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RESEARCH ARTICLE

Efficacy of Visual Surveys for White-Nose
Syndrome at Bat Hibernacula
Amanda F. Janicki1*, Winifred F. Frick2, A. Marm Kilpatrick2, Katy L. Parise3, Jeffrey
T. Foster3¤, Gary F. McCracken1

1 Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, United
States of America, 2 Department of Ecology and Evolutionary Biology, University of California Santa Cruz,
Santa Cruz, California, United States of America, 3 Center for Microbial Genetics and Genomics, Northern
Arizona University, Flagstaff, Arizona, United States of America

¤ Current address: Department of Molecular, Cellular, and Biomedical Sciences, University of New
Hampshire, Durham, New Hampshire, United States of America
* ajanicki@vols.utk.edu

Abstract
White-Nose Syndrome (WNS) is an epizootic disease in hibernating bats caused by the fun-

gus Pseudogymnoascus destructans. Surveillance for P. destructans at bat hibernacula
consists primarily of visual surveys of bats, collection of potentially infected bats, and sub-

mission of these bats for laboratory testing. Cryptic infections (bats that are infected but dis-

play no visual signs of fungus) could lead to the mischaracterization of the infection status

of a site and the inadvertent spread of P. destructans. We determined the efficacy of visual

detection of P. destructans by examining visual signs and molecular detection of P. destruc-
tans on 928 bats of six species at 27 sites during surveys conducted from January through

March in 2012–2014 in the southeastern USA on the leading edge of the disease invasion.

Cryptic infections were widespread with 77% of bats that tested positive by qPCR showing

no visible signs of infection. The probability of exhibiting visual signs of infection increased

with sampling date and pathogen load, the latter of which was substantially higher in three

species (Myotis lucifugus,M. septentrionalis, and Perimyotis subflavus). In addition,M.

lucifugus was more likely to show visual signs of infection than other species given the

same pathogen load. Nearly all infections were cryptic in three species (Eptesicus fuscus,
M. grisescens, andM. sodalis), which had much lower fungal loads. The presence ofM.

lucifugus orM. septentrionalis at a site increased the probability that P. destructans was
visually detected on bats. Our results suggest that cryptic infections of P. destructans are
common in all bat species, and visible infections rarely occur in some species. However,

due to very high infection prevalence and loads in some species, we estimate that visual

surveys examining at least 17 individuals ofM. lucifugus andM. septentrionalis, or 29 indi-

viduals of P. subflavus are still effective to determine whether a site has bats infected with

P. destructans. In addition, because the probability of visually detecting the fungus was

higher later in winter, surveys should be done as close to the end of the hibernation period

as possible.
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Introduction
Disease surveillance in wildlife is often limited by diagnostic techniques that are cost-effective,
rapid, and feasible for use on wild animals [1, 2]. For diseases where hosts display visible symp-
toms, visual surveys are often cost-effective and can be appealing for surveillance because they
typically impose minimal disturbance on host populations [3, 4]. However, if hosts have cryptic
infections that are not observable, then visual surveys will have limited utility for reliably iden-
tifying habitats harboring infected individuals (a primary goal of disease surveillance) and will
underestimate infection prevalence. Estimating the efficacy of visual surveys for a particular
disease is necessary to determine whether this low-cost and minimally disruptive survey
method is an appropriate surveillance approach.

White-Nose Syndrome (WNS) is a rapidly spreading epizootic disease that has caused wide-
spread declines in six species of hibernating bats in North America, raising substantial concern
about the risk of extirpation and extinction of species [5–8]. WNS is caused by the fungal path-
ogen, Pseudogymnoascus destructans [9–11], which infects and kills bats during hibernation
[12] by disrupting physiology [13–15] and natural torpor arousal patterns [10, 16]. The disease
was namedWNS because the faces and wings of some initially documented bats were visibly
covered in white, powdery fungal growth [17]. The disease was first detected in a cave near
Albany, New York in 2006, and by the spring of 2015 WNS had been confirmed in seven spe-
cies of bats in 26 U.S. states and five Canadian provinces [18]. Although the exact origin of P.
destructans remains unclear, recent genetic data suggest the fungus was introduced to North
America from the Western Palearctic [19, 20].

