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Abstract

Generating large-volume hydrodynamical simulations for cosmological observables is a computationally
demanding task necessary for next-generation observations. In this work, we construct a novel fully
convolutional variational autoencoder (VAE) to synthesize hydrodynamic fields conditioned on dark matter
fields from N-body simulations. After training the model on a single hydrodynamical simulation, we are able to
probabilistically map new dark-matter-only simulations to corresponding full hydrodynamical outputs. By
sampling over the latent space of our VAE, we can generate posterior samples and study the variance of the
mapping. We find that our reconstructed field provides an accurate representation of the target hydrodynamical
fields as well as reasonable variance estimates. This approach has promise for the rapid generation of mocks as well
as for implementation in a full inverse model of observed data.

Unified Astronomy Thesaurus concepts: Intergalactic medium (813); Extragalactic astronomy (506); Intergalactic
gas (812); Convolutional neural networks (1938); Neural networks (1933)

1. Introduction

Understanding the large-scale structure of the universe requires
simultaneous analysis of both the evolution of the underlying
dark matter cosmic web and the complex hydrodynamics leading
to the formation of biased tracers. Over the past thirty years,
hydrodynamical simulations have become the standard tool to
generate mock observable data that includes both of these effects
(Evrard 1990; Cen 1992; Katz et al. 1996; Springel 2005).
However, the power of these hydrodynamical simulations comes
with significant computational cost, and the next generation of
cosmological surveys will require unprecedented precision across
a wide range of scales (e.g., Walther et al. 2021). In this regime,
computing quantities like covariance matrices (which require
large numbers of simulations) becomes an increasingly daunting
task, so there is a clear need for approximate methods that can
ease some of the computational burden.

In recent years, machine-learning techniques have emerged
as promising surrogate models for complex hydrodynamics, as
they can be used to rapidly generate hydrodynamic fields with
remarkable perceptual and statistical fidelity. In Zamudio-
Fernandez et al. (2019), the authors were able to generate
realistic neutral hydrogen (H I) maps which reproduce the
properties of hydrodynamical simulations over a range of
scales. In Tröster et al. (2019), the authors used generative
models to map from two-dimensional (2D) dark matter maps to
thermal Sunyaev–Zeldovich (tSZ) maps. They were able to
reproduce accurate tSZ summary statistics over a wide range of
scales, given only the dark matter maps. Related work in
Wadekar et al. (2020) used a more traditional feed-forward
architecture, HInet, to paint neutral hydrogen in all three-
dimensions (3D), but this architecture does not allow
exploration of posterior properties and uncertainties.

Estimation of the uncertainty of a neural network’s output is
critical in order to propagate errors accurately for cosmological
and cosmographical analysis. However, within the astronomical
community there has been relatively little work in error analysis in
the context of these neural-network-based surrogate models. A
promising approach in the case of low-dimensional data is to
make the network output be a multidimensional Gaussian
distribution as opposed to a single-point estimation, i.e., a
Gaussian mixture model (see, e.g., Tsang & Schultz 2019).
However, for high-dimensional outputs this approach would have
difficulty capturing the full covariance in a memory-efficient way.
In this work, we will instead structure the latent space of a

conditional variational autoencoder (C-VAE) to learn the
uncertainty in the mapping from a dark matter map to the
hydrodynamical quantities. The general structure of our
network is inspired by style-transfer machine-learning literature
(Johnson et al. 2016; Esser et al. 2018), where the latent space
of the C-VAE is used to capture stylistic characteristics of the
mapping. A similar network has recently been used to generate
a realistic distribution of galaxy images (Lanusse et al. 2021).
As we expect hydrodynamic quantities to be quasi-local, we

constrain our model to maintain this property by restricting the
spatial field of view of the input and use convolutional layers of
different sizes in order to capture information across a range of
scales. When transforming to redshift space, as is needed to
match observables, this locality is broken, so rather than
directly modeling observable quantities we instead focus on
reconstructing the underlying (real space) baryon density,
temperature, and velocity fields. Then, estimates for the target
observables can trivially be computed using existing analytical
tools, which also allows flexibility in modeling physical details
“orthogonal” to the dark matter and hydrodynamics relation-
ship (e.g., atomic species ratios, ionization rates, etc). For this
work we will focus on Lyα flux for Lyα forest cosmology
measurements, but our model outputs are generic and could be
applied to generate other target observables.
This work is a companion work to Harrington et al. (2022),

which used a deterministic network to perform this mapping.
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While this approach successfully recovers the key Lyα
observables for next-generation cosmological measurements,
it has difficulty in capturing stochastic processes such as
shocked regions. As the approach and goal of these works is
quite different we present them as two separate papers.

