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2School of Informatics, University of Edinburgh, Edinburgh, Scotland

Abstract

Spatial neglect has been a phenomenon of interest for percep-
tual and neuropsychological researchers for decades. How-
ever, the underlying cognitive processes remain unclear. We
provide a Bayesian framework for the classic line bisection
task in spatial neglect, regarding it as rational inferences in
the face of uncertain information. A Bayesian observer per-
ceives the left and right endpoints of a line with uncertainty,
and leverages prior expectations about line lengths to compen-
sate for this uncertainty. This Bayesian model provides a ba-
sis for characterizing different patterns of behavior. Our model
also captures the paradoxical cross-over effect observed in ear-
lier studies as a natural outcome when uncertainty is high and
the observer falls back on priors. It provides measures that
correlate well with measures from other neglect tests, and can
accurately distinguish stroke patients from healthy controls. It
has the potential to facilitate spatial neglect studies and inform
clinical decisions.
Keywords: Spatial neglect, Visual neglect, Line bisection, At-
tention, Perception, Bayes.

Introduction
Spatial neglect, an asymmetry of attention and behavior away
from one side of space and towards the other, is a disorder that
typically results from right hemispheric brain damage. It has
attracted considerable attention from researchers seeking to
understand the psychological or neurological mechanisms of
awareness, attention, and spatial cognition (Corbetta & Shul-
man, 2011). It can be measured via different tasks, such as
the cancellation tasks, where patients often fail to ‘cancel’ or
strike out items on the left side, or the copying tasks, where
patients’ copying of items on the left side is not as complete
as for items on the right side. Among those standard tasks, the
line bisection task, given its simple materials and easy admin-
istration, has seen especially widespread use (Schenkenberg,
Bradford, & Ajax, 1980; Sperber & Karnath, 2016). Partic-
ipants are required to mark the midpoint of a presented line
(Figure 1a). Patients with spatial neglect often mark the an-
swer to the right of the true midpoint, which is convention-
ally explained as a distortion or compression of the left space
(Bisiach, Bulgarelli, Sterzi, & Vallar, 1983; Milner, Harvey,
Roberts, & Forster, 1993).1

Despite being one of the most well-established tasks to di-
agnose neglect, some debates remain about how we should
interpret the line bisection task. The first challenge lies in the
relatively low correlation between bisection errors and other

1Spatial neglect typically refers to left neglect, following right
hemisphere damage, which is more common, severe and persis-
tent than left neglect following right hemisphere damage (Mesulam,
1981).

tasks (Sperber & Karnath, 2016; McIntosh, Ietswaart, & Mil-
ner, 2017), which has been taken to suggest there are multi-
ple, dissociable mechanisms underlying spatial neglect. The
second challenge is a paradoxical cross-over effect, where
neglect patients sometimes mark the midpoint as left rather
than right of the true midpoint (Marshall & Halligan, 1988;
Mennemeier, Rapcsak, Pierce, & Vezey, 2001; McIntosh,
Schindler, Birchall, & Milner, 2005). McIntosh et al. (2005)
proposed that rather than underestimating the leftward extent
of the line, patients in the line bisection task may lack a clear
idea of where the left endpoint is. It was found that when
manipulating the left and right endpoints independently, pa-
tients’ answers were much more responsive to the right end-
point than the left endpoint (McIntosh et al., 2005, 2017;
McIntosh, 2018). A measure of the difference in responsive-
ness to the two endpoints, the “endpoint weightings bias”,
tends to be highly sensitive to neglect, and to correlate better
with other tasks (McIntosh et al., 2005, 2017).

We show that a Bayesian framework provides a way to ex-
pand and generalize McIntosh’s idea that spatial neglect pa-
tients have unbalanced left- vs. right-side sensitivity, by un-
derstanding the bisection problem as one of the rational in-
ferences in the face of uncertain or unreliable information.
This perspective acknowledges perception as involving both
bottom-up input constraints and top-down generative expec-
tations (De Lange, Heilbron, & Kok, 2018; Clark, 2013;
Cheng, Shettleworth, Huttenlocher, & Rieser, 2007; Hutten-
locher, Hedges, & Vevea, 2000), and takes the root cause of
line bisection errors to be a loss of perceptual precision in the
affected hemifield. A rational Bayesian observer should bal-
ance between prior expectations and evidence optimally, re-
lying more on the prior when the evidence is ambiguous, but
more on the evidence when the evidence is precise (De Lange
et al., 2018). This framework has been applied successfully
to a variety of phenomena and illusions in human static and
motion perception (see De Lange et al., 2018; Seriès & Seitz,
2013, for review), as well as visual phenomena of people with
neurological disorders (Valton et al., 2019).

