PRF). In this work, PRF images are
obtained with a gradient echo sequence using 60 and 12 milliseconds as repetition (TR) and
echo time (TE), respectively. First, a T1 weighted low resolution MR pilot image is obtained to
determine the axial position of the laser probe using fiducial markers. After the axial plane is
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located, a baseline high resolution phase image φ is obtained using a gradient echo scan. Next,
the phantom is illuminated by the laser beam for 24 seconds while two consecutive MRT images
are acquired, each lasts 12 seconds. The difference between the corresponding phase maps for
these two time points and the baseline phase image provide high resolution temperature images.
Please note that these difference images reveal the relative temperature increase induced by only
the laser illumination. Our extensive tests with phantoms and tissue samples confirmed that the
temperature induced by MRT in the measurements is negligible.

2.3. Numerical solution to the combined diffusion and heat equation

Our solution is also compared with the results obtained using our FEM solver [45]. In these
simulations, numerical phantoms having the same geometry as the experimental phantoms are
utilized. The phantoms are discretized using meshes consisting of 7268 triangular elements con-
nected at 3758 nodes. Similar to analytical solutions, the spatiotemporal temperature distribu-
tion is obtained in two steps. First, the photon distribution is obtained by solving the diffusion
equation. Next, this photon density is used to express the source term of the heat equation [45].
It is worth noticing that the same boundary conditions as the ones used in the analytical method
are applied.

3. Results and discussions

To validate our analytical approach, we calculate the temperature map analytically and compare
it first with the map obtained using FEM then with an experimentally measured temperature
map. The analytical temperature distribution is obtained using Eq. (35). The optical properties,
the absorbtion coefficient (μa), the reduced scattering coefficient (μ ′

s) and the refractive index
(n) are set to 0.0132 mm−1, 0.8 mm−1 and 1.4, respectively. For thermal properties, the density
(ρ), the specific heat of the phantom (c), the thermal conductivity (k) and the heat transfer
coefficient (h) are chosen as 1000 kg/m3 and 4200 J (kg ◦C)−1, 5.8 10−4 W (mm ◦C)−1 and
8 10−6 W (mm2 ◦C)−1, respectively [45]. For both analytical and numerical simulations, the
source of light is placed at ri = R−1/μs

′ on the x axis (θ = 0). The distance 1/μs
′ represents

the reduced scattering pathlength imposed by the approximation of the diffusion equation while
R represents the radius. Moreover, the power level in the simulations is adjusted to match
experimental results.

Technically, the temperature provided by MRT at each time point is the average temperature
value over the duration of the data acquisition time which is equal to 12 s. Unlike MRT, the syn-
thetic temperature distributions are provided at a specific time point. During this validation, the
experimental data that correspond to the second time point (12 s - 24 s) are used. Therefore, the
measured MRT temperature is compared with the synthetic temperatures obtained at t = 18 s,
the midpoint for the MRT acquisition. The temperature maps obtained by the three methods are
very similar. Figure 3 shows the cross-sectional linear (top) and logarithmic (bottom) tempera-
ture distributions corresponding to the optical fiber plane obtained experimentally, analytically,
and numerically (FEM).

Solving the combined diffusion and heat equation system using FEM requires preparation
of a mesh and iteratively inverting the system matrix describing the problem, which are both
very time consuming. This disadvantage can be overcome using analytical methods. In fact,
using our analytical approach, the temperature map is obtained in approximately three seconds.
Using FEM, the computation time necessary to generate a temperature map utilizing a CPU
parallelized solver is slightly higher than 60 s. This represents more than a 95% reduction in
the computation time.