The paper is organized as follows. In Section 2 we briefly
describe NYX and the simulation data set used and then describe
our neural network architecture. We present our results in
Section 2, first reviewing maximum a posterior (MAP)
performance and posterior accuracy. We conclude Section 4 with
our ongoing work and future areas of interest to the community.

2. Methodology

2.1. Hydrodynamical Simulations

We choose to obtain simulation data from NYX, a massively
parallel multiphysics code, because it was developed for
simulations of the intergalactic medium (IGM) and has been
used for many recent IGM studies (Davies et al. 2020;
Horowitz et al. 2019; Walther et al. 2019), and is capable of
modeling dark matter and hydrodynamic evolution in great
detail. The NYX code (Almgren et al. 2013) follows the
evolution of dark matter modeled as self-gravitating Lagran-
gian particles, while baryons are modeled as an ideal gas on a
set of rectangular Cartesian grids. The Eulerian gas dynamics
equations are solved using a second-order accurate piecewise
parabolic method to accurately capture shocks. Besides solving
for gravity and the Euler equations, we also include the main
physical processes relevant for the Lyα forest. We consider the
chemistry of the gas as having a primordial composition of

hydrogen and helium, include inverse Compton cooling of the
microwave background and keep track of the net loss of
thermal energy resulting from atomic collisional processes
(Lukić et al. 2015). All cells are assumed to be optically thin to
ionizing radiation, and radiative feedback is accounted for via a
spatially uniform, time-varying UV background radiation given
to the code as a list of photoionization and photoheating rates
(Haardt & Madau 2012). We note that this type of simulation is
used as a forward model in virtually any recent inference work
using a Lyα power spectrum (Boera et al. 2019; Walther et al.
2019, 2021; Palanque-Delabrouille et al. 2020; Rogers &
Peiris 2021). Simulations of this kind neglect the effects of
inhomogeneous reionization, which produces temperature and
UV background fluctuations on large scales, especially at
redshifts higher than those studied in this work (z 4).
In this work we used simulations of a standard Lambda cold

dark matter (ΛCDM) cosmological model, consistent with the
latest cosmological constraints from the cosmic microwave
background (CMB; Planck Collaboration et al. 2020): Ωm

= 0.31, ΩΛ = 0.69, Ωb = 0.0487, h = 0.675, σ8 = 0.82, and ns
= 0.965. For the hydrogen and helium mass abundances we
adopted values consistent with CMB observations and Big
Bang nucleosynthesis (Coc et al. 2013): Xp = 0.76 and Yp
= 0.24. The box size of simulations is 20 h−1 Mpc, with
N= 10243 particles and grid cells, resulting in a resolution of
∼20 h−1 kpc, fulfilling convergence criteria for percent-level
accurate Lyα quantities (Lukić et al. 2015).
In addition to hydrodynamical simulations, we have also

produced N-body simulations starting with the same initial
conditions. These neglect all other forces but gravity, and all

Figure 1. Schematic showing the flow of our U-Net C-VAE architecture. Our model can be viewed as four interconnected parts: an encoder for the dark matter fields,
an encoder for the hydrodynamical fields, a variational block, and a decoder. The network is constructed such that after training the hydrodynamical block can be
removed and the latent space sampled from a unit Gaussian to generate the corresponding hydrodynamical field. Plotted is only the dark matter density and the baryon
temperature, but the model also is fed as an input the dark matter velocity and outputs the baryon density and line-of-sight velocity. The term “dark matter encoder” is
used as the model can be viewed as encoding the dark matter structure over the course of training, but we do not explicitly train a model to decode this field. The full
network architecture can be found online at https://github.com/bhorowitz/HyPhy-public.
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matter is considered collisionless, although baryonic effects are
imprinted in the initial power spectrum for the total matter. Baryons
have only a minor effect on dark matter clustering in the regime
relevant for the Lyα forest, but we have nevertheless produced
these “companion” simulations to maintain maximum reality in our
modeling when we train to infer hydrodynamical quantities from a
N-body run. We do not want our model to learn about the baryonic
field through back reaction on the dark matter field, so these
companion simulations eliminate this risk. Throughout this work
we use one set of hydro and matching N-body simulation for
training and a different set for validation purposes. The two have
matching power spectra and differ only in the random phases of the
Gaussian random field in the initial conditions.