Visual surveillance for WNS is conducted in hundreds of caves and mines each year and is
the primary surveillance strategy recommended by the U.S. Fish andWildlife Service WNS
National Response Plan and the Canadian Wildlife Heath Cooperative WNS National Plan
[21, 22]. Surveillance for WNS consists primarily of searching for bats with visible fungal infec-
tions of P. destructans (e.g. visible fungus on skin tissues), and submitting bats with suspected
infection for laboratory testing by histopathology [23]. Histopathology is used to confirm the
presence of epidermal cupping erosions and lesions on the wing membrane diagnostic of WNS
disease [23]. Reporting of hibernacula with WNS is used to track disease spread as well as
inform management decision-making, such as restricting human access to sites or requiring
decontamination protocols to reduce potential spread of the fungus by humans [24].

Bats become infected with P. destructans before the fungus on skin tissues becomes visible
to the human eye. These cryptic infections could easily be missed during visual surveys, causing
sites to be falsely classified as ‘uninfected’ when in fact the pathogen is present and bats are
infected. Falsely reporting a site as not having bats infected with P. destructans could lead to
underestimates of the impact of disease on bat populations, and unrestricted human access
without decontamination could lead to inadvertent spread of P. destructans. False visual detec-
tions of P. destructans caused by other fungi such as Trichophyton redellii [25] could also occur
and could lead to unnecessary killing of bats for submission for histopathology. The recent
development of a qPCR assay [26] to detect P. destructans DNA from epidermal swab samples
from bats provides an opportunity to determine the accuracy and efficacy of visual surveys for
detecting the presence of the pathogen at hibernacula and the prevalence of infection on differ-
ent bat species. Although a range of different factors can affect DNA quantity extracted from
swabs (e.g. extraction efficiency), this qPCR assay has been shown to be both highly specific to
P. destructans and highly sensitive, making it an accurate and useful method to determine if
bats are infected and for estimating prevalence [27, 28].

Our main objective was to determine the accuracy of visually detecting infections of P.
destructans at bat hibernacula. Here, we define infection as the presence of P. destructans DNA
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detected by qPCR from swab samples collected from bats. We estimated the probability of fail-
ing to visually detect infections on bats that tested positive for P. destructans by qPCR (i.e. the
probability of an infection being cryptic). We hypothesized that cryptic infections would be
less likely in bats with higher pathogen loads, and as a result, cryptic infections would be more
likely in species with lower pathogen loads [12]. We also compared whether the presence or
absence of particular bat species at a hibernaculum increased the probability of visually detect-
ing P. destructans on bats.

Materials and Methods

Sample collection
We examined the presence of P. destructans in six species in 27 hibernacula in four states in the
southeastern United States (Fig 1) during winter hibernation from January through March in
2012–2014. We swabbed 928 bats of six species over three years with an average of 22 bats
(range: 5–50) of one to six species present in each hibernaculum. Bats were swabbed five times
on their muzzle and forearm with polyester-tipped swabs dipped in sterile water. Prior to

Fig 1. Map of sample collection. Amap of 27 hibernacula in four states where hibernating bats were sampled from January-March in 2012–2014. Shading
designates the year that WNS and molecular evidence of P. destructans were confirmed in a U.S. county [18].

doi:10.1371/journal.pone.0133390.g001
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swabbing, we noted whether fungus was visible on the bat’s skin tissues (muzzle, ears, forearms,
and uropatagium) while the bat was in hand. All bats were released after sampling at the site
where they had been roosting. Swabs were stored in RNAlater to preserve DNA and kept refrig-
erated or frozen until testing.

All bat handling procedures followed guidelines approved by the American Society of
Mammalogists and the University of Tennessee Institutional Animal Care and Use Committee.
Decontamination procedures issued by U.S. Fish andWildlife Service were followed for all cav-
ing gear [24]. Permits for this research were obtained fromMissouri Department of Conserva-
tion (15184, 15471, and 15871), Tennessee Wildlife Resources Agency (3716), and U.S. Fish
andWildlife Service (TE71613A-0). Other bat samples were collected in collaboration with
state agency personnel with permits from Alabama Wildlife and Freshwater Fisheries and Ken-
tucky Department of Fish and Wildlife Resources.

Sample testing
Swab samples and standards were extracted with DNeasy Blood and Tissue extraction kits
(Qiagen, Valencia, CA) with modifications for fungal extractions that included the addition of
lyticase during the lysis step [28]. Each extraction plate had 16 negative control wells (100% P.
destructans negative) distributed throughout the plate. DNA samples were analyzed by real-
time PCR using methods developed by Muller et al. [26], using a cut-off of 40 cycles for a posi-
tive detection. Cycle threshold values (Ct value) were used to calculate fungal loads, in nano-
grams, using the equation load = 10((22.04942-Ct value)/3.34789), which was derived from serial
dilutions of a quantified standard of isolate P. destructans 20631–21. Seventy-five percent of
samples were run in duplicate and a sample was considered P. destructans positive if either or
both runs were positive. Fungal loads were averaged across both runs after conversion from Ct
values.

