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Abstract

In this paper we describe a general connectionist model of
“leamning by being told”. Unlike common network models of
inductive learning which rely on the slow modification of con-
nection weights, our model of instructed learning focuses on
rapid changes in the activation state of a recurrent network. We
view stable distributed patterns of activation in such a network
as internal representations of provided advice - representations
which can modulate the behavior of other networks. We sug-
gest that the stability of these configurations of activation can
arise over the course of learning an instructional language and
that these stable patterns should appear as articulated attractors
in the activation space of the recurrent network. In addition
to proposing this general model, we also report on the results
of two computational experiments. In the first, networks are
taught to respond appropriately to direct instruction concerning
asimple mapping task. Inthe second, networks receive instruc-
tions describing procedures for binary arithmetic, and they are
trained to immediately implement the specified algorithms on
pairs of binary numbers. While the networks in these prelim-
inary experiments were not designed to embody the attractor
dynamics inherent in our general model, they provide support
for this approach by demonstrating the ability of recurrent back-
propagation networks to learn an instructional language in the
service of some task and thereafter exhibit prompt instruction
following behavior.

Introduction

Connectionist models of human learning have focused pri-
marily on problems of inductive generalization. They view
learning as a process of extracting new knowledge from the
statistical properties of a long series of exemplars. While
this covers many cases, humans exhibit other learning behav-
iors which defy description as induction over examples. In
particular, we are capable of acquiring new knowledge from
single highly informative events, such as tasting sushi for the
first time, seeing someone operate a new coffee machine, or
hearing a lecture. A single sentence can have profound and
lasting effects on our behavior. Furthermore, we are capable
of integrating such rapidly acquired knowledge with knowl-
edge gained inductively. If connectionism is to provide a
sound computational framework for the entire range of human
learning behaviors, it must be extended beyond induction.
Towards this end, we propose here a connectionist model
of “learning by being told”, and we demonstrate a some-
what more modest model of connectionist instruction fol-
lowing. We view “learning from instruction” as involving
the demonstration of “‘appropriate” behavior immediately fol-
lowing the receipt of a linguistic directive. Our goal is to

integrate standard connectionist learning methods with such
rapid instructed learning to form a single cognitively plausi-
ble model. This multistrategy model should help explain both
the operationalization of instruction into appropriate behav-
ior (Hayes-Roth et al., 1980; Mostow, 1983) and the interac-
tion effects between instructed learning and exemplar-based
learning which have been observed in humans.

Our model is based on the observation that typical connec-
tionist weight modification techniques are inherently too slow
to account for instructed learning. Of course, large weight
changes could be made in response to instruction, but in net-
works using distributed representations, such rapid weight
modification tends to destroy previously acquired knowledge
in dramatic and unrealistic ways. We focus instead on model-
ing a network’s response to instruction as changes in its inter-
nal activation state. We suggest that our prompt response to
instruction is best seen as motion in activation space — as the
settling of a network’s activation state into a (typically novel)
basin of attraction corresponding to the received instruction.'

This idea may be illustrated by the Necker cube net-
work (McClelland et al., 1986), shown in Figure 1. This
small constraint satisfaction network models our perception
of the line drawing of a cube, focusing on our tendency to
interpret the drawing in one of two distinct ways. The pro-
cessing elements in this network represent particular depth
assignments, “front” or “back”, for each vertex in the cube.
Connection weights are selected so as to embody constraints
on the interpretation of vertices. The result is a recurrent at-
tractor network with two major basins of attraction in activa-
tion space. In other words, there are two main configurations
of unit activations which are stable over time — one config-
uration for each interpretation of the Necker cube drawing.
Given some starting levels of activation for the processing
elements, the network will tend to settle into one of these
attractor basins, forming a coherent internal representation of
the cube in activation space. We may bias the network toward
one interpretation over the other by providing input activation
to the appropriate units. By manipulating the input to the units
on one side, we can cause the network to rapidly move from
one attractor basin to the next. Similarly, humans can be told
to see the cube in a different way, and this input can change
their perception of it.