In this paper, we model the line bisection task under the
Bayesian framework. Our model provides a unified account
for the behavior of both patients with right hemispheric brain
damage and healthy controls. It captures the paradoxical
cross-over effect observed in earlier studies, demonstrates the
connections with other spatial neglect tasks, and potentially
provides measures of the task that can later be used for better
diagnosis.
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Figure 1: The line bisection task: a) Participants are asked to mark the midpoint of the line presented in front of them. Left
endpoint (l), right endpoint (r), true midpoint (m), and response (c) are not marked on the stimulus sheet itself, but are only for
the figure. The spatial neglect patients are often found to provide a rightward answer. b) Four types of experimental stimuli in
the current dataset. c) Spatial neglect patients may have lower left-side perceptual precision.

Methods
Dataset
We used the dataset presented in McIntosh et al. (2017).
McIntosh et al. (2017) administered a series of unilateral ne-
glect tests to patients diagnosed with unilateral right hemi-
sphere stroke (N = 42; 12 female, 30 male; 68.64 years ±
9.76), including the line bisection task, the line and star can-
cellation tasks, the copying task, the drawing task, and the
multiple line bisection task, which involves multiple lines
presented at once.2 A healthy control group (N = 30; 18 fe-
male, 12 male; 71.27 years ± 9.12) was recruited for the line
bisection task (data original from McIntosh et al., 2005).

The line bisection task
In the line bisection task, each line stimulus is printed individ-
ually in black on a white A4 paper in landscape orientation.
Each sheet is positioned directly in front of the participant,
and the page is aligned centrally with the body midline. Par-
ticipants are instructed to mark the midpoint of the line with a
pen held in their right hand and then remove their hand from
the table to mitigate any tendency to choose the same physical
location across trials.

McIntosh et al. (2017) manipulated left and right endpoints
independently. Four types of lines were created by combining
endpoint locations with two different distances from the mid-
point of the page (see Figure 1b): [-40, 40], [-80, 40], [-40,
80], and [-80, 80] mm (we standardized the data by treating
80 mm as 1 unit in later analysis, McElreath, 2020).

The Bayesian neglect model
A rational Bayesian observer would integrate the evidence,
i.e. the perceived endpoints, with their prior expectations.
There are different ways to represent prior expectations, but
we adopt a simple prior distribution with a small number of
interpretable parameters (see below).

2We later used the same criteria for these other tasks as in
McIntosh et al. (2017). Eight patients from the original sample of
50 were excluded from the analysis because the raw line bisection
data were missing.

We provide an illustration in Figure 1c, where the ob-
server’s perceived left and right endpoints are assumed to fol-
low Gaussian distributions with a mean at the actual endpoint
and a standard deviation parameter (σL on the left side and
σR on the right side). Patients might exhibit high uncertainty
on the left side, and hence, a large σL (Figure 1c).

A more technical illustration is shown in Figure 2. Specif-
ically, three key principles are assumed to guide the solution
of line bisection.

1. The midpoint response c should have the same distance
from the perceived left PL and right PR endpoints, i.e.
PL = c− ll

2 , and PR = c+ ll
2 , where ll represents the ex-

pected line length.

2. There is uncertainty when one perceives the left endpoint
(σL) and the right endpoint (σR), i.e. l ∼ N(PL,σL), r ∼
N(PR,σR), where l and r represent the left and right end-
points in the stimulus.

3. One would utilize the expectation to compensate their per-
ceptual uncertainty of the left and right endpoints. This
includes the expectation of the line length, drawn from a
gamma distribution: ll ∼ Γ(µll ,σll), and the expectation
that the midpoint should be on the middle of the page:
c ∼ N(0,σC).

One key advantage of the Bayesian framework is that it
considers the role of expectations, in ways that can accom-
modate (and reduce variance due to) order effects in stimuli,
and offer new predictions. For example, we assume that the
learner has a priori expectations about line length, which fol-
lows a Gamma distribution3. The expectation for a given trial
could be based on general beliefs that precede the task as well

3Gamma distributions are widely used to model probability over
non-negative quantities, like length. Unlike the simpler exponential
distribution, can decouple expectations about central tendency and
variability. Instead of using Stan’s default shape α and rate β pa-
rameters, we parameterized this distribution in terms of mean and
standard deviation, which we find to be more intuitive in addition to
leading to more stable inferences under uniform priors (α = µ2

ll/σ2
ll ;

β = µll/σ2
ll).
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Figure 2: The Bayesian diagram to infer the line bisection pa-
rameters for individuals. The model infers parameters given
the bisection answer (c) and the stimulus’s the actual left and
right endpoint position (l and r).

as the line lengths perceived in earlier line bisection trials. If
a learner has a precise sense of where the endpoints are, this
expectation should reflect the distribution of actual lengths of
previous trials. To simplify our analyses, we leave effects of
sequence order for future work, and fit a single distribution to
approximate expectations across individual trials.