Since our work is focused on predictions for Lyα
cosmological analysis, we are mostly interested in the baryonic
quantities which go into predictions of Lyα flux, namely the
baryon density, temperature, and line-of-sight velocity (for
redshift space distortions). These are the quantities we predict
based on the dark matter density and dark matter line-of-sight
velocity. One could further expand this to predict all velocity
fields, but we found in practice this significantly increased the
computational cost for training in both memory and GPU time.

2.2. Conditional Variational Autoencoder Model

As neural networks are becoming an increasingly well-
known tool in astrophysics and cosmology, we briefly
summarize our model4 and highlight how it differs from others
in the literature.

We use a C-VAE architecture (Sohn et al. 2015; Gu et al.
2018) to study the posterior of hydrodynamical quantities, τ,
given the dark matter field, δ. The core concept of a VAE
network (Kingma & Welling 2013; Kingma et al. 2014) is that
the neural network learns the probability space described by the
training sample by marginalizing over a (usually bottlenecked)
set of latent space parameters, Z. In this case we are interested
in constraining the outputs of our model to those corresponding
to a given dark matter realization, which we enforce by using
the dark matter realization as a “condition”: a field given to the
network both during the “encoding” step (where the fields are
mapped to the latent space) and the “decoding” step (where the
latent space is mapped to a 3D field). For finding a given
hydrodynamical realization, we are interested in calculating the
following quantity:

òt d t d d=( ∣ ) ( ∣ ) ( ∣ ) ( )P p Z p Z dZ, , 1

where p(τ|Z, δ) is the generator network. In order to train the
network, we also need to define an overlapping encoder
network, q(Z|τ, δ). We can generalize the standard evidence
lower bound straightforwardly to include this conditioning
variable:
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where q is the expectation value over q. In standard style-
transfer implementations, p(Z|δ) plays an important role as a
prior over the latent space parameters (i.e., Esser et al. 2018). In
our case, we will not be imposing any direct interpretation to
our latent space parameters, and we will find that this prior
distribution, p(Z|δ), will be pulled to a unit-normal Gaussian
due to the loss term.
We again follow the standard derivation for C-VAE

networks and model the probability distributions, p(τ|δ, Z)
and q(Z|δ, τ), as neural networks with associated free
parameters, Gθ and Ff, respectively. In Figure 1, Gθ

corresponds to the combination of the dark matter encoder
and hydrodynamics decoder, while Ff corresponds to the
combination of dark matter encoder and hydrodynamics
encoder. These overlapping neural networks’ weights, θ and
f, are trained jointly using the standard Adam optimizer
(Kingma & Ba 2014) under the associated loss:

 d q f d t t

t d

=-

+
f q

d t qf

( ) ( ( ∣ )∣∣ ( ∣ ))
[ ( ∣ )] ( )( ∣ )

q Z p Z

p Z

, , KL ,

log , , 3q Z ,

where KL is the Kullback–Leibler divergence (Kullback 1997)
to compare distributions. Assuming we treat the generator
network, Gθ, as deterministic in δ and Z, we can simplify the
second term with our chosen reconstruction loss. There are
many possible choices for this loss function, including L1, L2,
perceptual loss, or an adversarial loss. In our case we choose

Figure 2. Diagram showing the broadcasting of the latent space samples into
the same dimensionality as the downsampled dark matter field. This stack will
comprise the filters passed to the upsampling convolutional layers in the
hydrodynamics decoder. This allows changing input dark matter map sizes
during generation while keeping the same dimensionality of the latent space
and avoiding the need for dense layers. The presence of dense layers during
generation would implicitly fix the box size and not allow a fully convolutional
structure. Note that in our model each filter is three-dimensional, not two-
dimensional as shown here.

4 Our model is implemented in TENSORFLOW, with sample data and a saved
model available at https://github.com/bhorowitz/HyPhy-public.
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the standard L1 loss term, i.e.,

 d q f d t t t d= - + -f q q( ) ( ( ∣ )∣∣ ( ∣ )) ∣∣ ( )∣∣
( )

q Z p Z G Z, , KL , , ,

4

1

where τ is the simulated true field corresponding to δ. The KL
divergence term can also be further simplified by expressing
our latent space image, qf(Z|δ, τ), as a multidimensional
Gaussian with diagonal covariance using the reparametrization
trick (Kingma & Welling 2013) and our target distribution as a
unit normal Gaussian:

  d q f m t d s t d
t d

=-
+ - q

( ) ( ( ( ) ( ))∣∣ ( ))
∣∣ ( )∣∣ ( )G Z

, , KL , , , 0, 1
, , 51

where μ and σ are outputs of our encoding network Ff, and
correspond to the means and standard deviations of our latent
space distributions from which we sample. The variations of
the hydrodynamical model are captured by properties of the dark
matter field at a variety of scales. We are therefore motivated by
examples of image segmentation from machine-learning litera-
ture to use an altered U-Net structure (Ronneberger et al. 2015)
for our network. We summarize this structure in Figure 1. The
most notable element in the structure of this network is the skip
connections across the bottleneck mapping the dark matter field
from the encoder to decoder side. This is designed to maximize
the possible information extracted from the dark matter field,
in a computationally expedient fashion, as well as to minimize
the dark-matter-dependent structure in the latent space. In
particular, since we draw samples from the latent space that are

fully representative of uncertainty in the mapping, we want the
conditional probability of p(Z|δ) to be as close to a uniform
Gaussian, ( )0, 1 , as possible. Structure in the latent space
will result in a biased posterior sample distribution. In abstract
we could implement various techniques (such as an auto-
regressive flow, as in Lanusse et al. 2021), to ensure that our
latent space does not encode information found in the dark
matter structure alone (i.e., specific cosmic environments are
not clustered in a certain region of latent space), but in practice
we find that there is little dependency on matter properties in
the latent space.
In addition, we have vertical skip connections during training

to pass the downsampled dark matter field to the downsampled
baryon field at each step of training. This allows the network to
learn the expressive relationships between the dark matter field
and the baryon field at each step of training in order to have the
representative latent space during the bottlenecking step. In full
generality one could simply concatenate an additional copy of
the dark matter field with the baryon field in the hydrodynamics
encoder, but this would significantly increase the memory
requirements for the network.

2.3. Fully Convolutional Architecture

A critical feature of our architecture is for it to be fully
convolutional, thereby allowing inputs of any size during
inference while being trained on smaller volumes. Tradition-
ally, VAEs utilize dense layers to upsample the drawn latent
space variable, which are then possibly followed by transposed
convolutions (or other upsampling convolutions) to reach the

Figure 3. A typical example single slice of the HYPHY mapping is shown. On the left are the test input dark-matter-only maps and in the center are the hydrodynamical
fields (baryon density, velocity, temperature) are compared. There is strong qualitative agreement, with the network accurately learning various characteristics of the
hydrodynamical fields including the variable baryon pressure smoothing and thermal properties. On the far right the networks’ estimated variance is shown, calculated
from 1000 samples over the latent space, normalized by the mean value of the field.
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Figure 4. Same as Figure 3, but showing one of the worse reconstructed test boxes. The characteristics of moderately large shocks are difficult for our network to
learn, resulting in a less sharp feature. However, this uncertainty in the reconstruction is captured when sampling over latent space, as we see significant variance in the
shocked region. If we look at the individual posterior samples this is even more visually apparent; see Figure 9.

Figure 5. HYPHY run on a box significantly larger than the training volumes. The fully convolutional nature of the network allows the network to be run on any box
that is a multiple of a base dimension (currently 8 pixels) and has the same spatial resolution. There are no obvious artifacts caused by the increased image size.
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desired output size. This design restricts the input image size to
always be of the same dimension as the training set. To avoid
this constraint, we broadcast the latent space parameters into a
feature map whose dimensions match that of the lowest level in
the U-Net, then upsample from there as is standard (see
Figure 2). Since the upsampling convolutional layers are
inherently local (as determined by their kernel size) we
maintain the desired locality of our network, while still
allowing every element of the output to “see” the full latent
space.

While generated volumes can be of any dimension, the
training volumes are fixed in size due to the need for dense
layers in the encoder to predict the latent space distributional
parameters. These dense layers do not appear in the generation
network as during generation the latent space is sampled, not
predicted from the input fields. However, training data can
easily be segmented to the proper size, and the choice of the
crop size is a problem-dependent hyperparameter to be tuned.

Note that while one can apply the network to arbitrarily sized
boxes, even if trained to perfect accuracy, its predictions will be
limited by the amount that small-box simulations match large-
volume simulations. Training on boxes of limited volume
means long-distance correlations not captured in the dark
matter distribution (e.g., a spatially fluctuating UV background)
would not be well reproduced with this architecture and would

require additional considerations. For the purpose of this work,
we use training boxes of approximately 4 h−1 Mpc.
Since neither each individual training box nor standard

convolutional layer implementations are periodic, we must
minimize edge effects by restricting our loss function to only
compare the central region of our training sample. In this work,
we train on boxes with 64 voxel side length, of which we
ignore 10 voxels on each side in order to avoid dealing with
edge effects.
In order to better utilize our limited training data, we use the

symmetries of our system to randomly augment training
samples by performing reflections and rotations of our box
over each of the three spatial dimensions. In addition, our
training boxes are overlapping in space, providing some
knowledge of the translational symmetry of the underlying
physics model.