Figure 3 shows the experimental, analytical, and FEM based temperature maps for the 25
mm diameter agarose phantom (R = 12.5 mm). As specified in the experimental method, the
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Experimental Analytical FEM

Fig. 3. The experimental, analytical, and FEM based temperature maps for the phantom.
The first and second rows show the linear, T(◦C), and logarithmic, ln(T), scaled tempera-
ture maps, respectively. For the simulated temperature, the light sources are positioned at
1/μ ′

s mm under the illumination site as imposed by the diffusion approximation. The sim-
ulation results are obtained 18 seconds after the beginning of the laser heating while the
experimental data is acquired between 12 s and 24 s. Some artifacts are observable in the
experimental data particularly towards the edges.

temperature map provided by MRT does not represent the absolute temperature but the rela-
tive increase in temperature induced by the laser, Fig. 3. Thus, the room temperature, 14 ◦C, is
subtracted from the absolute synthetic temperature maps in order to compare with the experi-
mental one, Fig. 3. One can notice some slight artifacts at the lower boundary of the phantom
in the measured temperature map, Fig. 3. Nevertheless, this measured temperature map is in a
very good agreement with the simulated temperature maps. As expected, the highest increase
in temperature can be observed near the source of light positioned at θ = 0 and ri = R−1/μs

′.
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Fig. 4. The temperature profiles (a) linear, (b) logarithmic carried out along the x-axis on
the temperature maps presented in Fig. 3. For the simulated temperature, the light sources
are positioned at 1/μ ′

s mm under the illumination site as imposed by the diffusion approx-
imation. The simulation results are obtained 18 seconds after the beginning of the laser
heating while the experimental data is acquired between 12 s and 24 s. All three methods
are in good agreement above the MRT noise level, 0.1 ◦C (green dotted line).
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Figures 4(a) and 4(b) show the linear and logarithmic scaled temperature profiles carried out
along x axis, respectively. As seen from the profiles, temperature reaches up to 4 ◦C at the light
source position, 1.5 mm below the boundary, 18 s after turning on the laser. The temperature
decreases with the depth and goes down to sub-Celsius level approximately 5 mm below the
boundary. The logarithmic profiles show that both our method and FEM successively match the
experimental ones when temperature is above the MRT noise level (0.1 ◦C), Figs. 4(a) and 4(b).
Accordingly, the MRT measurements are dependable up to 9.8 mm (x = 2.7 mm) deep under
the illumination site.

Even though the heating of the phantom is realized using a CW laser, the heat propagation
within the medium is simulated using the time-dependent bio-heat equation. Therefore, the time
dependance of our method needs to be validated for. Figures 5(a) and 5(b) show the analytical
and FEM simulated temperatures obtained between 0 s and 400 s with a temporal resolution of
10 s for different positions. Moreover, in order to validate the effect of our boundary conditions
on the time dependent solution, the temporal profiles are performed close to (x = 12 mm) and
slightly further away (x = 5 mm) from the source.
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Fig. 5. The temporal temperature profiles obtained between 0 s and 400 s at (a) x = 5 mm
and (b) x = 12 mm. The temperature near the boundary (x = 12 mm) reaches a plateau
much quicker due to heat convection.

As you can see in Figs. 5(a) and 5(b), our temporal temperature profiles show a very good
match with those obtained with FEM. As expected, the profiles obtained near the source at
x = 12 mm show a higher increase in temperature compared to the ones performed at x = 5
mm. For the point far away from the boundary (x = 5 mm), the temperature increases almost
linearly. However, it reaches to a plateau for the point closer to the boundary (x = 12 mm) after
200 s. For both points, the maximum error in the temporal profiles is less than 1.5% which
validates the temporal aspect of our method. This validation shows that our analytical method
is not only fast but as accurate as the widely used FEM method.