The reception of direct instruction may be viewed as a pro-
cess similar to that embodied in this Necker cube example.
In the case of instruction, natural language advice is to be

"Thanks are due to Paul Churchland for this notion (Churchland,
1990).
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Figure 1: Necker Cube And Attractor Network

rapidly transformed into a coherent internal representation in
activation space — a representation which may then be used to
modulate the behavior of other networks in the performance
of their tasks. As in the Necker cube system, we may encode
these internal representations in the attractors of a recurrent
network. Learning an instructional language may be seen as
training the weights of such an attractor network so as to form
a distinct basin of attraction for every meaningful sequence
of advice. Most of these articulated attractors® need not be
explicitly trained over the course of language learning, but
they may come into existence, nonetheless, via interactions
between trained attractors. In this way, some “spurious” at-
tractor basins may actually be seen as serendipitous basins in
that, while not explicitly trained, they have interpretations that
“make sense” in the behavioral domain of the network. Thus,
once the language of instruction is learned, such an attractor
network may rapidly encode novel advice simply by moving
to the corresponding basin of attraction. As in the Necker
cube network, this motion in activation space may be driven
by appropriate input activation. Following the lead of many
connectionist models of natural language processing (Cot-
trell, 1989; Elman, 1990; St. John and McClelland, 1990),
we may encode linguistic instructions as temporal sequences
of such input activity, allowing advice to “push” the network
into the appropriate basin of attraction. For this strategy to
work, such an instructable network must support a distinct
stable configuration of activation levels for every instruction
sequence which might be presented. If such a combinatorial
set of attractors is not present, the network will be limited
in the number of different instruction sequences that it can
understand and operationalize. With articulated attractors in
place, however, novel instructions may be quickly molded
into a coherent activation-based modulating force on some
task behavior.

Note that this strategy of modeling instructed learning in
activation space leaves weight modification in the capable
hands of standard connectionist inductive learning algorithms.
This allows instruction and induction to proceed in tandem to
solve complex learning problems. Also, in addition to weight
modifications based on behavioral feedback, Hebbian learning
may be used to strengthen and deepen attractors which are

These have also been called componential attractors (Plaut and
McClelland, 1993).
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Figure 2: Generic Instructable Network Architecture

regularly visited. Such weight changes would increase the
likelihood of visiting those attractors in the future, making
common instructional memories easy to instantiate.

Our approach may be illustrated by a generic network archi-
tecture, shown in Figure 2. In that diagram, boxes represent
layers of processing elements, and arrows between boxes rep-
resent complete interconnections between layers. Temporal
streams of tokens in an instructional language are presented
at the advice layer, and this input activity is used to direct
the settling of the attractor network at the plan layer. The
stable configuration of activity levels at the plan is then used
to modulate the behavior of a task oriented network, much
like the “plan” layer of a Jordan network (Jordan, 1986). The
connection weights may be trained using a standard inductive
learning technique, such as backpropagation, with an error
signal provided only on actual task performance. This allows
the language of instruction to be learned in the service of a
task (St. John, 1992). Such inductive learning may also be
used to shape task performance through experience. Once
the instructional language is learned, however, new behaviors
may be elicited at the speed of activation propagation, with-
out further weight modification, simply by presenting a novel
stream of advice.

In summary, our general strategy involves:

e encoding instructions as temporal input sequences;

training a recurrent network (the plan network) to form
combinatorial representations of these sequences in its
basins of attraction — representations shaped by error feed-
back from another network (the domain task network),
which uses activity in the plan network to modulate the
performance of some specific task;

providing further inductive training as appropriate, allow-
ing for the interaction of exemplar-based inductive learning
with learning from instruction.

This paper presents an initial examination of this approach
to instructed learning. Of particular interest is the plausibility
of the claim that a connectionist network may be trained to
promptly transform a temporal sequence of instructions into
appropriate behavior in some domain. To test this assertion,
some networks were made to follow instructions concerning
a combinatoric discrete mapping task and others were trained
to immediately implement algorithmic instructions for binary
arithmetic. These networks were constructed without the ben-



efit of stable attractors at the plan layer, so activity at that layer
was artificially “frozen” once advice was received (St. John
and McClelland, 1990). The utility of articulated attractors
at the plan layer will be the primary focus of future work.
The details of these two experiments are presented below,
following a brief overview of related work.

Alternative Approaches

We are not the first to propose a technique for the direct
instruction of connectionist models. Indeed, early connec-
tionist networks using “localist” approaches were frequently
“instructed” through the direct assignment of network param-
eters by knowledgeable researchers. This was possible since
the networks involved parameters with well understood se-
mantics. In such a framework, “instruction” was essentially
“programming”, involving the specification of processing el-
ements, connections between elements, and specific connec-
tion weights. Some systems automated a large portion of this
process, allowing symbolic rules to be directly compiled into
network parameters (Cottrell, 1985; Davis, 1989). The main
drawback of this “weight compilation’ approach is the con-
straint that it places on the representational schemes available
to the network. Specifically, since the semantics of network
components are fixed, networks of this kind are not free to
form arbitrary distributed representations appropriate for the
demands of the task.