2.4. Redshift Information

For application to real Lyα forest data, a key aspect of the
mapping is to include the redshift dependence of the mapping
as this dependence is used for cosmological constraints (i.e.,
Chabanier et al. 2019). To include this in our model, we
condition on a redshift field of the same size as our training
volume concatenated onto the input dark matter field (i.e.,
every pixel has an associated redshift). This allows us to vary
the redshift over the box (i.e., to generate light cones), as well
as train the same model to work across cosmic time. We train
our model using snapshots from the same simulation at z = 2.4,
z = 3.0, and z = 4.0, as this range dominates the cosmological
Lyα forest signal (Walther et al. 2021). The specific number
and range of bins to use depends on the specific application;
here we focus on qualitative features of the resulting map.

3. Results

We apply our trained network to a separate simulation (not
used for training), focusing on the central redshift of z = 3.0,
which requires only changing the latent space projection
dimension while maintaining the same network weights. We
first show the results for the MAP point predicted by the
network, both in the base hydrodynamical quantities and in
terms of derived Lyα flux. We then discuss the posterior
properties of a representative sample distribution in Section 3.2.
The MAP should correspond to the highest maximum of the

distribution P(Z), which by construction will be at Z= 0 for a
fully trained model. A useful starting point for our analysis will
be to see how this point in the posterior space behaves to judge
the quality of our reconstruction for test boxes with the same
dimension as our training set. Note that we expect these
reconstructions to be slightly smoothed versus generic samples.
We show test boxes both without and with significant shocked

regions in Figures 3 and 4, respectively. In low to medium
density regions, we recover excellent qualitative agreement across
a range of scales for baryon density, baryon velocity, and
temperature. For the shocked example (Figure 9), the HYPHY-
recovered temperature field has a significantly less prominent
shocked region with a much smoother boundary; this is a
common phenomenon in VAE-type networks (Khan et al. 2018).
We also show the model-predicted variance by examining

1000 samples drawn from ( )0, 1 , qualitatively showing that
the regions of highest variance are where there is the strongest
disagreement between HYPHY output and the simulated true

Figure 6. Top: transfer function, defined as the ratio between the large-volume
HYPHY run with the simulated NYX. Bottom: correlation coefficient between
the two boxes, defined as =( )R k P P Pc nyx,hyphy nyx hyphy , where Pnyx,hyphy is
the cross-power between the two fields.
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field. In particular, regions near the boundaries of structures
(like filaments) have significant variance as do those with
significant astrophysical shocks. We discuss these properties
more in Section 3.2.

3.1. Large-volume Statistics

Next, we apply HYPHY to the entire test N-body simulation
at once. To match the resolution of our training sample, we
uniformly downsample the volume by a factor of 2. We show
the reconstructed resulting baryon density, velocity, and
temperature in Figure 5. In addition, we calculate and compare
a number of the statistics between the simulated truth and the
HYPHY-generated version in Figure 6.

3.1.1. Gas-phase Physics

A well-studied aspect of cosmological hydrodynamical
simulations is the relation between the gas density and gas
temperature (Gunn & Peterson 1965; Sorini et al. 2016). We
show our reconstructed relation in log space in Figure 7.
Following Ursino et al. (2010), Martizzi et al. (2019), and
Galárraga-Espinosa et al. (2021), this plot can be viewed as a
phase-space distribution between warm hot intergalactic
medium (WHIM), warm circumgalactic medium (wCGM),
diffuse IGM, halo gas, and “hot gas.” Halo gas consists of
relatively “cool” gas including the interstellar medium within
galaxies, as well as more diffuse gas found in between galaxies
within halos. Similarly, wCGM is found in dense environments
but has been significantly heated via shocks or feedback
processes near galaxies. Diffuse IGM and WHIM are found in
less dense environments, such as regions surrounding fila-
ments. The WHIM component is of significant interest due to
the “missing baryon” problem (Fukugita et al. 1998). The last
component, consisting of gas at any density at a temperature in
excess of 107 K and generally associated with massive shocks,
is a vanishingly small percentage of the test volume (68 pixels
out of 5123 total pixels) and is grouped with wCGM or WHIM
depending on density. In addition, some studies (e.g., Martizzi
et al. 2019) separate star-forming gas, with densities