To validate our method on real biological tissue, we also measure spatiotemporal tempera-
ture maps on a chicken breast sample 40 seconds after turning on the laser. Again, the measured
temperature map is compared to the ones computed both analytically and using FEM. To do
so, the cross-section of the chicken breast sample is approximated by a 28 mm diameter cir-
cle. During this experiment, the measured data that correspond to the fourth time point (36 s -
48 s) is used. Therefore, the measured MRT temperature is compared with the synthetic tem-
perature maps obtained at t = 42 s, the midpoint for the MRT acquisition. Figure 6 shows the
experimental, analytical, and FEM temperature maps. Some artifacts are visible in the meas-
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ured temperature map. Nevertheless, the measured temperature maps show a good agreement
with both analytical and FEM maps.

Experimental Analytical FEM

T

Fig. 6. The temperature maps for the chicken breast tissue obtained experimentally, analyt-
ically, and numerically (FEM), respectively. The simulation results are obtained 42 seconds
after the beginning of the laser heating while the experimental data is acquired between 36
s and 48 s. The cross-section of the chicken breast sample is approximated by a 28 mm
diameter circle indicated by the green dash-line.

A better comparison of these results can be made on the linear and logarithmic temperature
profiles presented in Figs. 7(a) and 7(b). After heating the chicken breast sample for 40 sec-
onds, the analytical and FEM results almost overlap. In fact, the maximum error between the
two simulated temperature maps is approximately 0.05 ◦C. When compared to the measured
temperature, the profiles obtained by both simulation methods show a good match. Here, the
maximum error observed between the simulated profiles and the experimental one is slightly
less than 0.17 ◦C (x = 3.7 mm) where the MRT signal is below the noise level. Overall, our
method provides very encouraging results compared to not only the widely used FEM but also
the experimental MRT results.
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Fig. 7. The temperature profiles for chicken breast tissue (a) linear, (b) logarithmic carried
out along the x-axis on the temperature maps presented in Fig. 6. The simulation results are
obtained 42 seconds after the beginning of the laser heating while the experimental data is
acquired between 36 s and 48 s. All three methods are in good agreement above the MRT
noise level, 0.15 ◦C (green dotted line).

4. Conclusion

In this study, we present an analytical approach for CW laser induced temperature in homoge-
neous turbid media. Similar to all analytical solution proposed in the literature, the homogeneity
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is assumed in all optical and thermal properties within the medium. We first solve the diffusion
equation analytically with an integral method by obtaining a special Greens’ function for the
Robin boundary condition. Secondly, we obtain a solution for the Pennes’ bio-heat equation by
utilizing the separation of variables technique for the heat convection boundary condition. This
approximation is made based on the fact that the spatial and temporal parts of the heat equation
can be separable. Moreover, our approach allows implementation of any boundary condition.
Although we use the Robin boundary condition in this work, a simplified result can also be ob-
tained by just setting refractive index mismatched constant to zero, which corresponds to zero
boundary condition. Also, it should be noted that our method is suitable for cases with low or
negligible blood perfusion since it is not accounted for.

Our analytical method is first validated with experimental studies. The experimental spa-
tiotemporal temperature distribution within the tissue simulating phantom and chicken breast
sample is obtained using magnetic resonance thermometry (MRT). In addition, we also vali-
dated our approach using numerical results (FEM). The comparison shows that our analytical
approach is not only fast but also yields accurate results as well. The encouraging results show
that our new analytic approach can be used for the fast determination of key laser parameters for
any application in which a CW laser is utilized to heat a homogeneous turbid medium. These
applications may include low level laser therapy, thermally modulated PDT and CW laser in-
duced thermal ablation therapy. Since it has been recently shown that the optical properties of
the tissue depend on temperature, it is important to take this phenomena into account during
the modeling of laser-tissue interaction [6]. Our method can be iteratively used to estimate a
more accurate temperature distribution by updating the optical properties of the tissue period-
ically at each time point. Our next aim will be measuring the temperature dependence of the
optical properties of tissue and incorporating this into our model. Furthermore, we will work
on expanding our technique for pulsed laser beams since they are extensively used in laser in-
duced thermal ablation therapy. Finally, we are planning to add blood convention to our analytic
model and validate it in vivo.
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