Some researchers have generated network models which
are instructable in this “weight compilation” manner but are
still free to develop arbitrary internal distributed represen-
tations through inductive training. In general, networks of
this kind may only be instructed before inductive training be-
gins, because standard connectionist learning methods often
change the representational nature of weight values in hard to
predict ways, making the direct manipulation of those weights
in response to instruction quite problematic. One solution to
this problem involves occasionally normalizing weight val-
ues back to configurations which are “meaningful” to the
weight compilation process. This may be done by identifying
and extracting the “rules” embodied in the trained network
and then resetting weight values to encode exactly those ex-
tracted rules. Once reset in this way, new instructions may
be incorporated into the network and the process of inductive
learning may begin again. Weight compilation approaches of
this kind have been successfully used to encode propositional
logic rules (Towell and Shavlik, 1994), “fuzzy” classification
rules (Tresp et al., 1993), simple mapping rules (McMillan
et al., 1991), the transitions of finite state automata (Giles
and Omlin, 1993), and advice for an agent in an artificial
environment (Maclin and Shavlik, 1994).

Unfortunately, none of these models provide a connection-
ist explanation for how instructions are compiled into the
network. Also missing is a connectionist mechanism for the
rule extraction process which is needed to “reset” the seman-
tics of weight values. Both of these processes, compilation
and extraction, require the direct manipulation of the process-
ing elements and the global coordination of weight values.
While a connectionist explanation for these dynamic global
restructuring processes may be possible, it is not clear what
form such an explanation would take.

Perhaps the most important criticism of these models, how-
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ever, is that the “language of thought” is preordained by the
researcher. In order to continue to receive instruction after
inductive learning has begun, the models must continuously
reformulate their knowledge in the terminology of explicit lin-
guistic instruction. Inductively learned nuances are discarded
during rule extraction, leaving these models with a behavior
that is consistently analogous to symbolic rule following. In
essence, these models are trapped in the first stage of skill ac-
quisition and cannot escape (Rumelhart and Norman, 1978).

By placing instructions in activation space, all of these
problems may be avoided. Inductive weight modifications
and instruction following may proceed simultaneously, and
they may complement or interfere with each other in complex
ways.

Instructed Associations

A number of initial experiments have been conducted, fo-
cusing solely on the ability of recurrent backpropagation net-
works (Rumelhart et al., 1986) to learn to operationalize in-
struction. In particular, issues concerning the benefits of at-
tractor network dynamics for generalization to novel advice
have been left for later inquiries. For these initial experiments,
unit activations at the plan layer are artificially “frozen” in
order to provide a stable internal representation of input in-
struction sequences. The goal of these early experiments is
to demonstrate that a language of instruction may be learned
inductively solely from error feedback on actual task perfor-
mance.

Our first experiment focuses on the ability of these networks
to learn to follow instructions concerning a simple associa-
tional mapping. Our domain task involves mapping inputs
from a finite set into outputs from the same set. Correct
mapping behavior is not specified by a collection of labeled
examples, however, but by the direct communication of map-
ping rules. These rules may be viewed as statements such
as, “When you see rock, say paper.” Upon presentation of
such rules, the network is to immediately change its behavior
accordingly. Inductive training is used during an initial phase
in which the network learns the instructional language, but
once this initial training is complete, instruction following
may proceed without weight modification. Also, this initial
training phase exposes the model to only a fraction of the pos-
sible mappings, and the network is expected to generalize its
instruction following behavior to novel instruction sequences.

The model, inspired by the architecture of the Sentence
Gestalt network (St. John and McClelland, 1990), is shown
in Figure 3. The boxes represent layers of sigmoidal process-
ing elements and arrows between boxes represent complete
interconnections between layers. Layer sizes are shown in
parentheses. Symbolic instruction tokens, each encoded as
localist “1-out-of-N"" activation vectors, were presented se-
quentially at the advice input layer, and activation was prop-
agated through the recurrent “Plan Network” to produce a
pattern of activation at the plan layer. Each mapping rule was
encoded as a sequence of three of these instruction tokens (a
delimiter followed by the input/output pair) and each com-
plete mapping consisted of three such rules. For example, the
nine token advice sequence:

= ROCK PAPER
= SCISSORS ROCK
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=> PAPER SCISSORS

was used to communicate the three rules, “when you see
ROCK, say PAPER”, “when you see SCISSORS, say ROCK”,
and “when you see PAPER, say SCISSORS”. When the pre-
sentation of a sequence of instruction tokens was complete,
the activation at the plan layer was “frozen” and used to mod-
ulate the behavior of the “Mapping Network” as it performed
the desired mapping. Input tokens, also encoded in a localist
fashion, were presented at the input layer, and the network’s
response was read from the output layer. During the ini-
tial training phase, mean squared error was then computed
at the output layer, based on the most recently presented in-
structions, and this error was backpropagated to allow for
weight modifications throughout the network. The details
of this training procedure were much like those of the Sen-
tence Gestalt model. In particular, error was backpropagated
through recurrent connections for only a single time step, and
error was computed after the presentation of each instruction
token. A learning rate of 0.05 was used, with no momentum.
This initial inductive training period was ended when perfect
performance was achieved on a training set of instruction se-
quences, or when this training set had been presented 5000
times.

Training sets of nine different sizes were examined, and
five different random initial weight sets were used. Almost
all of these trials resulted in 100% accuracy on the training
set within the limit of 5000 epochs. In other words, these net-
works consistently learned to operationalize the instructions
on which they were trained. As shown in Figure 3, general-
ization performance was also good, with accuracy values on
non-training set instruction sequences appearing well above
the chance level of 33% correct. Note that training set size is
expressed in this figure as a percentage of the total number of
possible instruction sequences. Three discrete inputs gave 27
possible mappings. For each mapping, there were 6 possible
permutations of the mapping rules, for a total of 162 possible
instruction sequences.

While very simple, this discrete mapping task poses inter-
esting problems for inductive connectionist learning. Appro-
priate system behavior depends entirely on the given instruc-
tions. There are no other environmental regularities for the
network to discover during training. Once completely trained
to “‘understand” the instructional language, the network is re-
quired to modify its behavior immediately upon receipt of new
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instructions, without further weight modification. The way in
which this discrete mapping problem forces the network to
generalize in a systematic manner over the space of instruc-
tion sequences makes this a difficult learning problem, and it
also makes it an ideal domain in which to test the power of
the proposed network architecture. The results demonstrate
that associational mapping instructions can indeed be opera-
tionalized by networks of this kind. However, these results
also suggest a need for a mechanism to improve generaliza-
tion performance (Noelle and Cottrell, 1994) — a need which
might be met by the incorporation of an attractor network at
the plan layer.

Instructed Algorithms

Our second experiment extends our task domain into the realm
of sequential procedures. The goal is to demonstrate the abil-
ity of these recurrent networks to handle instructions concern-
ing complex sequences of action. To this end, we focus on
the domain of arithmetic on arbitrarily large binary integers.
In previous work it was shown that recurrent neural networks
may be inductively trained to perform a systematic procedure
for multi-column addition (Cottrell and Tsung, 1993). Here
we wish to examine the possibility of modulating such al-
gorithmic behavior through direct instruction. Instructional
tokens, each representing some atomic action, are to be used
to communicate a sequential method for binary addition or
subtraction to a network, and that network is to be trained to
immediately implement the specified procedure.

The general structure of the Cottrell & Tsung addition
model was used as the basis of our “Arithmetic Network”,
shown in Figure 4. Under this approach, arithmetic was seen
as the iterative transformation of a written representation of
two argument integers. The two numbers are assumed to be
written so that columns align, and an attentional mechanism
is assumed to focus processing on one digit column at a time.
Solving an arithmetic problem involves iteratively performing
a sequence of actions for each column and then attending to
the next. In terms of the network architecture, the digits input
layer contained a representation of the two digits in the current
column (plus an extra input unit to signal when no columns
remained). The actions output layer specified the action to be
taken on the current time step, which was one of: “write a
given digit as the result for the current column”, “announce a
carry or borrow”, “move to the next column”, or “announce
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completion of the current problem”. The “Arithmetic Net-
work” included a recurrent hidden layer, which was needed
both to produce a sequential output and to “remember” the
potential presence of a carry or borrow from the processing
of the previous column.