Statistical analysis
Visual detection of P. destructans on bats. We used generalized linear models with a

binomial distribution to determine if the probability of visually detecting P. destructans on a
bat was associated with fungal load, when sampling occurred, and if detection probability dif-
fered among species. We used a bias-reduction method (package brglm in R v. 3.1.2) to deal
with the complete separation present in the data (in some species no visual detections of the
fungus were made). We used the number of days since January 1st to account for differences in
timing of sampling as visibility of infection may increase later in the season [27, 29, 30]. We fit
twelve a priorimodels with combinations of main, additive, and interactive effects representing
our hypotheses and used Akaike information criterion (AIC) model selection criteria to deter-
mine the best-fitting model. We estimated the probability of falsely detecting visual infection
using bats that tested negative by qPCR but were noted with visible white fungus in the field.
We compared whether false detection differed among species using a likelihood ratio test to
compare a null model to one with species included.

Visual surveys for site-level detection of P. destructans on bats. We used generalized lin-
ear models with binomial distributions in which each site visit was a data point to determine
whether timing of survey, sampling effort, and species of bats examined influenced visual
detection of P. destructans on bats at a site. ForMyotis lucifugus,Myotis septentrionalis, and
Perimyotis subflavus, we also determined whether the prevalence of infection of bats with visual
infections influenced the likelihood of visually detecting the fungus during a site visit. All statis-
tical analyses were conducted in Program R v. 3.1.2.
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Results

Pathogen loads and visual detection of P. destructans on bats
Seventy-seven percent (306/397) of bats that tested positive for P. destructans by qPCR had no
visible signs of P. destructans, demonstrating that the probability of false negatives (i.e. failing
to visually detect P. destructans on bats that had the pathogen) is high (Table 1). The probabil-
ity of observing visible white fungus on a bat that was qPCR negative was low (14/531 or 2.6%)
and did not differ among species (likelihood ratio test: χ = 5.10, df = 5; P = 0.40). The best-fit-
ting model of the probability of visual detection included fungal load, sampling date, and an
additive species effect (AIC weight = 0.55; Fitted equation forM. lucifugus = Pr(Detection) ~
-12.9 (±1.5) + 1.77 (±0.2) � log10(load) + 0.02 (±0.01) � (days since January 1); ForM. septen-
trionalis and P. subflavus the intercept equaled -14.01 (±1.6); For the three other species
(Eptesicus fuscus,Myotis grisescens, andMyotis sodalis) the intercept equaled -13.47 (±1.6)),
suggesting that the probability of visually detecting P. destructans on a bat increased with path-
ogen load measured by qPCR, but the slope did not differ among species (Table 2, Fig 2). The
probability of visually detecting P. destructans increased with the number of days since January
1st and there was only weak support that this effect differed among species (Table 2).

Visible infections occurred most frequently in three species (M. lucifugus,M. septentrionalis,
and P. subflavus) that had the highest fungal loads andM. lucifugus had a significantly lower
detectability threshold (e.g. higher intercept) compared toM. septentrionalis and P. subflavus,
which were not significantly different from each other (Fig 2). Loads on the other three species
(E. fuscus,M. grisescens, andM. sodalis) were usually too low to result in visible infection
(Fig 2).

Efficacy of visual surveys at hibernacula
Forty percent (17/43) of sites where at least one bat tested positive for P. destructans by qPCR
had no bats with visual signs of P. destructans and would have been classified as ‘uninfected’
based solely on visual surveys. The likelihood of detecting the presence of P. destructans at a site
with visual surveys increased with the number of bats examined for the three species that fre-
quently exhibit visual infections (M. lucifugus,M. septentrionalis, and P. subflavus) (Pr(Detec-
tion) ~ -0.90 + 0.12 (± 0.051) � #mylu.myse.pesu.sampled; N = 43; P = 0.02), and there was very
weak support for the influence by when a visit occurred between January and March or examina-
tion of other species (Table 3). The probability of visual detection of P. destructans at a site
increased with prevalence of infection for P. subflavus (Pr(Detection) ~ -1.1 + 3.13 (± 0.051)
� Prevalence; N = 32; P< 0.01), but not forM. lucifugus (Pr(Detection) ~ -1.1 + 1.0 (± 1.8) �

Table 1. Fraction of bats with visible fungus on bats tested for Pseudogymnoascus destructans by
qPCR.