Using our model, we can estimate individual differences
given judgments from different people. Specifically, we can
model each individual’s data and obtain five parameters (σL,
σR, µll , σll , σC) for each person; we will later examine
whether all of them are necessary. These parameter values
provide insight into the causes of patients’ and healthy con-
trols’ judgments, and we will show that they are more infor-
mative than existing measures in predicting whether a patient
has had a stroke. The model fitting was implemented in Stan
via the RStan package (Stan Development Team, 2022).

Alternative measures of performance
Directional bisection error The conventional way to mea-
sure line bisection performance is with the directional bisec-
tion error, which calculates the average difference between
human answers (c) and true midpoints l+r

2 across trials:

DBE =
1
i

i

∑
trial=1

(c− l + r
2

) (1)

Endpoint weightings The endpoint weightings bias mea-
sures calculate the difference between participants’ sensitiv-
ity to the left and right endpoint manipulations. It depends on
the linear slopes when using the left and right endpoint (dPL
and dPR) to predict the midpoint answers:

c = (dPL · l)+(dPR · r)+ k (2)

EWB = dPR −dPL (3)

Results
Parameter values
Main measures By fitting individual data to different mod-
els, we can get different measures for the line bisection task.
We first visualize those parameters in Figure 3. Different
measures demonstrated varying degrees of discrimination be-
tween stroke patients and healthy controls. In the endpoint
weightings model, the left endpoint weight (dPL) achieved an
accuracy of 0.85 (Figure 3a). The endpoint weightings bias,
which further calculates the difference between left and right
weights, has a slightly higher accuracy at 0.86 (Figure 3b). In
contrast, the directional bisection error has a max accuracy of
0.78 (Figure 3b). 4

For the Bayesian neglect model, we consider two mea-
sures: the left-side uncertainty (i.e. σL) and the difference
between left-side and right-side uncertainty (i.e. σL − σR).
The former emphasizes the individual difference on the left-
side uncertainty, while the latter further uses the individual’s
right-side uncertainty as a baseline, similar to the endpoint
weightings bias. As shown in Figure 3c, stroke patients had
higher σL than the healthy controls (t(70) = 4.69, p < .001).
σL distinguished stroke patients and healthy controls with a
max accuracy of 0.92. Meanwhile, the difference between
left-side and right-side uncertainty (i.e. σL−σR) was larger in
the stroke patients than in the healthy controls (t(70) = 4.26,
p < .001). It had a max accuracy of 0.89 in distinguishing
two groups. It highly correlated with the endpoint weight-
ings bias (r = .92, Figure 3d), which is consistent with the
theoretical assumption that both of them measure the relative
sensitivity on left and right sides.

Expectation parameters The Bayesian neglect model has
two parameters, µll and σll that can help examine the line
length expectations (mean and standard deviation) partici-
pants had. We visualized each participant’s prior distribution
in Figure 4a. In the healthy control group, participants’ line
expectations on average were 1.49 units, which was around
the average line length across trials (1.5 units). The stroke
patients’ line expectation was 1.37 units on average, which
was shorter than that of the healthy controls (t(70) = 2.73,
p = .008). Participants from the healthy control group and
some participants from the patient group tacitly expected a
moderate level of variability in line length, while other pa-
tients demonstrated stronger line prior (shown as sharp prob-
ability distributions). The overall standard deviation was
smaller in the patient group than in the healthy control group,
indicating more reliance on a priori expectations relative to
the evidence (t(70) = 4.47, p < .001, Figure 4b).

We visualized several representative individual cases to
further address the relationship between line length expecta-
tion and the answers (Figure 5). Given that patients had diffi-
culty perceiving the left side, the expectation was assumed

4All analysis code can be found at
https://github.com/tianweigong/bayesNeg.
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Figure 3: Scatter plots of parameters in different models. The dashed lines show the best cut-off for the corresponding measure
under the current dataset.

to play an important role in their judgments (De Lange et
al., 2018). For example, the Bayesian model diagnosed that
Patient16 had a strong expectation that the line was short.
Accordingly, most of their answers were close to the right
endpoint. Patient37 demonstrated a relatively strong ex-
pectation around the true line length, which indicated they
could perceive the line length during some trials but may
have difficulty during other trials. Accordingly, their an-
swers showed a fixed distance from the right endpoint. Im-
portantly, more of their answers were on the left side of the
true midpoint, which was called the paradoxical cross-over
effect under the directional bisection measure. This indicates
that cross-over effect could simply result from patients hav-
ing a strong expectation over a certain line length and the
uncertainty about the true endpoint positions. The σL nega-
tively correlated with the line expectation standard deviation
(r = −.908). Compared to the two aforementioned patients,
Patient35 and HealthyControl30 were better at detecting
the left endpoints, showing less reliance on priori expecta-
tions.