> -( )nlog 1.0H , as a separate phase. Since NYX does not
model star formation we do not include this phase in our
analysis.
In Figure 7, we summarize the recovered volume fractions

versus the simulated truth. We find excellent recovery of the
diffuse IGM and WHIM, with slightly worse performance of
the wCGM component. Halo gas, constituting a tiny fraction of
the total volume, is very difficult to recover accurately, with
HYPHY finding a factor 19×more halo gas. However, it is
important to note the vast majority of this excess is on the
border of the diffuse IGM component in phase space and can
probably be better described as overestimated IGM temperature
as opposed to misattributed halo gas.
A key property of interest to the IGM is the power-law

relation between density and temperature, which can be related
to statistics of the Lyα forest (Hui & Gnedin 1997). Following
the procedure in Sorini et al. (2016), we identify the gas around
two bins centered at D = -( )log 1b,0 and D =( )log 0b,1 , with a
width of 5% around the central value. We calculate the median
temperature of the corresponding particles in each bin and use
those two points to determine the power-law relation
= DgT T b0 , where Δb is the hydrogen density. For NYX, we

find (T0, γ)= (104.08K, 1.53) and for the HYPHY reconstruction
we find (T0, γ)= (104.08K, 1.51).

3.2. Posterior Exploration

The main motivation of our architecture is to allow accurate,
unbiased posterior sampling of our hydrodynamical quantity
through Gaussian sampling of our latent space variable. In this
subsection we explore how accurate is this mapping.
This question is not straightforward as it is computationally

difficult to calculate the true posterior for the target mapping,
which would essentially require running potentially millions of
additional hydrodynamical simulations to explore all possible
evolutions resulting in the same binned density and velocity
fields due to variations of particle positions on the sub-binned
scale. With this in mind, we are left to check if the samples
drawn have the correct statistical properties of an a posteriori

Figure 7. Two-dimensional histogram of temperature and hydrogen density relation in truth compared to the reconstruction. The orange line indicates a best-fit power-
law solution, = gT T n0 H , across the range of 10−4 < nH < 10−6. Red dashed lines indicate the classification of the gas content of the universe into wCGM, WHIM,
diffuse gas, and halo gas. We find excellent agreement in terms of the mean relation, as well as the WHIM component. However, the cool highest-density regions,
corresponding to centers of cluster regions (i.e., CGM regions), are not well reconstructed.
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sample, as well as examine its qualitative behaviors. We draw
1000 random samples from a unit Gaussian distribution in
latent space and predict the hydrodynamical quantities
associated with a test dark matter field. To test whether or
not our variance estimates are accurate, we plot the χ values for
a test sample in Figure 8. For a true posterior we would expect
this distribution to be approximately unit Gaussian. Schema-
tically, we would expect that points that diverge significantly
from the true value of a given hydrodynamical quantity at a
point would have high predicted variability at that point over
many samples.

In particular, we can use the samples to construct a
covariance matrix to use to test the statistical significance of
deviations away from the MAP solution using the standard chi-

squared formula,

t t t t t tc s= - -  - t
-( ˆ ) ( ˆ ) ( ˆ ) ( )C , 6T2 1 2 2

where t̂ is the estimate hydrodynamical quantity in a single
sample and τ is the simulated true value. In the last arrow we
assume a diagonal covariance for implementation/memory
reasons. If each sample is truly independent and represents the
posterior, we expect that the corresponding χ2 values from the
ensemble should be Gaussian distributed with zero bias and a
standard deviation of one. This is arguably a necessary, but not
sufficient, condition for the samples to represent a maximum
a posteriori sample. We show this distribution in Figure 8.
Outlier samples are caused by a combination of model failures
in rare environments without sufficient training data and by the
limitations of our diagonal approximation for our χ statistic.
An additional property desired of the posterior is for the

samples to capture the qualitative uncertainty of shocked
regions when sampled over latent space. We show one example
of such a region in Figure 9. We expect dense regions at nodes
of the cosmic web to have the largest hydrodynamical effects,
while those in underdense environments away from cosmic
structures should follow roughly power-law distributions
without uncertainty. In the samples in Figure 9, one sees high
variability of the specifics of the shocked region, indicating the
model is learning to account for hydrodynamical uncertainty.
Again, it is difficult to formulate a rigorous method to test
whether this variability is the “true” uncertainty without
running a large suite of hydrodynamical simulations.