Species Fraction of bats with visible fungus

qPCR + qPCR -

Eptesicus fuscus 0.10 (1/10) 0.0 (0/30)

Myotis grisescens 0.04 (1/26) 0.02 (5/201)

Myotis lucifugus 0.35 (24/69) 0.06 (3/50)

Myotis septentrionalis 0.24 (7/29) 0.0 (0/22)

Myotis sodalis 0.0 (0/21) 0.05 (4/76)

Perimyotis subflavus 0.24 (58/242) 0.01 (2/152)

Sample sizes are shown in parentheses.

doi:10.1371/journal.pone.0133390.t001
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Prevalence; N = 13; P = 0.56) orM. septentrionalis, the latter of which had a prevalence of 100%
at all sites (Fig 3). Visual surveys that include either 17M. lucifugus or 17M. septentrionalis have
a 99% likelihood of detecting P. destructans if it is present at the site. For P. subflavus, examining
at least 29 bats is required to have a 99% chance of detecting P. destructans if it is present.

Discussion
Our results suggest that cryptic infections are widespread and that solely using visible signs of
P. destructans greatly underestimates infection prevalence in bats even during mid to late win-
ter (January-March) when the majority of surveillance surveys for WNS are conducted. Cryptic
infections were so common in some species (E. fuscus,M. grisescens, andM. sodalis) that visual
surveys were only useful for detecting P. destructans at a site if other species (M. lucifugus,M.
septentrionalis, and/or P. subflavus) also were present and examined. The higher percentages of
the latter three species that displayed visible P. destructans, combined with the high infection
prevalence in these species, resulted in a very high likelihood that P. destructans was detected at
a site whenever these bat species were present.

Our results also show that the probability of visual detection increases with fungal load of P.
destructans, and differences in fungal loads among species explain most of the differences in
the probability of observing visible P. destructans on bats. This is likely because higher loads
indicate a larger number of conidia and hyphae on the bats and a greater likelihood of the fun-
gus being visible. This is consistent with the finding that the probability of visual detection of
P. destructans on bats was higher later in the hibernation season when the fungus has had suffi-
cient time to grow on the bats and is at maximal loads [12], suggesting that visual surveys
should be scheduled late in hibernation to be maximally effective. Our findings are similar to
patterns of visual prevalence in Europe where visible infections also peaked in late hibernation
[29]. Hibernation season length may influence visual detection given that most bats become
infected at the start of hibernation and fungal loads increase once bats are torpid [12]. Thus,
infections may become visible sooner in northern latitudes where bats likely enter hibernation
earlier [31].

Even with the same fungal load, some species were more likely to exhibit visible P. destruc-
tans (Fig 2). Visible P. destructans was detected at significantly lower loads onM. lucifugus
than other species (Fig 2), perhaps because their darker skin provides more visual contrast with

Table 2. Model selection results for visual detectability of Pseudogymnoascus destructans on bats.

Model ΔAIC AIC weights

species + load + date 0.0 0.55

species * date + load 2.0 0.20

species + date * load 2.1 0.19

species + load 5.2 0.04

load 7.1 0.02

species * load + date 9.7 0.00

species * load 18.3 0.00

species * load * date 29.0 0.00

species + date 118.8 0.00

species 128.6 0.00

date 132.4 0.00

pd.visible.bat ~ null 142.0 0.00

Models are ranked by ΔAIC and the best-fitting model is shown in bold.

doi:10.1371/journal.pone.0133390.t002
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the white fungus.Myotis lucifugus andM. septentrionalis, when present, are the best ‘sentinels’
or indicators of the presence of P. destructans when surveying for visible signs, and surveying

Fig 2. Visual detectability of Pseudogymnoascus destructans on bats compared to fungal loads. Solid lines show predicted relationships from the
best-fit model (Table 2) and dashed lines show the 95% confidence bands for early (January 1st; blue lines) and late (March 31st; green lines) sampling dates.
Individual circles are bats that tested positive for P. destructans by qPCR and did (y-axis value of 1) or did not (0) have visible evidence of P. destructans.

doi:10.1371/journal.pone.0133390.g002

Table 3. Model selection results for visual detectability of Pseudogymnoascus destructans at hiber-
nacula. #mylu.myse.pesu.sampled refers to the sum of the number of bats of three species sampled (M. luci-
fugus –mylu,M. septentrionalis –myse, P. subflavus – pesu).