For the center prior parameter σC, as shown in Figure 4c,
four stroke patients had a σC that was much higher than
others, which indicated they may have highly variable per-
formance that cannot be clearly captured by any other pa-
rameters. There was no difference between the patient and
healthy control groups after excluding these four data points

(t(66) = 1.79, p = .08).

Correlation with other tasks
One of the main puzzles of the directional bisection error is
the low levels of correlation with other tasks. Here we ex-
amined the relationships between new Bayesian indices and
other tasks.

Table 1 showed the correlation between line bisection mea-
sures and other tasks. We used Steiger’s Z (Hoerger, 2013)
to compare the correlation coefficients. The directional bi-
section error had relatively low correlations compared to the
endpoint weighting bias for all tasks (zs > 2.17, ps < .03)
but the line cancellation (z = 1.80, p = .07). The correla-
tions of the Bayesian σL were slightly lower than those of the
endpoint weighting bias, while all the differences were not
significant (zs < 1.72, ps > .09). Similarly, the correlation
of the σL −σR was slightly lower than those of the endpoint
weighting bias, while they were not significant except for the
copying task (z = 2.02, p = .04).

Classification
We have earlier shown that different indices had a certain
ability to distinguish between the stroke patients and the
healthy controls with a single threshold. We here perform
more formal classification tests to test how indices can clas-
sify the participants and whether we can use the index com-
binations to improve the accuracy.
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Figure 4: a) The probability distributions of the line length prior in the healthy control and patients. b) The fitted line length
prior standard deviation in two groups. c) The fitted center prior parameter σc in two groups.
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Figure 5: The line bisection answers and fitted line length
priori expectations of four participants.

Table 1: Correlations between line bisection indices and other
tasks.

LINES STARS COPY DRAW MULTI
DBE 0.48 0.29 0.28 0.22 0.62
EWB 0.61 0.52 0.49 0.40 0.77
σL 0.60 0.43 0.41 0.37 0.75
σL −σR 0.61 0.42 0.39 0.37 0.75

We applied one linear algorithm (logistic regression) and
one non-linear algorithm (decision tree), and used the leave-
one-participant-out cross-validation as the procedure. We
used the accuracy (the proportion of true positive plus true
negative) and F1-score (the harmonic mean of precision and
sensitivity). The results were shown in Table 2. Predictors
from the Bayesian neglect models, especially the left-side
uncertainty σL, performed better than the directional bisec-
tion error or parameters from the endpoint weightings model
(dPL and dPR). Under the decision tree algorithm, the single
σL can achieve 0.92 accuracy and 0.93 F1-score. Combin-
ing σL with dPL from the endpoint weightings model may
slightly improve the performance under the linear algorithm,
indicating the possibility of integrating parameters from dif-
ferent models in future practice.

Table 2: Cross-validation classification results.
Logistic Regression Decision Tree
ACC F1 ACC F1

DBE 0.76 0.79 0.72 0.72
dPL 0.85 0.86 0.76 0.79
dPL, dPR 0.85 0.87 0.83 0.87
σL 0.90 0.91 0.92 0.93
σL, σR 0.90 0.90 0.83 0.86
σL, σR, µll , σll 0.88 0.89 0.81 0.84
σL, σR, σC 0.90 0.91 0.86 0.88
σL, σR, µll , σll , σC 0.89 0.90 0.85 0.87
σL, dPL 0.92 0.93 0.92 0.93
σL, σR, dPL, dPR 0.90 0.91 0.90 0.92

Note: Classification decisions based on linear combinations
of dPL and dPR correspond to EWB.

Ablation study
To better understand the importance of each component of
our model, we also compared several ablations of the full
model:

• No line expectation: Replace ll ∼ Γ(µll ,σll) (Figure 2)
with the true line length. It assumes no prior line length
expectation, and relies solely on the other three parameters
σC, σL and σR to make decisions.

• No lateral difference: Use the same parameter σ for σL and
σR. It tests the importance of allowing unbalanced uncer-
tainty between two sides.

• No center expectation: Remove c ∼ N(0,σc) (Figure 2). It
tests the contribution of σC.