3.3. Predicted Lyα Forest

The Lyα forest arises from the scattering of photons at the
characteristic rest-frame Lyα frequency along their path from a
background source, generally either a quasar or galaxy, to the
observer. The fraction of the transmitted flux is given by

t= -( )F exp , where τ is the optical depth of the intervening
gas. The optical depth in redshift space at a given velocity
coordinate, u, along the line of sight is given by

òt
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where ¢u is the component of the Hubble flow velocity field ¢u
along the line of sight over which the integral is calculated and

¢ = ¢( ) ( )u ub k T m2 B p is the thermal broadening of the
absorption feature. With the output of the HYPHY model, we
have all the components necessary to calculate the predicted
Lyα forest statistics. We run the GIMLET (Friesen et al. 2016)
library to numerically calculate Equation (7) on both the
original simulation and our predicted output, using a mapping
from hydrogen fraction to neutral hydrogen from Rahmati et al.
(2013). Flux distributions are calculated along each of three
axes and then averaged out. In Figure 10, we show the resulting
flux distribution, and in Figure 11 we show the error on the
reconstructed 1D power spectra.

Figure 8. Distributions of the χ value for each of our three reconstructions in
relation to a single sample. Also plotted is a unit normal Gaussian distribution,
showing close agreement. Excess values along the tails indicate model failure,
either to estimate proper variance or strong residual biases, or potentially the
importance of off-diagonal covariance terms not captured in this analysis. We
find these value points constitute a very small volume fraction (0.1%). The
field with the most variance that is not captured by our model is the temperature
field, which is also the most numerically complex to calculate in the original
hydrodynamical simulation due to shock physics.
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4. Conclusion

In this work, we have provided a flexible generic mapping
from dark matter fields to hydrodynamical quantities, in
particular the gas temperature, density, and velocity. We
demonstrated that this mapping provides accurate reconstruc-
tions across a wide range of scales and captures a number of the
statistical properties of the underlying truth fields. In addition to
constructing this mapping, the underlying model provides
posterior samples which are consistent with the underlying dark
matter field. While it is computationally infeasible to
analytically calculate the true posterior in this case, we show
that our posterior samples are a valid posterior through their
variance properties.

It is important to note that we were able to construct these
mappings despite only training on a single NYX-simulated run,
using data at z = 2.4, z = 3.0, and z = 4.0. This was possible

due to the various data augmentations used, which exploit the
symmetry of the hydrodynamical physics as well as a
regularizing effect of the underlying C-VAE architecture
(Kamyab et al. 2019). Despite this relatively small training
volume, we are still able to capture the qualitative effects and
associated uncertainties in shocked regions.
We do find some cosmic environments where there are

constant residual biases which, despite significant testing, we
were unable to reduce completely. While we recover the
statistical properties of the WHIM, wCGM, and diffuse IGM
very well, recovering the hot halo gas contribution is
significantly more difficult. We find that our model system-
atically underestimates the density in these regions while
overestimating its overall volume fraction, resulting in an
incorrect estimate for the phase-space distribution. Gas in this
region accounts for a very small small percent of the total
volume, ∼4× 10−6%, likely resulting in HYPHY having

Figure 9. Postage stamp posterior samples of the temperature field from Figure 4. There is high variation in the shocked region, showing the hydrodynamical
uncertainty the model has learned, while the areas outside the shocked region are stationary (with some occasional edge effects).

Figure 10. Performance of HYPHY in terms of the Lyα forest flux in redshift
space using Equation (7) as implemented in GIMLET. We show the resulting
probability density function of Lyα flux, showing substantial biases in the
reconstructed flux at F ∼ 0.25, but good agreement at the extremes.

Figure 11. Performance of HYPHY in terms of the Lyα forest power spectrum
in redshift space using Equation (7) as implemented in GIMLET. We show the
resulting power spectra of Lyα flux, finding good agreement across a range of
scales up to k ∼ 14 h−1 Mpc.
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difficulty capturing its properties. Due to the high mass of these
regions, they have an outsized effect on summary statistics
such as the comparative transfer functions and cross-correlation
measures, as shown in Figure 6.

However, for Lyα forest analysis, these wCGM regions do
not have a noticeable effect on the forests’ statistical properties
so we do not focus on optimizing this aspect. Going beyond
this work, one could perform various data augmentations to
increase its importance in the loss to result in better model
performance in this region. Approaches to dealing with such
unbalanced data have been well studied in the machine-
learning literature (Wang et al. 2016), including oversampling
the minority data (Khoshgoftaar et al. 2007) and using
generative adversarial networks to create synthetic minority
data (Kiyoiti dos Santos Tanaka & Aranha 2019).