As in the discrete mapping experiment, the behavior of this
domain task network was to be specified by a stream of in-
put instruction tokens. Different instruction sequences could
specify different orderings for sets of standard actions (e.g.,
announcing the carry before or after recording the digit sum) or
could specify completely different arithmetic operations (e.g.,
subtraction rather than addition). Each sequence described
three actions which were to be applied in the given order to
each column of digits. For example, the usual form of ad-
dition was specified as, “WRITE-SUM ANNOUNCE-CARRY
NEXT-COLUMN”. Only six such instruction sequences con-
stituted meaningful procedures:

ANNOUNCE-CARRY WRITE-SUM NEXT-COLUMN
WRITE-SUM NEXT-COLUMN ANNOUNCE-PREV-CARRY
WRITE-SUM ANNOUNCE-CARRY NEXT-COLUMN
ANNOUNCE-BORROW WRITE-DIFF NEXT-COLUMN
WRITE-DIFF NEXT-COLUMN ANNOUNCE-PREV-BORROW
WRITE-DIFF ANNOUNCE-BORROW NEXT-COLUMN

Despite the extremely small size of this set of possible algo-
rithms, making generalization unlikely, the last of the subtrac-
tion sequences was avoided during the initial training phase, to
be used, instead, as a test of generalization. Still, the primary
goal was to have the network exhibit appropriate behavior
when presented with any one of the training set instruction
sequences.

This network was operated and trained in much the same
manner as the discrete mapping network. Instruction tokens
were presented sequentially at the advice input layer, using a
localist code, and activity was propagated through the “Plan
Network™ to produce a plan layer activation vector repre-
senting the entire instruction sequence. Activation at the plan
layer was then “frozen” and used as an input to the “Arithmetic
Network”, which then performed the specified procedure on
a collection of binary number pairs.> Training was conducted
as in the discrete mapping network, with error computed after
the presentation of each instruction token and backpropagated

“Typically, all number pairs of up to three digits in length were
used to provide training problems.
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through recurrent connections for only a single time step.

A large number of experiments were conducted using this
architecture and task, varying hidden layer sizes and details
of the training regimen. As Figure 4 demonstrates, it was
possible to achieve perfect performance on the training set
of instruction sequences, but generalization was essentially
not achieved.* Still, the primary goal of this experiment was
attained. The resulting model was capable of performing
a number of different versions of addition and subtraction,
and it could immediately modify its behavior, without weight
adaptation, to match one of these algorithms upon presentation
of the appropriate instructions. This experiment has shown
that the proposed connectionist framework is sufficient to
allow complex temporal behaviors to be modulated by input
advice.

Conclusion

As an initial small step towards a comprehensive model of hu-
man learning, we have proposed a connectionist framework
for “learning by being told”. Our approach views linguistic
advice as temporal input streams to a recurrent network, and
the operationalization of that advice is seen as motion in the
activation space of that network. “Meaningful” instruction
sequences are internally represented by stable articulated at-
tractors in that space, and these attractors arise either in the
process of learning the instructional language or in later Heb-
bian modifications resulting from the repeated instantiation
of neighboring attractors. By locating instructed learning in
activation space, our framework avoids the problems inherent
in “weight compilation” approaches, and provides a means
for integrating induction and instruction.

In this paper, we have put off an examination of attrac-
tor dynamics and have focused, instead, on establishing the
ability of connectionist networks to inductively learn an in-
structional language. We have demonstrated successful in-
struction following behavior in both a combinatoric mapping
task and in a domain involving the performance of systematic
procedures. In both domains, networks inductively acquired

*The accuracy measurement shown in Figure 4 is a measure of
correct actions over time. The displayed 74% generalization accu-
racy shows that many actions were performed correctly, but it masks
the fact that systematic mistakes on the test set instruction sequence
kept the network from attaining the complete correct answer for even
a single subtraction problem when given this instruction sequence.



the ability to operationalize instructions, with error feedback
provided only for actual behavior on the task. The require-
ments of the domain drove the representational structure at
the plan layer. The ability of these networks to understand
novel instruction sequences was also quite reasonable, espe-
cially considering their limited exposure to the instructional
language, but there is still much room for improvement here.
In particular, the utility of attractor network dynamics for
generalization to novel advice sequences, a key feature of our
model, has not yet been tested. We conjecture that the in-
troduction of an attractor network at the plan layer will give
rise to articulated attractors in activation space and that these
will facilitate systematic generalization to novel sequences of
instruction. Examining this claim will be the primary aim of
future work.

If connectionism is to provide a unified modeling frame-
work for human learning, it must incorporate a variety of
learning strategies. Inductive generalization forms a natu-
ral foundation for such a framework, since so many learning
problems may be expressed in terms of statistical induction.
Instructional learning is a natural partner for induction, since
it is strong where induction is weak. Learning from instruc-
tion is fast compared to inductive learning, and its resistance
to negative contingencies makes it especially useful for learn-
ing difficult behaviors with delayed rewards. Perhaps most
importantly, linguistic instruction is a primary means of effi-
ciently transferring the vast collection of accumulated cultural
knowledge to each individual. Learning from instruction has
become a critical component of human development, so it
is natural to make it a central focus of efforts in cognitive
modeling.
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