Figure 6 summarizes model performances in terms of the
average mean squared errors on standardized tasks. Compar-
ing to dropping center expectation σC, dropping line expec-
tation or lateral difference resulted in much larger model fit
reduction, showing that line expectation and unbalanced lat-
eral certainties are the dominant factors in the full model.

Discussion
In this paper, we provide a new model to describe the percep-
tual process in the line bisection task. Our model is based on
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the Bayesian perception hypothesis that people use Bayesian
inference to integrate signal input and prior knowledge to
produce conscious perception (Clark, 2013; Seriès & Seitz,
2013; Cheng et al., 2007). Consistent with McIntosh et al.
(2005), we showed that the previous suspicions about the va-
lidity of the line bisection task is mainly due to the problem of
the conventional measure, rather than the task itself. The new
Bayesian measure successfully addressed those challenges.
Along with the simple and clean task structure, the line bi-
section task has the potential to be one of the most efficient
tools to diagnose spatial neglect.

The advantages of the current Bayesian neglect model are
multifaceted. Firstly, it captures a general and intuitive rep-
resentation of the perceptual processes in the line bisection
task, i.e. the uncertainty in perceiving the left and right end-
points. Spatial neglect could be naturally explained as greater
uncertainty on the left side, and reduced to parameters, σL or
σL −σR, in our model. We demonstrated that both measures
performed well in distinguishing stroke patients from healthy
controls and outperformed measures from previous studies.
They also correlated better with other spatial neglect tasks
than the conventional directional bisection error, indicating
that, rather than relying on dissociated underlying functions,
various spatial neglect tasks may share a common underlying
mechanism (McIntosh et al., 2005). As such, the Bayesian
measure could provide useful information to diagnose spatial
neglect in the future.

Secondly, the Bayesian neglect model naturally integrates
the role of expectation, which can explain the variety of be-
havior patterns in different patients. Previous studies have
shown that humans can learn an expectation very quickly
(Seriès & Seitz, 2013; De Lange et al., 2018). The stimuli that
participants have gone through could serve as a resource for
the prior for future trials. It explains why most of the healthy
controls fit a distribution similar to the true stimulus distri-
bution. In contrast, the patients’ expectations are less adap-
tive and flexible compared to those of the healthy controls.
Specifically, some patients demonstrated a strong prior distri-
bution that could provide a guideline for decision when the
left-side perception is very uncertain. It also clarified a long-
standing confusion in the literature that some patients showed
mixed leftward and rightward errors, or even primarily left-
ward errors: If the patient has a strong line length expecta-
tion and a poor ability to perceive the left side, they would

frequently mark answers that have the same distance from
the right endpoint. These answers could be either rightward
or leftward from the true midpoint, given different stimulus
lengths. We thus showed that the cross-over effect is not a
problem of the task, but rather reflects how patients rely on
their expectations to compensate for perceptual difficulties.

The Bayesian neglect model presented in this paper could
open several directions for future work. From the practical
perspective, the Bayesian neglect model not only describes
a possible process of spatial neglect but also demonstrates a
high accuracy in identifying stroke patients. It indicates the
Bayesian measures could be related to particular brain dam-
age or brain functions. With suitable datasets, future work
could directly explore how Bayesian measures could pre-
dict neuroimaging differences in individuals (Halligan, Fink,
Marshall, & Vallar, 2003). One relevant debate is whether the
individual’s right-side uncertainty should be used as a base-
line when measuring spatial neglect. Although the asymme-
try between left and right sides of space (i.e. σL −σR) may
better reflect the definition of spatial neglect (McIntosh et al.,
2005), the left-side uncertainty alone (σL) also performs well
in our analysis. In fact, the two measures are highly corre-
lated in the current dataset (r = .988). With brain data, future
studies should further explore how these two measures corre-
spond to neuroimaging differences.

Meanwhile, the Bayesian neglect model provides a gener-
ative process of line bisection solutions, which could be very
useful if researchers want to simulate the response under dif-
ferent situations. It could be useful for making a range of
new predictions to be tested in future studies. It also could be
combined with the modern optimal experimental design tool
(Valentin, Kleinegesse, Bramley, Gutmann, & Lucas, 2021)
to provide guidelines for task administration, such as what
types of stimuli are required and how many trials are required
to provide a valid diagnosis.

From the theoretical perspective, the asymmetrical percep-
tual uncertainty and the prior expectation are not exclusive
for line bisection tasks, but for various types of spatial ne-
glect tasks (Sperber & Karnath, 2016). Future work could
use the same framework to explain behavior patterns such as
omission and distortion in other spatial neglect tasks, building
toward a general model for spatial neglect.
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