Model ΔAIC AIC weights

#mylu.myse.pesu.sampled 0.0 0.56

date + #mylu.myse.pesu.sampled 1.3 0.29

null 4.9 0.05

all.bats.sampled 5.0 0.05

all.bats.sampled + date 5.6 0.03

date 6.6 0.02

Models are ranked by ΔAIC and the best-fitting model is shown in bold.

doi:10.1371/journal.pone.0133390.t003
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P. subflavus can also be useful. In contrast, fungal loads in E. fuscus,M. grisescens, andM. soda-
lis are simply too low to consistently result in visible P. destructans. Differences in fungal loads
and infection intensity among species suggests interesting differences in either transmission,
hibernating behaviors, and/or disease susceptibility among hibernating species exposed to P.
destructans [5, 32, 33].

Currently, visual surveys are routinely used to determine whether P. destructans has invaded
new hibernacula [21, 22]. Our results show that the efficacy of these visual surveys depends on
which species are present at a site and how many bats are examined for visible fungus. For
example, the presence ofM. lucifugus orM. septentrionalis increases the probability that P.
destructans can be detected visually at a site and that these can be used as ‘sentinel’ species for
the presence of P. destructans (Fig 3). Our results suggest that with a moderate survey effort of
examining either 20 (if surveyingM. lucifugus orM. septentrionalis) or 30 (if only P. subflavus

Fig 3. Detection of visible Pseudogymnoascus destructans on bats at hibernacula and the fraction of bats with P. destructans at that site as
determined by qPCR.Circles represent sites where a species was sampled, with red circles indicating sites where at least one individual of that species had
visible fungus and black circles indicating sites where no individuals of that species were observed with visible fungus. The size of the circles is scaled to the
number of bats sampled at a site. The x-axis shows the proportion of bats that were positive for P. destructans by qPCR and the y-axis shows whether at
least one individual bat at that site of any species was negative (0) or positive (1) for visible fungal infections. Prevalence of infection was a significant
predictor for detection of visible infections at a site for a single species, P. subflavus. Solid black line and gray shading for P. subflavus represent the best-fit
line and 95% confidence band for the relationship between prevalence of infection and detection of visible infections at hibernacula.

doi:10.1371/journal.pone.0133390.g003
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are examined) individuals at a site, then visual surveys can indeed be effective at determining
whether bats are infected with P. destructans at a hibernaculum. At sites with species that rarely
or never have visible signs of P. destructans, such as E. fuscus,M. grisescens, orM. sodalis, visual
surveys are ineffective. To ensure visual surveillance is effective at determining whether P.
destructans has invaded new sites [21, 22], future surveillance guidelines should incorporate
these specific recommendations on species and sample sizes required for effective surveillance
efforts.

The widespread occurrence of cryptic infections in all species has direct relevance to man-
agement and surveillance of this disease [34, 35]. Visual surveys can be an effective and rela-
tively low-cost part of surveillance activities, especially in areas where routine winter colony
counts are already conducted [36], only as long as sites contain sufficient numbers of bats
(>20) of species that exhibit visual infections (e.g.M. lucifugus,M. septentrionalis, and/or P.
subflavus). Further, visual surveys of individual bats are most effective late in the hibernation
season. However, for detection of P. destructans on species with predominately cryptic infec-
tions and to accurately measure prevalence, swab sampling and testing samples with molecular
methods are needed [12, 26, 27]. Ultraviolet (UV) illumination has recently been proposed for
WNS surveillance based on comparisons with histological examination of bats submitted for
testing based on visual signs of WNS and bats collected in areas where the fungus has been
present for several years [37]. We did not examine bats under UV illumination and a compari-
son of this method with molecular testing of swab samples would be useful to determine
whether UV illumination is effective for detecting cryptic infections on the leading edge of fun-
gal invasion. Currently, the U.S. Fish and Wildlife Service WNS National Response Plan and
the Canadian Wildlife Health Cooperative WNS National Plan surveillance protocols rely
entirely on visual surveillance [21, 22], but our findings suggest that combining swab sampling
and visual surveys would improve national surveillance of this disease.

There are currently no active management strategies for control or mitigation of WNS
other than cave closures [21, 34]. However, activities such as culling have been considered as a
means to prevent the spread of the disease to new regions [38]. The occurrence of cryptic infec-
tions demonstrates that culling visibly infected bats will be ineffective at halting the spread of
P. destructans, supporting early modeling efforts [38]. Further, recent evidence suggests that
culling infected individuals, even using a highly sensitive method (e.g. qPCR on swab samples),
will be ineffective because P. destructans is often widespread in the environment a year after
the fungus reaches a site, and can persist at sites and in the absence of bats for long periods [27,
38–41]. Our findings that cryptic infections commonly occur at bat hibernacula suggest that
although the spread of P. destructans across North America is consistent with spread by bats
[42–44], restricting recreational access and requiring field hygiene protocols to decontaminate
gear will reduce potential human-mediated spread.
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