One of the most compelling applications of the HYPHY
network is in forward modeling, where the underlying density
field is reconstructed from observed data through an optim-
ization process. For this application, the HYPHY network could
replace analytical or semianalytical approximations, such as the
fluctuating Gunn–Peterson approximation for the Lyα forest
(e.g., in TARDIS; Horowitz et al. 2019, 2021). Our model is
fully differentiable, allowing propagation through a model
using first- or second-order methods. This is similar in spirit to
work done in Modi et al. (2018), where a neural network was
used to paint halo fields onto forward-modeling dark matter
density. However, this assumed a deterministic mapping from
dark matter to galaxy light, while in HYPHY this mapping is
controlled by a latent space. In this approach, hydrodynamical
uncertainties could be marginalized out via sampling of the
latent space during optimization, or jointly optimized for and
then marginalized out via variational methods.

In our loss function, we are implicitly assuming our latent
space posterior can be well approximated by the dimensionality
of our multivariate Gaussian latent space. It is possible a more
accurate posterior would be achievable with an adversarial loss
function which does not rely on this assumption, but such an
approach comes with the additional cost of difficulty in
training. In addition, there is the added possibility of biasing
the cosmological results due to the adversarial function
implicitly learning the cosmology of the training set. For
example, the adversarial loss function could implicitly learn to
calculate a power-spectra-like function, which would force the
generative network to always produce maps with the the same
power spectra as the training samples. With an L1 norm we are
hopeful that our network would be transferable to other
cosmological models, as these models would affect only the
dark matter field without appreciably altering the hydrodyna-
mical mapping.

We expect the overall design of the network to be easily
extended to other hydrodynamical properties. Simulations
suites such as CAMELS (Villaescusa-Navarro et al. 2020),
which include parametric feedback models, would allow the
creation of an all-purpose mapping tool from dark matter to

hydrodynamical models conditioned on underlying physics and
redshift. While in NYX the main source of effective stochastic
processes are gas shocks, other hydrodynamical simulation
tools like AREPO (Springel 2010; Weinberger et al. 2020),
used in CAMELS, allow for feedback processes through star
formation, active galactic nuclei, supernova, etc. When study-
ing these phenomena, it becomes very important to include a
stochastic component to the network, as done in HYPHY. We
plan on further exploring these properties in future works.

We thank Mustafa Mustafa, Stephanie Ger, Chirag Modi,
Francois Lanusse, Peter Melchior, Uros Seljak, Charles
Williams, Stanley Cox, and Earl Stevens for their helpful
insights. We dedicate this work to the late Andre Louis Hicks,
whose work is a constant inspiration. B.H. is supported by the
AI Accelerator program of the Schmidt Futures Foundation.
This work was partially supported by the DOE’s Office of

Advanced Scientific Computing Research and Office of High
Energy Physics through the Scientific Discovery through
Advanced Computing (SciDAC) program. This research used
resources of the National Energy Research Scientific Comput-
ing Center, a DOE Office of Science User Facility supported by
the Office of Science of the U.S. Department of Energy under
Contract No. DEC02-05CH11231.

Appendix
Light-cone Generation

We construct the inputs to the HYPHY model to have a
redshift label for every pixel, a necessary property to allow one
model to learn a range of redshifts and maintain a fully
convolutional architecture. While this is suboptimal in terms of
memory usage in the examples in the main body of the paper, it
allows generation of realistic light cones by varying this index
over the box. As the convolutional layers are limited in scope,
when mapping a given pixel they will only have input from a
very limited range of redshifts. We therefore expect to not
generate any significant artifacts due to the redshift variation
over the test boxes that is not present in the training sample.
Our training sample only has fixed redshift boxes at z = 2.4,
z = 3.0, and z = 4.0.
In practice the redshift label is most relevant for the

temperature of the IGM; for a given fixed dark matter
distribution there is little redshift dependence in the baryon
density or velocity field. We demonstrate the construction of
such a light cone in Figure 12. In the top two panels there is a
clear difference in the overall temperature of the IGM with the
temperature rising from z = 4.0 to z = 2.4. The light cone
version in the bottom panel, where we feed a varying redshift
index, smoothly interpolates between the two. We plan to
further apply this light-cone technique for mock generation and
forward-model reconstructions in future works.
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